JP2011225989A - Copper alloy tube - Google Patents

Copper alloy tube Download PDF

Info

Publication number
JP2011225989A
JP2011225989A JP2011077003A JP2011077003A JP2011225989A JP 2011225989 A JP2011225989 A JP 2011225989A JP 2011077003 A JP2011077003 A JP 2011077003A JP 2011077003 A JP2011077003 A JP 2011077003A JP 2011225989 A JP2011225989 A JP 2011225989A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
less
tube
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011077003A
Other languages
Japanese (ja)
Other versions
JP5638999B2 (en
Inventor
Masahito Watanabe
雅人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2011077003A priority Critical patent/JP5638999B2/en
Publication of JP2011225989A publication Critical patent/JP2011225989A/en
Application granted granted Critical
Publication of JP5638999B2 publication Critical patent/JP5638999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy tube having improved high-temperature ductility and reduced the possibility of cracks during brazing while maintaining high strength.SOLUTION: A copper alloy tube for a heat exchanger contains 0.1 to 1.0 mass% of Sn and 0.005 to 0.1 mass% of P and further contains one or more elements selected from a group of Zr, Ti, and Cr in such a manner that when Zr is contained, the Zr content is 0.0001 to 0.01 mass% and the total content of each element is 0.0001 to 0.1 mass%, wherein the total content of S, Pb, Bi, Se, As, Te, and Sb is regulated to 0.003 mass% or less, the O content is regulated to 0.005 mass% or less, and the H content is regulated to 0.0002 mass% or less. Then, in a section including a tube axis, the average crystal particle size in the direction of the thickness is 30 μm or less and the drawing value at 800°C is 25% or more.

Description

本発明は、ろう付け時の耐加熱割れ性が優れた銅合金管に関し、特に、引張応力が作用した状態でろう付けされる配管用銅合金管及び熱交換器用銅合金管に関する。   The present invention relates to a copper alloy tube having excellent resistance to heat cracking during brazing, and more particularly to a copper alloy tube for piping and a copper alloy tube for heat exchanger that are brazed in a state where tensile stress is applied.

りん脱酸銅管(JISH3300C1220T)は、ルームエアコン、パッケージエアコン、二酸化炭素冷媒ヒートポンプ式給湯器、冷蔵庫、ショーケース、及び自動販売機等の熱交換器、又はコンプレッサ周辺の機内配管及び部品等に広く使われている。   Phosphorus deoxidized copper pipe (JISH3300C1220T) is widely used in room air conditioners, packaged air conditioners, carbon dioxide refrigerant heat pump water heaters, refrigerators, showcases, heat exchangers such as vending machines, and in-machine piping and parts around compressors. It is used.

例えば、ルームエアコンの熱交換器は、ヘアピン状に曲げ加工したU字形銅管(以下、銅合金管も含めて銅管という)を、アルミニウムフィンの貫通孔に通し、前記銅管を治具により拡管することによって、銅管とアルミニウムフィンとを密着させ、更に銅管の開放端を拡管し、この拡管部にU字形に曲げ加工した銅製リターンベンド管を挿入し、りん銅ろう等のろう材により拡管部とリターンベンド管とを接合して、ヘアピン状の銅管とリターンベンド管を連結することにより、熱交換器が製造されている。   For example, in a heat exchanger of a room air conditioner, a U-shaped copper tube bent into a hairpin shape (hereinafter referred to as a copper tube including a copper alloy tube) is passed through a through hole of an aluminum fin, and the copper tube is passed by a jig. By expanding the tube, the copper tube and the aluminum fin are brought into close contact with each other, the open end of the copper tube is expanded, and a copper return bend tube bent into a U-shape is inserted into the expanded portion, and a brazing material such as phosphor copper braze. The heat exchanger is manufactured by joining the expanded pipe part and the return bend pipe by connecting the hairpin-shaped copper pipe and the return bend pipe.

また、コンプレッサと熱交換器をつなぐ機内配管では、銅管を任意に曲げ加工した材料を作製して、必要であれば管端を拡管あるいは縮管加工を行い、コンプレッサと熱交換器を上述のりん銅ろう等のろう材によって、機内配管により連結して、ルームエアコンを組み立てている。   In addition, in the in-machine piping connecting the compressor and the heat exchanger, a material obtained by arbitrarily bending a copper pipe is prepared, and if necessary, the pipe end is expanded or contracted, and the compressor and the heat exchanger are connected as described above. The room air conditioner is assembled by connecting with in-machine piping with brazing material such as phosphor copper brazing.

一方、ルームエアコンなどに使用される冷媒には、HCFC(ハイドロクロロフルオロカーボン)系のフロンが広く使用されてきたが、HCFCはオゾン破壊係数が高いことから、環境保護の観点によりその値が小さいHFC(ハイドロフルオロカーボン)系フロンが使用されるようになってきた。更に、ヒートポンプ式給湯器及び自動販売機には、HFCよりも更に環境にやさしい自然冷媒である二酸化炭素が使用されるようになってきている。例えば、高圧ガス保安法冷凍保安規則関係例示基準等に規定される冷媒ガスの設計圧力は、高圧部の基準凝縮温度が43℃のとき、HCFCのR22では1.6MPaであるのに対して、HFCのR410Aが2.6MPa、二酸化炭素が8.3MPaと増大している。   On the other hand, HCFC (hydrochlorofluorocarbon) -based fluorocarbons have been widely used as refrigerants for room air conditioners and the like, but HCFC has a high ozone depletion coefficient, so HFC has a small value from the viewpoint of environmental protection. (Hydrofluorocarbon) fluorocarbons have been used. Furthermore, carbon dioxide, which is a natural refrigerant that is more environmentally friendly than HFC, has been used in heat pump water heaters and vending machines. For example, the design pressure of the refrigerant gas specified in the high pressure gas safety law refrigeration safety rule related example standard is 1.6 MPa in the HCFC R22 when the standard condensation temperature of the high pressure part is 43 ° C. HFC R410A increases to 2.6 MPa and carbon dioxide increases to 8.3 MPa.

設計圧力が高くなれば、熱交換器又は機内配管の銅管の肉厚を厚くして強度に耐えられるようにする必要がある。しかし、資源の有効活用の観点から、またコスト上の観点から、銅管の肉厚を上げて銅の使用量が多くなることについては問題がある。この課題を解決するために、従来のりん脱酸銅管に変えて、Sn及びCo等の添加により強度を高めた高強度銅管が開発され、市場に供されるようになった。この高強度銅管は、従来の銅管よりも強度が高く、その分、肉厚を薄くすることができ、銅の使用量を削減して、省資源及び製品の低コスト化を図ることができる。また、この高強度銅管は、日本工業規格JISH3300にも追加登録(2009年7月20日)されて、従来のりん脱酸銅管に変わる新しい材料として期待されている。   If the design pressure increases, it is necessary to increase the thickness of the copper tube of the heat exchanger or in-machine piping so that it can withstand the strength. However, from the viewpoint of effective use of resources and from the viewpoint of cost, there is a problem with increasing the thickness of the copper tube and increasing the amount of copper used. In order to solve this problem, a high-strength copper tube whose strength is increased by adding Sn, Co, etc., instead of the conventional phosphorous-deoxidized copper tube, has been developed and put on the market. This high-strength copper pipe has higher strength than conventional copper pipes, and accordingly, the thickness can be reduced, and the amount of copper used can be reduced, saving resources and reducing product costs. it can. In addition, this high-strength copper pipe is additionally registered in the Japanese Industrial Standard JISH3300 (July 20, 2009), and is expected as a new material to replace the conventional phosphorous deoxidized copper pipe.

例えば、本願出願人は、特許文献1にて、Sn:0.1乃至1.0質量%、P:0.005乃至0.1質量%、O:0.005質量%以下及びH:0.0002質量%以下を含有し、残部がCu及び不可避不純物からなる組成を有し、平均結晶粒径が30μm以下である熱交換器用銅管を提案した。また、本願出願人は、特許文献2にて、Sn:0.1乃至2.0質量%、P:0.005乃至0.1質量%、S:0.005質量%以下、O:0.005質量%以下及びH:0.0002質量%以下を含有し、残部がCu及び不可避不純物からなる組成を有し、引張り強さ255N/mm以上であり、管軸直交断面において、管の肉厚方向と垂直な方向に測定した平均結晶粒径が30μm以下である銅合金管であって、前記銅合金管の引張り強さをαa、破壊圧力をPFa、前記銅合金管と同一外径及び肉厚のりん脱酸銅管の引張り強さをαd、破壊圧力をPFdとしたとき、(PFa)/(σa)>(PFd)/(σd)である熱交換器用銅合金管を提案した。 For example, the applicant of the present application described in Patent Document 1 includes Sn: 0.1 to 1.0 mass%, P: 0.005 to 0.1 mass%, O: 0.005 mass% or less, and H: 0.00. A copper tube for a heat exchanger was proposed, which contains 0002 mass% or less, the balance being Cu and inevitable impurities, and an average crystal grain size of 30 μm or less. Further, the applicant of the present application described in Patent Document 2 is Sn: 0.1 to 2.0 mass%, P: 0.005 to 0.1 mass%, S: 0.005 mass% or less, O: 0.0. 005% by mass or less and H: 0.0002% by mass or less, with the balance being composed of Cu and unavoidable impurities, with a tensile strength of 255 N / mm 2 or more, A copper alloy tube having an average crystal grain size measured in the direction perpendicular to the thickness direction of 30 μm or less, wherein the tensile strength of the copper alloy tube is αa, the breaking pressure is PFa, the same outer diameter as the copper alloy tube, and A copper alloy tube for a heat exchanger was proposed, where (PFa) / (σa)> (PFd) / (σd) where αd is the tensile strength of the thick phosphorous deoxidized copper tube and PFd is the breaking pressure.

特開2003−268467号公報JP 2003-268467 A 特開2008−174785号公報JP 2008-174785 A

しかしながら、特許文献1及び特許文献2に開示された銅合金は、その所期の目的を達成し、Snの固溶強化によって強度が向上しているものの、配管等をりん銅ろうによりろう付けする際に(800〜950℃)、引張応力が印加されていると、極めてまれに、割れが発生することがある。   However, although the copper alloys disclosed in Patent Document 1 and Patent Document 2 achieve their intended purpose and the strength is improved by solid solution strengthening of Sn, the pipes and the like are brazed with phosphor copper brazing. On the other hand (800 to 950 ° C.), if a tensile stress is applied, a crack may occur very rarely.

図1に示すようにして、あえて厳しい条件で再現試験をすると(1グループn=50とし、4グループを試験)、りん脱酸銅管は割れず、割れ発生率が0%であったが、特許文献1の銅合金管は、割れ発生率が4〜10%であった。これらの銅合金管の高温での延性を調査したところ、特許文献1又は2に記載の銅合金では、800℃以上の温度において、りん脱酸銅に比して、その延性が低く、そのため、引張応力が印加された状態では、十分に変形することが不可能となり、割れに至ったものと推定される。   As shown in FIG. 1, when the reproduction test was performed under severe conditions (1 group n = 50 and 4 groups were tested), the phosphorous deoxidized copper tube was not cracked and the crack occurrence rate was 0%. The copper alloy tube of Patent Document 1 had a crack generation rate of 4 to 10%. When investigating the ductility of these copper alloy tubes at a high temperature, the copper alloy described in Patent Document 1 or 2 has a lower ductility than that of phosphorous-deoxidized copper at a temperature of 800 ° C. or higher. In a state where a tensile stress is applied, it is impossible to sufficiently deform and it is presumed that cracking has occurred.

一方、このような特殊な状況下において、引張応力が印加されないように製造工程を変更したり、ろう付け時の火力を配管形状ごとに調整するというような対策は、現実的ではない。   On the other hand, under such special circumstances, measures such as changing the manufacturing process so that tensile stress is not applied or adjusting the thermal power during brazing for each pipe shape are not realistic.

本発明はかかる問題点に鑑みてなされたものであって、高い強度を維持しつつ、高温延性を向上させ、ろう付け時における割れの可能性を低減した銅合金管を提供することを目的とする。   The present invention has been made in view of such problems, and aims to provide a copper alloy tube that improves high-temperature ductility and reduces the possibility of cracking during brazing while maintaining high strength. To do.

本発明に係る銅合金管は、Sn:0.1乃至1.0質量%、及びP:0.005乃至0.1質量%を含有し、更にZr、Ti、及びCrからなる群から選択された1種又は2種以上の元素を、Zrを含有する場合はZrを0.0001乃至0.01質量%として、各元素の総量で0.0001乃至0.1質量%を含有し、更にS,Pb,Bi,Se,As,Te,及びSbを、総量で、0.003質量%以下、Oを0.005質量%以下、Hを0.0002質量%以下に規制し、残部がCu及び不可避的不純物からなる組成を有する銅合金の管材であって、管軸を含む断面において、肉厚方向の平均結晶粒径が30μm以下であり、800℃での絞り値が25%以上であることを特徴とする。   The copper alloy tube according to the present invention contains Sn: 0.1 to 1.0 mass% and P: 0.005 to 0.1 mass%, and is further selected from the group consisting of Zr, Ti, and Cr. In the case of containing one or more elements, Zr is 0.0001 to 0.01% by mass, the total amount of each element is 0.0001 to 0.1% by mass, and S , Pb, Bi, Se, As, Te, and Sb in a total amount of 0.003 mass% or less, O is regulated to 0.005 mass% or less, H is regulated to 0.0002 mass% or less, and the balance is Cu and A copper alloy tube material having a composition composed of inevitable impurities, and in the cross section including the tube axis, the average crystal grain size in the thickness direction is 30 μm or less, and the drawing value at 800 ° C. is 25% or more. It is characterized by.

本発明に係る他の銅合金管は、上記組成に、更に、Mg、B、Y、Co、Fe、Ni、Al及びSiからなる群から選択された1種類以上の元素を、単独の場合は0.001乃至0.05質量%、2種以上の元素の場合は各元素の総量で0.001乃至0.1質量%含有することを特徴とする。   The other copper alloy tube according to the present invention may further include one or more elements selected from the group consisting of Mg, B, Y, Co, Fe, Ni, Al and Si in the above composition. In the case of 0.001 to 0.05 mass% or two or more elements, the total amount of each element is 0.001 to 0.1 mass%.

更に、本発明に係る更に他の銅合金管は、Sn:0.1乃至1.0質量%、及びP:0.005乃至0.1質量%を含有し、更にMg、B、Y、Co、Fe、Ni、Al及びSiからなる群から選択された1種類以上の元素を、単独の場合は0.001乃至0.05質量%、2種以上の元素の場合は各元素の総量で0.001乃至0.1質量%含有し、更にS,Pb,Bi,Se,As,Te,及びSbを、総量で、0.003質量%以下、Oを0.005質量%以下、Hを0.0002質量%以下に規制し、残部がCu及び不可避的不純物からなる組成を有する銅合金の管材であって、管軸を含む断面において、肉厚方向の平均結晶粒径が30μm以下であり、800℃での絞り値が25%以上であることを特徴とする。   Furthermore, another copper alloy tube according to the present invention contains Sn: 0.1 to 1.0% by mass and P: 0.005 to 0.1% by mass, and further Mg, B, Y, Co One or more elements selected from the group consisting of Fe, Ni, Al, and Si are 0.001 to 0.05% by mass in the case of a single element, and the total amount of each element is 0 in the case of two or more elements. 0.001 to 0.1% by mass, S, Pb, Bi, Se, As, Te, and Sb in a total amount of 0.003% by mass or less, O of 0.005% by mass or less, and H of 0 A copper alloy tube material having a composition composed of Cu and inevitable impurities, the balance of which is regulated to 0002 mass% or less, and in the cross section including the tube axis, the average crystal grain size in the thickness direction is 30 μm or less, The aperture value at 800 ° C. is 25% or more.

また、本発明の上述の各銅合金管においては、上記組成に、Zn:0.01乃至1.0質量%を含有することができる。   Moreover, in the above-mentioned each copper alloy pipe | tube of this invention, Zn: 0.01 thru | or 1.0 mass% can be contained in the said composition.

更に、上述の各銅合金管は、熱交換器に使用することができる。   Furthermore, each above-mentioned copper alloy tube can be used for a heat exchanger.

なお、平均結晶粒径は、銅合金の管軸を含む断面において、JISH0501に定められた切断法により肉厚方向の平均結晶粒径を測定し、この肉厚方向の平均結晶粒径を管軸方向に100mm間隔の10箇所で測定し、その平均値としたものである。   The average crystal grain size is determined by measuring the average crystal grain size in the thickness direction by a cutting method defined in JISH0501 in the cross section including the pipe axis of the copper alloy. It is measured at 10 points at 100 mm intervals in the direction, and the average value is obtained.

本発明によれば、りん銅ろうによるろう付け時の温度においても強度及び靭性が高く、ろう付け時に引張応力が印加されていても、割れの発生の可能性を著しく低減することができる。   According to the present invention, the strength and toughness are high even at the temperature when brazing with phosphor copper brazing, and the possibility of cracking can be significantly reduced even when a tensile stress is applied during brazing.

割れ試験の方法を示す模式図である。It is a schematic diagram which shows the method of a crack test.

以下、本発明について詳細に説明する。本発明者等が、高温での延性・靭性(絞り値、伸び)を更に向上させる熱交換器用銅合金管を開発すべく種々実験研究した結果、銅合金管のSn含有量、P含有量、その他の合金元素の含有量、及び平均結晶粒径を適切に規定することによって、高温での絞り値が更に向上した銅合金管を得ることができることを見出した。   Hereinafter, the present invention will be described in detail. As a result of various experiments and researches by the present inventors to develop a copper alloy tube for a heat exchanger that further improves ductility and toughness (drawing value, elongation) at high temperatures, the Sn content, the P content, It has been found that a copper alloy tube having a further improved drawing value at a high temperature can be obtained by appropriately defining the content of other alloy elements and the average crystal grain size.

以下、本発明の銅合金管の成分添加理由及び組成の数値限定理由について説明する。   Hereinafter, the reason for adding components and the reason for limiting the numerical values of the composition of the copper alloy tube of the present invention will be described.

「Sn:0.1乃至1.0質量%」
Snは固溶硬化によって、引張強さを向上させると共に、りん銅ろうなどのろう付けによる熱影響に対して結晶粒の粗大化を抑制して、銅合金管の耐熱性を向上させる。しかし、高温加熱されたとき、Sn含有合金では、Sn含有量の増加に伴って高温での延性低下が認められることを見出した。Snが高温延性を低下させる機構は明確ではないが、高温での粒界若しくは粒界近傍の強度又は延性を低下させることにより、割れが発生したと思われる。Snの含有量が1.0質量%を超えると、高温における延性低下が大きくなると共に、鋳塊における凝固偏析が激しくなり、通常の熱間押出及び/又は加工熱処理により、偏析が完全に解消しないことがあり、銅合金管の組織、機械的性質、曲げ加工性、ろう付け後の組織及び機械的性質の不均一、耐食性の低下等をもたらす。また、Sn含有量が1.0質量%を超えると、必要な押出圧力が高くなり、Sn含有量が1.0質量%以下の銅合金と同一の押出圧力で押出成形しようとすると、押出温度を上げることが必要になり、それにより押出材の表面酸化が増加し、生産性が低下し、銅合金管の表面欠陥が増加する。また、本発明の銅合金へのSnの含有量が0.1質量%未満であると、焼鈍後及びろう付け加熱後に十分な引張強さ及び細かい結晶粒径を得ることができなくなり、更にりん銅ろう等によるろう付け加熱時の強度低下抑制効果及び結晶粒粗大化防止効果が、不十分なものとなってしまう。従って、Snの含有量を0.1乃至1.0質量%とすることが必要である。
“Sn: 0.1 to 1.0 mass%”
Sn improves the tensile strength by solid solution hardening and suppresses the coarsening of crystal grains against the thermal effects of brazing such as phosphor copper brazing, thereby improving the heat resistance of the copper alloy tube. However, it has been found that when heated at high temperatures, the Sn-containing alloy shows a decrease in ductility at high temperatures as the Sn content increases. The mechanism by which Sn lowers the high temperature ductility is not clear, but it seems that cracking has occurred by reducing the strength or ductility of the grain boundaries at or near the grain boundaries at high temperatures. When the Sn content exceeds 1.0% by mass, the ductility drop at high temperatures becomes large, and solidification segregation in the ingot becomes severe, and segregation is not completely eliminated by normal hot extrusion and / or processing heat treatment. In some cases, the structure, mechanical properties, bending workability of the copper alloy tube, unevenness of the structure and mechanical properties after brazing, deterioration of corrosion resistance, and the like are caused. Moreover, when Sn content exceeds 1.0 mass%, a required extrusion pressure will become high, and when it is going to extrude with the same extrusion pressure as a copper alloy whose Sn content is 1.0 mass% or less, extrusion temperature , Thereby increasing the surface oxidation of the extruded material, reducing the productivity and increasing the surface defects of the copper alloy tube. Further, when the Sn content in the copper alloy of the present invention is less than 0.1% by mass, it becomes impossible to obtain sufficient tensile strength and fine crystal grain size after annealing and brazing heating. The effect of suppressing strength reduction during brazing heating with copper brazing and the like and the effect of preventing grain coarsening will be insufficient. Therefore, it is necessary that the Sn content be 0.1 to 1.0 mass%.

「P:0.005乃至0.1質量%」
Pは、Snと同様に、銅合金管の高温延性を低下させ、Snによる高温延性の低下を助長する。P含有量が0.1質量%を超えると、本発明の銅合金の特に高温における延性低下が大きくなり、また導電率が低下したり、熱間加工性及び冷間加工性が阻害されてしまう。一方、P含有量が0.005質量%未満であると、所定の強度を得ることができず、また脱酸が不十分となり、酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下すると共に、製造された管の曲げ加工性が低下しやすくなる。従って、Pの含有量を0.005乃至0.1質量%にすることが必要である。
“P: 0.005 to 0.1 mass%”
P, like Sn, reduces the hot ductility of the copper alloy tube, and promotes the reduction of hot ductility due to Sn. When the P content exceeds 0.1% by mass, the ductility drop of the copper alloy of the present invention becomes particularly high, the electrical conductivity is lowered, and hot workability and cold workability are hindered. . On the other hand, if the P content is less than 0.005% by mass, the predetermined strength cannot be obtained, and deoxidation becomes insufficient, the oxide is caught in the ingot, and the soundness of the ingot is reduced. At the same time, the bending workability of the manufactured pipe tends to decrease. Therefore, it is necessary to make the P content 0.005 to 0.1% by mass.

「Zr、Ti、及びCrからなる群から選択された1種又は2種以上の元素:各元素の総量で0.0001乃至0.1質量%、但し、Zrを含有する場合はZrは0.0001乃至0.01質量%」
前述のごとく、Sn及びPを含む銅合金管は、800℃以上の高温において、延性が低下する。その機構は明確ではないが、更に、Zrを含有させることにより、高温での延性が劇的に回復する。Zr含有量が0.0001質量%程度であっても、銅合金管の高温での延性向上の効果が得られる。しかしながら、Zrは極めて酸化しやすく、Zr含有量が0.01質量%を超えると、鋳造で、酸化スケールを巻き込み、熱間押出時の割れ等を引き起こす。Zrが0.0001質量%未満であると、延性回復の効果は不十分である。従って、Zrの含有量は、0.0001乃至0.01質量%とする。
“One or more elements selected from the group consisting of Zr, Ti, and Cr: 0.0001 to 0.1% by mass in total of each element, provided that Zr is 0. 0001 to 0.01% by mass "
As described above, the ductility of a copper alloy tube containing Sn and P decreases at a high temperature of 800 ° C. or higher. Although the mechanism is not clear, the inclusion of Zr dramatically restores ductility at high temperatures. Even if the Zr content is about 0.0001% by mass, the effect of improving the ductility of the copper alloy tube at a high temperature can be obtained. However, Zr is very easy to oxidize, and if the Zr content exceeds 0.01% by mass, the oxide scale is involved in casting, causing cracks during hot extrusion. If Zr is less than 0.0001% by mass, the effect of ductility recovery is insufficient. Therefore, the Zr content is set to 0.0001 to 0.01% by mass.

また、Ti及びCrも、Zrと同様な効果がある。Ti及びCrの含有量が単独又は総量で0.1質量%を超えると、強度が高くなりすぎて、伸びが低下してしまい、押出性及び加工性に悪影響を及ぼすことになる。また、本発明の銅合金管のTi及びCrの含有量が0.0001質量%未満であると、高温での延性の向上が不十分となる。従って、Ti及びCrについては、その含有量を単独で又は総量で0.0001乃至0.1質量%とする。Zrを含有する場合も、Zr,Ti,Crの総量で、0.0001乃至0.1質量%である。   Ti and Cr also have the same effect as Zr. When the content of Ti and Cr alone or in total exceeds 0.1% by mass, the strength becomes too high and the elongation decreases, which adversely affects extrudability and workability. In addition, when the content of Ti and Cr in the copper alloy tube of the present invention is less than 0.0001% by mass, the improvement in ductility at high temperatures becomes insufficient. Accordingly, the content of Ti and Cr is 0.0001 to 0.1% by mass alone or in total. When Zr is contained, the total amount of Zr, Ti, and Cr is 0.0001 to 0.1% by mass.

「S,Pb,Bi,Se,As,Te,及びSbを、総量で、0.003質量%以下」
S,Pb,Bi,Se,As,Te,及びSbは、いずれも、固溶せずに、粒界に濃縮しやすく、各元素は融点が低いために、粒界の強度を著しく低下させ、本発明の銅合金の高温での延性を低下させる。Sは本発明の銅合金中において、Cuと化合物を形成して母相中に存在する。Sの含有量が増えると、鋳造時の鋳塊割れ及び熱間押出工程における熱間押出割れが増加する。また、熱間押出割れが発生しないまでも、押出材を冷間圧延し、抽伸加工すると、材料内部のCu−S化合物は管の軸方向に伸張し、Cu−S化合物の界面で割れが発生しやすく、製品加工中及び加工後の製品において、表面疵及び割れ等が発生し、製品の歩留りを低下させる。また、Cu−S化合物界面で割れが発生しない場合でも、本発明の銅合金管に曲げ加工を行う際、割れ発生の起点となり、曲げ部で割れが発生する頻度が高くなる。
“S, Pb, Bi, Se, As, Te, and Sb in a total amount of 0.003 mass% or less”
S, Pb, Bi, Se, As, Te, and Sb are all not easily dissolved, but are easily concentrated at the grain boundary. Since each element has a low melting point, the strength of the grain boundary is significantly reduced. The ductility at high temperature of the copper alloy of this invention is reduced. S is present in the matrix by forming a compound with Cu in the copper alloy of the present invention. When the S content increases, ingot cracking during casting and hot extrusion cracking in the hot extrusion process increase. Also, even if hot extrusion cracking does not occur, when the extruded material is cold-rolled and drawn, the Cu-S compound inside the material expands in the axial direction of the tube and cracks occur at the interface of the Cu-S compound. In the product during and after the product processing, surface flaws, cracks, etc. occur and the product yield is reduced. Moreover, even when a crack does not generate | occur | produce at a Cu-S compound interface, when bending the copper alloy pipe | tube of this invention, it becomes a starting point of a crack generation and the frequency that a crack generate | occur | produces in a bending part becomes high.

同様に、Pb,Bi,Se,As,Te,及びSbも含有量が増えると、鋳造時の鋳塊割れ及び熱間押出工程における熱間押出割れが発生したり、製品加工中及び加工後の製品において、表面疵及び割れ等が発生し、製品の歩留を低下させる。このような問題を改善するために、本発明の銅合金におけるS,Pb,Bi,Se,As,Te,及びSbの含有量は総量で0.003質量%以下、望ましくは0.002質量%以下、更に望ましくは0.001質量%以下に規制する必要がある。Sに関していえば、更に、0.0015質量%以下、更に0.0010質量%以下に規制することが好ましい。   Similarly, when the content of Pb, Bi, Se, As, Te, and Sb increases, ingot cracking during casting and hot extrusion cracking in the hot extrusion process occur, and during and after product processing. In the product, surface flaws and cracks occur, and the yield of the product is reduced. In order to improve such problems, the total content of S, Pb, Bi, Se, As, Te, and Sb in the copper alloy of the present invention is 0.003% by mass or less, preferably 0.002% by mass. In the following, it is more desirable to regulate the content to 0.001% by mass or less. Regarding S, it is further preferable to regulate the content to 0.0015% by mass or less, and further to 0.0010% by mass or less.

Sは、銅地金、及びスクラップ等の原料、スクラップに付着する油、溶解鋳造雰囲気(溶湯を被覆する木炭/フラックス、溶湯と接触する雰囲気中のSOxガス、炉材等)から、比較的簡単に溶湯中に取り込まれるため、S含有量を0.0015質量%以下とするには、低品位のCu地金及びスクラップの使用量を低減し、溶解雰囲気のSOxガスを低減し、適正な炉材を選定し、Mg及びCa等のように、Sと親和性が強い元素を溶湯に微量添加すること等の対策が有効である。   S is relatively easy from copper bullion and raw materials such as scrap, oil adhering to scrap, melting casting atmosphere (charcoal / flux covering molten metal, SOx gas in furnace atmosphere, furnace material, etc.) In order to make the S content 0.0015% by mass or less because it is taken into the molten metal, the amount of low-grade Cu ingots and scrap is reduced, the SOx gas in the melting atmosphere is reduced, and an appropriate furnace It is effective to select a material and add a trace amount of an element having strong affinity for S, such as Mg and Ca, to the molten metal.

「O:0.005質量%以下(50ppm以下)」
本発明の銅合金管において、酸化を抑制する元素として、Zr及びTiを添加し、後述するMg及びB等を選択的に添加するが、それらの元素が酸化されてしまうと、それらの元素による酸化抑制効果が消失する。Oの含有量が0.005質量%を超えると、Cu及びSnの酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下すると共に、製造された管の曲げ加工性が低下しやすくなる。また、Oの含有量が0.005質量%を超えると、水素脆化を起こす危険性が増大する。このため、Oの含有量を0.005質量%以下とする必要がある。曲げ加工性をより改善するには、Oの含有量を0.003質量%以下とすることが望ましく、0.0015%以下とすることが更に望ましい。
“O: 0.005 mass% or less (50 ppm or less)”
In the copper alloy tube of the present invention, Zr and Ti are added as elements to suppress oxidation, and Mg and B, which will be described later, are selectively added. When these elements are oxidized, these elements depend on the elements. The effect of inhibiting oxidation disappears. When the O content exceeds 0.005 mass%, the oxides of Cu and Sn are caught in the ingot, the soundness of the ingot is lowered, and the bending workability of the manufactured pipe is easily lowered. . On the other hand, if the O content exceeds 0.005% by mass, the risk of hydrogen embrittlement increases. For this reason, it is necessary to make content of O 0.005 mass% or less. In order to further improve the bending workability, the O content is desirably 0.003% by mass or less, and more desirably 0.0015% or less.

「H:0.0002質量%以下(2ppm以下)」
溶解鋳造時に溶湯に取り込まれる水素が多くなると、その水素が粒界に集まって、高温での延性低下を促進しやすくなる。また、溶湯に取り込まれる水素が多くなると、ピンホールが発生しやすくなり、水素が粒界に濃化した状態で鋳塊中に存在すると、熱間押出時の割れを発生させやすくなる。また、水素が過剰であると、押出後においても、焼鈍時に、粒界に水素に起因する膨れが発生しやすくなり、製品歩留が低下する。このため、本発明の銅合金管においては、Hの含有量を0.0002質量%以下とすることが必要である。製品歩留りをより向上させるにはHの含有量を0.0001質量%以下とすることが望ましい。
“H: 0.0002 mass% or less (2 ppm or less)”
When more hydrogen is taken into the molten metal at the time of melting and casting, the hydrogen collects at the grain boundary, and it becomes easy to promote a decrease in ductility at high temperatures. Further, when the amount of hydrogen taken into the molten metal increases, pinholes are likely to be generated, and when hydrogen is concentrated in the grain boundary and present in the ingot, cracks during hot extrusion are likely to occur. If hydrogen is excessive, blistering due to hydrogen tends to occur at the grain boundaries during annealing even after extrusion, resulting in a decrease in product yield. For this reason, in the copper alloy pipe | tube of this invention, it is necessary to make content of H 0.0002 mass% or less. In order to further improve the product yield, the H content is desirably 0.0001% by mass or less.

なお、Hの含有量を0.0002質量%以下とするためには、溶解鋳造時の原料を乾燥状態にすること、溶湯被覆木炭を赤熱すること、溶湯と接触する雰囲気の露点を低く保持すること、及びりん添加前の溶湯を酸化気味にすること等の対策が有効である。   In addition, in order to make the H content 0.0002% by mass or less, the raw material at the time of melting and casting is dried, the molten metal is heated red, and the dew point of the atmosphere in contact with the molten metal is kept low. It is effective to take measures such as making the molten metal before adding phosphorus and oxidizing.

「結晶粒度:平均結晶粒径が30μm以下」
結晶粒度は、素材の強度と曲げ等の加工性に重要な役割を果たしている。一般に、結晶粒度が小さければ強度は高く、曲げ加工性が向上する。結晶粒度が大きいと強度が低くなる。結晶粒度が30μmを超えると、強度が低下して、エアコン等の熱交換器に組み込んだときの耐圧が不十分となり、またろう付け後の強度を十分に維持できない。従って、平均結晶粒径は、30μm以下、更には15μm以下が好ましい。
“Crystal grain size: average crystal grain size is 30 μm or less”
The grain size plays an important role in the strength of the material and workability such as bending. Generally, if the crystal grain size is small, the strength is high and the bending workability is improved. When the crystal grain size is large, the strength is lowered. When the crystal grain size exceeds 30 μm, the strength decreases, the pressure resistance when incorporated in a heat exchanger such as an air conditioner becomes insufficient, and the strength after brazing cannot be sufficiently maintained. Therefore, the average crystal grain size is preferably 30 μm or less, more preferably 15 μm or less.

なお、高温で引張応力が印加された状態では、結晶粒径が小さい方が高温延性の低下を抑制するのに有利である。本発明合金では、800℃、10分間加熱された後の結晶粒径が70μm以下であることが望ましい。   In a state where tensile stress is applied at a high temperature, a smaller crystal grain size is advantageous for suppressing a decrease in hot ductility. In the alloy of the present invention, the crystal grain size after heating at 800 ° C. for 10 minutes is desirably 70 μm or less.

「800℃での絞り値が25%以上」
硬ろう付け温度に相当する800℃での絞り値が、25%未満であると、ろう付け時に引張応力が印加された場合に、割れが生じる危険性があることがわかった。このため、800℃における絞り値が25%以上であることが必要である。なお、900℃での絞り値が25%以上、また、950℃での絞り値が20%以上であることが更に望ましい。銅合金管を、熱交換器の配管としてろう付けする場合、通常、引張応力が印加された状態でろう付けされる。このとき、本発明の銅合金管は、800℃における絞り値が25%以上であるので、高温における延性が極めて優れたものであり、800乃至950℃のろう付け時に応力が印加されていても、割れを防止することができる。なお、絞りとは、管の引張試験後の破断部の断面積を試験前の断面積で除した比率のことで、この値が高い程、延性が高い。
“Aperture value at 800 ° C is 25% or more”
It has been found that if the drawing value at 800 ° C. corresponding to the hard brazing temperature is less than 25%, there is a risk of cracking when a tensile stress is applied during brazing. For this reason, the aperture value at 800 ° C. needs to be 25% or more. It is more desirable that the aperture value at 900 ° C. is 25% or more and the aperture value at 950 ° C. is 20% or more. When a copper alloy tube is brazed as a pipe of a heat exchanger, it is usually brazed with a tensile stress applied. At this time, since the drawn value at 800 ° C. of the copper alloy tube of the present invention is 25% or more, the ductility at high temperature is extremely excellent, and even when stress is applied during brazing at 800 to 950 ° C. , Can prevent cracking. The term “drawing” refers to a ratio obtained by dividing the cross-sectional area of the fractured portion after the tensile test of the pipe by the cross-sectional area before the test. The higher this value, the higher the ductility.

「Mg、B、Y、Co、Fe、Ni、Al及びSiからなる群から選択された1種類以上の元素を選択的に含有:含有量は、0.001乃至0.05質量%、2種以上の元素の場合は各元素の総量で0.001乃至0.1質量%」
本発明の銅合金管において、Mg、B、Y、Co、Fe、Ni、Al及びSiを適正量含有させることによって、高温での絞り値及び伸びが改善して、ろう付け時の割れを防止することができる。前述のZr、Ti及びCrに比べると、高温での割れ抑制及び延性回復の効果は若干劣り、十分な効果を得るためには含有量を多くしなければならないが、上述のMg、B、Y、Co、Fe、Ni、Al及びSiの添加によっても、高温での割れ抑制及び延性回復の効果を得ることができる。
“Selectively contains one or more elements selected from the group consisting of Mg, B, Y, Co, Fe, Ni, Al and Si: the content is 0.001 to 0.05 mass%, two kinds In the case of the above elements, the total amount of each element is 0.001 to 0.1 mass%. "
In the copper alloy pipe of the present invention, by containing appropriate amounts of Mg, B, Y, Co, Fe, Ni, Al and Si, the drawing value and elongation at high temperature are improved, and cracking during brazing is prevented. can do. Compared to the aforementioned Zr, Ti and Cr, the effects of crack suppression and ductility recovery at high temperatures are slightly inferior, and in order to obtain a sufficient effect, the content must be increased, but the above Mg, B, Y By adding Co, Fe, Ni, Al and Si, the effect of suppressing cracking at high temperature and recovering ductility can be obtained.

各選択元素についてみると、その含有量が0.05質量%を超えると、押出性の低下により生産性が阻害されると共に、加工時に割れ等が発生する。従って、各選択元素の個別の含有量は0.05質量%以下にする必要がある。選択元素が2種類以上である場合は、総量で0.1質量まで含有することができる。   As for each selected element, when its content exceeds 0.05 mass%, productivity is hindered due to a decrease in extrudability, and cracks and the like are generated during processing. Accordingly, the individual content of each selected element needs to be 0.05% by mass or less. When there are two or more selected elements, the total amount can be up to 0.1 mass.

一方、各選択された元素の含有量が0.001質量%未満であると、絞りの改善が見られない。このため、各元素について、添加する場合は、0.001質量%以上含有する必要がある。2種類以上を複合添加する場合も、含有量の最小値は総量で0.001質量%である。   On the other hand, when the content of each selected element is less than 0.001% by mass, improvement of the drawing is not observed. For this reason, when adding each element, it is necessary to contain 0.001 mass% or more. Even when two or more types are added in combination, the minimum content is 0.001% by mass in total.

「Zn:0.01乃至1.0質量%」
Znを含有させることにより、銅合金管の熱伝導率を大きく低下させることなく、強度、耐熱性及び疲れ強さを向上させることができる。また、Znの含有により、冷間圧延、抽伸及び転造等に使用する工具の磨耗を低減させることができ、抽伸プラグ及び溝付プラグ等の寿命を延長させる効果があり、生産コストの低減に寄与する。
“Zn: 0.01 to 1.0 mass%”
By containing Zn, the strength, heat resistance and fatigue strength can be improved without greatly reducing the thermal conductivity of the copper alloy tube. In addition, the inclusion of Zn can reduce the wear of tools used for cold rolling, drawing, rolling, etc., and has the effect of extending the life of drawing plugs, grooved plugs, etc., reducing production costs. Contribute.

また、Znを含有させることにより、熱交換器の組み立て工程において、銅合金管のヘアピン曲げ加工時のマンドレルの摩耗と、銅合金管をアルミニウムフィンの開口部に挿入して銅合金管を拡管することにより、銅合金管をフィンに密着させるときの拡管加工時の拡管ビュレットの磨耗とを、低減することができる。更に、Znは鋳造時の溶湯への水素の侵入を抑えることにも有効である。   In addition, by including Zn, in the heat exchanger assembly process, the wear of the mandrel during the hairpin bending process of the copper alloy tube, and the copper alloy tube is inserted into the opening of the aluminum fin to expand the copper alloy tube. Thus, the wear of the expanded burette during the expansion process when the copper alloy tube is brought into close contact with the fin can be reduced. Furthermore, Zn is effective in suppressing the penetration of hydrogen into the molten metal during casting.

Znの含有量が1.0質量%を超えると、工具摩耗抑制効果及び水素侵入抑制効果が飽和する。また、Znの含有量が0.01質量%未満であると、上述の効果が十分でなくなる。従って、Znを添加する場合は、Znの含有量を0.01乃至1.0質量%とすることが必要である。   If the Zn content exceeds 1.0% by mass, the tool wear suppression effect and the hydrogen penetration suppression effect are saturated. Further, when the Zn content is less than 0.01% by mass, the above-described effects are not sufficient. Therefore, when adding Zn, it is necessary to make the Zn content 0.01 to 1.0 mass%.

以下、本発明の銅合金管の製造方法の一例について説明する。以下に示す製造方法は平滑管の場合についてのものであるが、内面溝付管の場合は、周知の内面溝付工程が付加される。   Hereinafter, an example of the manufacturing method of the copper alloy pipe of the present invention will be described. The manufacturing method shown below is for a smooth tube, but in the case of an internally grooved tube, a well-known internal grooved process is added.

先ず、原料の電気銅を木炭被覆のもとで溶解し、銅が溶解した後、Sn及び必要な添加元素を所定量添加し、更に、脱酸を兼ねてCu−15質量%P中間合金によりPを添加する。このとき、Zr等の酸化しやすい添加元素については、所定量を均一にかつ適正に添加するために、中間合金で添加することが望ましい。成分調整が終了した後、半連続鋳造により所定の寸法のビレットを作製する。得られたビレットを加熱炉で加熱し、均質化処理を行なう。熱間押出前に、ビレットを750〜950℃に1分〜2時間程度保持して均質化による偏析の改善処理を行う。その後、ビレットにピアシングによる穿孔加工を行い、750〜950℃で熱間押出を行う。   First, the raw electrolytic copper is dissolved under the charcoal coating. After the copper is dissolved, a predetermined amount of Sn and necessary additive elements are added, and further, deoxidation is performed with a Cu-15 mass% P intermediate alloy. Add P. At this time, it is desirable that an additive element such as Zr that is easily oxidized be added as an intermediate alloy in order to add a predetermined amount uniformly and appropriately. After the component adjustment is completed, a billet having a predetermined size is produced by semi-continuous casting. The obtained billet is heated in a heating furnace and homogenized. Prior to hot extrusion, the billet is held at 750 to 950 ° C. for about 1 minute to 2 hours to improve segregation by homogenization. Thereafter, the billet is perforated by piercing and hot extruded at 750-950 ° C.

本発明の銅合金管を製造するには、Snの偏析解消及び製品管における組織の微細化の達成が必須要件である。このため、熱間押出による断面減少率が88%以上、望ましくは93%以上となるようにし、更に熱間押出後の素管を水冷等の方法により、表面温度が300℃になるまでの冷却速度が10℃/秒以上、望ましくは15℃/秒以上、更に望ましくは20℃/秒以上となるように冷却することが好ましい。但し、断面減少率は、[穿孔されたビレットのドーナツ状の面積−熱間押出後の素管の断面積]/[穿孔されたビレットのドーナツ状の面積]×100%として求まる。   In order to manufacture the copper alloy pipe of the present invention, it is essential to eliminate Sn segregation and to refine the structure of the product pipe. For this reason, the cross-sectional reduction rate by hot extrusion is 88% or more, preferably 93% or more, and the raw tube after hot extrusion is cooled to a surface temperature of 300 ° C. by a method such as water cooling. It is preferable to cool so that the speed is 10 ° C./second or more, desirably 15 ° C./second or more, and more desirably 20 ° C./second or more. However, the cross-sectional reduction rate is determined as [drilled billet donut area-cross-sectional area of raw tube after hot extrusion] / [drilled billet donut area] × 100%.

その後、押出素管に圧延加工を行なう。このときの加工率を断面減少率で92%以下とすることにより、圧延時の製品不良を低減することができる。次いで、圧延素管に抽伸加工を行なって所定の寸法の素管を製造する。通常、抽伸加工は複数台の抽伸機を用いて行うが、各抽伸機による加工率(断面減少率)を35%以下にすることにより、素管における表面欠陥及び内部割れを低減することができる。   Thereafter, the extruded element tube is rolled. By setting the processing rate at this time to 92% or less in terms of the cross-section reduction rate, product defects during rolling can be reduced. Subsequently, the rolling raw tube is subjected to a drawing process to manufacture a raw tube having a predetermined size. Usually, drawing is performed using a plurality of drawing machines, but surface defects and internal cracks in the raw pipe can be reduced by reducing the processing rate (cross-sectional reduction rate) by each drawing machine to 35% or less. .

必要に応じて、抽伸管に焼鈍を行う。本発明の銅合金管を製造するには、ローラーハース炉による連続焼鈍により、抽伸管の実体温度が400〜700℃となるように加熱し、その温度で10分〜1時間程度保持するようにして焼鈍することが望ましい。また、室温から所定温度までの平均昇温速度が5℃/分以上、望ましくは10℃/分以上となるように加熱することが望ましい。なお、上記のローラーハース炉による連続焼鈍に変えて、高周波誘導加熱炉を用い、高速昇温、高速冷却、及び短時間加熱の焼鈍を行ってもよい。   If necessary, the drawing tube is annealed. In order to manufacture the copper alloy tube of the present invention, the body temperature of the drawing tube is heated to 400 to 700 ° C. by continuous annealing with a roller hearth furnace, and the temperature is maintained for about 10 minutes to 1 hour. It is desirable to anneal. Moreover, it is desirable to heat so that the average rate of temperature increase from room temperature to a predetermined temperature is 5 ° C./min or more, preferably 10 ° C./min or more. In place of the continuous annealing by the roller hearth furnace, a high-frequency induction heating furnace may be used to perform rapid heating, rapid cooling, and short-time heating annealing.

次に、本発明の銅合金の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。   Next, the effect of the Example of the copper alloy of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention.

「第1試験例」
先ず、本発明の第1試験例について説明する。本試験例は、請求項1の銅合金管についてのものである。下記表1乃至6に示す組成の実施例A1乃至A61及び比較例A1乃至A23並びに従来例A1の各組成の銅合金材料を得るために、少量の供試材として、夫々、真空溶解炉又は木炭被覆にて7kgの銅合金のビレットを鋳造した。更に、700乃至900℃の温度での熱間鍛造によって、各ビレットを縦50mm、横50mm、長さ300mmのケーク状のブロックに加工した。更に、各ブロックを面削し、中ぐりを行い、直径が40mm、肉厚が5mm、長さが300mm円筒形のビレットを作製した。次に、各ビレットを圧延し、最終的に外径が9.52mm、肉厚が0.80mm、長さが300mmの管を製作した。その後、これらの管を400〜700℃の温度で焼鈍し、評価試験に供した。
"First test example"
First, a first test example of the present invention will be described. This test example is for the copper alloy tube of claim 1. In order to obtain the copper alloy materials of the compositions of Examples A1 to A61 and Comparative Examples A1 to A23 and Conventional Example A1 having the compositions shown in Tables 1 to 6 below, vacuum melting furnaces or charcoal were used as small amounts of test materials, respectively. A 7 kg copper alloy billet was cast by coating. Further, each billet was processed into a cake-like block having a length of 50 mm, a width of 50 mm, and a length of 300 mm by hot forging at a temperature of 700 to 900 ° C. Further, each block was chamfered and bored to produce a cylindrical billet having a diameter of 40 mm, a thickness of 5 mm, and a length of 300 mm. Next, each billet was rolled to finally produce a tube having an outer diameter of 9.52 mm, a wall thickness of 0.80 mm, and a length of 300 mm. Thereafter, these tubes were annealed at a temperature of 400 to 700 ° C. and subjected to an evaluation test.

評価試験は、室温から800℃と、900℃及び950℃までとを夫々15分間で昇温させて、各温度で10分間保持した後、その温度で高温引張試験を行い、夫々、引張強さ、伸び及び絞り値を測定した。引張強さ、伸び及び絞り値はJISZ2241に記載された定義に基づいて算出した。なお、高温引張り後の絞りは、{(引張試験前の管の断面積−引張り破断後の破断面の断面積)/(引張り試験前の管の断面積)}×100%であり、引張破断後の断面積は破断面の外径と肉厚を測定することにより算出した。また、引張応力が印加された状態でのろう付けを模擬する割れ試験として、図1に示す固定荷重の割れ試験を行った。即ち、固定台1に外径が11mm、内径が9.8mmのステンレス鋼製の管2をその軸方向を水平にして固定し、この管2に、上述のごとく、外径が9.52mm、肉厚が0.80mm、長さが300mmの供試管3を挿入した。供試管3の挿入長は150mmであり、図1に示すように、管2から出ている150mmの部分の端部から50mmの位置に1kgの錘4を取り付けた。そして、アセチレン酸素バーナー5により、管2近傍の供試管3の部分を約900℃に加熱した。アセチレン酸素バーナーと管2との間の距離は、5cmとした。アセチレン酸素バーナー炎の当たる位置にK熱電対を点溶接し、加熱中の供試管の温度を測定した。アセチレン酸素バーナーによる加熱は、加熱後、8〜12秒で900℃になるように調整した。錘4により、供試管3の加熱部において、供試管に約20MPaの引張応力が印加されるものである。   In the evaluation test, the temperature was raised from room temperature to 800 ° C., 900 ° C. and 950 ° C. in 15 minutes, and held at each temperature for 10 minutes. The elongation and the drawing value were measured. The tensile strength, elongation and drawing value were calculated based on the definitions described in JISZ2241. The drawing after high-temperature tension is {(cross-sectional area of the tube before the tensile test−cross-sectional area of the fractured surface after the tensile fracture) / (cross-sectional area of the pipe before the tensile test)} × 100%, The subsequent cross-sectional area was calculated by measuring the outer diameter and thickness of the fracture surface. Further, as a crack test for simulating brazing in a state where a tensile stress was applied, a fixed load crack test shown in FIG. 1 was performed. That is, a stainless steel pipe 2 having an outer diameter of 11 mm and an inner diameter of 9.8 mm is fixed to the fixing base 1 with its axial direction horizontal, and the outer diameter is 9.52 mm as described above. A test tube 3 having a wall thickness of 0.80 mm and a length of 300 mm was inserted. The insertion length of the test tube 3 was 150 mm. As shown in FIG. 1, a 1 kg weight 4 was attached to a position 50 mm from the end of the 150 mm portion protruding from the tube 2. Then, the portion of the test tube 3 in the vicinity of the tube 2 was heated to about 900 ° C. by the acetylene oxygen burner 5. The distance between the acetylene oxygen burner and the tube 2 was 5 cm. A K thermocouple was spot welded to the position where the acetylene oxygen burner hits, and the temperature of the test tube during heating was measured. Heating with an acetylene oxygen burner was adjusted to 900 ° C. in 8 to 12 seconds after heating. The weight 4 applies a tensile stress of about 20 MPa to the test tube in the heating portion of the test tube 3.

下記表1乃至表4は、本発明の実施例A1乃至A61の組成を示し、表5及び表6は、本発明の比較例A1乃至A23及び従来例A1の組成を示す。また、表7及び表8は、本発明の実施例A1乃至A61の結晶粒径及び高温引張試験(絞り)の測定値と、割れ試験の試験結果を示し、表9は、本発明の比較例A1乃至A23並びに従来例A1の結晶粒径及び高温引張試験(絞り)の測定値と、割れ試験の試験結果を示す。   Tables 1 to 4 below show compositions of Examples A1 to A61 of the present invention, and Tables 5 and 6 show compositions of Comparative Examples A1 to A23 of the present invention and Conventional Example A1. Tables 7 and 8 show the measured values of the crystal grain sizes and high-temperature tensile tests (drawings) of Examples A1 to A61 of the present invention and the test results of the crack test, and Table 9 shows comparative examples of the present invention. The crystal grain size of A1 to A23 and the conventional example A1, the measured value of the high temperature tensile test (drawing), and the test result of the crack test are shown.

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

この表7及び表8に記載されているように、本発明の実施例A1乃至A61は、割れ試験において、割れが発生しなかった。これに対し、表9に示すように、比較例A1,A3,A5,A7,A9,A11,A13は、Zr等の第3元素の含有量が不足し、従来例A1は第3元素を含まないため、割れが発生した。比較例A16はSn含有量が1.2質量%と高く、高温での延性低下を第3元素の添加により抑制できなかったため、800℃での絞り値が18%と低く、割れが発生した。比較例A20は、Snが多量であると共に、800℃での絞り値が19%と低かったので、割れが発生した。比較例A4は、高温での延性、割れ試験、結晶粒径の粗大化の点では良好であるが、Tiが多いため、室温での強度が大きく、伸びが小さくなるため、曲げ加工性の際に、大きな力が必要で、管に割れを発生させずに曲げ加工可能な曲げ半径が大きくなった。また、比較例A4は溶解鋳造を木炭被覆で行ったため、溶解鋳造時に発生するTi酸化物に起因すると思われる管の表面疵が発生した。このため、表面疵により、歩留り、耐圧性、耐食性、管の製造歩留り等を低下する。比較例A6は、高温での延性、割れ試験、結晶粒径の粗大化の点では良好であるが、Crが多いため、押出力量が増大して押出しにくくなり、かつ押出し温度を上げざるを得ず、表面疵が多くなった。そのため、比較例A4と同様、歩留り、耐圧性、耐食性、管の製造歩留り等が低下する。比較例A2,A8,A12,A14は、高温での延性、割れ試験、結晶粒径の粗大化の点では良好であるが、Zrが多いため、溶解鋳造を木炭被覆で行ったことにより、鋳塊にZr酸化物の巻き込みが発生し、Zr酸化物に起因すると思われる管の表面疵が発生した。このため、表面疵により、歩留り、耐圧性、耐食性、管の製造歩留り等を低下する。比較例A17乃至A20は、Sn及びPの含有量が本発明の範囲から外れているため、平均結晶粒径が本発明の範囲を外れており、強度が不足した。比較例A23は、Znが多いため、JISH3300で規定された時期割れ試験を行ったところ、Sn、P、Zrの含有量が等しい実施例A2に比べて割れが発生するまでの保持時間が2/3以下になった。   As described in Table 7 and Table 8, in Examples A1 to A61 of the present invention, no crack occurred in the crack test. On the other hand, as shown in Table 9, Comparative Examples A1, A3, A5, A7, A9, A11, A13 lack the content of the third element such as Zr, and Conventional Example A1 contains the third element. There was no cracking. In Comparative Example A16, the Sn content was as high as 1.2% by mass, and the reduction in ductility at high temperatures could not be suppressed by the addition of the third element, so that the drawing value at 800 ° C. was as low as 18% and cracking occurred. Comparative Example A20 had a large amount of Sn, and the aperture value at 800 ° C. was as low as 19%, so cracking occurred. Comparative Example A4 is good in terms of ductility at high temperature, cracking test, and coarsening of the crystal grain size, but since Ti is large, the strength at room temperature is large and the elongation is small. In addition, a large force is required, and the bending radius that can be bent without causing cracks in the tube has increased. Further, in Comparative Example A4, since melting casting was performed with charcoal coating, the surface flaws of the pipe, which seem to be caused by Ti oxide generated during melting casting, occurred. For this reason, the surface defects reduce yield, pressure resistance, corrosion resistance, tube manufacturing yield, and the like. Comparative Example A6 is good in terms of ductility at high temperature, cracking test, and coarsening of the crystal grain size, but because of the large amount of Cr, the amount of pushing force increases, making extrusion difficult and the extrusion temperature must be increased. The surface wrinkles increased. Therefore, as in Comparative Example A4, the yield, pressure resistance, corrosion resistance, tube manufacturing yield, and the like decrease. Comparative Examples A2, A8, A12, and A14 are good in terms of ductility at high temperature, cracking test, and coarsening of crystal grain size, but since Zr is large, melting casting was performed with charcoal coating. Entrapment of Zr oxide occurred in the lump, and surface flaws of the tube that seemed to be caused by Zr oxide occurred. For this reason, the surface defects reduce yield, pressure resistance, corrosion resistance, tube manufacturing yield, and the like. In Comparative Examples A17 to A20, the Sn and P contents were out of the scope of the present invention, so the average crystal grain size was out of the scope of the present invention, and the strength was insufficient. Since Comparative Example A23 has a large amount of Zn, the time cracking test defined in JISH3300 was conducted. As a result, the holding time until cracking occurred was 2 / compared with Example A2 in which the Sn, P, and Zr contents were equal. It became 3 or less.

比較例A10は、Ti及びCrの総量が0.1質量%を超えているので、押出加工性が悪いものであった。比較例A15はSnが0.1質量%未満であり、加熱による結晶粒成長の抑制効果が不十分であったため、平均結晶粒径が大きく、強度が不足していた。比較例A21はPbが本発明の範囲を超えているため、割れが発生した。比較例A22はOが本発明の範囲を超えているため、水素脆化した。即ち、H気流中で850℃、30分間保持後、引張試験したところ、荷重負荷開始直後、殆ど伸びずに破断した。 In Comparative Example A10, the total amount of Ti and Cr exceeded 0.1% by mass, so the extrudability was poor. In Comparative Example A15, Sn was less than 0.1% by mass, and the effect of suppressing crystal grain growth by heating was insufficient, so the average crystal grain size was large and the strength was insufficient. In Comparative Example A21, Pb exceeded the range of the present invention, so that cracking occurred. Comparative Example A22 was hydrogen embrittled because O exceeded the scope of the present invention. That is, after holding at 850 ° C. for 30 minutes in an H 2 air stream, a tensile test was performed, and the specimen broke without substantially extending immediately after the start of loading.

「第2試験例」
次に,本発明の第2試験例について説明する。本試験例は、請求項2に係る発明に関するものである。即ち、本試験例は、Zr、Ti、及びCrからなる群から選択された1種又は2種以上の元素を含有すると共に、Mg、B、Y、Co、Fe、Ni、Al及びSiからなる群から選択された1種類以上の元素を含有するものである。供試材の製作において、木炭被覆して溶解し、7kgの鋳塊を製作したことを除き、その他の条件は第1試験例と同一である。また、本試験例は、銅合金管の組成のみが異なり、他の試験条件は、第1試験例と同一である。
"Second test example"
Next, a second test example of the present invention will be described. This test example relates to the invention according to claim 2. That is, this test example contains one or more elements selected from the group consisting of Zr, Ti, and Cr, and includes Mg, B, Y, Co, Fe, Ni, Al, and Si. It contains one or more elements selected from the group. In the production of the test material, the other conditions were the same as in the first test example, except that the material was coated with charcoal and melted to produce a 7 kg ingot. Moreover, this test example differs only in the composition of the copper alloy tube, and other test conditions are the same as those of the first test example.

下記表10乃至表15は、本発明の実施例B1乃至B83の組成を示し、表16及び表17は、本発明の比較例B1乃至B14及び従来例B1の組成を示す。また、表18乃至表20は、本発明の実施例B1乃至B83の結晶粒径及び高温引張試験(絞り)の測定値と、割れ試験の試験結果を示し、表21は、本発明の比較例B1乃至B14並びに従来例B1の結晶粒径及び高温引張試験(絞り)の測定値と、割れ試験の試験結果を示す。   Tables 10 to 15 below show the compositions of Examples B1 to B83 of the present invention, and Tables 16 and 17 show the compositions of Comparative Examples B1 to B14 of the present invention and Conventional Example B1. Tables 18 to 20 show measured values of crystal grain sizes and high-temperature tensile tests (drawings) of Examples B1 to B83 of the present invention, and test results of crack tests. Table 21 shows comparative examples of the present invention. The measured values of the crystal grain size and high-temperature tensile test (drawing) of B1 to B14 and Conventional Example B1 and the test results of the crack test are shown.

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

この表18及び表20に記載されているように、本発明の実施例B1乃至B83は、割れ試験において、割れが発生しなかった。これに対し、表21に示すように、比較例B1,B3は、Zr等の第3元素の含有量が不足し、従来例B1は第3元素を含まないため、割れが発生した。比較例B6は、Snが多量であると共に、800℃での絞り値が18%と低かったので、割れが発生した。比較例B10は、Sn及びPが多量であると共に、800℃での絞り値が19%と低かったので、割れが発生した。比較例B2は高温での延性、割れ試験、結晶粒径の粗大化の点では良好であるが、Zrの量が多すぎるため、室温での強度が大きく、伸びが小さくなるため、曲げ加工性の際に、大きな力が必要で、管に割れを発生させずに曲げ加工可能な曲げ半径が大きくなった。また、溶解鋳造時に発生するZr酸化物に起因すると思われる管の表面疵が発生した。このため、表面疵により、歩留り、耐圧性、耐食性、管の製造歩留り等が低下する。比較例B4はYが多いため、比較例B2と同様、高温での延性、割れ試験、結晶粒径の粗大化の点では良好であるが、室温での強度が大きく、伸びが小さくなるため、曲げ加工性の際に、大きな力が必要で、管に割れを発生させずに曲げ加工可能な曲げ半径が大きくなった。比較例B5は平均結晶粒径が大きいため、本発明の目的である高強度銅管としての機能を満たさない。比較例B7及びB9はPが少ないと共に、平均結晶粒界が大きいため、鋳造時に脱酸が不十分で添加元素の酸化物が発生し、管の曲げ加工性が低下した。比較例B8はPが多いため、熱間鍛造時に割れが発生したため、その後の試験を行わなかった。比較例B11はBiが多いため、熱間鍛造時に割れが発生したため、その後の試験を行わなかった。比較例B12はOが多いため、水素脆化を示した。即ち、H気流中で850℃、30分保持後引張試験したところ、荷重付加開始直後に、殆ど伸びずに破断した。比較例B13はHが多いため、熱間鍛造時に割れが発生したため、その後の試験を行わなかった。比較例B14は高温での延性、割れ試験、結晶粒径の粗大化の点では良好であるが、Znが多いため、JIS3300に規定された時期割れ試験を行ったところ、Sn、P、Zrの含有量が等しい実施例B14に比べて割れが発生するまでの保持時間が1/2以下になった。 As described in Table 18 and Table 20, in Examples B1 to B83 of the present invention, no crack occurred in the crack test. On the other hand, as shown in Table 21, Comparative Examples B1 and B3 lacked the content of the third element such as Zr, and Conventional Example B1 did not contain the third element. In Comparative Example B6, Sn was abundant and the drawing value at 800 ° C. was as low as 18%, so cracking occurred. In Comparative Example B10, Sn and P were abundant, and the drawing value at 800 ° C. was as low as 19%, so cracking occurred. Comparative Example B2 is good in terms of ductility at high temperature, cracking test, and coarsening of the crystal grain size, but because the amount of Zr is too large, the strength at room temperature is large and the elongation is small, so bending workability In this case, a large force is required, and the bending radius that can be bent without causing cracks in the tube has increased. Moreover, the surface flaw of the pipe | tube considered to be attributed to the Zr oxide generated at the time of melt casting occurred. For this reason, the surface defects reduce the yield, pressure resistance, corrosion resistance, tube manufacturing yield, and the like. Since Comparative Example B4 has a lot of Y, it is good in terms of ductility at high temperature, cracking test, and coarsening of crystal grain size as in Comparative Example B2, but the strength at room temperature is large and the elongation is small. In bending workability, a large force is required, and the bending radius that can be bent without causing cracks in the pipe has increased. Since Comparative Example B5 has a large average crystal grain size, it does not satisfy the function as a high-strength copper tube that is an object of the present invention. In Comparative Examples B7 and B9, the amount of P was small and the average grain boundary was large. Therefore, deoxidation was insufficient at the time of casting, and oxides of additive elements were generated. Since Comparative Example B8 contained a large amount of P, cracks were generated during hot forging, and no subsequent test was performed. Since Comparative Example B11 contained a large amount of Bi, cracks occurred during hot forging, and therefore no subsequent test was performed. Comparative Example B12 showed hydrogen embrittlement due to the large amount of O. That is, when a tensile test was carried out after holding at 850 ° C. for 30 minutes in an H 2 air stream, it broke almost without elongation immediately after the start of load application. Since Comparative Example B13 contained a large amount of H, cracks occurred during hot forging, so no subsequent test was performed. Comparative Example B14 is good in terms of ductility at high temperature, cracking test, and coarsening of crystal grain size, but because of the large amount of Zn, the time cracking test specified in JIS 3300 was conducted. As a result, Sn, P, Zr Compared to Example B14 having the same content, the holding time until cracking was ½ or less.

「第3試験例」
次に、本発明の第3試験例について、説明する。本試験例は、請求項3についてのものである。即ち、第1試験例における第3元素のZr、Ti、及びCrからなる群から選択された1種又は2種以上の元素の代わりに、Mg、B、Y、Co、Fe、Ni、Al及びSiからなる群から選択された1種類以上の元素を添加したものである。供試材の製作条件は第2試験例に同じである。また、本試験例は、銅合金管の組成のみが異なり、他の試験条件は、第1試験例と同一である。
"Third test example"
Next, a third test example of the present invention will be described. This test example is for claim 3. That is, instead of one or more elements selected from the group consisting of the third elements Zr, Ti, and Cr in the first test example, Mg, B, Y, Co, Fe, Ni, Al, and One or more elements selected from the group consisting of Si are added. The production conditions of the test material are the same as in the second test example. Moreover, this test example differs only in the composition of the copper alloy tube, and other test conditions are the same as those of the first test example.

下記表22乃至表23は、本発明の実施例C1乃至C27の組成を示し、表24及び表25は、本発明の比較例C1乃至C11及び従来例C1の組成を示す。また、表26は、本発明の実施例C1乃至C27の結晶粒径及び高温引張試験(絞り)の測定値と、割れ試験の試験結果を示し、表27は、本発明の比較例C1乃至C11並びに従来例C1の結晶粒径及び高温引張試験(絞り)の測定値と、割れ試験の試験結果を示す。   Tables 22 to 23 below show the compositions of Examples C1 to C27 of the present invention, and Tables 24 and 25 show the compositions of Comparative Examples C1 to C11 of the present invention and Conventional Example C1. Table 26 shows the measured values of the crystal grain size and high-temperature tensile test (drawing) of Examples C1 to C27 of the present invention and the test results of the crack test. Table 27 shows Comparative Examples C1 to C11 of the present invention. In addition, the crystal grain size and the measurement value of the high-temperature tensile test (drawing) of Conventional Example C1 and the test result of the crack test are shown.

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

この表26に記載されているように、本発明の実施例C1乃至C27は、割れ試験において、割れが発生しなかった。これに対し、表27に示すように、比較例C1乃至C3は、Mg等の第3元素の含有量が不足し、従来例C1は第3元素を含まないため、割れが発生した。比較例C4は、Snが多量であるので、割れが発生した。比較例C7は、Sn及びPが多量であるので、割れが発生した。比較例C5はPが少ないため、鋳造時に脱酸が不十分で添加元素の酸化物が発生し、管の曲げ加工性が低下した。比較例C6はSn及びPが少ないため、本発明の目的である高強度銅管としての機能を満たさない。比較例C8はTeが多いため、熱間鍛造で割れが発生したため、その後の試験を行わなかった。比較例C9はOが多いため、水素脆化を示した。比較例C10はHが多いため、熱間鍛造で割れが発生したため、その後の試験を行わなかった。比較例C11はZnが多いため、JIS3300に規定された時期割れ試験を行ったところ、Sn、P、Zrの含有量が等しい実施例C14に比べて割れが発生するまでの保持時間が1/2以下になった。   As described in Table 26, in Examples C1 to C27 of the present invention, no crack was generated in the crack test. On the other hand, as shown in Table 27, Comparative Examples C1 to C3 lacked the content of the third element such as Mg, and Conventional Example C1 did not contain the third element. In Comparative Example C4, cracks occurred because of a large amount of Sn. In Comparative Example C7, since Sn and P were abundant, cracking occurred. In Comparative Example C5, since there was little P, deoxidation was insufficient during casting, oxides of additive elements were generated, and the bending workability of the tube was lowered. Since Comparative Example C6 has a small amount of Sn and P, it does not satisfy the function as a high-strength copper tube that is an object of the present invention. Since Comparative Example C8 contained a large amount of Te, cracks were generated during hot forging, and therefore no subsequent test was performed. Comparative Example C9 showed hydrogen embrittlement due to the large amount of O. Since Comparative Example C10 contained a large amount of H, cracks were generated during hot forging, so no subsequent test was performed. Since Comparative Example C11 has a large amount of Zn, the time cracking test specified in JIS 3300 was conducted. As a result, the holding time until cracking was halved compared to Example C14 having the same Sn, P, and Zr contents. It became the following.

「第4施例」
次に、本発明の第4試験例として、実際の工場の生産ラインで行った試験の結果について説明する。実機製造の銅合金管から、上述の大きさの試験用供試管を採取し、上述と同様の試験を行った。この試験結果を下記表4に示す。
"4th example"
Next, as a fourth test example of the present invention, a result of a test performed on an actual factory production line will be described. Test pipes having the above-mentioned sizes were collected from copper alloy pipes manufactured by actual machines, and tests similar to those described above were performed. The test results are shown in Table 4 below.

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

Figure 2011225989
Figure 2011225989

この表30に示すように、実施例D1及びD2は割れ試験で割れが発生せず、比較例D1はZr及びMgの量が少ないため、割れが発生した。従来例D1はZr及びMg等を含有しないため、割れ試験で割れが発生した。   As shown in Table 30, Examples D1 and D2 were not cracked in the crack test, and Comparative Example D1 was cracked because the amounts of Zr and Mg were small. Since Conventional Example D1 did not contain Zr, Mg, or the like, cracks occurred in the crack test.

1:固定台
2:管
3:供試管
4:錘
5:アセチレン酸素バーナー
1: Fixing base 2: Tube 3: Test tube 4: Weight 5: Acetylene oxygen burner

Claims (5)

Sn:0.1乃至1.0質量%、及びP:0.005乃至0.1質量%を含有し、更にZr、Ti、及びCrからなる群から選択された1種又は2種以上の元素を、Zrを含有する場合はZrを0.0001乃至0.01質量%として、各元素の総量で0.0001乃至0.1質量%を含有し、更にS,Pb,Bi,Se,As,Te,及びSbを、総量で、0.003質量%以下、Oを0.005質量%以下、Hを0.0002質量%以下に規制し、残部がCu及び不可避的不純物からなる組成を有する銅合金の管材であって、管軸を含む断面において、肉厚方向の平均結晶粒径が30μm以下であり、800℃での絞り値が25%以上であることを特徴とする銅合金管。 Sn: 0.1 to 1.0% by mass and P: 0.005 to 0.1% by mass, and one or more elements selected from the group consisting of Zr, Ti, and Cr When Zr is contained, Zr is 0.0001 to 0.01% by mass, the total amount of each element is 0.0001 to 0.1% by mass, and S, Pb, Bi, Se, As, Te and Sb are total amounts of 0.003% by mass or less, O is controlled to 0.005% by mass or less, H is controlled to 0.0002% by mass or less, and the remainder has a composition consisting of Cu and inevitable impurities A copper alloy tube, characterized by having an average crystal grain size in the thickness direction of 30 μm or less and a drawing value at 800 ° C. of 25% or more in a cross-section including a tube axis. Mg、B、Y、Co、Fe、Ni、Al及びSiからなる群から選択された1種類以上の元素を、単独の場合は0.001乃至0.05質量%、2種以上の元素の場合は各元素の総量で0.001乃至0.1質量%含有することを特徴とする請求項1に記載の銅合金管。 One or more elements selected from the group consisting of Mg, B, Y, Co, Fe, Ni, Al, and Si, 0.001 to 0.05 mass% when used alone, or two or more elements The copper alloy tube according to claim 1, wherein 0.001 to 0.1% by mass is contained in a total amount of each element. Sn:0.1乃至1.0質量%、及びP:0.005乃至0.1質量%を含有し、更にMg、B、Y、Co、Fe、Ni、Al及びSiからなる群から選択された1種類以上の元素を、単独の場合は0.001乃至0.05質量%、2種以上の元素の場合は各元素の総量で0.001乃至0.1質量%含有し、更にS,Pb,Bi,Se,As,Te,及びSbを、総量で、0.003質量%以下、Oを0.005質量%以下、Hを0.0002質量%以下に規制し、残部がCu及び不可避的不純物からなる組成を有する銅合金の管材であって、管軸を含む断面において、肉厚方向の平均結晶粒径が30μm以下であり、800℃での絞り値が25%以上であることを特徴とする銅合金管。 Sn: 0.1 to 1.0% by mass and P: 0.005 to 0.1% by mass, and further selected from the group consisting of Mg, B, Y, Co, Fe, Ni, Al and Si In the case of a single element, 0.001 to 0.05% by mass, and in the case of two or more elements, the total amount of each element is 0.001 to 0.1% by mass. The total amount of Pb, Bi, Se, As, Te, and Sb is 0.003% by mass or less, O is 0.005% by mass or less, H is 0.0002% by mass or less, and the balance is Cu and inevitable. A copper alloy tube material having a composition composed of mechanical impurities, wherein in the cross section including the tube axis, the average crystal grain size in the thickness direction is 30 μm or less, and the drawing value at 800 ° C. is 25% or more. Features copper alloy tube. Zn:0.01乃至1.0質量%を含有することを特徴とする請求項1乃至3のいずれか1項に記載の銅合金管。 The copper alloy tube according to any one of claims 1 to 3, wherein Zn: 0.01 to 1.0 mass% is contained. 熱交換器に使用されることを特徴とする請求項1乃至4のいずれか1項に記載の銅合金管。 The copper alloy tube according to any one of claims 1 to 4, wherein the copper alloy tube is used in a heat exchanger.
JP2011077003A 2010-03-31 2011-03-31 Copper alloy tube Active JP5638999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077003A JP5638999B2 (en) 2010-03-31 2011-03-31 Copper alloy tube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010080825 2010-03-31
JP2010080825 2010-03-31
JP2011077003A JP5638999B2 (en) 2010-03-31 2011-03-31 Copper alloy tube

Publications (2)

Publication Number Publication Date
JP2011225989A true JP2011225989A (en) 2011-11-10
JP5638999B2 JP5638999B2 (en) 2014-12-10

Family

ID=45041683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077003A Active JP5638999B2 (en) 2010-03-31 2011-03-31 Copper alloy tube

Country Status (1)

Country Link
JP (1) JP5638999B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150003679A (en) * 2013-07-01 2015-01-09 가부시키가이샤 코벨코 마테리아루 도칸 Phosphorus dioxidized copper tube for heat exchanger
KR102214230B1 (en) * 2020-08-07 2021-02-08 엘에스메탈 주식회사 Copper Alloy Tube For Heat Exchanger Excellent in Thermal Conductivity Fracture Strength and Method for Manufacturing the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274313A (en) * 2005-03-28 2006-10-12 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger and manufacturing method therefor
JP2008174785A (en) * 2007-01-17 2008-07-31 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger
JP2009114493A (en) * 2007-11-05 2009-05-28 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger
JP2011094174A (en) * 2009-10-28 2011-05-12 Sumitomo Light Metal Ind Ltd Copper alloy seamless tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274313A (en) * 2005-03-28 2006-10-12 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger and manufacturing method therefor
JP2008174785A (en) * 2007-01-17 2008-07-31 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger
JP2009114493A (en) * 2007-11-05 2009-05-28 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger
JP2011094174A (en) * 2009-10-28 2011-05-12 Sumitomo Light Metal Ind Ltd Copper alloy seamless tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150003679A (en) * 2013-07-01 2015-01-09 가부시키가이샤 코벨코 마테리아루 도칸 Phosphorus dioxidized copper tube for heat exchanger
KR101627919B1 (en) 2013-07-01 2016-06-07 가부시키가이샤 코벨코 마테리아루 도칸 Phosphorus dioxidized copper tube for heat exchanger
KR102214230B1 (en) * 2020-08-07 2021-02-08 엘에스메탈 주식회사 Copper Alloy Tube For Heat Exchanger Excellent in Thermal Conductivity Fracture Strength and Method for Manufacturing the Same
WO2022030723A1 (en) * 2020-08-07 2022-02-10 엘에스메탈 주식회사 Copper alloy tube, for heat exchanger, having excellent thermal conductivity and fracture strength, and production method for same
US11655530B2 (en) 2020-08-07 2023-05-23 Ls Metal Co., Ltd. Copper alloy tube for heat exchanger with excellent thermal conductivity and breaking strength and method of manufacturing the same

Also Published As

Publication number Publication date
JP5638999B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP4629080B2 (en) Copper alloy tube for heat exchanger
JP4817693B2 (en) Copper alloy tube for heat exchanger and manufacturing method thereof
JP4349640B2 (en) Seamless pipe
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
JP3794971B2 (en) Copper alloy tube for heat exchanger
JP5111922B2 (en) Copper alloy tube for heat exchanger
JP4818179B2 (en) Copper alloy tube
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP5078410B2 (en) Copper alloy tube
JP5638999B2 (en) Copper alloy tube
JP5107841B2 (en) Copper alloy tube for heat exchangers with excellent bending workability
JP5639025B2 (en) Copper alloy tube
JP6034727B2 (en) High strength copper alloy tube
JP6244588B2 (en) Copper alloy seamless pipe for heat transfer tubes
JP5499300B2 (en) Copper alloy tube for heat exchanger
JP5990496B2 (en) Phosphorus deoxidized copper pipe for heat exchanger
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
TW201441389A (en) Cold/hot water supply copper alloy seamless tube
JP2013189664A (en) Copper alloy tube
JP5336296B2 (en) Copper alloy tube for heat exchangers with excellent workability
JP5544591B2 (en) Copper alloy tube
JP2009249675A (en) Seamless pipe
JP2016003373A (en) Copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

R150 Certificate of patent or registration of utility model

Ref document number: 5638999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250