JP2008174785A - Copper alloy tube for heat exchanger - Google Patents

Copper alloy tube for heat exchanger Download PDF

Info

Publication number
JP2008174785A
JP2008174785A JP2007008586A JP2007008586A JP2008174785A JP 2008174785 A JP2008174785 A JP 2008174785A JP 2007008586 A JP2007008586 A JP 2007008586A JP 2007008586 A JP2007008586 A JP 2007008586A JP 2008174785 A JP2008174785 A JP 2008174785A
Authority
JP
Japan
Prior art keywords
tube
copper alloy
mass
tensile strength
alloy tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007008586A
Other languages
Japanese (ja)
Other versions
JP5078368B2 (en
Inventor
Masahito Watanabe
雅人 渡辺
Takashi Shirai
崇 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2007008586A priority Critical patent/JP5078368B2/en
Publication of JP2008174785A publication Critical patent/JP2008174785A/en
Application granted granted Critical
Publication of JP5078368B2 publication Critical patent/JP5078368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy tube for heat exchanger having a ratio of burst pressure to tensile strength (PFa)/(σa) more than the ratio of burst pressure to tensile strength (PFd)/(σd) for a phosphorus-deoxidized copper tube, and superior in bending property and heat resistance. <P>SOLUTION: The copper alloy tube for heat exchanger has a composition containing 0.1-2.0 mass% of Sn, 0.005-0.1 mass% of P, 0.005 mass% or lower of S, 0.005 mass% or lower of O, 0.0002 mass% or lower of H and balance Cu with inevitable impurities. This copper alloy tube has a tensile strength of 255 N/mm<SP>2</SP>or higher, and an average crystal particle size of 30 μm or lower measured in the direction vertical to the wall thickness direction of the tube in the section crossing the tube axis at a right angle. When the tensile strength and the burst pressure of the copper alloy tube are represented by σa and PFa respectively, and the tensile strength and burst pressure of the phosphorus-deoxidized copper tube having the same outer diameter and wall thickness as the copper alloy tube are represented by σd and PFd respectively, the relation of (PFa)/(σa)>(PFd)/(σd) is satisfied. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐圧破壊強度及び加工性が優れた熱交換器用銅合金管に関する。   The present invention relates to a copper alloy tube for a heat exchanger having excellent pressure fracture strength and workability.

例えば、エアコンの熱交換器は、ヘアピン状に曲げ加工したU字形銅管(以下、銅管という場合は銅合金管も含む)をアルミニウム又はアルミニウム合金板からなるフィン(以下、アルミニウムフィンという)の貫通孔に通し、前記銅管を銅管内に治具を挿入して拡管することにより、銅管とアルミニウムフィンとを密着させ、更に、銅管の開放端を拡管し、この拡管開放端部にU字形に曲げ加工したベンド銅管を挿入し、りん銅ろう等のろう材によりベンド銅管をU字形銅管の拡管開放端部にろう付けすることにより、複数個のU字形銅管がベンド銅管により接続されて、熱交換器が製作される。   For example, a heat exchanger for an air conditioner has a U-shaped copper tube bent into a hairpin shape (hereinafter referred to as a copper tube also includes a copper alloy tube) of a fin made of aluminum or an aluminum alloy plate (hereinafter referred to as an aluminum fin). Through the through hole, the copper tube is expanded by inserting a jig into the copper tube, thereby bringing the copper tube and the aluminum fin into close contact with each other, and further expanding the open end of the copper tube. A U-shaped bend copper tube is inserted into the U-shaped copper tube, and the bend copper tube is brazed to the expanded open end of the U-shaped copper tube with a brazing material such as phosphor copper brazing. Connected by a bend copper tube, a heat exchanger is manufactured.

このため、熱交換器に使用される銅管には、熱伝導率、曲げ加工性及びろう付け性が良好であることが要求される。従って、これらの特性が良好であり、適切な強度を有するりん脱酸銅が広く使用されている。   For this reason, it is requested | required that the copper tube used for a heat exchanger should have favorable heat conductivity, bending workability, and brazing property. Therefore, phosphorus deoxidized copper having good characteristics and appropriate strength is widely used.

エアコン等の熱交換器に使用する冷媒には、HCFC(ハイドロクロロフルオロカーボン)系フロンが広く使用されてきたが、HCFCはオゾン破壊係数が大きいことから、地球環境保護の点より、その値が小さいHFC(ハイドロフルオロカーボン)系フロンが使用されるようになってきた。また、給湯器、自動車用空調機器又は自動販売機等に使用される熱交換器に自然冷媒であるCOが使用されるようになってきた。熱交換器において、これらの冷媒が使用される圧力(熱交換器の伝熱管内を流れる圧力)は凝縮器(COにおいてはガスクーラー)において最大となり、例えば、HCFC系フロンのR22では1.8MPa、HFC系フロンのR410Aでは3MPa、またCO冷媒では7乃至10MPa(超臨界状態)程度であり、新たに採用された冷媒の運転圧力は従来冷媒R22の1.6乃至6倍程度に増大している。 HCFC (hydrochlorofluorocarbon) fluorocarbons have been widely used as refrigerants for heat exchangers such as air conditioners. However, HCFC has a low ozone depletion coefficient, so its value is small in terms of protecting the global environment. HFC (hydrofluorocarbon) -based fluorocarbons have been used. In addition, CO 2 that is a natural refrigerant has been used in heat exchangers used in water heaters, automotive air conditioners, vending machines, and the like. In the heat exchanger, the pressure at which these refrigerants are used (pressure flowing through the heat transfer tubes of the heat exchanger) is maximum in the condenser (gas cooler in CO 2 ). 8 MPa, the R410A of HFC-based fluorocarbons 3 MPa, also in CO 2 refrigerant is about 7 to 10 MPa (supercritical state), the operating pressure of the newly adopted refrigerant is increased to 1.6 to 6 times that of the conventional refrigerant R22 is doing.

伝熱管内を流れる冷媒の運転圧力をP、伝熱管の外径をD、伝熱管の引張り強さ(伝熱管長手方向)をσ、伝熱管の肉厚をt(内面溝付管の場合は底肉厚)とすると、これらの間には、P=2×σ×t/(D−0.8t)の関係がある。前記式を肉厚tに関して整理すると、t=(D×P)/(2×σ+0.8P)となり、伝熱管の引張り強さが大きいほど肉厚を薄くできることがわかる。実際に、伝熱管を選定する場合、前記のPに更に安全率S(通常2.5乃至4程度)を乗じた圧力に対して算出される引張り強さ及び肉厚の伝熱管を使用する。   The operating pressure of the refrigerant flowing in the heat transfer tube is P, the outer diameter of the heat transfer tube is D, the tensile strength of the heat transfer tube (longitudinal direction of the heat transfer tube) is σ, and the thickness of the heat transfer tube is t (in the case of an internally grooved tube) (Thickness of the bottom wall), there is a relationship of P = 2 × σ × t / (D−0.8t) between them. When the above formula is arranged with respect to the wall thickness t, t = (D × P) / (2 × σ + 0.8P), and it can be seen that the wall thickness can be reduced as the tensile strength of the heat transfer tube is increased. Actually, when selecting a heat transfer tube, a heat transfer tube having a tensile strength and a wall thickness calculated for a pressure obtained by multiplying the above-mentioned P by a safety factor S (usually about 2.5 to 4) is used.

りん脱酸銅製伝熱管の場合、引張り強さが小さいことから、冷媒の運転圧力の増大に対応するには管の肉厚を厚くする必要がある。また、熱交換器の組立の際、ろう付け部は800℃以上の温度に数秒乃至数十秒間加熱されるため、ろう付け部及びその近傍ではその他の部分に比べて結晶粒が粗大化し、軟化により強度が低下した状態となってしまうことから、肉厚をより厚くする必要がある。このように、伝熱管としてりん脱酸銅を使用すると、熱交換器の質量が増大し、価格が上昇することから、引張り強さが高く、加工性が優れていて、良好な熱伝導率を有する伝熱管が強く要望されるようになってきた。   In the case of a phosphorous deoxidized copper heat transfer tube, since the tensile strength is small, it is necessary to increase the thickness of the tube in order to cope with an increase in the operating pressure of the refrigerant. Also, when assembling the heat exchanger, the brazed part is heated to a temperature of 800 ° C. or higher for several seconds to several tens of seconds, so that the crystal grains are coarsened and softened in the brazed part and its vicinity in comparison with other parts. Therefore, it is necessary to make the wall thickness thicker. Thus, when phosphorous deoxidized copper is used as a heat transfer tube, the mass of the heat exchanger increases and the price increases, so the tensile strength is high, workability is excellent, and good thermal conductivity is achieved. There has been a strong demand for heat transfer tubes.

このような要望に応えるべく、0.2%耐力と疲れ強さが優れた銅合金管として、例えば、Co:0.02乃至0.2質量%、P:0.01乃至0.05質量%、C:1乃至20ppmを含有し、残部がCu及び不可避的不純物からなり、不純物の酸素が50ppm以下である熱交換器用継目無銅合金管が提案されている(特許文献1)。また、Sn:0.1乃至1.0質量%、P:0.005乃至0.1質量%、O:0.005質量%以下及びH:0.0002質量%以下を含有し、残部がCu及び不可避的不純物からなる組成を有し、平均結晶粒径が30μm以下である熱交換器用銅合金管が提案されている(特許文献2)。   In order to meet such a demand, as a copper alloy tube excellent in 0.2% proof stress and fatigue strength, for example, Co: 0.02 to 0.2 mass%, P: 0.01 to 0.05 mass% , C: 1 to 20 ppm, the remainder is made of Cu and inevitable impurities, and oxygen of impurities is 50 ppm or less, and a seamless copper alloy tube for heat exchanger has been proposed (Patent Document 1). Also, Sn: 0.1 to 1.0 mass%, P: 0.005 to 0.1 mass%, O: 0.005 mass% or less and H: 0.0002 mass% or less, with the balance being Cu And the copper alloy pipe | tube for heat exchangers which has the composition which consists of unavoidable impurities and whose average crystal grain diameter is 30 micrometers or less is proposed (patent document 2).

特開2000−199023号公報JP 2000-199023 A 特開2003−268467号公報JP 2003-268467 A

しかしながら、特許文献1に開示された銅合金は、Coの燐化物による析出強化によって引張り強さを向上させているが、強度上昇の割には耐圧破壊強度が上昇せず(特許文献1の銅合金管の破壊圧力をPF1、引張り強さをσ1とするとき、σ1>σd(σdはりん脱酸銅管の引張り強さ)であるが、PF1/σ1の値がりん脱酸銅管のそれとほぼ同じ値)、また前記燐化物はろう付け温度では固溶するため、ろう付け後は強度が低下する。そのため、伝熱管に使用した場合、あまり肉厚を薄くできず、所望の効果が得られないという問題点がある。   However, although the copper alloy disclosed in Patent Document 1 has improved tensile strength by precipitation strengthening with Co phosphide, the pressure fracture strength does not increase for the strength increase (copper of Patent Document 1). When the fracture pressure of the alloy tube is PF1 and the tensile strength is σ1, σ1> σd (σd is the tensile strength of the phosphorous deoxidized copper tube). Since the phosphide dissolves at the brazing temperature, the strength decreases after brazing. Therefore, when used for a heat transfer tube, there is a problem that the wall thickness cannot be reduced so much that a desired effect cannot be obtained.

また、特許文献2の銅合金は、Snの固溶強化により強度が向上し、ろう付け後の軟化も特許文献1の銅合金より小さく、伝熱管に用いると管の肉厚を薄くすることが可能になるが、熱交換器とするためにU字曲げ加工したときに、曲げ部でしわ又は割れが発生し易くなり、その部分が起点となって予期しない低い強度で破壊してしまうといった問題点があることが判明した。   Moreover, the copper alloy of Patent Document 2 has improved strength due to solid solution strengthening of Sn, and the softening after brazing is also smaller than that of Patent Document 1, and when used in a heat transfer tube, the thickness of the tube can be reduced. Although it becomes possible, when U-shaped bending is performed to make a heat exchanger, wrinkles or cracks are likely to occur in the bent part, and the part starts to break at an unexpectedly low strength. It turns out that there is a point.

ところで、引張り強さσの銅管の管内に静水圧を作用させ、この管が破壊したときの破壊圧力をPFとすると、通常、PFとσは比例関係にあり、PF/σ=α(αは比例定数)となる。軟質りん脱酸銅管の引張り強さをσd、その破壊圧力をPFdとすると、PFd/σd=αdである。前記軟質りん脱酸銅管に軽い抽伸加工を加えると引張り強さが増大し、σd´(σd´>σd)となり、それに伴い破壊圧力も増大し、PFd´(PFd´>PFd)となる。しかしながら、PFとσの比PFd/σd及びPFd´/σd´は共にαdであり、焼鈍した軟質材に抽伸加工等を行ってりん脱酸銅管の引張り強さを向上させることにより、耐圧強度を向上させることは可能であるが、引張り強さを向上させると、延性が急激に低下し、伝熱管の曲げ部で割れ及びしわが起こりやすくなり、その部分が基点となって所定破壊圧力より低い圧力で破壊してしまう。   By the way, when hydrostatic pressure is applied to a copper pipe having a tensile strength σ and the breaking pressure when the pipe breaks is PF, PF and σ are normally in a proportional relationship, and PF / σ = α (α Is a proportionality constant). PFd / σd = αd, where σd is the tensile strength of the soft phosphorous deoxidized copper tube and PFd is its breaking pressure. When a light drawing process is applied to the soft phosphorous deoxidized copper pipe, the tensile strength increases, and σd ′ (σd ′> σd) is obtained. Accordingly, the breaking pressure also increases, and PFd ′ (PFd ′> PFd). However, the ratios PFd / σd and PFd ′ / σd ′ of PF and σ are both αd, and the tensile strength of the phosphorous deoxidized copper pipe is improved by drawing the annealed soft material and the like. However, if the tensile strength is increased, the ductility is drastically reduced, and cracks and wrinkles are likely to occur at the bent part of the heat transfer tube. It breaks at low pressure.

従って、りん脱酸銅に対する破壊圧力と引張り強さの比αdを上回る伝熱管が得られれば、それだけ管の引張り強さを大きくしなくても、耐圧強度を確保することができ、管の加工性を確保するのに有利になる。また、管の肉厚を薄くしても所定の耐圧強度を確保することが可能になる。   Therefore, if a heat transfer tube exceeding the ratio αd of the fracture pressure to the tensile strength of phosphorous deoxidized copper is obtained, the pressure strength can be secured without increasing the tensile strength of the tube, and the tube can be processed. It is advantageous to ensure the property. Moreover, even if the wall thickness of the tube is reduced, it is possible to ensure a predetermined pressure resistance.

本発明はかかる問題点に鑑みてなされたものであって、りん脱酸銅管に対する破壊圧力と引張り強さとの比(PFd)/(σd)を上回る破壊圧力/引張り強さの比(PFa)/(σa)を有し、且つ曲げ加工性及び耐熱性が優れた熱交換器用銅合金管を提供することを目的とする。   The present invention has been made in view of such a problem, and a ratio of the breaking pressure / tensile strength (PFa) exceeding the ratio (PFd) / (σd) between the breaking pressure and the tensile strength for the phosphorous deoxidized copper pipe. An object of the present invention is to provide a copper alloy tube for a heat exchanger having / (σa) and excellent bending workability and heat resistance.

本発明に係る熱交換器用銅合金管は、Sn:0.1乃至2.0質量%、P:0.005乃至0.1質量%、S:0.005質量%以下、O:0.005質量%以下、及びH:0.0002質量%以下を含有し、残部がCu及び不可避的不純物からなる組成を有し、引張り強さが255N/mm以上であり、管軸直交断面において、管の肉厚方向と垂直な方向に測定した平均結晶粒径が30μm以下である銅合金管であって、前記銅合金管の引張り強さをσa、破壊圧力をPFa、前記銅合金管と同一外径及び肉厚のりん脱酸銅管の引張り強さをσd、破壊圧力をPFdとしたとき、(PFa)/(σa)>(PFd)/(σd)であることを特徴とする。 The copper alloy tube for a heat exchanger according to the present invention has Sn: 0.1 to 2.0 mass%, P: 0.005 to 0.1 mass%, S: 0.005 mass% or less, O: 0.005. Less than mass%, and H: 0.0002 mass% or less, with the balance being composed of Cu and unavoidable impurities, with a tensile strength of 255 N / mm 2 or more. A copper alloy tube having an average crystal grain size of 30 μm or less measured in a direction perpendicular to the thickness direction of the copper alloy tube, wherein the tensile strength of the copper alloy tube is σa, the fracture pressure is PFa, When the tensile strength of the diameter and thickness of the phosphorous deoxidized copper pipe is σd and the breaking pressure is PFd, (PFa) / (σa)> (PFd) / (σd).

この熱交換器用銅合金管において、更に、Zn:0.01乃至1.0質量%を含有することができる。   This copper alloy tube for a heat exchanger can further contain Zn: 0.01 to 1.0% by mass.

更に、Fe、Ni、Mn、Mg、Cr、Ti及びAgからなる群から選択された1種以上の元素を合計で0.07質量%未満含有することができる。   Furthermore, it is possible to contain a total of less than 0.07% by mass of one or more elements selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti and Ag.

更にまた、前記熱交換器用銅合金管は、抽伸加工されたものとすることができる。   Furthermore, the copper alloy tube for heat exchanger may be drawn.

本発明の熱交換器用銅合金管は、800℃で15秒間加熱した後の管軸直交断面において管の肉厚方向と垂直な方向に測定した平均結晶粒径が100μm以下であることが好ましい。なお、平均結晶粒径は、管の軸方向に直交する断面において、JISH0501に定められた切断法により、肉厚と垂直な方向の結晶粒径を測定し、これを管軸方向に任意の10箇所で測定したときのその測定値の平均値である。   The copper alloy tube for a heat exchanger according to the present invention preferably has an average crystal grain size of 100 μm or less measured in a direction perpendicular to the thickness direction of the tube in a cross section perpendicular to the tube axis after heating at 800 ° C. for 15 seconds. The average crystal grain size is determined by measuring the crystal grain size in the direction perpendicular to the wall thickness by a cutting method defined in JISH0501 in a cross section orthogonal to the axial direction of the tube, It is the average value of the measured values when measured at a location.

更に、この熱交換器用銅合金管は、例えば、内面溝付管である。   Furthermore, this copper alloy tube for heat exchangers is, for example, an internally grooved tube.

以下、本発明について更に詳細に説明する。本発明者等が種々実験研究した結果、Sn含有量、P含有量、S含有量、管軸直交断面における肉厚と直交する方向の平均結晶粒径を適切に規定することにより、本発明の課題を解決できる熱交換器用銅合金管を得ることができることを見出した。   Hereinafter, the present invention will be described in more detail. As a result of various experimental studies by the present inventors, the Sn content, the P content, the S content, and the average crystal grain size in the direction perpendicular to the thickness in the cross section perpendicular to the tube axis are appropriately defined. It discovered that the copper alloy tube for heat exchangers which can solve a subject could be obtained.

以下、本発明の熱交換器用伝熱管の成分添加理由及び組成限定理由について説明する。   Hereinafter, the reason for adding components and the reason for limiting the composition of the heat exchanger tube for heat exchanger according to the present invention will be described.

「Sn:0.1乃至2.0質量%」
Snは、銅合金管の引張り強さを向上させ、結晶粒の粗大化を抑制させる効果を有し、種々の冷媒を使用する伝熱管の銅合金中に含有させた場合、りん脱酸銅管に比べて管の肉厚を薄くすることが可能になる。銅合金管のSn含有量が2.0質量%を超えると、鋳塊における凝固偏析が激しくなり、通常の熱間押出及び/又は加工熱処理により偏析が完全に解消しないことがあり、銅合金管の金属組織、機械的性質、曲げ加工性、ろう付け後の組織及び機械的性質が不均一となる。また、押出圧力が高くなり、Sn含有量が2質量%以下の銅合金と同一の押出圧力で押出成形するためには、押出温度を上げることが必要になり、それにより押出材の表面酸化が増加し、生産性の低下及び銅合金管の表面欠陥が増加する。一方、Snが0.1質量%未満であると、焼鈍後及びろう付け加熱後に、十分な引張強さ及び細かい結晶粒径を得ることができなくなる。
“Sn: 0.1 to 2.0 mass%”
Sn has the effect of improving the tensile strength of the copper alloy tube and suppressing the coarsening of crystal grains. When Sn is contained in the copper alloy of the heat transfer tube using various refrigerants, the phosphorus deoxidized copper tube It becomes possible to reduce the wall thickness of the tube as compared with the above. If the Sn content of the copper alloy tube exceeds 2.0% by mass, solidification segregation in the ingot becomes severe, and segregation may not be completely eliminated by normal hot extrusion and / or thermomechanical treatment. The metal structure, mechanical properties, bending workability, structure after brazing, and mechanical properties are not uniform. Further, in order to perform extrusion molding at the same extrusion pressure as that of a copper alloy having an Sn content of 2% by mass or less, the extrusion temperature needs to be raised, thereby causing surface oxidation of the extruded material. Increased productivity decreases and surface defects of the copper alloy tube increase. On the other hand, if Sn is less than 0.1% by mass, sufficient tensile strength and fine crystal grain size cannot be obtained after annealing and after brazing heating.

「P:0.005乃至0.1質量%」
銅合金管のP含有量が0.1質量%を超えると、熱間押出時に割れが生じやすくなり、応力腐食割れ感受性が高くなると共に、熱伝導率の低下が大きくなる。P含有量が0.005質量%未満であると、脱酸不足により酸素量が増加してSnの酸化物が発生し、鋳塊の健全性が低下し、銅合金管として曲げ加工性が低下する。
“P: 0.005 to 0.1 mass%”
When the P content of the copper alloy tube exceeds 0.1% by mass, cracking is likely to occur during hot extrusion, and the stress corrosion cracking sensitivity is increased, and the thermal conductivity is greatly decreased. When the P content is less than 0.005% by mass, the amount of oxygen increases due to insufficient deoxidation, Sn oxide is generated, the soundness of the ingot is lowered, and the bending workability as a copper alloy tube is lowered. To do.

「S:0.005質量%以下」
本発明の銅合金管において、銅合金管のSは、Cuと化合物を形成して母相中に存在する。原料として用いる低品位銅地金及びスクラップ等の配合割合が増加し、Sの含有量が増えると、鋳塊時の鋳塊割れ及び熱間押出割れが増加する。また、熱間押出割れが発生しなくても、押出材を冷間圧延したり、抽伸加工すると、材料内部のCu−S化合物は管の軸方向に伸張し、銅合金母相とCu−S化合物界面で割れが発生しやすく、加工中の半製品及び加工後の製品において、表面疵及び割れ等になり、製品の歩留りを低下させる。また、Cu−S化合物界面で割れが発生しない場合でも、本発明の合金管に曲げ加工を行う際、割れ発生の起点となり、曲げ部で割れが発生する頻度が高くなる。このような問題を改善するために、本発明の銅合金管へのS含有量は0.005質量%以下、望ましくは0.003質量%以下、更に望ましくは0.0015質量%以下にする必要がある。Sは、銅地金、スクラップなどの原料、スクラップに付着する油、溶解鋳造雰囲気(溶湯を被覆する木炭/フラックス、溶湯と接触する雰囲気中のSOxガス、炉材等)より比較的簡単に溶湯中に取り込まれるため、S含有量を0.005質量%以下とするには、低品位のCu地金及びスクラップの使用量を低減し、溶解雰囲気のSOxガスを低減し、適正な炉材を選定し、Mg及びCa等のSと親和性が強い元素を溶湯に微量添加する等の対策が有効である。なお、S以外の不純物元素As、Bi、Sb、Pb、Se、Teについても同様に、鋳塊、熱間押出材、及び冷間加工材の健全性を低下させ、また管の曲げ加工性を損なうことから、これらの元素の合計含有量は0.0015質量%以下、望ましくは0.0010質量%以下、更に望ましくは0.0005質量%以下とすることが好ましい。
“S: 0.005 mass% or less”
In the copper alloy tube of the present invention, S in the copper alloy tube forms a compound with Cu and exists in the parent phase. When the blending ratio of low-grade copper ingots and scraps used as raw materials increases and the S content increases, ingot cracking and hot extrusion cracking during ingot increase. Even if hot extrusion cracking does not occur, when the extruded material is cold-rolled or drawn, the Cu—S compound inside the material expands in the axial direction of the tube, and the copper alloy matrix and Cu—S Cracks are likely to occur at the compound interface, resulting in surface defects and cracks in the semi-finished product being processed and the product after processing, thereby reducing the product yield. Even when cracks do not occur at the Cu-S compound interface, when bending the alloy pipe of the present invention, it becomes a starting point of crack generation, and the frequency of occurrence of cracks at the bent portion increases. In order to improve such problems, the S content in the copper alloy tube of the present invention should be 0.005% by mass or less, desirably 0.003% by mass or less, more desirably 0.0015% by mass or less. There is. S is relatively simpler than copper metal, raw materials such as scrap, oil adhering to scrap, melting casting atmosphere (charcoal / flux covering molten metal, SOx gas in furnace atmosphere, furnace material, etc.) In order to reduce the S content to 0.005% by mass or less, the amount of low-grade Cu ingots and scrap used is reduced, the SOx gas in the melting atmosphere is reduced, and an appropriate furnace material is used. Measures such as adding a trace amount of an element having a strong affinity for S, such as Mg and Ca, to the molten metal are effective. In addition, the impurity elements As, Bi, Sb, Pb, Se, and Te other than S are similarly reduced in the soundness of the ingot, the hot extruded material, and the cold work material, and the bending workability of the pipe is improved. Therefore, the total content of these elements is preferably 0.0015% by mass or less, desirably 0.0010% by mass or less, and more desirably 0.0005% by mass or less.

「O:0.005質量%以下」
本発明の銅合金管において、Oの含有量が0.005質量%を超えると、Cu又はSnの酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下すると共に、製造された管の曲げ加工性が低下しやすくなる。このため、Oの含有量を0.005質量%以下とする必要がある。曲げ加工性をより改善するには、Oの含有量を0.003質量%以下とすることが望ましく、0.0015%以下とすることが更に望ましい。
“O: 0.005 mass% or less”
In the copper alloy pipe of the present invention, when the content of O exceeds 0.005 mass%, Cu or Sn oxide is caught in the ingot, and the soundness of the ingot is lowered, and the manufactured pipe Bending workability tends to decrease. For this reason, it is necessary to make content of O 0.005 mass% or less. In order to further improve the bending workability, the O content is desirably 0.003% by mass or less, and more desirably 0.0015% or less.

「H:0.0002質量%以下」
溶解鋳造時に溶湯に取り込まれる水素が多くなると、凝固時に固溶量が減少した水素が鋳塊の粒界に析出し、多数のピンホールを形成し、熱間押出時に割れを発生させる。また、押出後も圧延及び抽伸加工した銅合金管を焼鈍すると、焼鈍時にHが粒界に濃縮し、これに起因して膨れが発生しやすくなり、製品歩留が低下する。このため、本発明の銅合金管においては、Hの含有量を0.0002質量%以下とすることが必要である。製品歩留りをより向上させるには、Hの含有量を0.0001質量%以下とすることが望ましい。
“H: 0.0002 mass% or less”
When the amount of hydrogen taken into the molten metal at the time of melt casting increases, the hydrogen whose solid solution amount has decreased at the time of solidification precipitates at the grain boundary of the ingot, forms a large number of pinholes, and generates cracks at the time of hot extrusion. In addition, when a copper alloy tube that has been rolled and drawn after annealing is annealed, H is concentrated at the grain boundaries during annealing, and blistering is likely to occur due to this, resulting in a decrease in product yield. For this reason, in the copper alloy pipe | tube of this invention, it is necessary to make content of H 0.0002 mass% or less. In order to further improve the product yield, the H content is desirably 0.0001% by mass or less.

なお、Hの含有量を0.0002質量%以下とするには、溶解鋳造時の原料の乾燥、溶湯被覆木炭の赤熱、溶湯と接触する雰囲気の露点の低下、りん添加前の溶湯を酸化気味にする等の対策が有効である。   In order to make the H content 0.0002% by mass or less, drying of the raw material at the time of melting and casting, red hotness of the molten-coating charcoal, reduction of the dew point of the atmosphere in contact with the molten metal, and the molten metal before the addition of phosphorus seem to be oxidized Measures such as making it effective are effective.

「Zn:0.01乃至1.0質量%」
Znを添加することにより、銅合金管の熱伝導率を大きく低下させることなく、強度、耐熱性及び疲れ強さを向上させることができる。また、Znの添加により、冷間圧延、抽伸及び転造等に用いる工具の磨耗を低減させることができ、抽伸プラグ及び溝付プラグ等の寿命を延命させる効果があり、生産コストの低減に寄与する。Znの含有量が1.0質量%を超えると、応力腐食割れ感受性が高くなる。また、Znの含有量が0.01質量%未満であると、上述の効果が十分得られなくなる。従って、Znの含有量を0.001乃至1.0質量%とすることが必要である。
“Zn: 0.01 to 1.0 mass%”
By adding Zn, the strength, heat resistance and fatigue strength can be improved without greatly reducing the thermal conductivity of the copper alloy tube. In addition, the addition of Zn can reduce the wear of tools used for cold rolling, drawing, rolling, etc., and has the effect of extending the life of drawing plugs, grooved plugs, etc., contributing to the reduction of production costs To do. When the Zn content exceeds 1.0% by mass, the stress corrosion cracking sensitivity becomes high. Further, if the Zn content is less than 0.01% by mass, the above effects cannot be obtained sufficiently. Therefore, the Zn content needs to be 0.001 to 1.0 mass%.

次に、本発明の熱交換器用銅合金管の特性等の限定理由について説明する。   Next, the reasons for limitation such as the characteristics of the copper alloy tube for heat exchanger of the present invention will be described.

「引張強さ:255N/mm以上」
銅合金管の引張強さが255N/mm未満であると、エアコン等の熱交換器に組み込んだときの強度が不十分であり、またろう付け後の強度を十分に維持できない。なお、ここでいう引張り強さは焼鈍して軟質材とした銅合金管の管軸方向の引張り強さである。
“Tensile strength: 255 N / mm 2 or more”
When the tensile strength of the copper alloy tube is less than 255 N / mm 2 , the strength when incorporated in a heat exchanger such as an air conditioner is insufficient, and the strength after brazing cannot be sufficiently maintained. The tensile strength referred to here is the tensile strength in the tube axis direction of a copper alloy tube annealed and made into a soft material.

「管軸直交断面における肉厚方向に垂直な方向の平均結晶粒径:30μm以下」
管内に静水圧を作用させると、管軸直交断面においては管周方向及び肉厚方向と直交する方向に力が加わり、管内外面の表面疵、管内部の硫化物等の介在物、及び管内表面又は内部の微細な割れ等の欠陥を基点にして割れが発生し、亀裂が伝播して破壊に至る。本発明者等は、このような破壊に至る問題点を防止するためには、管軸直交断面における肉厚方向と直交する方向の平均結晶粒径を30μm以下にすると有効であることを見出した。管軸直交断面における肉厚方向に垂直な方向の平均結晶粒径が30μmを超えると、エアコン等の熱交換器に組み込む際、曲げ加工したときに曲げ部に割れが発生しやすくなる。この場合に、この肉厚方向と直交する方向の平均結晶粒径は20μm以下であることがより望ましい。
“Average crystal grain size in the direction perpendicular to the thickness direction in the cross section perpendicular to the tube axis: 30 μm or less”
When hydrostatic pressure is applied to the inside of the pipe, a force is applied in the direction orthogonal to the pipe circumferential direction and the wall thickness direction in the cross section perpendicular to the pipe axis, surface defects on the inner and outer surfaces of the pipe, inclusions such as sulfides inside the pipe, and the inner surface of the pipe Alternatively, a crack is generated based on a defect such as an internal fine crack, and the crack propagates to break. The present inventors have found that it is effective to reduce the average crystal grain size in the direction perpendicular to the thickness direction in the cross section perpendicular to the tube axis to 30 μm or less in order to prevent such a problem leading to destruction. . If the average crystal grain size in the direction perpendicular to the thickness direction in the cross section perpendicular to the tube axis exceeds 30 μm, cracks are likely to occur in the bent portion when bent into a heat exchanger such as an air conditioner. In this case, the average crystal grain size in the direction orthogonal to the thickness direction is more preferably 20 μm or less.

なお、この平均結晶粒径は焼鈍により再結晶した状態、又はそれに抽伸等の塑性加工を施した状態のいずれでもよい。   The average crystal grain size may be either a state recrystallized by annealing or a state in which plastic processing such as drawing is performed.

「銅合金管の引張り強さをσa、耐圧破壊圧力をPFa、銅合金管と同一外径及び肉厚のりん脱酸銅管の引張り強さをσd、耐圧破壊圧力をPFdとしたとき、(PFa)/(σa)>(PFd)/(σd)である。」
本発明の銅合金管は、その耐圧破壊圧力Pfaと引張り強さσaとの比(Pfa)/(σa)が、りん脱酸銅管の耐圧破壊圧力PFdと引張り強さσdとの(PFd)/(σd)より大きいので、例えば同一引張り強さ、同一肉厚の管を用いた場合も、本発明の銅合金管はより大きい耐圧強度を保証することができる。また、りん脱酸銅管と本発明の銅合金管の引張り強さが同一であれば、本発明の銅合金管の方が伸びが大きいことから、管の曲げ加工による割れがおきにくく、より厳しい曲げ(曲げ半径の小さい曲げ)を行うことができる。
“When the tensile strength of the copper alloy pipe is σa, the pressure breaking pressure is PFa, the tensile strength of the phosphorus-deoxidized copper pipe having the same outer diameter and thickness as the copper alloy pipe is σd, and the pressure breaking pressure is PFd ( PFa) / (σa)> (PFd) / (σd). ”
The copper alloy tube of the present invention has a ratio (Pfa) / (σa) between the pressure breaking pressure Pfa and the tensile strength σa (PFd) of the pressure breaking pressure PFd and the tensile strength σd of the phosphorous deoxidized copper tube. Since it is larger than / (σd), for example, even when a pipe having the same tensile strength and the same thickness is used, the copper alloy pipe of the present invention can guarantee a higher pressure strength. Also, if the tensile strength of the phosphorus-deoxidized copper tube and the copper alloy tube of the present invention is the same, the copper alloy tube of the present invention has a larger elongation, so that cracking due to bending of the tube is less likely to occur. Severe bending (bending with a small bending radius) can be performed.

なお、耐圧破壊圧力と引張り強さの比は、同じ合金であれば、調質(焼鈍による軟化状態及び焼鈍後の加工率)が変わってもほぼ同じ値を示すので、ここでは例えば焼鈍上がりのりん脱酸銅管及び本発明の銅合金管について引張り強さと耐圧破壊強度を測定して求めることができる。   In addition, since the ratio between the pressure fracture pressure and the tensile strength is the same alloy, even if the tempering (softened state by annealing and the processing rate after annealing) changes, it shows almost the same value. It can be determined by measuring the tensile strength and the pressure fracture strength of the phosphorous deoxidized copper tube and the copper alloy tube of the present invention.

「Fe、Ni、Mn、Mg、Cr、Ti及びAgからなる群から選択された1種以上の元素を合計0.07質量%未満」
Fe、Ni、Mn、Mg、Cr、Ti、Zr及びAgはいずれも本発明の銅合金の強度、耐圧破壊強度、及び耐熱性を向上させ、結晶粒を微細化して曲げ加工性を改善する。前記元素の中から選択する1種以上の元素の含有量が0.07質量%を超えると、押出圧力が上昇するため、これらの元素を添加しないものと同一の押出力で押出を行おうとすると、熱間押出温度を上げることが必要になる。これにより、押出材の表面酸化が多くなるため、本発明の銅合金管において表面欠陥が多発し、製品歩留りが低下する。このため、Fe、Ni、Mn、Mg、Cr、Ti、Zr及びAgからなる群から選択された1種以上の元素を合計0.07質量%未満とすることが望ましい。前記含有量は、0.05質量%未満とすることがより望ましく、0.03質量%未満とすることが更に望ましい。
“Totally less than 0.07% by mass of one or more elements selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti and Ag”
Fe, Ni, Mn, Mg, Cr, Ti, Zr, and Ag all improve the strength, pressure breakdown strength, and heat resistance of the copper alloy of the present invention, and refine crystal grains to improve bending workability. When the content of one or more elements selected from the above elements exceeds 0.07% by mass, the extrusion pressure rises. Therefore, when extrusion is performed with the same pressing force as that in which these elements are not added, It is necessary to increase the hot extrusion temperature. Thereby, since the surface oxidation of the extruded material increases, surface defects frequently occur in the copper alloy tube of the present invention, and the product yield decreases. For this reason, it is desirable that the total of one or more elements selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti, Zr and Ag be less than 0.07% by mass. The content is more preferably less than 0.05% by mass, and still more preferably less than 0.03% by mass.

「800℃に15秒間加熱した後の引張強さ:235N/mm以上」
銅合金管が熱交換器に加工されたとき、ろう付けによる熱影響を受ける。ろう付けには、通常、りん銅ろう(JIS BCuP−2:Cu−6.8〜7.5質量%P、ろう付け温度:735〜840℃)が多用される。そして、このろう付けによる熱影響と同等の800℃に15秒間加熱した後の引張強さが235N/mm未満であると、運転圧力が高いHFC系フロン冷媒及び炭酸ガス冷媒のときに、疲労破壊が起こりやすくなる。よって、800℃に15秒間加熱した後の銅合金管の引張強さを235N/mm以上とすることが好ましい。
“Tensile strength after heating to 800 ° C. for 15 seconds: 235 N / mm 2 or more”
When a copper alloy tube is processed into a heat exchanger, it is affected by heat from brazing. Usually, phosphor copper brazing (JIS BCuP-2: Cu-6.8 to 7.5% by mass P, brazing temperature: 735 to 840 ° C.) is frequently used for brazing. If the tensile strength after heating at 800 ° C. for 15 seconds, which is equivalent to the thermal effect of brazing, is less than 235 N / mm 2 , fatigue is caused when the operating pressure is high for HFC-based fluorocarbon refrigerant and carbon dioxide refrigerant. Destruction is likely to occur. Therefore, it is preferable that the tensile strength of the copper alloy tube after heating at 800 ° C. for 15 seconds is 235 N / mm 2 or more.

「800℃に15秒間加熱した後の管軸直交断面の肉厚方向に垂直な方向の平均結晶粒径:100μm以下」
前述の如く、銅合金管が熱交換器に加工されたとき、ろう付けによる熱影響を受ける。そして、このろう付けによる熱影響で結晶粒径が粗大化するが、ろう付けによる熱影響と同等の800℃に15秒間加熱した後に、管軸直交断面の肉厚方向に垂直な方向の平均結晶粒径が100μmを超えると、ろう付け部において耐圧強度の低下が大きく、運転圧力が高いHFC系フロン冷媒及び炭酸ガス冷媒用の熱交換器に銅合金管を使用したときに信頼性が低下する。従って、管軸直交断面の肉厚方向に垂直な方向の平均結晶粒径を100μm以下、更には60μm以下とすることが望ましい。
“Average crystal grain size in the direction perpendicular to the wall thickness direction of the tube axis orthogonal section after heating to 800 ° C. for 15 seconds: 100 μm or less”
As described above, when a copper alloy tube is processed into a heat exchanger, it is affected by heat due to brazing. The crystal grain size becomes coarse due to the heat effect of brazing. After heating to 800 ° C. for 15 seconds, which is equivalent to the heat effect of brazing, the average crystal in the direction perpendicular to the thickness direction of the cross section perpendicular to the tube axis If the particle size exceeds 100 μm, the pressure strength is greatly reduced in the brazed part, and the reliability decreases when copper alloy tubes are used in heat exchangers for HFC-based refrigerants and carbon dioxide refrigerants with high operating pressure. . Accordingly, it is desirable that the average crystal grain size in the direction perpendicular to the thickness direction of the cross section perpendicular to the tube axis is 100 μm or less, more preferably 60 μm or less.

「銅合金管が内面溝付管である。」
本発明の銅合金管は、りん脱酸銅管に比べて引張り強さと伸びを大きく、且つ結晶粒径を小さくすることができるので転造加工による内面溝付管の製造に好適である。特に、引張り強さが大きいことから、転造加工時に引抜き方向に伸びにくいので溝付プラグの溝部への合金管の肉の充填が円滑であり、良好なフィン形状を有する内面溝付管を高速で加工することが可能になる。
“The copper alloy tube is an internally grooved tube.”
The copper alloy tube of the present invention is suitable for the production of an internally grooved tube by rolling because the tensile strength and elongation can be increased and the crystal grain size can be reduced as compared with a phosphorous deoxidized copper tube. In particular, because the tensile strength is large, it is difficult to stretch in the drawing direction during rolling, so the groove of the grooved plug can be smoothly filled with the meat of the alloy tube, and the inner surface grooved tube with a good fin shape can be filled at high speed. It becomes possible to process with.

次に、本発明の銅合金管の製造方法の一例について、平滑管又は内面溝付管の場合を例として以下に説明する。   Next, an example of the method for producing a copper alloy tube of the present invention will be described below by taking a smooth tube or an internally grooved tube as an example.

先ず、原料の電気銅を木炭被覆の状態で溶解し、銅が溶解した後、Sn及びZnを所定量添加し、更に、脱酸を兼ねてCu−15質量%P中間合金としてPを添加する。成分調整が終了した後、半連続鋳造により所定の寸法のビレットを作製する。得られたビレットを加熱炉で加熱し、均質化処理を行なう。なお、熱間押出前に、ビレットを750乃至950℃に1分乃至2時間程度保持して均質化による偏析改善を行うことが望ましい。   First, the raw electrolytic copper is dissolved in a charcoal-coated state, and after the copper is dissolved, a predetermined amount of Sn and Zn is added, and further P is added as a Cu-15 mass% P intermediate alloy for deoxidation. . After the component adjustment is completed, a billet having a predetermined size is produced by semi-continuous casting. The obtained billet is heated in a heating furnace and homogenized. Before hot extrusion, it is desirable to improve segregation by homogenization by holding the billet at 750 to 950 ° C. for about 1 minute to 2 hours.

その後、ビレットにピアシングによる穿孔加工を行い、750乃至950℃で熱間押出を行う。本件発明の銅合金管を製造するには、Snの偏析解消及び製品管における組織の微細化の達成が必須要件であるが、そのためには熱間押出による断面減少率([穿孔されたビレットのドーナツ状の面積−熱間押出後の素管の断面積]/[穿孔されたビレットのドーナツ状の面積]×100%)を88%以上、望ましくは93%以上とし、更に熱間押出後の素管を水冷等の方法により、表面温度が300℃になるまでの冷却速度が10℃/秒以上、望ましくは15℃/秒以上、更に望ましくは20℃/秒以上となるように冷却することが好ましい。   Thereafter, the billet is perforated by piercing and hot extruded at 750 to 950 ° C. In order to manufacture the copper alloy pipe of the present invention, it is essential to eliminate the segregation of Sn and to refine the structure of the product pipe. For this purpose, the cross-sectional reduction rate ([perforated billet Donut-shaped area-cross-sectional area of tube after hot extrusion] / [doughnut-shaped area of perforated billet] × 100%) is 88% or more, preferably 93% or more, and further after hot extrusion The raw tube is cooled by a method such as water cooling so that the cooling rate until the surface temperature reaches 300 ° C. is 10 ° C./second or higher, preferably 15 ° C./second or higher, more preferably 20 ° C./second or higher. Is preferred.

次に、押出素管に圧延加工を行ない、外径と肉厚を低減させる。このときの加工率を断面減少率で92%以下とすることにより、圧延時の製品不良を低減できる。   Next, the extruded element tube is rolled to reduce the outer diameter and thickness. By setting the processing rate at this time to 92% or less in terms of the cross-sectional reduction rate, product defects during rolling can be reduced.

また、圧延素管に抽伸加工を行なって所定の寸法の素管を製造する。通常、抽伸加工は複数台の抽伸機を用いて行うが、各抽伸機による加工率(断面減少率)は35%以下にすることにより、素管における表面欠陥及び内部割れを低減できる。   In addition, a drawn tube is manufactured by drawing the rolled tube. Usually, drawing is performed using a plurality of drawing machines, but surface defects and internal cracks in the raw pipe can be reduced by setting the processing rate (cross-sectional reduction rate) by each drawing machine to 35% or less.

その後、需要家において管に曲げ加工を行う場合及び抽伸管を使用して内面溝付管を製造する場合等には、抽伸管に焼鈍処理を行う。本発明の銅合金管を連続的に焼鈍するには、銅管コイル等の焼鈍に通常使用されるローラーハース炉、又は高周波誘導コイルに通電しながら銅管を前記コイルに通す高周波誘導コイルによる加熱を利用することができる。ローラーハース炉によって本発明の銅合金管を製造するには、抽伸管の実体温度が400乃至600℃となり、その温度で抽伸管が1分乃至120分間程度加熱されるように焼鈍することが望ましい。また、室温から所定温度までの平均昇温速度が5℃/分以上、望ましくは10℃/分以上となるように加熱することが望ましい。   After that, when the pipe is bent by the customer or when the inner surface grooved pipe is manufactured using the drawing pipe, the drawing pipe is annealed. In order to continuously anneal the copper alloy tube of the present invention, a roller hearth furnace usually used for annealing a copper tube coil or the like, or heating by a high frequency induction coil that passes the copper tube through the coil while energizing the high frequency induction coil Can be used. In order to manufacture the copper alloy tube of the present invention using a roller hearth furnace, it is desirable to anneal the drawing tube so that the actual temperature of the drawing tube is 400 to 600 ° C., and the drawing tube is heated for about 1 to 120 minutes at that temperature. . Moreover, it is desirable to heat so that the average rate of temperature increase from room temperature to a predetermined temperature is 5 ° C./min or more, preferably 10 ° C./min or more.

抽伸管の実体温度が400℃より低いと完全な再結晶組織にならず(繊維状の加工組織が残存)、需要家における曲げ加工及び内面溝付管の加工が困難になる。また、600℃を超える温度では、結晶粒が粗大化し、管の曲げ加工性が却って低下し、また内面溝付加工においては管の引張り強さが低下してしまうため、管長手方向の伸びが大きく、管内面のフィンを正しい形状に形成することが難しくなる。このため、抽伸管の実体温度が400乃至600℃の範囲で焼鈍することが望ましい。また、この温度範囲における加熱時間が1分より短いと、完全な再結晶組織にならないため、前述の問題が発生する。また、120分を超えて焼鈍を行っても、結晶粒径に変化がなく、焼鈍の効果は飽和してしまうため、前記温度範囲における加熱時間は1分乃至120分が適当である。また、結晶粒を粗大化させないためには、室温から所定温度までの平均昇温速度が速いほうが望ましい。昇温速度が5℃/分より遅いと、同じ温度に加熱しても結晶粒が粗大化しやすく、耐圧破壊強度及び曲げ加工性の点から望ましくないと共に、生産性を阻害することになる。従って、室温から所定温度までの平均昇温速度は5℃/分以上が望ましい。   When the actual temperature of the drawing tube is lower than 400 ° C., a complete recrystallized structure is not obtained (a fibrous processed structure remains), and it becomes difficult for a customer to bend and process an internally grooved tube. In addition, when the temperature exceeds 600 ° C., the crystal grains are coarsened, the bending workability of the pipe is lowered, and the tensile strength of the pipe is reduced in the inner surface grooving process. It is large and it becomes difficult to form the fin on the inner surface of the tube into a correct shape. For this reason, it is desirable to anneal the drawing tube in the range of 400 to 600 ° C. Further, when the heating time in this temperature range is shorter than 1 minute, the above-mentioned problem occurs because a complete recrystallization structure is not obtained. Further, even if annealing is performed for more than 120 minutes, the crystal grain size does not change, and the effect of annealing is saturated. Therefore, the heating time in the temperature range is suitably 1 minute to 120 minutes. In order not to make the crystal grains coarse, it is desirable that the average temperature increase rate from room temperature to a predetermined temperature is high. If the rate of temperature rise is slower than 5 ° C./min, the crystal grains are likely to be coarsened even when heated to the same temperature, which is undesirable from the viewpoint of pressure breakdown strength and bending workability, and also hinders productivity. Therefore, the average rate of temperature rise from room temperature to a predetermined temperature is preferably 5 ° C./min or more.

なお、上記のローラーハース炉による連続焼鈍に変えて、高周波誘導加熱炉を使用し、高速昇温、高速冷却、及び短時間加熱の焼鈍を行ってもよい。以上が平滑管の製造方法である。また、このように焼鈍した平滑管に、必要に応じて各種加工率の抽伸加工を行い、引張り強さを向上させた加工管としてもよい。   In place of the continuous annealing by the roller hearth furnace, a high-frequency induction heating furnace may be used to perform high-temperature heating, high-speed cooling, and short-time heating annealing. The above is the smooth tube manufacturing method. Moreover, it is good also as a processed pipe which improved the tensile strength by performing the drawing process of various processing rates as needed to the smooth pipe annealed in this way.

内面溝付管の場合は、焼鈍した平滑管に溝付転造加工を行う。このようにして、内面溝付管を製造した後、通常更に焼鈍を行う。また、このように焼鈍した内面溝付管に、必要に応じて軽加工率の抽伸加工を行い、引張り強さを向上させてもよい。   In the case of an internally grooved tube, grooved rolling is performed on the annealed smooth tube. Thus, after manufacturing an internally grooved pipe | tube, normally it anneals further. Further, the annealed inner surface grooved tube may be subjected to a drawing process at a light processing rate as necessary to improve the tensile strength.

以下、本発明の効果を実証するための試験結果について説明する。   Hereinafter, test results for demonstrating the effects of the present invention will be described.

(実施例1:平滑管)
(a)電気銅を原料として、溶湯中に所定のSnを添加し、更に必要に応じて、Znを添加した後、Cu−P母合金を添加することにより、所定組成の溶湯を作製した。このとき、Sn及びCu−P母合金の替わりに、Cu−Sn−Pの母合金を使用することもできる。
(b)鋳造温度1200℃で、直径320×長さ6500mmの鋳塊を半連続鋳造した。
(c)得られた鋳塊から、長さ450mmのビレットを切り出した。
(d)ビレットをビレットヒーターで650℃に加熱した後、インダクションヒーターで950℃に加熱し、950℃に到達した後2分経過後、熱間押出機でビレット中心に直径80mmのピアシング加工し、その後、熱間押出により、外径96mm、肉厚9.5mmの押出素管を作製した(断面減少率:96.6%)。押出素管の300℃までの平均冷却速度は40℃/秒であった。
(e)押出素管を圧延して、外径35mm、肉厚2.3mmの圧延素管を作製した。
(f)圧延素管を、1回の抽伸工程における断面減少率が35%以下になるように、引き抜き抽伸加工を繰り返し、外径9.52mm、肉厚0.80mmの銅合金管を得た。
(g)焼鈍炉にて、還元性ガス雰囲気中で、前記抽伸管を450乃至580℃に加熱し(平均昇温速度12℃/分)、この温度に30乃至120分保持し、冷却帯を通過させて室温まで徐冷し、供試材とした。
(Example 1: Smooth tube)
(A) Using electrolytic copper as a raw material, predetermined Sn was added to the molten metal, and Zn was added as necessary, and then a Cu-P master alloy was added to prepare a molten metal having a predetermined composition. At this time, a Cu—Sn—P master alloy may be used instead of Sn and the Cu—P master alloy.
(B) An ingot having a diameter of 320 × length of 6500 mm was semi-continuously cast at a casting temperature of 1200 ° C.
(C) A billet having a length of 450 mm was cut out from the resulting ingot.
(D) After heating the billet to 650 ° C. with a billet heater, the billet is heated to 950 ° C. with an induction heater, and after reaching 950 ° C., after 2 minutes, piercing with a diameter of 80 mm is performed at the center of the billet with a hot extruder Thereafter, an extruded element tube having an outer diameter of 96 mm and a wall thickness of 9.5 mm was produced by hot extrusion (cross-sectional reduction rate: 96.6%). The average cooling rate up to 300 ° C. of the extruded element tube was 40 ° C./second.
(E) The extruded element tube was rolled to produce a rolled element tube having an outer diameter of 35 mm and a wall thickness of 2.3 mm.
(F) The drawing tube was repeatedly drawn and drawn so that the cross-sectional reduction rate in one drawing process was 35% or less, and a copper alloy tube having an outer diameter of 9.52 mm and a wall thickness of 0.80 mm was obtained. .
(G) In an annealing furnace, the drawing tube is heated to 450 to 580 ° C. in a reducing gas atmosphere (average rate of temperature increase of 12 ° C./min), maintained at this temperature for 30 to 120 minutes, and a cooling zone is formed. The sample was allowed to pass through and slowly cooled to room temperature to obtain a test material.

下記表1は、外径9.52mm、肉厚0.80mmの平滑管の焼鈍材についての特性を示す。表1に示す従来品は、JISH3300C1220Tのりん脱酸銅管である。この従来品の品種は、下記表2乃至8において、共通である。   Table 1 below shows the characteristics of the annealed material of a smooth tube having an outer diameter of 9.52 mm and a wall thickness of 0.80 mm. The conventional product shown in Table 1 is a phosphorus deoxidized copper tube of JISH3300C1220T. The types of the conventional products are common in Tables 2 to 8 below.

Figure 2008174785
Figure 2008174785

応力腐食割れ試験は、管から長さ75mmの試験片を切り取り、脱脂、乾燥した後、JISK8085に規定するアンモニア水を等量の純水で薄めた11.8%以上のアンモニア水を入れたデシケーターに液面から50mm離して入れ、このアンモニア雰囲気中に常温で2時間保持した。その後、試験片を元の外径の50%まで押しつぶして、割れの判定を目視で行った。割れなしの場合を○、割れありの場合を×で示した。   The stress corrosion cracking test is a desiccator containing 11.8% or more of ammonia water obtained by cutting a 75 mm long test piece from a tube, degreasing and drying, and then diluting the ammonia water specified in JIS K8085 with an equal amount of pure water. The sample was placed 50 mm away from the liquid surface and kept in this ammonia atmosphere at room temperature for 2 hours. Then, the test piece was crushed to 50% of the original outer diameter, and the crack was visually determined. The case where there was no crack was indicated by ○ and the case where there was a crack was indicated by ×.

また、試験片を水素気流中において850℃で30分間加熱した後、研磨エッチングして、顕微鏡で100倍に拡大して脆化の有無を確認した。脆化なしの場合を○、脆化ありの場合を×で示した。   Moreover, after heating a test piece at 850 degreeC for 30 minute (s) in hydrogen stream, it polish-etched and expanded 100 times with the microscope, and confirmed the presence or absence of embrittlement. The case where there was no embrittlement was indicated by ○, and the case where there was embrittlement was indicated by ×.

比較例No.2は押出圧力が高くて押出ができず、比較例No.3、No.7は熱間押出時に割れが生じて、加工できなかった。   Comparative Example No. No. 2 has a high extrusion pressure and cannot be extruded. 3, no. No. 7 was cracked during hot extrusion and could not be processed.

この表1に示すように、実施例1乃至11は、引張強さが高く、破壊圧力が高く、応力腐食割れ試験及び水素脆化試験で、割れが生じなかった。これに対し、比較例4,5は夫々P及びZnの含有量が本発明の規定範囲より多いために、応力腐食割れ試験で割れが発生し、比較例6はOの含有量が本発明の規定範囲より多いために、水素脆化試験で割れが発生した。従来品は、引張強さが低く、また破壊圧力も低いものであった。   As shown in Table 1, Examples 1 to 11 had high tensile strength and high fracture pressure, and no cracks occurred in the stress corrosion cracking test and the hydrogen embrittlement test. On the other hand, Comparative Examples 4 and 5 each have a P and Zn content greater than the specified range of the present invention, so that cracking occurred in the stress corrosion cracking test, and Comparative Example 6 had an O content of the present invention. Cracking occurred in the hydrogen embrittlement test because it was larger than the specified range. Conventional products have low tensile strength and low breaking pressure.

下記表2は、外径9.52mm、肉厚0.80mm、の平滑管の焼鈍材を、800℃に15秒間加熱した後の特性を示す。   Table 2 below shows characteristics after heating an annealed material of a smooth tube having an outer diameter of 9.52 mm and a wall thickness of 0.80 mm to 800 ° C. for 15 seconds.

Figure 2008174785
Figure 2008174785

比較例No.2、No.3、No.7は試料ができず、また比較例No.3、No.4及びNo.5は、応力腐食割れ試験、水素脆化試験で不具合が生じたので、試験を行わなかった。   Comparative Example No. 2, No. 3, no. No sample 7 was prepared, and Comparative Example No. 3, no. 4 and no. No. 5 was not tested because a failure occurred in the stress corrosion cracking test and the hydrogen embrittlement test.

この表2に示すように、実施例1乃至11は焼鈍材を800℃に15秒間加熱した後にも、引張強さ及び破壊圧力が高いものであった。これに対し、比較例1はこれらが低いものであった。   As shown in Table 2, Examples 1 to 11 had high tensile strength and breaking pressure even after annealing the annealed material to 800 ° C. for 15 seconds. On the other hand, in Comparative Example 1, these were low.

(実施例2:半硬質材)
(a)乃至(g)の工程は、上記平滑管の場合と同様である。
(h)次に、焼鈍された材料を、加工率10%でダイスによって空引き加工することにより、外径8.50mm、肉厚0.82mmまで抽伸加工して、供試材とした。
(Example 2: Semi-hard material)
The steps (a) to (g) are the same as in the case of the smooth tube.
(H) Next, the annealed material was blanked by a die at a processing rate of 10% to be drawn to an outer diameter of 8.50 mm and a wall thickness of 0.82 mm to obtain a test material.

下記表3は、外径が8.50mm、肉厚が0.82mmの半硬質材の特性を示し、下記表4は、同じくこの半硬質材の焼鈍材を800℃に15秒間加熱した後の特性を示す。   Table 3 below shows the characteristics of a semi-hard material having an outer diameter of 8.50 mm and a wall thickness of 0.82 mm, and Table 4 below shows the result after heating this semi-hard material to 800 ° C. for 15 seconds. Show properties.

Figure 2008174785
Figure 2008174785

Figure 2008174785
Figure 2008174785

この表3に示すように、この半硬質材においても、実施例12乃至15は、引張強さ及び破壊圧力が高く、応力腐食割れ試験及び水素脆化試験において、割れが発生していない。また、表4に示すように、半硬質材の焼鈍材を800℃に15秒間加熱した後の引張強度及び破壊圧力も充分に高いものであった。これに対し、比較例8は、引張強さ及び破壊圧力が低いものであった。   As shown in Table 3, also in this semi-rigid material, Examples 12 to 15 have high tensile strength and fracture pressure, and no cracks are generated in the stress corrosion cracking test and the hydrogen embrittlement test. Further, as shown in Table 4, the tensile strength and breaking pressure after heating the semi-hard annealed material to 800 ° C. for 15 seconds were sufficiently high. In contrast, Comparative Example 8 had low tensile strength and breaking pressure.

(実施例3:内面溝付管)
(a)乃至(e)の工程は、上記平滑管の場合と同様である。
(i)次に、圧延素管を抽伸加工して、溝付転造用の素管を製作した。
(j)溝付転造用の素管をインダクションヒーターにより中間焼鈍した。
(k)中間焼鈍した溝付転造用素管に溝付転造加工を行い、外径7mm、底肉厚0.23mmの内面溝付管を製作した。この内面溝はフィン高さ0.16mm、リード角35°、フィン山数55である。
(l)内面溝付管を焼鈍炉にて、還元性ガス雰囲気中で、雰囲気温度550乃至650℃で60乃至120分間で加熱帯を通過させ、その後冷却帯を通過させて室温まで徐冷した。
(Example 3: internally grooved tube)
The steps (a) to (e) are the same as in the case of the smooth tube.
(I) Next, the rolled blank was drawn to produce a rolled rolled blank.
(J) A base tube for grooved rolling was subjected to intermediate annealing with an induction heater.
(K) The grooved rolling element tube subjected to intermediate annealing was subjected to grooved rolling to produce an internally grooved tube having an outer diameter of 7 mm and a bottom wall thickness of 0.23 mm. This inner surface groove has a fin height of 0.16 mm, a lead angle of 35 °, and a fin crest number of 55.
(L) The inner grooved tube was passed through a heating zone in a reducing gas atmosphere at an atmospheric temperature of 550 to 650 ° C. for 60 to 120 minutes in an annealing furnace, and then gradually cooled to room temperature through a cooling zone. .

下記表5は外径が7.00mm、底肉厚が0.23mmの内面溝付銅合金管の焼鈍材についての特性であり、表6は同じくこの焼鈍材を800℃に15秒間加熱した後の特性である。   Table 5 below shows the characteristics of the annealed copper alloy tube having an inner diameter of 7.00 mm and a bottom wall thickness of 0.23 mm. Table 6 shows the result of heating the annealed material to 800 ° C. for 15 seconds. It is a characteristic.

Figure 2008174785
Figure 2008174785

Figure 2008174785
Figure 2008174785

この表5に示すように、実施例16乃至19の内面溝付管は、引張強さ及び破壊圧力が高く、応力腐食割れ試験及び水素脆化試験において、割れが発生していない。また、表6に示すように、半硬質材の焼鈍材を800℃に15秒間加熱した後の引張強度及び破壊圧力も充分に高いものであった。これに対し、比較例9は、引張強さ及び破壊圧力が低いものであった。   As shown in Table 5, the inner surface grooved pipes of Examples 16 to 19 have high tensile strength and breaking pressure, and no cracks are generated in the stress corrosion cracking test and the hydrogen embrittlement test. Further, as shown in Table 6, the tensile strength and breaking pressure after heating the semi-hard annealed material to 800 ° C. for 15 seconds were sufficiently high. In contrast, Comparative Example 9 had low tensile strength and breaking pressure.

(実施例4:鋳造式圧延方式(キャストアンドロール方式))
(m)電気銅を原料として、溶湯中に所定のSnを添加し、更に選択的にZnを添加した後、Cu−P母合金を添加することにより、所定組成の溶湯を作製した。その後、横型に連続鋳造して素管を作製、さらにロール回転させながら、外径35mm、肉厚2.3mmの圧延素管を作製した。
(Example 4: Casting type rolling method (cast and roll method))
(M) Using electrolytic copper as a raw material, predetermined Sn was added to the molten metal, Zn was further selectively added, and then a Cu-P master alloy was added to prepare a molten metal having a predetermined composition. Thereafter, a raw pipe was produced by continuous casting into a horizontal mold, and further, a rolled raw pipe having an outer diameter of 35 mm and a wall thickness of 2.3 mm was produced while rotating the roll.

その後、平滑管の(f)の工程以降、又は内面溝付管の(i)の工程以降と同様の工程で銅合金管を製造した。   Thereafter, a copper alloy tube was manufactured in the same step as the step (f) after the smooth tube or the step (i) after the inner grooved tube.

下記表7は外径が9.52mm、底肉厚が0.80mmの鋳造式圧延方式(キャストアンドロール方式)平滑管の焼鈍材についての特性であり、表8は同じくこの焼鈍材を800℃に15秒間加熱した後の特性である。   Table 7 below shows the characteristics of an annealed material of a cast-type rolling method (cast and roll method) smooth tube having an outer diameter of 9.52 mm and a bottom wall thickness of 0.80 mm. Table 8 also shows the annealing material at 800 ° C. The characteristic after heating for 15 seconds.

Figure 2008174785
Figure 2008174785

Figure 2008174785
Figure 2008174785

この表7に示すように、実施例20の平滑管は、引張強さ及び破壊圧力が高く、応力腐食割れ試験及び水素脆化試験において、割れが発生していない。また、表8に示すように、この平滑管の焼鈍材を800℃に15秒間加熱した後の引張強度及び破壊圧力も充分に高いものであった。これに対し、比較例10は、引張強さ及び破壊圧力が低いものであった。   As shown in Table 7, the smooth tube of Example 20 has high tensile strength and fracture pressure, and no cracks are generated in the stress corrosion cracking test and the hydrogen embrittlement test. Further, as shown in Table 8, the tensile strength and breaking pressure after heating the annealed material of the smooth tube to 800 ° C. for 15 seconds were sufficiently high. In contrast, Comparative Example 10 had low tensile strength and breaking pressure.

本発明の銅合金管は、耐圧破壊強度が優れているため、二酸化炭素及びフロン等の冷媒を使用する熱交換器の伝熱管(平滑管及び内面溝付管)、前記熱交換器の蒸発器と凝縮器を接続する冷媒配管又は機内配管に使用することができる。また、本発明の銅合金管はろう付け加熱後も優れた耐圧破壊強度を有するため、ろう付け部を有する伝熱管、水配管、灯油配管、ヒートパイプ、四方弁及びコントロール銅管等に使用することができる。   Since the copper alloy tube of the present invention has excellent pressure fracture strength, the heat transfer tube (smooth tube and inner grooved tube) of the heat exchanger using a refrigerant such as carbon dioxide and chlorofluorocarbon, the evaporator of the heat exchanger Can be used for refrigerant piping or in-machine piping connecting the condenser and the condenser. Moreover, since the copper alloy pipe of the present invention has excellent pressure fracture strength even after brazing heating, it is used for a heat transfer pipe having a brazed portion, a water pipe, a kerosene pipe, a heat pipe, a four-way valve, a control copper pipe, and the like. be able to.

Claims (6)

Sn:0.1乃至2.0質量%、P:0.005乃至0.1質量%、S:0.005質量%以下、O:0.005質量%以下、及びH:0.0002質量%以下を含有し、残部がCu及び不可避的不純物からなる組成を有し、引張り強さが255N/mm以上であり、管軸直交断面において、管の肉厚方向と垂直な方向に測定した平均結晶粒径が30μm以下である銅合金管であって、前記銅合金管の引張り強さをσa、破壊圧力をPFa、前記銅合金管と同一外径及び肉厚のりん脱酸銅管の引張り強さをσd、破壊圧力をPFdとしたとき、(PFa)/(σa)>(PFd)/(σd)であることを特徴とする熱交換器用銅合金管。 Sn: 0.1 to 2.0 mass%, P: 0.005 to 0.1 mass%, S: 0.005 mass% or less, O: 0.005 mass% or less, and H: 0.0002 mass% An average measured in a direction perpendicular to the thickness direction of the pipe in a cross section perpendicular to the pipe axis, having a composition comprising the following, the balance consisting of Cu and inevitable impurities, and having a tensile strength of 255 N / mm 2 or more A copper alloy tube having a crystal grain size of 30 μm or less, wherein the tensile strength of the copper alloy tube is σa, the fracture pressure is PFa, and the tensile strength of the phosphorus-deoxidized copper tube having the same outer diameter and thickness as the copper alloy tube A copper alloy tube for a heat exchanger, wherein (PFa) / (σa)> (PFd) / (σd) where σd is the strength and PFd is the breaking pressure. 更に、Zn:0.01乃至1.0質量%を含有することを特徴とする請求項1に記載の熱交換器用銅合金管。 Furthermore, Zn: 0.01 thru | or 1.0 mass% is contained, The copper alloy pipe for heat exchangers of Claim 1 characterized by the above-mentioned. 更に、Fe、Ni、Mn、Mg、Cr、Ti及びAgからなる群から選択された1種以上の元素を合計で0.07質量%未満含有することを特徴とする請求項1又は2に記載の熱交換器用銅合金管。 The total content of one or more elements selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti and Ag is less than 0.07% by mass in total. Copper alloy tube for heat exchanger. 抽伸加工が施されていることを特徴とする請求項1乃至3のいずれか1項に記載の熱交換器用銅合金管。 The copper alloy tube for a heat exchanger according to any one of claims 1 to 3, wherein a drawing process is performed. 800℃で15秒間加熱した後の管軸直交断面において管の肉厚方向と垂直な方向に測定した平均結晶粒径が100μm以下であることを特徴とする請求項1乃至4のいずれか1項に記載の熱交換器用銅合金管。 5. The average crystal grain size measured in a direction perpendicular to the thickness direction of the tube in a cross section orthogonal to the tube axis after being heated at 800 ° C. for 15 seconds is 100 μm or less. A copper alloy tube for a heat exchanger as described in 1. 前記銅合金管が内面溝付管であることを特徴とする請求項1乃至5のいずれか1項に記載の熱交換器用銅合金管。 The copper alloy tube for heat exchanger according to any one of claims 1 to 5, wherein the copper alloy tube is an internally grooved tube.
JP2007008586A 2007-01-17 2007-01-17 Method for producing copper alloy tube for heat exchanger Active JP5078368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008586A JP5078368B2 (en) 2007-01-17 2007-01-17 Method for producing copper alloy tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008586A JP5078368B2 (en) 2007-01-17 2007-01-17 Method for producing copper alloy tube for heat exchanger

Publications (2)

Publication Number Publication Date
JP2008174785A true JP2008174785A (en) 2008-07-31
JP5078368B2 JP5078368B2 (en) 2012-11-21

Family

ID=39702010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008586A Active JP5078368B2 (en) 2007-01-17 2007-01-17 Method for producing copper alloy tube for heat exchanger

Country Status (1)

Country Link
JP (1) JP5078368B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214255A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Leg type robot and its control method
JP2010065270A (en) * 2008-09-10 2010-03-25 Kobe Steel Ltd Copper alloy tube for heat exchanger excellent in bendability
JP2010236063A (en) * 2009-03-31 2010-10-21 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger
US20100276039A1 (en) * 2009-04-29 2010-11-04 Golden Dragon Precise Copper Tube Group Inc. Copper alloy, method of producing the same, and copper tube
JP2011225989A (en) * 2010-03-31 2011-11-10 Kobelco & Materials Copper Tube Inc Copper alloy tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268467A (en) * 2002-03-18 2003-09-25 Kobe Steel Ltd Copper alloy tube for heat exchanger
JP2004292917A (en) * 2003-03-27 2004-10-21 Kobe Steel Ltd Method of producing copper alloy smooth tube for heat exchanger, and method of producing copper alloy internally grooved tube for heat exchanger
JP2006274313A (en) * 2005-03-28 2006-10-12 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268467A (en) * 2002-03-18 2003-09-25 Kobe Steel Ltd Copper alloy tube for heat exchanger
JP2004292917A (en) * 2003-03-27 2004-10-21 Kobe Steel Ltd Method of producing copper alloy smooth tube for heat exchanger, and method of producing copper alloy internally grooved tube for heat exchanger
JP2006274313A (en) * 2005-03-28 2006-10-12 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214255A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Leg type robot and its control method
JP2010065270A (en) * 2008-09-10 2010-03-25 Kobe Steel Ltd Copper alloy tube for heat exchanger excellent in bendability
JP2010236063A (en) * 2009-03-31 2010-10-21 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger
US20100276039A1 (en) * 2009-04-29 2010-11-04 Golden Dragon Precise Copper Tube Group Inc. Copper alloy, method of producing the same, and copper tube
JP2011225989A (en) * 2010-03-31 2011-11-10 Kobelco & Materials Copper Tube Inc Copper alloy tube

Also Published As

Publication number Publication date
JP5078368B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4629080B2 (en) Copper alloy tube for heat exchanger
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP4630323B2 (en) Copper alloy tube for heat exchangers with excellent fracture strength
JP4817693B2 (en) Copper alloy tube for heat exchanger and manufacturing method thereof
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
JP5111922B2 (en) Copper alloy tube for heat exchanger
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP4818179B2 (en) Copper alloy tube
JP6541583B2 (en) Copper alloy material and copper alloy pipe
JP5078410B2 (en) Copper alloy tube
JP5107841B2 (en) Copper alloy tube for heat exchangers with excellent bending workability
TWI608110B (en) Copper alloy seamless tube for heat exchanger tube
JP5499300B2 (en) Copper alloy tube for heat exchanger
JP2013040397A (en) Copper alloy material for pipe having high strength and high conductivity and method for manufacturing the same
JP5990496B2 (en) Phosphorus deoxidized copper pipe for heat exchanger
JP5639025B2 (en) Copper alloy tube
JP5638999B2 (en) Copper alloy tube
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP2017036468A (en) Copper alloy tube
JP2017036467A (en) Copper alloy tube
JP2010236063A (en) Copper alloy tube for heat exchanger
JP5336296B2 (en) Copper alloy tube for heat exchangers with excellent workability
JP2013189664A (en) Copper alloy tube
JP6360363B2 (en) Copper alloy tube
JP5544591B2 (en) Copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250