WO2024075797A1 - Corrosion-resistant copper alloy, copper alloy pipe, and heat exchanger - Google Patents

Corrosion-resistant copper alloy, copper alloy pipe, and heat exchanger Download PDF

Info

Publication number
WO2024075797A1
WO2024075797A1 PCT/JP2023/036289 JP2023036289W WO2024075797A1 WO 2024075797 A1 WO2024075797 A1 WO 2024075797A1 JP 2023036289 W JP2023036289 W JP 2023036289W WO 2024075797 A1 WO2024075797 A1 WO 2024075797A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
copper
less
base metal
mass
Prior art date
Application number
PCT/JP2023/036289
Other languages
French (fr)
Japanese (ja)
Inventor
真一 伊藤
哲郎 細木
Original Assignee
株式会社 Kmct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Kmct filed Critical 株式会社 Kmct
Publication of WO2024075797A1 publication Critical patent/WO2024075797A1/en

Links

Images

Definitions

  • the present invention relates to a corrosion-resistant copper alloy with improved corrosion resistance against stress corrosion cracking, and to a copper alloy tube and a heat exchanger using the same.
  • Phosphorus-deoxidized copper tubes are widely used as refrigerant piping and heat exchanger piping in refrigeration and air conditioning equipment.
  • Types of phosphorus-deoxidized copper include C1201, which is low phosphorus deoxidized copper as specified in JIS H3300:2018, and C1220, which is high phosphorus deoxidized copper.
  • Copper is a material with excellent thermal conductivity, bending workability, and brazing properties. In addition, its high standard electrode potential gives it excellent corrosion resistance in non-oxidizing environments. Phosphorus-deoxidized copper contains phosphorus but no oxygen, so it is known to be less susceptible to hydrogen embrittlement, just like oxygen-free copper. Phosphorus-deoxidized copper has lower manufacturing costs than oxygen-free copper, so it is widely used in applications where it is exposed to high temperatures, such as brazing.
  • Corrosion-resistant materials such as copper-based materials can suffer from stress corrosion cracking (SCC) due to the combination of certain factors. Cases of SCC in copper-based materials such as pure copper and copper alloys in ammonia environments have long been reported. SCC in copper-based materials was particularly noticeable in brass. However, in recent years, cases have also been reported in phosphorus-deoxidized copper pipes.
  • SCC stress corrosion cracking
  • SCC of copper-based materials occurs under special conditions, such as in an ammonia environment, but does not progress with ammonia alone; it progresses in the presence of both ammonia and moisture. When moisture adheres to a copper-based material, ammonia dissolves in the water phase, causing erosion. SCC occurs when residual stress or external stress concentrates at the site of grain boundary erosion. SCC is a phenomenon in which tensile stress leads to cracking, but the form of corrosion in phosphorus-deoxidized copper is characterized by intergranular corrosion.
  • refrigerant leakage due to SCC has become a problem, and measures to suppress SCC are required. If the progression of SCC causes piping to break, it can lead to refrigerant leakage, making it impossible to maintain the functionality of equipment or compromising the reliability of the equipment. There are also concerns that refrigerant leakage could have an impact on global warming.
  • a measure to suppress SCC from the perspective of material factors, one possible method is to make the crystal grains fine. Also, from the perspective of mechanical factors, one possible method is to reduce residual stress and external stress.
  • Patent Document 1 describes a copper tube that has excellent corrosion resistance against ant nest corrosion and excellent corrosion resistance against SCC.
  • This copper tube is made of a copper material containing 0.10 to 1.0 weight % P, with the remainder being Cu and unavoidable impurities, and the P concentration (P1) at the grain boundaries of the copper material is less than 5.0 times the P concentration (P0) within the crystal grains of the copper material.
  • P is prevented from concentrating at the grain boundaries, reducing the susceptibility to SCC (see paragraph 0011 of Patent Document 1).
  • Patent Document 2 describes a copper alloy that has high electrical conductivity and excellent stress relaxation resistance.
  • This copper alloy has a Mg content of more than 0.001 mass% and not more than 0.01 mass%, and a P content of not more than 0.001 mass%.
  • the H content is not more than 0.001 mass%
  • the O content is not more than 0.01 mass%
  • the C content is not more than 0.001 mass%.
  • Patent Document 3 describes pitting-resistant copper and copper alloy tubes that can prevent the occurrence of pitting corrosion. It also describes that when lithium bromide is used as the absorption liquid, ammonia inevitably remains in the refining process, and that the stress corrosion cracking susceptibility of phosphorus-deoxidized copper increases with increasing phosphorus content (see paragraph 0002 of Patent Document 3).
  • Grain boundaries are essentially sites where impurities and added P are likely to concentrate.
  • P dissolves from the copper phase into the aqueous phase, the pH of the aqueous phase decreases as a result of the dissolution of P, and Cu dissolves therefrom.
  • Cu dissolves therefrom.
  • copper ions become more stable than oxides or hydroxides.
  • Distribution of pH, etc. occurs in areas where corrosion progresses.
  • Oxygen-free copper has low oxygen and phosphorus concentrations, making it not only less susceptible to hydrogen embrittlement, but also less susceptible to SCC.
  • oxygen-free copper requires special casting equipment, such as vacuum melting and casting methods, which creates issues in terms of manufacturing costs and price.
  • phosphorus-deoxidized copper is less susceptible to hydrogen embrittlement, it does contain P that is added during the melting process for deoxidation.
  • Phosphorus-deoxidized copper also exists as low-phosphorus deoxidized copper, which has a P content of 0.004% by mass or more but less than 0.015% by mass.
  • the effects of P cannot be completely eliminated, and use in highly corrosive environments is restricted.
  • the proportion of recycled raw materials containing P used in the production of low-phosphorus deoxidized copper must be reduced, meaning that there are significant restrictions in terms of production costs and price.
  • Patent Document 1 the P concentration at the grain boundaries is reduced in order to reduce the SCC susceptibility of copper material.
  • this method adjusts the ratio of the P concentration at the grain boundaries to the P concentration within the grains, and does not directly render the P in the copper material harmless.
  • this method requires a special final heat treatment, and is therefore thought to pose practical issues in terms of manufacturing efficiency and manufacturing equipment.
  • Patent Document 2 specifies the ratio of Mg to the sum of S, P, Se, Te, Sb, Bi, and As, as well as the content of H, O, and C, for copper alloys.
  • this copper alloy contains only trace amounts of P and is considered to be equivalent to oxygen-free copper.
  • P content poses problems in terms of manufacturing costs and price.
  • H can cause defects in the structure, which may ultimately promote SCC, but it is not directly involved in SCC in copper-based materials.
  • the present invention aims to provide a copper alloy with improved corrosion resistance to stress corrosion cracking, and a copper alloy tube and heat exchanger using the same.
  • the copper alloy of the present invention is a copper alloy to which a base metal element is added, the standard electrode potential of which is equal to or lower than that of Mn.
  • the copper alloy tube of the present invention is formed from the above copper alloy.
  • the heat exchanger of the present invention uses a copper alloy tube formed from the above copper alloy.
  • the present invention provides a copper alloy with improved corrosion resistance against stress corrosion cracking, and a copper alloy tube and heat exchanger using the same.
  • FIG. 1 is a schematic diagram showing an example of a heat exchanger equipped with copper alloy tubes.
  • FIG. 2 is a diagram showing a method of pretreatment of a test material formed of a copper alloy.
  • FIG. 3 is a diagram showing a method for measuring the crack depth due to stress corrosion cracking.
  • FIG. 4 is an enlarged view of a main portion of FIG.
  • FIG. 5 is a graph showing the relationship between crack depth due to stress corrosion cracking and P concentration.
  • FIG. 6 is a graph showing the relationship between the Mg concentration and the P concentration and the crack depth due to stress corrosion cracking.
  • the following describes a copper alloy according to one embodiment of the present invention, as well as a copper alloy tube and a heat exchanger that use the same.
  • the copper alloy according to this embodiment is a copper alloy to which a base metal element is added that has a standard electrode potential equal to or lower than that of Mn.
  • the base metal element is preferably a phosphorus compound-forming element that reacts with P to form a phosphorus compound.
  • a preferred form of this copper alloy is one in which P is greater than 0% and not greater than 0.040% by mass, the total of the base metal elements is 0.01% by mass or more and 1.5% by mass or less, and the remainder is Cu and unavoidable impurities.
  • the copper alloy according to this embodiment has improved corrosion resistance against stress corrosion cracking (SCC) by adding base metal elements.
  • P may be added to this copper alloy to reduce the amount of O, which is a cause of hydrogen embrittlement. P is a factor that promotes SCC, but even if P is added for deoxidation, the occurrence and progression of SCC can be suppressed by the base metal elements.
  • Copper containing oxygen is known to become embrittled when exposed to high temperatures in a hydrogen atmosphere. Hydrogen penetrates and diffuses between the lattices of the copper phase. When the diffused hydrogen reacts with copper oxide in the copper phase, it reduces the copper oxide and generates water vapor. As a result, even though hydrogen itself does not directly cause an embrittlement reaction, the action of the generated water vapor forms voids at the grain boundaries, causing a decrease in strength and toughness due to hydrogen embrittlement.
  • Ant nest corrosion is a type of corrosion in which tiny corrosion holes on the surface of a material cause ant nest-like erosion in the material. Ant nest corrosion occurs in the presence of oxygen and moisture, with corrosive agents being carboxylic acids such as formic acid and acetic acid, aldehydes such as formaldehyde and acetaldehyde, and alcohols.
  • Copper-based materials are often used in applications where brazing of refrigerant pipes, heat exchanger pipes, etc. is performed in a furnace in a hydrogen atmosphere. Because the brazing process involves exposure to high temperatures in a hydrogen atmosphere, it is desirable to reduce the amount of O, which is a cause of hydrogen embrittlement. However, ant nest corrosion and stress corrosion cracking are affected by P, which is necessary for deoxidation in the casting process. From the perspective of improving SCC resistance and suppressing other corrosion phenomena, it is necessary to eliminate the effects of P.
  • Copper pipes used as refrigerant pipes, heat exchanger pipes, etc. may come into contact with moisture such as condensed water.
  • the reactions related to the dissolution of Cu in an aqueous solution can be expressed by the following formulas (1) and (2).
  • the dissolution of Cu from the copper phase to the aqueous phase can be expressed by the following formulas (3) and (4).
  • the Cu dissolved in the aqueous phase can be considered to form copper(II) hydroxide through the equilibrium reaction represented by formula (4).
  • the amount of Cu eluted from the copper phase to the aqueous phase is thought to depend on the dissolved oxygen concentration in the aqueous phase, the copper(II) hydroxide concentration, and the pH of the aqueous phase, when equations (3) and (4) are taken into consideration. Also, when equation (5) is taken into consideration, it is thought to depend on the ammonia concentration. Since equation (5) shifts the equilibrium of equation (4), there is concern that Cu elution will continue.
  • Possible means of suppressing Cu dissolution include suppressing the anodic reaction that dissolves Cu, detoxifying P in the copper phase, and detoxifying O, which is involved in the cathodic reaction.
  • Possible means of suppressing the formation of complex ions include removing complex-forming components such as ammonia and inhibiting complex formation reactions.
  • the inventors also took into consideration that SCC does not occur in oxygen-free copper that does not contain P, that P in the copper phase is likely to dissolve into the aqueous phase and dissolves into the aqueous phase, lowering the pH, that at low pH, among the chemical forms of Cu, copper ions are more stable than oxides and hydroxides, promoting the dissolution of Cu from the copper phase into the aqueous phase, and that when P is contained in the copper phase, the electrode potential of the copper phase decreases, promoting the dissolution of Cu from the copper phase into the aqueous phase.
  • the inventors discovered a method to address the problem of SCC accelerated by P by adding a specific additive element to Cu to eliminate the effects of P, leading to the completion of the present invention, which suppresses SCC.
  • the inventors considered that the following characteristics (1) and (2) of the additive element would be effective.
  • Base metal elements As the base metal element, an element having a standard electrode potential lower than H is preferred, and an element having a potential equal to or lower than that of Mn is more preferred. With such an element, even if P dissolves from the copper phase into the aqueous phase, the effect of suppressing a decrease in pH of the aqueous phase can be obtained. Furthermore, if the standard electrode potential is equal to or lower than that of Mn, the effect of a phosphorus compound-forming element such as Mn can also be obtained.
  • base metal elements include Mn, Al, Group 1 elements, and Group 2 elements.
  • Group 1 elements include Li, Na, K, etc.
  • Group 2 elements include Mg, Ca, Ba, etc. These elements cause an anodic reaction at a lower potential than Cu, so they can suppress the anodic reaction that dissolves Cu.
  • P dissolves from the copper phase into the aqueous phase a decrease in the pH of the aqueous phase can be suppressed. These pH suppressing effects can effectively suppress the dissolution of Cu from the copper phase into the aqueous phase.
  • a phosphorus compound-forming element that reacts with P to form a phosphorus compound is preferred.
  • phosphorus compound-forming elements include Mn, Mg, and Ca. These elements immobilize P in the copper phase, making it possible to suppress the elution of P from the copper phase into the aqueous phase. Since the decrease in pH of the aqueous phase is suppressed, among the chemical forms of Cu, oxides and hydroxides become more stable than copper ions, making it possible to effectively suppress the elution of Cu from the copper phase into the aqueous phase.
  • the base metal element one type of element or multiple types of elements may be added to the copper base material.
  • the base metal element only phosphorus compound forming elements may be added to the copper base material, only non-phosphorus compound forming elements other than phosphorus compound forming elements may be added, or a combination of phosphorus compound forming elements and non-phosphorus compound forming elements may be added.
  • the amount of base metal elements is preferably 0.01% or more, more preferably more than 0.01%, even more preferably 0.03% or more, even more preferably 0.05% or more, and even more preferably 0.10% or more, in terms of the total amount of base metal elements. Such an amount of base metal elements can provide the effect of suppressing the dissolution of Cu from the copper phase into the aqueous phase.
  • the amount of base metal elements may be 0.15% or more, or 0.20% or more, in terms of the total amount of base metal elements.
  • the amount of base metal elements is preferably 1.5% or less, more preferably 1.0% or less, even more preferably 0.5% or less, even more preferably 0.25% or less, even more preferably 0.20% or less, and even more preferably 0.15% or less, in terms of the total amount of base metal elements. If the amount of base metal elements is too high, the raw material cost increases and the difficulty of casting increases. In addition, the mechanical properties and electrical properties change, making it difficult to use as copper pipe. However, with such an amount of base metal elements, it is possible to suppress the raw material cost and the difficulty of casting while avoiding the effects on mechanical properties, brazing properties, etc.
  • the amount of base metal elements may be 0.10% or less, or 0.05% or less, in terms of the total amount of base metal elements.
  • the base metal element it is preferable to add Mg or Mn, and it is preferable to add at least one of Mg and Mn. In addition, both Mg and Mn may be added as the base metal element.
  • These base metal elements are elements that form phosphorus compounds. By adding these base metal elements, P in the copper phase is fixed as a phosphorus compound, and a decrease in the pH of the aqueous phase due to the elution of P can be suppressed. In addition, good workability and brazing properties can be obtained.
  • the Mg content is preferably 0.01% or more, more preferably 0.017% or more, even more preferably 0.03% or more, even more preferably 0.05% or more, and even more preferably 0.10% or more.
  • the Mg content is 0.017% or more, sufficient SCC resistance can be obtained even with a P content of 0.015%, which is the upper limit of the standard for low phosphorus deoxidized copper.
  • the Mg content is 0.10% or more, sufficient SCC resistance can be obtained even with a P content of 0.04%, which is the upper limit of the standard for high phosphorus deoxidized copper.
  • the Mg content is preferably 0.25% or less, more preferably less than 0.25%, more preferably 0.20% or less, and even more preferably 0.15% or less. If the Mg content exceeds 0.25%, and in particular is 0.29% or more, the wettability of the brazing filler metal is impaired. However, if the Mg content is 0.25% or less, good brazing filler metal wettability can be obtained, and mechanical properties and high electrical conductivity can be appropriately ensured.
  • Mn 0.01% or more and 1.5% or less
  • the Mn content is preferably 0.01% or more, more preferably 0.03% or more, even more preferably 0.05% or more, even more preferably 0.10% or more, even more preferably 0.50% or more, even more preferably 1.0% or more, and even more preferably 1.2% or more.
  • the Mn content is preferably 1.5% or less, more preferably 1.4% or less, and even more preferably 1.3% or less. If the Mn content exceeds 1.5%, the yield strength increases and bending workability decreases. However, if the Mn content is 1.5% or less, good workability is obtained and high electrical conductivity can be appropriately ensured.
  • P more than 0% and 0.040% or less
  • P is added mainly for deoxidation. If the P content is too high, toughness and workability are reduced, and SCC susceptibility and ant nest corrosion susceptibility are increased. Therefore, the P content is preferably 0.040% or less.
  • the P content may be more than 0% and less than 0.0003%, more than 0.0003% and less than 0.001%, more than 0.001% and less than 0.004%, 0.004% or more and less than 0.015%, or 0.015% or more and 0.040% or less, depending on the allowable O content, etc.
  • the inevitable impurities are derived from substances that need to be added in the manufacture of copper alloys and copper alloy pipes, or substances that are difficult to completely separate and remove, and refer to elements of impurities that are inevitably mixed in from raw materials or during the manufacturing process.
  • the copper alloy preferably contains more than 0% and 0.040% by mass or less of P, 1.5% by mass or less of the total of base metal elements, and the balance being Cu and inevitable impurities.
  • unavoidable impurities include elements other than base metal elements, such as O, H, S, Pb, Bi, Se, Te, As, and Sb.
  • the amount of unavoidable impurities, in total, of each element is preferably 0.1% or less, more preferably 0.05% or less, and even more preferably 0.01% or less. If the total amount of unavoidable impurities is 0.1% or less, the effect of the present invention is not impaired.
  • O reacts with H to generate water vapor in a high-temperature environment such as furnace brazing in a hydrogen atmosphere, which causes hydrogen embrittlement. It also forms oxides that reduce workability. Therefore, the O content is preferably 0.01% or less, more preferably 0.005% or less, and even more preferably 0.001% or less.
  • the S content is preferably 0.0018% or less.
  • Each of the Pb content, the Bi content, the Se content, the Te content, and the C content is preferably 0.001% or less.
  • Each of the Zn content, the Cd content, and the Hg content is preferably 0.0001% or less.
  • Cu constitutes the remainder of the copper alloy, excluding base metal elements and inevitable impurities.
  • the amount of Cu is not particularly limited as long as it constitutes the remainder of the copper alloy. However, from the viewpoint of obtaining the properties of the copper alloy equivalent to pure copper, such as thermal conductivity, bending workability, brazing property, etc., the amount of Cu is preferably 98.5% or more, more preferably 99.0% or more, even more preferably 99.5% or more, even more preferably 99.80% or more, and even more preferably 99.90% or more.
  • the corrosion resistance against stress corrosion cracking (SCC) of the copper alloy according to this embodiment can be evaluated by the crack depth measured after applying a specified stress after exposing it to a saturated environment with an aqueous ammonia solution in accordance with the Japan Copper and Brass Association technical standard JBMA T-301-1981.
  • the crack depth due to SCC is defined as the shortest distance from the surface of the copper alloy to the deepest point of the crack.
  • Ammonia testing in accordance with JBMA T-301-1981 is performed using a 14% by weight aqueous ammonia solution.
  • the aqueous ammonia solution is prepared by diluting at least 25% by weight aqueous ammonia solution with an equal amount of pure water.
  • the test environment temperature is room temperature, and the container containing the aqueous ammonia solution is kept in a room controlled at room temperature of 20°C ⁇ 5°C.
  • the test material is placed in a 10 L test container containing the aqueous ammonia solution, so as not to come into direct contact with the aqueous ammonia solution.
  • the test material is placed 100 mm away from the liquid surface of the aqueous ammonia solution.
  • the exposure conditions to the ammonia atmosphere in the test container are 72 hours at room temperature.
  • the copper alloy test material for the ammonia test is either plate or tube.
  • the center line parallel to the rolling direction is bent 180 degrees (180°) as the bending axis to apply external stress.
  • the tube is crushed from the radial direction to less than half of its outer diameter to apply external stress.
  • the observation point for cracks due to SCC is the surface on the crest side when bent.
  • it is the outer surface of the bent part when crushed.
  • SCC surface defects may form on the surface of copper pipes during pipe manufacturing.
  • the maximum depth of cracks caused by surface defects is about 0.03 mm. It is difficult to distinguish between shallow cracks caused by SCC and cracks caused by surface defects. Therefore, even if the crack depth caused by SCC exceeds 0.03 mm, if it is 0.05 mm or less, it can be determined that the corrosion resistance to SCC is good. Also, if it is 0.03 mm or less, it can be said that SCC has not actually occurred.
  • the copper alloy when P is 0.0065% by mass or more and 0.040% by mass or less, when the Mg concentration of the copper alloy is Y [%] and the P concentration is X [%] in mass %, it is preferable that the copper alloy satisfies the following formula (I), and when the copper alloy is exposed to a 14 mass % aqueous ammonia solution at a distance of 100 mm for 72 hours in a room controlled at room temperature of 20 ⁇ 5° C. in accordance with JBMA T-301-1981, the copper alloy sheet is bent 180 degrees, or the copper alloy tube is crushed to half or less of its outer diameter, and the crack depth measured is 0.05 mm or less.
  • the crack depth due to SCC can be suppressed to 0.05 mm or less in an ammonia test conforming to JBMA T-301-1981.
  • the progression of SCC is suppressed to a small extent, so a copper alloy with excellent SCC resistance can be obtained.
  • the copper alloy when P is 0.040% by mass or less, and the Mg concentration in the copper alloy is Y [%] and the P concentration in mass % is X [%], it is more preferable that the copper alloy satisfies the following formula (II), and that after being exposed to a 14% by mass aqueous ammonia solution at a distance of 100 mm in a room controlled at room temperature of 20 ⁇ 5° C. for 72 hours in accordance with JBMA T-301-1981, when a copper alloy sheet is bent 180 degrees or when a copper alloy tube is crushed to half or less of its outer diameter, the crack depth measured is 0.03 mm or less.
  • cases where a higher level of SCC resistance is required include cases where copper alloys are used under conditions that accelerate the initiation and progression of SCC, such as when there is an ammonia source in a sealed environment such as a factory or house, and cases where damage to copper alloys due to SCC must be strictly controlled, such as when copper alloys are used as materials for refrigerant piping or heat exchanger piping, and a flammable refrigerant flows inside the copper alloy tube.
  • the copper alloy according to this embodiment can be used as a material for various copper products.
  • Examples of copper products include pipes, plates, bars, wires, and other shaped materials.
  • the copper alloy is particularly preferably used as a material for copper alloy pipes.
  • the copper alloy tube may be an internally grooved tube, which has grooves formed on the inner surface, or a smooth tube, which has no grooves formed on the inner surface.
  • An internally grooved tube has, for example, spiral grooves at a specified interval around the entire circumference of the inner surface of the tube, or linear grooves arranged parallel to each other.
  • the number of grooves, the bottom width of the grooves, the wall thickness of the grooved portion, the height of the fins between the grooved portions, the apex angle of the fins, the lead angle of the grooves relative to the central axis of the tube, etc. can be set as appropriate.
  • Copper alloy pipes contain base metal elements, so even if P is added for deoxidation, the occurrence and progression of SCC can be suppressed. Therefore, compared to oxygen-free copper, costs can be reduced, and hydrogen embrittlement can be prevented by deoxidation with P, while SCC, which is accelerated by P, can also be suppressed. As it is less affected by the amount of P, there is greater freedom in material selection.
  • inner grooved pipes increase the surface area of the copper alloy pipe and the grooves allow the fluid flowing through the copper alloy pipe to be agitated. This allows for high energy efficiency and high energy saving performance in applications where refrigerants are passed through. Furthermore, the increased surface area and improved energy efficiency make it possible to reduce the size of the pipes through which the refrigerant passes.
  • Copper alloy tubes can be manufactured by a manufacturing method including a casting process, a soaking process, a hot extrusion process, a rolling and drawing process, and an annealing process.
  • Inner grooved tubes can be manufactured by manufacturing copper alloy tubes, followed by a rolling process and a final annealing process.
  • the raw material of the copper alloy is melted in a reducing atmosphere, a deoxidizer is added to adjust the P content, and then an ingot of a predetermined size is cast.
  • a deoxidizer is added to adjust the P content, and then an ingot of a predetermined size is cast.
  • electrolytic copper, ingots containing base metal elements, etc. can be used.
  • deoxidizer phosphorus copper, etc. can be used.
  • the casting method a billet, etc. can be cast using a semi-continuous casting method, etc.
  • the ingot such as the billet is homogenized by heat treatment.
  • the heat treatment temperature is, for example, 680°C or higher and 950°C or lower. If the temperature is 680°C or higher, segregation of P and the like can be sufficiently removed. If the temperature exceeds 950°C, the homogenization effect reaches a plateau, but if the temperature is 950°C or lower, the heat treatment cost can be suppressed.
  • the heat treatment time is, for example, 15 minutes to 2 hours.
  • Hot extrusion process In the hot extrusion process, a heated ingot such as a billet is hot extruded into a die with a mandrel inserted therein to form a blank pipe.
  • the temperature of the hot extrusion is, for example, 680° C. to 950° C.
  • the processing rate in the hot extrusion can be any appropriate condition as long as cracks, surface defects, etc. are not generated.
  • the blank pipe after extrusion is cooled, for example, by natural cooling. Note that piercing rolling using a plug and roll die may be performed instead of the hot extrusion and rolling.
  • Rolling and drawing process In the rolling and drawing process, the formed mother tube is subjected to rolling using a mandrel and drawing to form a drawn mother tube.
  • the working ratio in the rolling and drawing processes can be set to appropriate conditions, but is preferably 95% or less from the viewpoint of reducing cracks, surface defects, etc.
  • the drawing process can be performed in an appropriate number of passes using a continuous drawing machine using a plug, etc.
  • the working ratio in each pass is preferably 40% or less from the viewpoint of reducing cracks, surface defects, etc.
  • the processed drawn blank pipe is annealed by heat treatment.
  • processing strain is removed and the pipe is softened.
  • the annealing can be performed using a roller hearth furnace, a high-frequency induction heating furnace, or the like.
  • the temperature of the heat treatment is, for example, 350° C. or more and 700° C. or less, and preferably 350° C. or more and 500° C. or less. If the temperature is 350° C. or more, processing strain can be appropriately removed.
  • the time of the heat treatment is, for example, 5 minutes to 2 hours.
  • Inner grooved tubes can be manufactured by carrying out groove rolling on drawn bare tubes.
  • the rolling process In the rolling process, the drawn blank tube is subjected to groove rolling to form grooves on the inner surface of the drawn blank tube.
  • the groove rolling process can be performed, for example, by roll rolling using a grooved plug. A grooved plug having a reverse groove formed therein for transferring the groove is inserted into the blank tube. The blank tube is then pulled out while being pressed by a rotating roll die, forming grooves on the inner surface of the blank tube.
  • the groove rolling process can also be performed continuously from the diameter reduction pass of the drawing process, using a grooved plug connected to a diameter reduction plug. Also, a ball die with a bearing structure can be used instead of the roll die.
  • the grooved pipe is subjected to final annealing by heat treatment.
  • the final annealing can be performed in a roller hearth furnace, a high-frequency induction heating furnace, or the like, as in the annealing step.
  • the temperature of the heat treatment is, for example, 350° C. or more and 700° C. or less, preferably 350° C. or more and 500° C. or less.
  • the time of the heat treatment is, for example, 5 minutes or more and 2 hours or less.
  • a copper alloy tube with an inner groove can be manufactured.
  • the manufactured copper alloy tube can be subjected to processing such as straightening, chamfering, and cutting, and can also be subjected to visual inspection.
  • the drawn blank tube can also be subjected to straightening, chamfering, flaw detection, etc.
  • Copper alloy pipes can be used for a variety of purposes. Applications of copper alloy pipes include heat exchanger piping, refrigerant piping, hot water supply piping, water supply piping, etc. Examples of heat exchanger piping include piping that is connected to fins or the like to form a heat exchanger. Examples of refrigerant piping include piping that carries refrigerant. Examples of hot water supply piping and water supply piping include piping that carries hot water, warm water, and cold water.
  • Refrigeration and air conditioning equipment includes air conditioners, freezers, vapor compression freezers, absorption freezers, etc.
  • Absorption freezers include ammonia types and lithium bromide types. In lithium bromide types, ammonia may inevitably remain during the refrigerant refining process. Ammonia is a type of environmental factor that promotes SCC.
  • the copper alloy tube of this embodiment is particularly effective for applications used in an ammonia environment.
  • Copper alloy tubes are preferably used as a material for heat exchangers.
  • heat exchangers include fin tube type, corrugated tube type, double tube type, and various other types. Copper alloy tubes may be used in straight pipe sections, or in curved pipe sections such as U-shaped bends and helical wound sections around the main pipe. Heat exchangers using copper alloy tubes can be used, for example, in air conditioners, freezer showcases, refrigerators, oil coolers, radiators, and the like.
  • FIG. 1 is a schematic diagram showing an example of a heat exchanger equipped with copper alloy tubes.
  • the heat exchanger 30 includes a plurality of fins 10 and a heat transfer tube 20.
  • the plurality of fins 10 are arranged at predetermined intervals, and air passages are formed between the fins 10.
  • the heat transfer tube 20 is bent into a U-shape at multiple locations, and is inserted into through holes on the fins 10 so as to pass through the plurality of fins 10, and is brazed thereto.
  • the heat transfer tube 20 is made of a copper alloy tube to which the above-mentioned base metal elements have been added.
  • the copper alloy tube may be an internally grooved tube with grooves formed on the inner surface of the tube, or a smooth tube with no grooves formed on the inner surface of the tube.
  • the base metal elements suppress SCC, so that it is difficult for the heat exchange medium such as a refrigerant to leak over a long period of time, and a highly reliable heat exchanger can be obtained.
  • Copper alloy test specimens containing added base metal elements were prepared and their effects on stress corrosion cracking (SCC) and other material properties were evaluated. Other material properties evaluated included resistance to termite nest corrosion, tensile strength, and wettability of the brazing filler metal. In addition, copper alloy test specimens containing different amounts of base metal elements were prepared and the crack depth due to SCC was measured for each content.
  • SCC stress corrosion cracking
  • test materials were plate or tube materials made by adding only specified base metal elements to a copper alloy equivalent to phosphorus deoxidized copper.
  • Plate materials were made by adjusting the chemical composition and casting the raw material, followed by hot rolling, cold rolling, and annealing, in that order.
  • Tube materials were made by adjusting the chemical composition and casting the raw material, followed by hot extrusion, cold drawing, and annealing, in that order.
  • the evaluation of the ant nest corrosion resistance was carried out by the following procedure using a plate material as a test material.
  • a test material with a length of 200 mm was placed in a test container containing a corrosive liquid.
  • a plastic bottle was used as the test container, and a hole was made in the inner lid of the plastic bottle, and the inserted silicon plug was used as the lid.
  • a hole was bored in the silicon plug, and the plate material was inserted into the bored hole to hold the plate material.
  • the plate material was placed at a height where it did not come into direct contact with the corrosive liquid, and a section of the plate material with a length of 100 mm was exposed to the test environment inside the plastic bottle.
  • the plate material was covered with silicon resin except for the observation surface. Then, the test container was sealed and placed in a drying furnace with a specified heat cycle set, and the heat cycle was repeated for a specified test time while the plate material was left stationary. After that, the test material was embedded in acrylic resin or epoxy resin, and the ant nest corrosion occurring on the test material was observed by cross-sectional observation.
  • test material Width 10-13 mm x Length 200 mm x Thickness 1.0 mm (A portion of the test material was covered with a rubber material, so that only one side was exposed to the corrosive environment inside the test container).
  • Test container 2L plastic container
  • Corrosive liquid 500mL of 0.5% by volume formic acid solution
  • Test atmosphere Oxygen gas taken from a cylinder of industrial oxygen (purity 99.5vol.% or more) via indoor piping and connected silicon tube was used as replacement gas.
  • Oxygen gas was introduced as replacement gas at a flow rate of 1L/min for 5 minutes from a silicon tube inserted 100mm or more into the 2L plastic container, creating an oxygen atmosphere inside the container.
  • Temperature conditions heat cycle conditions of drying oven: 2 hours at 20°C, followed by 22 hours at 40°C, repeated. Test time: 60 days
  • the evaluation of ant nest corrosion resistance was based on the following criteria.
  • the maximum corrosion depth due to ant nest corrosion was measured as the distance from the surface of the test material to the deepest point of corrosion. Three cross sections (observed with an interval of 1 mm or more between cross sections) were observed for each test material, and the maximum distance among these was calculated as the maximum corrosion depth. ⁇ : Maximum corrosion depth 0.25 mm or less ⁇ Good resistance to ant nest corrosion ⁇ : Maximum corrosion depth over 0.25 mm ⁇ Poor resistance to ant nest corrosion
  • test material Width 10 mm x Length 200 mm x Thickness 0.1 mm Test method: The test was performed in accordance with JIS Z2241:2011 Metallic material tensile test method using a rectangular test piece.
  • the tensile strength evaluation is based on the following criteria: ⁇ : Tensile strength of 280 N/ mm2 or more ⁇ bending workability etc. is maintained ⁇ : Tensile strength of more than 280 N/ mm2 ⁇ bending workability etc. is deteriorated
  • test material was stored horizontally above the middle plate in a test vessel containing a corrosive liquid, and placed at a height that did not directly contact the corrosive liquid.
  • Figure 2 shows the sampling method for the test material in the case of plate material.
  • the plate material was cut out from the rolled material to have a width of 10 to 13 mm, a length of 25 mm, and a thickness of 1 mm, and placed above the middle plate so that the front and back faces in the up and down direction.
  • test material In the case of pipe material, a length of 20 mm was cut out. Resin-coated copper wires with a diameter of 2.5 mm were placed between both ends of the test material and the middle plate to prevent direct contact between the test material and the middle plate. Next, the test vessel was sealed and left to stand for a predetermined test time. Then, the test material was taken out of the test vessel, pickled with sulfuric acid, and then external stress was applied as a pretreatment.
  • Fig. 2 is a diagram showing a method of pretreatment of a test material formed of a copper alloy.
  • the upper left diagram of Fig. 2 shows a copper alloy ingot before rolling used to prepare the test material.
  • the upper right diagram of Fig. 2 shows a rolled material obtained by rolling the copper alloy ingot and the cutting position of the test material.
  • the lower diagram of Fig. 2 shows a bending position of the test material to apply stress.
  • the test material was a plate material, it was bent 180 degrees (180°) with the center line parallel to the rolling direction as the axis so that the upper surface during the exposure to the test environment was on the outside.
  • the tube material it was crushed uniaxially along the radial direction, which is the rolling direction, until the outer diameter was reduced to half or less, for example, about 4 mm in the case of ⁇ 9.52 mm.
  • the presence or absence of cracks was observed from the appearance of the crushed surface side with an optical microscope ( ⁇ 69 magnification).
  • a cross section of a part with severe cracks from the appearance was cut out and embedded in acrylic resin or epoxy resin, and the cracks on the cross section were observed with an optical microscope ( ⁇ 150 magnification). When there were multiple points with severe cracks, the test material was divided and the cross section was observed.
  • Fig. 3 is a diagram showing a method for measuring the crack depth due to stress corrosion cracking.
  • Fig. 4 is an enlarged view of a main part of Fig. 3.
  • Fig. 4 corresponds to an enlarged view of a rectangular area S in Fig. 3.
  • the original outer surface of the test material does not exist at the location where stress corrosion cracking occurred. Therefore, a cross-sectional image of the test material was taken, and a virtual line representing the outer surface of the test material was inserted by image processing to measure the maximum crack depth due to stress corrosion cracking.
  • points B and B' were set on the outer surface at 45 degrees (45°) to the left and right of point A on the valley side as the center. Then, a circular arc passing through points B and B' was interpolated as a virtual surface with point A as the center. A virtual line C passing through point A and the deepest point of the crack was drawn, and the intersection of virtual line C and the arc-shaped virtual curve was obtained. The shortest distance from this intersection to the deepest point of the crack was measured as the crack depth due to SCC. The maximum corrosion depth was taken as the maximum crack depth among the cracks observed between arcs B-B' in the cross section observed for a specified number of measurements.
  • the conditions for evaluating the stress corrosion cracking resistance are as follows. ⁇ Plate dimensions: Width 10-13 mm x Length 25 mm x Thickness 1.0 mm ⁇ Pipe dimensions: outer diameter 9.52 mm x thickness 0.8 mm x length 20 mm
  • Test container 10 L desiccator
  • Corrosive solution 100 mL of 14% by mass ammonia water (a commercially available 25% by mass or higher ammonia water solution diluted with an equal amount of pure water)
  • Temperature conditions The test temperature was room temperature, and the room temperature in the room in which the test container was held was controlled to within 20° C. ⁇ 5° C. by an air conditioner. Exposure conditions: 100 mm from the surface of the corrosive liquid ⁇ Test time: Maximum 72 hours
  • the evaluation of stress corrosion cracking resistance was based on the following criteria: When the maximum crack depth was 0.03 mm or less, it was not considered to be a crack caused by SCC because it was difficult to distinguish it from a surface defect during pipe manufacturing. ⁇ : Maximum crack depth is 0.03 mm or less ⁇ Excellent stress corrosion cracking resistance ⁇ : Maximum crack depth is more than 0.03 mm and less than 0.05 mm ⁇ Good stress corrosion cracking resistance ⁇ : Maximum crack depth is more than 0.05 mm ⁇ Poor stress corrosion cracking resistance
  • the wettability of the brazing filler metal was evaluated under the following conditions using a plate material as the test material. First, the test material was bent 90 degrees (90°) along the center line in the longitudinal direction. Then, a rod-shaped brazing filler metal was placed in the center of the valley side of the test material. The test material with the brazing filler metal placed thereon was heated under predetermined heating conditions and then cooled. Then, the longitudinal length of the brazing filler metal that had spread over the surface of the test material was measured.
  • the conditions for evaluating the wettability of the brazing material are as follows. Dimensions of test material: Width 30 mm x Length 100 mm x Thickness 1.0 mm ⁇ Type of brazing material: Phosphorus copper brazing BCuP-2 (diameter 1.6 mm x length 20 mm) Heating equipment: Infrared gold image furnace (ULVAC, Inc.) Heating atmosphere: Nitrogen gas atmosphere Heating conditions: Heat from room temperature to 850°C at a heating rate of 850°C/5 minutes Holding conditions: Hold at 850°C for 5 minutes Cooling conditions: Natural cooling
  • the wettability of the brazing material is evaluated according to the following criteria. ⁇ : The length of the brazing material in the longitudinal direction is 100 mm or more ⁇ the wettability of the brazing material is good. ⁇ : The length of the brazing material in the longitudinal direction is less than 100 mm ⁇ the wettability of the brazing material is poor.
  • Chemical composition analysis was performed at three random points on the surface of the test material after annealing. For plate materials, measurements were taken on the smooth main surface. For tube materials, measurements were taken on the smooth outer surface after crushing the tube. The average values measured at each point were calculated and used as the measurement results for each test material.
  • the measurement wavelengths of the spark discharge optical emission spectrometry used in the analysis of the chemical composition and the measurement sensitivity at each wavelength are as follows: Al: Wavelength 396.1 nm, measurement sensitivity 44 Cu: Wavelength 296.1 nm, measurement sensitivity 24 Mg: Wavelength 285.2 nm, measurement sensitivity 24 P: Wavelength 178.3 nm, measurement sensitivity 52
  • Table 1 shows the chemical composition of the test material (target value of Mg content) and the evaluation results of the termite nest corrosion resistance, tensile strength, stress corrosion cracking resistance, and brazing filler metal wettability. The overall evaluation is a comprehensive evaluation of these.
  • the Mg concentration was 0.01 mass% and 0.25 mass%, respectively, and the wettability of the brazing filler metal met the standard.
  • the Mg concentration was 0.29 mass%, and the wettability of the brazing filler metal did not meet the standard. From the viewpoint of the wettability of the brazing filler metal, it can be said that a Mg concentration of 0.25 mass% or less is preferable.
  • Table 2 shows the chemical compositions of the test materials (analytical values of Mg content, Mn content, and P content), the measurement results of the maximum crack depth due to stress corrosion cracking, and the evaluation results of stress corrosion cracking resistance.
  • Figure 5 shows the relationship between crack depth due to stress corrosion cracking and P concentration.
  • the vertical axis shows the crack depth [ ⁇ m] measured in the test material
  • the horizontal axis shows the P concentration [mass%] of the test material.
  • the plots marked with ⁇ are the results for the test material according to the embodiment in which the Mg content is 0.1 mass%.
  • the plots marked with ⁇ are the results for the test material according to the comparative example in which no base metal elements are added.
  • Figure 6 shows the relationship between Mg concentration and P concentration versus crack depth due to stress corrosion cracking.
  • the vertical axis shows the Mg concentration [mass%] of the test material
  • the horizontal axis shows the P concentration [mass%] of the test material.
  • the plots marked with ⁇ show the results for test materials with a maximum crack depth of 30 ⁇ m or less.
  • the plots marked with ⁇ show the results for test materials with a maximum crack depth of more than 30 ⁇ m and less than 50 ⁇ m.
  • the plots marked with ⁇ show the results for test materials with a maximum crack depth of more than 50 ⁇ m.
  • Examples 1-1 to 1-14 satisfied the relationship expressed by formula (II): Y ⁇ 2X (X ⁇ 0.0400), and the amount of base metal elements was appropriate relative to the amount of P, so the stress corrosion cracking resistance met the criterion of 0.03 mm or less.
  • Example 1-13 obtained good stress corrosion cracking resistance due to 0.041 mass% Mg relative to 0.02 mass% P, and the stress corrosion cracking resistance met the criterion of 0.03 mm or less.
  • Example 1-15 does not contain P, so even though no base metal elements are added, the stress corrosion cracking resistance met the standard of 0.03 mm or less.
  • Example 1-16 the stress corrosion cracking resistance did not meet the standard of 0.03 mm or less due to the trace amount of P, but even though no base metal elements were added, the stress corrosion cracking resistance met the standard of 0.05 mm or less. However, compared to Example 1-15, the crack depth increased as the P content increased.
  • Example 1-17 did not satisfy the relationship represented by formula (II): Y ⁇ 2X (X ⁇ 0.0400), but because the amount of P was small, the stress corrosion cracking resistance met the criterion of 0.05 mm or less.
  • Examples 1-18 to 1-19 satisfied the relationship represented by formula (I): Y ⁇ 2X - 0.0130 (0.0065 ⁇ X ⁇ 0.0400), and because the amount of base metal elements was appropriate relative to the amount of P, the stress corrosion cracking resistance met the criterion of 0.05 mm or less.
  • Example 1-21 the base metal element is Mn, but because the amount of the base metal element is appropriate relative to the amount of P, the stress corrosion cracking resistance met the standard of 0.03 mm or less. It was revealed that even when the base metal element is Mn, the propagation of cracks due to stress corrosion cracking is suppressed.
  • Comparative Examples 1-1 to 1-5 the crack depth after the stress corrosion cracking test exceeded 0.05 mm, and did not satisfy the relationship expressed by formula (I) or formula (II). Comparative Examples 1-2 and 1-3 did not contain base metal elements, and Comparative Example 1-2 in particular corresponds to low phosphate copper (JIS H3300 C1201), but did not satisfy the standard of 0.05 mm or less in stress corrosion cracking resistance. In Comparative Examples 1-1 and 1-4 to 1-5, the amount of base metal elements was insufficient relative to the amount of P, and no effect of improving corrosion resistance against stress corrosion cracking was observed.
  • the base metal element is a phosphorus compound forming element that forms a compound with P in the copper alloy.
  • the copper alloy according to (1) or (2) above, The copper alloy contains at least one of Mg and Mn as the base metal element.

Abstract

Provided are a copper alloy that has improved corrosion resistance against stress corrosion cracking, and a copper alloy pipe and a heat exchanger in which said copper alloy is used. The copper alloy is a copper alloy in which a base metal element (such as Mg or Mn, for example) having a potential that is less than or equal to the potential of Mn at a standard electrode potential has been added. The copper alloy pipe is formed from the copper alloy in which a base metal element having a potential that is less than or equal to the potential of Mn at a standard electrode potential has been added. The heat exchanger uses the copper alloy pipe that is formed from the copper alloy in which a base metal element having a potential that is less than or equal to the potential of Mn at a standard electrode potential has been added.

Description

耐食性銅合金、銅合金管および熱交換器Corrosion-resistant copper alloys, copper alloy tubes and heat exchangers
 本発明は、応力腐食割れに対する耐食性を向上させた耐食性銅合金、これを用いた銅合金管および熱交換器に関する。 The present invention relates to a corrosion-resistant copper alloy with improved corrosion resistance against stress corrosion cracking, and to a copper alloy tube and a heat exchanger using the same.
 冷凍空調機器の冷媒用配管や熱交換器用配管としては、りん脱酸銅管が広く用いられている。りん脱酸銅の種別としては、JIS H3300:2018に規定された低りん脱酸銅であるC1201や、高りん脱酸銅であるC1220がある。 Phosphorus-deoxidized copper tubes are widely used as refrigerant piping and heat exchanger piping in refrigeration and air conditioning equipment. Types of phosphorus-deoxidized copper include C1201, which is low phosphorus deoxidized copper as specified in JIS H3300:2018, and C1220, which is high phosphorus deoxidized copper.
 銅は、熱伝導性、曲げ加工性、ろう付け性等に優れた材料である。また、標準電極電位が高いため、非酸化性の環境下における耐食性に優れている。りん脱酸銅は、りんを含むが酸素を含まないため、無酸素銅と同様に水素脆化を起こし難いことが知られている。りん脱酸銅は、無酸素銅と比較して製造コストが低いため、ろう付け等で高温に晒される用途にも多用されている。 Copper is a material with excellent thermal conductivity, bending workability, and brazing properties. In addition, its high standard electrode potential gives it excellent corrosion resistance in non-oxidizing environments. Phosphorus-deoxidized copper contains phosphorus but no oxygen, so it is known to be less susceptible to hydrogen embrittlement, just like oxygen-free copper. Phosphorus-deoxidized copper has lower manufacturing costs than oxygen-free copper, so it is widely used in applications where it is exposed to high temperatures, such as brazing.
 銅系材料等の耐食性材料は、特定の因子の重畳によって応力腐食割れ(Stress Corrosion Cracking:SCC)を生じる。純銅、銅合金等の銅系材料のSCCについては、アンモニア環境下における事例が古くから報告されている。銅系材料のSCCは、特に黄銅で顕著であった。しかし、近年では、りん脱酸銅管における事例も報告されている。 Corrosion-resistant materials such as copper-based materials can suffer from stress corrosion cracking (SCC) due to the combination of certain factors. Cases of SCC in copper-based materials such as pure copper and copper alloys in ammonia environments have long been reported. SCC in copper-based materials was particularly noticeable in brass. However, in recent years, cases have also been reported in phosphorus-deoxidized copper pipes.
 銅系材料のSCCは、アンモニア環境等の特殊な条件下で起こるが、アンモニアのみでは進行せず、アンモニアと水分との共存下で進行する。銅系材料に水分が付着すると、水相にアンモニアが溶解して浸食が起こる。SCCは、粒界が浸食された箇所に残留応力や外部応力が集中して生じる。SCCは、引張応力によって割れに至る現象であるが、りん脱酸銅における腐食の形態としては粒界腐食を呈する特徴がある。 SCC of copper-based materials occurs under special conditions, such as in an ammonia environment, but does not progress with ammonia alone; it progresses in the presence of both ammonia and moisture. When moisture adheres to a copper-based material, ammonia dissolves in the water phase, causing erosion. SCC occurs when residual stress or external stress concentrates at the site of grain boundary erosion. SCC is a phenomenon in which tensile stress leads to cracking, but the form of corrosion in phosphorus-deoxidized copper is characterized by intergranular corrosion.
 冷媒用配管や熱交換器用配管等の分野では、SCCによる冷媒の漏洩が問題となっており、SCCを抑制する対策が求められている。SCCの進展によって配管が破損すると、冷媒の漏洩に繋がり、機器の機能を維持できなくなったり、機器の信頼性が損なわれたりする。また、冷媒の漏洩によって、地球温暖化への影響が懸念される。SCCを抑制する対策としては、材料因子上では、結晶粒を微細化する方法があり得る。また、力学因子上では、残留応力や外部応力を低減する方法があり得る。 In areas such as refrigerant piping and heat exchanger piping, refrigerant leakage due to SCC has become a problem, and measures to suppress SCC are required. If the progression of SCC causes piping to break, it can lead to refrigerant leakage, making it impossible to maintain the functionality of equipment or compromising the reliability of the equipment. There are also concerns that refrigerant leakage could have an impact on global warming. As a measure to suppress SCC, from the perspective of material factors, one possible method is to make the crystal grains fine. Also, from the perspective of mechanical factors, one possible method is to reduce residual stress and external stress.
 しかし、残留応力や外部応力を低減する方法は、実材料において実現が困難であり、SCCを抑制する対策として現実的ではない。また、結晶粒を微細化する方法では、材料を十分焼鈍することができないため、加工性を著しく損ない、用途の制約が大きい対策となってしまう。このような状況下、化学組成等の観点から、SCCを抑制する対策が検討されている。 However, methods to reduce residual stress and external stress are difficult to implement in actual materials, and are not realistic measures to suppress SCC. Furthermore, methods to refine crystal grains do not allow the material to be annealed sufficiently, which significantly impairs workability and places significant limitations on applications. Under these circumstances, measures to suppress SCC are being considered from the perspective of chemical composition, etc.
 特許文献1には、蟻の巣状腐食に対する耐食性に優れており、且つ、SCCに対する耐食性に優れる銅管が記載されている。この銅管は、0.10~1.0重量%のPを含有し、残部がCu及び不可避不純物からなる銅材からなり、該銅材の結晶粒界におけるP濃度(P1)が、該銅材の結晶粒内のP濃度(P0)の5.0倍未満とされている。最終熱処理条件の適性化によって、Pが結晶粒界に濃縮することを抑制して、SCC感受性を低くしている(特許文献1の段落0011参照)。 Patent Document 1 describes a copper tube that has excellent corrosion resistance against ant nest corrosion and excellent corrosion resistance against SCC. This copper tube is made of a copper material containing 0.10 to 1.0 weight % P, with the remainder being Cu and unavoidable impurities, and the P concentration (P1) at the grain boundaries of the copper material is less than 5.0 times the P concentration (P0) within the crystal grains of the copper material. By optimizing the final heat treatment conditions, P is prevented from concentrating at the grain boundaries, reducing the susceptibility to SCC (see paragraph 0011 of Patent Document 1).
 特許文献2には、高い導電率と優れた耐応力緩和特性とを有する銅合金等が記載されいる。この銅合金は、Mgの含有量が0.001mass%超え0.01mass%以下、Pの含有量が0.001mass%以下とされている。また、Hの含有量が0.001mass%以下、Oの含有量が0.01mass%以下、Cの含有量が0.001mass%以下とされている。 Patent Document 2 describes a copper alloy that has high electrical conductivity and excellent stress relaxation resistance. This copper alloy has a Mg content of more than 0.001 mass% and not more than 0.01 mass%, and a P content of not more than 0.001 mass%. In addition, the H content is not more than 0.001 mass%, the O content is not more than 0.01 mass%, and the C content is not more than 0.001 mass%.
 特許文献3には、孔食の発生を防止することができる耐孔食性銅や銅合金管が記載されている。吸収液として臭化リチウムが使用される場合、その精製工程において、不可避的にアンモニアの残留を伴うことがある旨や、りん脱酸銅の応力腐食割れ感受性はりん含有量が多いほど高くなる旨が記載されている(特許文献3の段落0002参照)。 Patent Document 3 describes pitting-resistant copper and copper alloy tubes that can prevent the occurrence of pitting corrosion. It also describes that when lithium bromide is used as the absorption liquid, ammonia inevitably remains in the refining process, and that the stress corrosion cracking susceptibility of phosphorus-deoxidized copper increases with increasing phosphorus content (see paragraph 0002 of Patent Document 3).
 従来、銅に添加されたPがSCCを助長するメカニズムの全容は、必ずしも解明されていない。一般には、PがSCCを助長するメカニズムに関して、次の(1)~(3)のような要因が推定されている。  Until now, the mechanism by which P added to copper promotes SCC has not been fully elucidated. In general, the following factors (1) to (3) are assumed to be involved in the mechanism by which P promotes SCC.
 (1)粒界は、本質的に不純物や添加されたPの集中を起こし易い部位であること。
 (2)銅相から水相にPが溶出し、Pの溶出によって水相のpHが低下してCuが溶出し、溶出したCuはその化学形態のうち、酸化物や水酸化物よりも銅イオンが安定になること。
 (3)腐食が進行する箇所でpH等の分布が生じること。
(1) Grain boundaries are essentially sites where impurities and added P are likely to concentrate.
(2) P dissolves from the copper phase into the aqueous phase, the pH of the aqueous phase decreases as a result of the dissolution of P, and Cu dissolves therefrom. Of the chemical forms of Cu, copper ions become more stable than oxides or hydroxides.
(3) Distribution of pH, etc. occurs in areas where corrosion progresses.
 また、銅と銅合金 第53巻1号(2014) p.128-p.133(蟻の巣状腐食メカニズム解明のための電気化学的アプローチ)に次の(4)のような要因が新しく推定されている。蟻の巣状腐食が進行する際に、(4)溶出したPと銅イオンとが錯イオンを形成する錯形成反応が起こる。この反応は、自由エネルギの観点から、銅相から水相へのCuの溶出を駆動するとされている。このPの溶出による銅の溶出反応は、腐食促進物質が蟻酸であるか、アンモニアであるかに関わらず作用し得る。そのため、SCCにおいても、Pの溶出は(4)の反応による更なる銅イオンの溶出を招くと考えられ、より深刻なSCCの進展をもたらすと予想される。 Also, in Copper and Copper Alloys, Vol. 53, No. 1 (2014), pp. 128-133 (Electrochemical Approach to Elucidating the Mechanism of Ant Nest Corrosion), the following factor (4) is newly presumed. As ant nest corrosion progresses, (4) a complex formation reaction occurs in which the dissolved P and copper ions form complex ions. From the viewpoint of free energy, this reaction is considered to drive the dissolution of Cu from the copper phase to the aqueous phase. This copper dissolution reaction caused by the dissolution of P can work regardless of whether the corrosion-promoting substance is formic acid or ammonia. Therefore, even in SCC, the dissolution of P is considered to lead to further dissolution of copper ions through reaction (4), which is expected to lead to the progression of more serious SCC.
日本国特開2022-056871号公報Japanese Patent Publication No. 2022-056871 日本国特開2022-022637号公報Japanese Patent Publication No. 2022-022637 日本国特開2007-154221号公報Japanese Patent Publication No. 2007-154221
 従来の銅系材料では、水素脆化を防止しつつSCCを抑制するのが困難な現状がある。銅系材料の水素脆化を防止するためには、酸素量を低減する必要がある。酸素を含む銅は、水素雰囲気下で高温に晒されたときに、水素脆化を起こして強度や靭性が低下する。水素雰囲気中での炉中ろう付け等を行う用途では、材料が加熱される際に高温の環境中で水素が拡散することで、酸化銅が還元されて結晶粒界に水蒸気のボイドが発生し、強度や靭性が低下する問題がある。  With conventional copper-based materials, it is currently difficult to prevent hydrogen embrittlement while suppressing SCC. In order to prevent hydrogen embrittlement in copper-based materials, it is necessary to reduce the amount of oxygen. When copper containing oxygen is exposed to high temperatures in a hydrogen atmosphere, it undergoes hydrogen embrittlement, reducing its strength and toughness. In applications such as furnace brazing in a hydrogen atmosphere, hydrogen diffuses in the high-temperature environment when the material is heated, reducing copper oxide and generating water vapor voids at the grain boundaries, resulting in a problem of reduced strength and toughness.
 銅系材料にPを添加すると、脱酸されるため、このような水素脆化を抑制することができる。しかし、Pの添加によってSCCが発生・進展することが問題となる。 Adding P to copper-based materials deoxidizes them, which helps prevent this type of hydrogen embrittlement. However, the addition of P causes problems, as it can lead to the initiation and progression of SCC.
 無酸素銅は、酸素濃度およびりん濃度が低いため、水素脆化を起こし難いだけでなく、SCC感受性が低い材料である。しかし、無酸素銅は、真空溶解鋳造方式等の特殊な鋳造設備を必要とするため、製造コストや価格の点で課題がある。 Oxygen-free copper has low oxygen and phosphorus concentrations, making it not only less susceptible to hydrogen embrittlement, but also less susceptible to SCC. However, oxygen-free copper requires special casting equipment, such as vacuum melting and casting methods, which creates issues in terms of manufacturing costs and price.
 一方、りん脱酸銅は、水素脆化を起こし難いものの、脱酸のために溶解工程で添加されたPを含む。りん脱酸銅としては、Pが0.004質量%以上0.015質量%未満である低りん脱酸銅もある。しかし、低りん脱酸銅であっても、Pによる影響を完全に排除できず、腐食性の強い環境での使用が制約される。また、低りん脱酸銅は、製造時にPを含むリサイクル原料の使用割合を低減する必要があり、製造コストや価格の点で制約が大きい。 On the other hand, although phosphorus-deoxidized copper is less susceptible to hydrogen embrittlement, it does contain P that is added during the melting process for deoxidation. Phosphorus-deoxidized copper also exists as low-phosphorus deoxidized copper, which has a P content of 0.004% by mass or more but less than 0.015% by mass. However, even with low-phosphorus deoxidized copper, the effects of P cannot be completely eliminated, and use in highly corrosive environments is restricted. In addition, the proportion of recycled raw materials containing P used in the production of low-phosphorus deoxidized copper must be reduced, meaning that there are significant restrictions in terms of production costs and price.
 特許文献1では、銅材のSCC感受性を低くするために、結晶粒界におけるP濃度を低減している。しかし、この方法では、結晶粒界におけるP濃度と結晶粒内におけるP濃度との比を調整しており、銅材中のPを直接的に無害化している訳ではない。また、この方法では、特殊な最終熱処理を必要とするため、製造効率や製造設備等に関して、実用上の課題があると考えられる。 In Patent Document 1, the P concentration at the grain boundaries is reduced in order to reduce the SCC susceptibility of copper material. However, this method adjusts the ratio of the P concentration at the grain boundaries to the P concentration within the grains, and does not directly render the P in the copper material harmless. In addition, this method requires a special final heat treatment, and is therefore thought to pose practical issues in terms of manufacturing efficiency and manufacturing equipment.
 特許文献2では、銅合金について、Mgと、S、P、Se、Te、Sb、Bi、Asの合計との比や、H、O、Cの含有量を規定している。しかし、この銅合金は、P量等が微量であり、無酸素銅相当とされている。このようなP量では、製造コストや価格の点で問題がある。また、Hは、組織中に欠陥を生じ得るため、結果的にSCCを助長する可能性はあるが、銅系材料のSCCには直接的に関与していない。 Patent Document 2 specifies the ratio of Mg to the sum of S, P, Se, Te, Sb, Bi, and As, as well as the content of H, O, and C, for copper alloys. However, this copper alloy contains only trace amounts of P and is considered to be equivalent to oxygen-free copper. Such a P content poses problems in terms of manufacturing costs and price. Furthermore, H can cause defects in the structure, which may ultimately promote SCC, but it is not directly involved in SCC in copper-based materials.
 このような状況下、りん脱酸銅相当や無酸素銅相当の銅系材料について、コストを抑制して水素脆化を防止しつつSCCも抑制することが可能な技術が求められている。SCCを助長するPが添加された場合であっても、Pによる影響を排除して銅系材料のSCCを直接的に抑制することが望まれる。 Under these circumstances, there is a demand for technology that can suppress SCC while controlling costs and preventing hydrogen embrittlement for copper-based materials equivalent to phosphorus-deoxidized copper or oxygen-free copper. Even when P, which promotes SCC, is added, it is desirable to eliminate the effects of P and directly suppress SCC in copper-based materials.
 そこで、本発明は、応力腐食割れに対する耐食性を向上させた銅合金、これを用いた銅合金管および熱交換器を提供することを目的とする。 The present invention aims to provide a copper alloy with improved corrosion resistance to stress corrosion cracking, and a copper alloy tube and heat exchanger using the same.
 上記の課題を解決するため、本発明に係る銅合金は、標準電極電位でMnの電位以下である卑金属元素が添加された銅合金である。本発明に係る銅合金管は、前記の銅合金で形成される。また、本発明に係る熱交換器は、前記の銅合金で形成された銅合金管を用いている。 In order to solve the above problems, the copper alloy of the present invention is a copper alloy to which a base metal element is added, the standard electrode potential of which is equal to or lower than that of Mn. The copper alloy tube of the present invention is formed from the above copper alloy. The heat exchanger of the present invention uses a copper alloy tube formed from the above copper alloy.
 本発明によると、応力腐食割れに対する耐食性を向上させた銅合金、これを用いた銅合金管および熱交換器を提供することができる。 The present invention provides a copper alloy with improved corrosion resistance against stress corrosion cracking, and a copper alloy tube and heat exchanger using the same.
図1は、銅合金管を備えた熱交換器の一例を模式的に示す図である。FIG. 1 is a schematic diagram showing an example of a heat exchanger equipped with copper alloy tubes. 図2は、銅合金で形成された供試材の前処理の方法を示す図である。FIG. 2 is a diagram showing a method of pretreatment of a test material formed of a copper alloy. 図3は、応力腐食割れによるき裂深さの測定方法を示す図である。FIG. 3 is a diagram showing a method for measuring the crack depth due to stress corrosion cracking. 図4は、図2の要部を拡大して示す図である。FIG. 4 is an enlarged view of a main portion of FIG. 図5は、応力腐食割れによるき裂深さとP濃度との関係を示す図である。FIG. 5 is a graph showing the relationship between crack depth due to stress corrosion cracking and P concentration. 図6は、応力腐食割れによるき裂深さに対するMg濃度とP濃度との関係を示す図である。FIG. 6 is a graph showing the relationship between the Mg concentration and the P concentration and the crack depth due to stress corrosion cracking.
 以下、本発明の一実施形態に係る銅合金、これを用いた銅合金管および熱交換器について説明する。 The following describes a copper alloy according to one embodiment of the present invention, as well as a copper alloy tube and a heat exchanger that use the same.
 本実施形態に係る銅合金は、標準電極電位でMnの電位以下である卑金属元素が添加された銅合金である。卑金属元素としては、Pと反応してりん化合物を形成するりん化合物形成元素が好ましい。この銅合金の好ましい形態は、P:0%を超え0.040質量%以下であり、卑金属元素の合計が0.01質量%以上1.5質量%以下であり、残部がCuおよび不可避的不純物からなる。 The copper alloy according to this embodiment is a copper alloy to which a base metal element is added that has a standard electrode potential equal to or lower than that of Mn. The base metal element is preferably a phosphorus compound-forming element that reacts with P to form a phosphorus compound. A preferred form of this copper alloy is one in which P is greater than 0% and not greater than 0.040% by mass, the total of the base metal elements is 0.01% by mass or more and 1.5% by mass or less, and the remainder is Cu and unavoidable impurities.
 本実施形態に係る銅合金は、卑金属元素を添加することによって、応力腐食割れ(SCC)に対する耐食性を向上させるものである。この銅合金には、水素脆化の要因となるO量を低減するために、Pが添加されてもよい。PはSCCを助長する因子であるが、脱酸のためにPが添加されても、卑金属元素によってSCCの発生・進展を抑制できる。 The copper alloy according to this embodiment has improved corrosion resistance against stress corrosion cracking (SCC) by adding base metal elements. P may be added to this copper alloy to reduce the amount of O, which is a cause of hydrogen embrittlement. P is a factor that promotes SCC, but even if P is added for deoxidation, the occurrence and progression of SCC can be suppressed by the base metal elements.
 酸素を含む銅は、水素雰囲気下で高温に晒されたときに、水素脆化を起こすことが知られている。水素は銅相の格子間に侵入して拡散する。拡散した水素が銅相中の酸化銅と反応すると、酸化銅を還元することで水蒸気が発生する。この結果、水素自体は直接的に脆化の反応を起こさずとも、発生する水蒸気の作用によって結晶粒界にボイドが形成され、水素脆化による強度や靭性の低下を生じる。 Copper containing oxygen is known to become embrittled when exposed to high temperatures in a hydrogen atmosphere. Hydrogen penetrates and diffuses between the lattices of the copper phase. When the diffused hydrogen reacts with copper oxide in the copper phase, it reduces the copper oxide and generates water vapor. As a result, even though hydrogen itself does not directly cause an embrittlement reaction, the action of the generated water vapor forms voids at the grain boundaries, causing a decrease in strength and toughness due to hydrogen embrittlement.
 また、冷媒用配管や熱交換器用配管等に用いられる銅系材料は、稀であるが、蟻の巣状腐食が生じることがある。蟻の巣状腐食は、材料の表面に生じた微小な腐食孔から内部に向けて蟻の巣状の浸食を生じる腐食である。蟻の巣状腐食は、酸素や水分の存在下、蟻酸、酢酸等のカルボン酸類や、ホルムアルデヒド、アセトアルデヒド等のアルデヒド類や、アルコール類等を腐食媒として起こる。 In addition, although rare, copper-based materials used for refrigerant piping and heat exchanger piping can sometimes suffer from ant nest corrosion. Ant nest corrosion is a type of corrosion in which tiny corrosion holes on the surface of a material cause ant nest-like erosion in the material. Ant nest corrosion occurs in the presence of oxygen and moisture, with corrosive agents being carboxylic acids such as formic acid and acetic acid, aldehydes such as formaldehyde and acetaldehyde, and alcohols.
 これらの腐食媒は、製管工程、熱交換器組立工程等で使用される潤滑油や、加工油、有機溶剤や、使用環境中に含まれる物質が結露水等の水分による加水分解や劣化反応を起こして生成すると考えられている。蟻の巣状腐食は一旦発生すると、その特徴的な形態からアノード反応が特定の箇所に集中するため、腐食の進行速度が速くなり、短期間のうちに肉厚方向へ進展して貫通する虞がある。 These corrosive agents are thought to be generated by hydrolysis and deterioration reactions caused by moisture such as condensation in lubricants, processing oils, and organic solvents used in pipe manufacturing and heat exchanger assembly processes, as well as substances contained in the usage environment. Once ant nest corrosion occurs, its characteristic shape causes the anodic reaction to concentrate in specific locations, accelerating the corrosion process and causing it to progress in the thickness direction and penetrate the material in a short period of time.
 銅系材料は、冷媒用配管や熱交換器用配管等のろう付けを、水素雰囲気中での炉中にて行う用途で用いられることが多い。ろう付け時に水素雰囲気下で高温に晒されるため、水素脆化の要因となるO量を低減することが望まれる。しかし、蟻の巣状腐食や応力腐食割れは、鋳造工程での脱酸に必要なPによる影響を受ける。耐SCC性の向上や、他の腐食現象の抑制の観点から、Pの影響を排除する必要がある。 Copper-based materials are often used in applications where brazing of refrigerant pipes, heat exchanger pipes, etc. is performed in a furnace in a hydrogen atmosphere. Because the brazing process involves exposure to high temperatures in a hydrogen atmosphere, it is desirable to reduce the amount of O, which is a cause of hydrogen embrittlement. However, ant nest corrosion and stress corrosion cracking are affected by P, which is necessary for deoxidation in the casting process. From the perspective of improving SCC resistance and suppressing other corrosion phenomena, it is necessary to eliminate the effects of P.
 りん脱酸銅系の材料において、Cuに添加されたPがSCCを助長するメカニズムは、必ずしも解明されていない。しかし、りん脱酸銅におけるSCCの腐食の形態は、あくまでも粒界腐食である。Cuを溶出させるアノード反応が生じるならば、対となるカソード反応が成立していると考えられる。Cuは、アルカリ条件下や非酸化性条件下では腐食し難く、カソード反応には酸素が関与していると推測される。 The mechanism by which P added to Cu promotes SCC in phosphorus-deoxidized copper-based materials has not been fully elucidated. However, the form of corrosion that causes SCC in phosphorus-deoxidized copper is intergranular corrosion. If an anodic reaction occurs that dissolves Cu, it is believed that a corresponding cathodic reaction is also occurring. Cu is not susceptible to corrosion under alkaline or non-oxidizing conditions, and it is presumed that oxygen is involved in the cathodic reaction.
 冷媒用配管や熱交換器用配管等として用いられる銅管には、結露水等の水分が接触し得る。電位やpH毎の化学形態の安定状態を示すプールベダイアグラム(Pourbaix Diagram)を考慮すると、水溶液中におけるCuの溶出に関連する反応は、次の式(1)~(2)で表すことができる。
 Cu → Cu2++2e・・・(1) (アノード反応)
 O+2HO+4e → 4OH・・・(2) (カソード反応)
Copper pipes used as refrigerant pipes, heat exchanger pipes, etc. may come into contact with moisture such as condensed water. Considering the Pourbaix diagram, which shows the stable state of chemical forms for each potential and pH, the reactions related to the dissolution of Cu in an aqueous solution can be expressed by the following formulas (1) and (2).
Cu → Cu 2+ + 2e (1) (anode reaction)
O 2 + 2H 2 O + 4e → 4OH (2) (cathode reaction)
 銅相から水相へのCuの溶出は、式(1)~(2)を用いると、次の式(3)~(4)で表すことができる。水相に溶出したCuは、式(4)で表される平衡反応によって水酸化銅(II)を形成すると見做せる。
 Cu+O+2HO → Cu2++4OH・・・(3)
 Cu2++4OH ⇔ Cu(OH)+2OH・・・(4)
Using formulas (1) and (2), the dissolution of Cu from the copper phase to the aqueous phase can be expressed by the following formulas (3) and (4). The Cu dissolved in the aqueous phase can be considered to form copper(II) hydroxide through the equilibrium reaction represented by formula (4).
Cu+ O2 + 2H2OCu2 ++4OH -... (3)
Cu 2+ + 4OH ⇔ Cu(OH) 2 + 2OH ... (4)
 また、アンモニア環境下では、次の式(5)で表される反応が起こるといわれている。水相に溶出したCuは、アクア錯イオンを形成し、式(5)で表される平衡反応によってテトラアンミン銅(II)イオンを生成すると考えられている。
 [Cu(HO)2++4NH ⇔ [Cu(NH2++4HO・・・(5)
In addition, it is said that the reaction represented by the following formula (5) occurs in an ammonia environment: Cu dissolved in the aqueous phase forms an aqua complex ion, which is believed to generate tetraamminecopper(II) ions through the equilibrium reaction represented by formula (5).
[Cu( H2O ) 4 ] 2+ + 4NH3 ⇔ [Cu( NH3 ) 4 ] 2+ + 4H2O ... (5)
 銅相から水相へのCuの溶出量は、式(3)~(4)を考慮すると、水相の溶存酸素濃度や、水酸化銅(II)の濃度や、水相のpHに依存すると考えられる。また、式(5)を考慮すると、アンモニア濃度に依存すると考えられる。式(5)によって式(4)の平衡が移動するため、Cuの溶出が継続することが懸念される。 The amount of Cu eluted from the copper phase to the aqueous phase is thought to depend on the dissolved oxygen concentration in the aqueous phase, the copper(II) hydroxide concentration, and the pH of the aqueous phase, when equations (3) and (4) are taken into consideration. Also, when equation (5) is taken into consideration, it is thought to depend on the ammonia concentration. Since equation (5) shifts the equilibrium of equation (4), there is concern that Cu elution will continue.
 本発明者らは、このような知見に基づき、銅系材料のSCCの抑制には、銅相から水相へのCuの溶出の抑制や、Cuが関与する錯イオンの形成の抑制が有効であると考えた。Cuの溶出を抑制する手段としては、Cuを溶出させるアノード反応の抑制や、銅相中のPの無害化や、カソード反応を担うOの無害化が候補となる。錯イオンの形成を抑制する手段としては、アンモニア等の錯形成成分の除去や、錯形成反応の阻害が候補となる。 Based on these findings, the inventors considered that suppressing the dissolution of Cu from the copper phase into the aqueous phase and suppressing the formation of complex ions involving Cu would be effective in suppressing SCC of copper-based materials. Possible means of suppressing Cu dissolution include suppressing the anodic reaction that dissolves Cu, detoxifying P in the copper phase, and detoxifying O, which is involved in the cathodic reaction. Possible means of suppressing the formation of complex ions include removing complex-forming components such as ammonia and inhibiting complex formation reactions.
 また、本発明者らは、Pを含まない無酸素銅ではSCCが発生しないこと、銅相中のPは、水相に溶出し易く、水相に溶出してpHを低下させること、低pHでは、Cuの化学形態のうち、酸化物や水酸化物よりも銅イオンが安定となり、銅相から水相へのCuの溶出が促進されること、銅相中にPが含まれると、銅相の電極電位が低下して、銅相から水相へのCuの溶出が促進されることを考慮した。 The inventors also took into consideration that SCC does not occur in oxygen-free copper that does not contain P, that P in the copper phase is likely to dissolve into the aqueous phase and dissolves into the aqueous phase, lowering the pH, that at low pH, among the chemical forms of Cu, copper ions are more stable than oxides and hydroxides, promoting the dissolution of Cu from the copper phase into the aqueous phase, and that when P is contained in the copper phase, the electrode potential of the copper phase decreases, promoting the dissolution of Cu from the copper phase into the aqueous phase.
 その結果、本発明者らは、Pによって増長されるSCCの問題に対して、所定の添加元素をCuに添加してPによる影響を排除する手法を見出し、SCCを抑制する本発明を完成するに至った。添加元素としては、次の(1)や(2)の特性が有効であると考えた。 As a result, the inventors discovered a method to address the problem of SCC accelerated by P by adding a specific additive element to Cu to eliminate the effects of P, leading to the completion of the present invention, which suppresses SCC. The inventors considered that the following characteristics (1) and (2) of the additive element would be effective.
(1)標準電極電位でHよりも電位の低い卑金属元素であること。このような卑金属元素は、Cuを溶出させるアノード反応よりも低電位でアノード反応を生じる。すなわち、酸素が関与するカソード反応に対して、対となるアノード反応を犠牲的に生じる。また、水素電極電位よりも電位が低いため、銅相から水相へのPの溶出が起こっても、水相のpHの低下を抑制する作用を示す。よって、このようなアノード反応とpH抑制作用によって、銅相から水相へのCuの溶出を抑制できる。 (1) It is a base metal element with a lower potential than H at the standard electrode potential. Such base metal elements cause an anodic reaction at a lower potential than the anodic reaction that dissolves Cu. In other words, they cause an anodic reaction that is a counter reaction to the cathodic reaction involving oxygen. In addition, because their potential is lower than the hydrogen electrode potential, they act to suppress a decrease in the pH of the aqueous phase even if P dissolves from the copper phase into the aqueous phase. Therefore, this anodic reaction and pH suppression effect can suppress the dissolution of Cu from the copper phase into the aqueous phase.
(2)銅相中のPと反応してりん化合物を形成するりん化合物形成元素であること。りん化合物形成元素は、銅相中のPを固定化する作用を示す。銅相中にPが固定化されると、銅相から水相へのPの溶出が抑制されて、水相のpHが低下し難くなる。このようなpH抑制作用によって、銅相から水相へのCuの溶出を抑制できる。 (2) It is a phosphorus compound-forming element that reacts with P in the copper phase to form a phosphorus compound. The phosphorus compound-forming element acts to immobilize P in the copper phase. When P is immobilized in the copper phase, the elution of P from the copper phase into the aqueous phase is suppressed, making it difficult for the pH of the aqueous phase to decrease. This pH suppression effect can suppress the elution of Cu from the copper phase into the aqueous phase.
 ここで、本実施形態に係る銅合金の化学組成についてより詳細に説明する。以下の説明において、「%」の表記は、特に限定しない場合、質量%を意味する。 The chemical composition of the copper alloy according to this embodiment will now be described in more detail. In the following description, the notation "%" means mass % unless otherwise specified.
(卑金属元素)
 卑金属元素としては、標準電極電位でHよりも電位の低い元素が好ましく、Mnの電位以下である元素がより好ましい。このような元素であると、銅相から水相へのPの溶出が起こっても、水相のpHの低下を抑制する作用が得られる。また、標準電極電位がMnの電位以下であると、Mn等のりん化合物形成元素による作用を併せて得ることができる。
(Base metal elements)
As the base metal element, an element having a standard electrode potential lower than H is preferred, and an element having a potential equal to or lower than that of Mn is more preferred. With such an element, even if P dissolves from the copper phase into the aqueous phase, the effect of suppressing a decrease in pH of the aqueous phase can be obtained. Furthermore, if the standard electrode potential is equal to or lower than that of Mn, the effect of a phosphorus compound-forming element such as Mn can also be obtained.
 卑金属元素の具体例としては、Mn、Alや、第1族元素や、第2族元素が挙げられる。第1族元素としては、Li、Na、K等が挙げられる。第2族元素としては、Mg、Ca、Ba等が挙げられる。これらの元素によると、Cuよりも低電位でアノード反応を生じるため、Cuを溶出させるアノード反応を抑制することができる。また、銅相から水相へのPの溶出が起こっても、水相のpHの低下を抑制することができる。これらのpH抑制作用によって、銅相から水相へのCuの溶出を効果的に抑制できる。 Specific examples of base metal elements include Mn, Al, Group 1 elements, and Group 2 elements. Group 1 elements include Li, Na, K, etc. Group 2 elements include Mg, Ca, Ba, etc. These elements cause an anodic reaction at a lower potential than Cu, so they can suppress the anodic reaction that dissolves Cu. In addition, even if P dissolves from the copper phase into the aqueous phase, a decrease in the pH of the aqueous phase can be suppressed. These pH suppressing effects can effectively suppress the dissolution of Cu from the copper phase into the aqueous phase.
 卑金属元素としては、Pと反応してりん化合物を形成するりん化合物形成元素が好ましい。りん化合物形成元素としては、Mn、Mg、Ca等が挙げられる。これらの元素によると、銅相中のPを固定化して、銅相から水相へのPの溶出を抑制できる。水相のpHの低下が抑制されるため、Cuの化学形態のうち、銅イオンよりも酸化物や水酸化物が安定になり、銅相から水相へのCuの溶出を効果的に抑制できる。 As the base metal element, a phosphorus compound-forming element that reacts with P to form a phosphorus compound is preferred. Examples of phosphorus compound-forming elements include Mn, Mg, and Ca. These elements immobilize P in the copper phase, making it possible to suppress the elution of P from the copper phase into the aqueous phase. Since the decrease in pH of the aqueous phase is suppressed, among the chemical forms of Cu, oxides and hydroxides become more stable than copper ions, making it possible to effectively suppress the elution of Cu from the copper phase into the aqueous phase.
 卑金属元素としては、銅母材に対して、一種の元素を添加してもよいし、複数種の元素を添加してもよい。卑金属元素としては、銅母材に対して、りん化合物形成元素のみを添加してもよいし、りん化合物形成元素以外の非りん化合物形成元素のみを添加してもよいし、りん化合物形成元素と非りん化合物形成元素との組み合わせを添加してもよい。 As the base metal element, one type of element or multiple types of elements may be added to the copper base material. As the base metal element, only phosphorus compound forming elements may be added to the copper base material, only non-phosphorus compound forming elements other than phosphorus compound forming elements may be added, or a combination of phosphorus compound forming elements and non-phosphorus compound forming elements may be added.
 卑金属元素量は、卑金属元素の合計で、好ましくは0.01%以上、より好ましくは0.01%超、更に好ましくは0.03%以上、更に好ましくは0.05%以上、更に好ましくは0.10%以上である。このような卑金属元素量であると、銅相から水相へのCuの溶出を抑制する効果を得ることができる。卑金属元素量は、卑金属元素の合計で、0.15%以上であってもよいし、0.20%以上であってもよい。 The amount of base metal elements is preferably 0.01% or more, more preferably more than 0.01%, even more preferably 0.03% or more, even more preferably 0.05% or more, and even more preferably 0.10% or more, in terms of the total amount of base metal elements. Such an amount of base metal elements can provide the effect of suppressing the dissolution of Cu from the copper phase into the aqueous phase. The amount of base metal elements may be 0.15% or more, or 0.20% or more, in terms of the total amount of base metal elements.
 卑金属元素量は、卑金属元素の合計で、好ましくは1.5%以下、より好ましくは1.0%以下、更に好ましくは0.5%以下、更に好ましくは0.25以下、更に好ましくは0.20%以下、更に好ましくは0.15%以下である。卑金属元素量が多すぎると、原料コストが増大したり、鋳造の難易度が増大したりする。また、機械的性質や電気的性質が変化して、銅管として使用し難くなる。しかし、このような卑金属元素量であると、機械的特性、ろう付け性等への影響を回避しつつ、原料コストや鋳造の難易度を抑制できる。卑金属元素量は、卑金属元素の合計で、0.10%以下であってもよいし、0.05%以下であってもよい。 The amount of base metal elements is preferably 1.5% or less, more preferably 1.0% or less, even more preferably 0.5% or less, even more preferably 0.25% or less, even more preferably 0.20% or less, and even more preferably 0.15% or less, in terms of the total amount of base metal elements. If the amount of base metal elements is too high, the raw material cost increases and the difficulty of casting increases. In addition, the mechanical properties and electrical properties change, making it difficult to use as copper pipe. However, with such an amount of base metal elements, it is possible to suppress the raw material cost and the difficulty of casting while avoiding the effects on mechanical properties, brazing properties, etc. The amount of base metal elements may be 0.10% or less, or 0.05% or less, in terms of the total amount of base metal elements.
 卑金属元素としては、MgまたはMnを添加することが好ましく、Mg及びMnのうち少なくとも一方であることが好ましい。また、卑金属元素として、MgおよびMnの両方を添加するものであってもよい。これらの卑金属元素は、りん化合物形成元素である。これらの卑金属元素を添加すると、銅相中のPをりん化合物として固定化すると共に、Pの溶出による水相のpHの低下を抑制できる。また、良好な加工性や、ろう付け性を得ることができる。 As the base metal element, it is preferable to add Mg or Mn, and it is preferable to add at least one of Mg and Mn. In addition, both Mg and Mn may be added as the base metal element. These base metal elements are elements that form phosphorus compounds. By adding these base metal elements, P in the copper phase is fixed as a phosphorus compound, and a decrease in the pH of the aqueous phase due to the elution of P can be suppressed. In addition, good workability and brazing properties can be obtained.
(Mg:0.01%以上0.25%以下)
 卑金属元素としてMgを含む場合に、Mg量は、好ましくは0.01%以上、より好ましくは0.017%以上、更に好ましくは0.03%以上、更に好ましくは0.05%以上、更に好ましくは0.10%以上である。このようなMg量であると、銅相から水相へのCuの溶出を抑制する作用が得られると共に、良好な引張強さ等の機械的特性や、ろう材の濡れ性が得られる。また、Mg量が0.017%以上であると、低りん脱酸銅の規格上限である0.015%のP量であっても、十分な耐SCC性を得ることができる。また、Mg量が0.10%以上であると、高りん脱酸銅の規格上限である0.04%のP量であっても、十分な耐SCC性を得ることができる。
(Mg: 0.01% or more and 0.25% or less)
When Mg is included as a base metal element, the Mg content is preferably 0.01% or more, more preferably 0.017% or more, even more preferably 0.03% or more, even more preferably 0.05% or more, and even more preferably 0.10% or more. With such an Mg content, the effect of suppressing the dissolution of Cu from the copper phase to the aqueous phase is obtained, and good mechanical properties such as tensile strength and wettability of the brazing material are obtained. Furthermore, when the Mg content is 0.017% or more, sufficient SCC resistance can be obtained even with a P content of 0.015%, which is the upper limit of the standard for low phosphorus deoxidized copper. Furthermore, when the Mg content is 0.10% or more, sufficient SCC resistance can be obtained even with a P content of 0.04%, which is the upper limit of the standard for high phosphorus deoxidized copper.
 卑金属元素としてMgを含む場合に、Mg量は、好ましくは0.25%以下、より好ましくは0.25%未満、より好ましくは0.20%以下、更に好ましくは0.15%以下である。Mg量が0.25%超え、特に、0.29%以上であると、ろう材の濡れ性が損なわれる。しかし、Mg量が0.25%以下であると、良好なろう材の濡れ性が得られると共に、機械的特性、高導電率を適切に確保できる。 When Mg is included as a base metal element, the Mg content is preferably 0.25% or less, more preferably less than 0.25%, more preferably 0.20% or less, and even more preferably 0.15% or less. If the Mg content exceeds 0.25%, and in particular is 0.29% or more, the wettability of the brazing filler metal is impaired. However, if the Mg content is 0.25% or less, good brazing filler metal wettability can be obtained, and mechanical properties and high electrical conductivity can be appropriately ensured.
(Mn:0.01%以上1.5%以下)
 卑金属元素としてMnを含む場合に、Mn量は、好ましくは0.01%以上、より好ましくは0.03%以上、更に好ましくは0.05%以上、更に好ましくは0.10%以上、更に好ましくは0.50%以上、更に好ましくは1.0%以上、更に好ましくは1.2%以上である。このようなMn量であると、銅相から水相へのCuの溶出を抑制する作用が得られると共に、良好な引張強さ等の機械的特性が得られる。
(Mn: 0.01% or more and 1.5% or less)
When Mn is contained as a base metal element, the Mn content is preferably 0.01% or more, more preferably 0.03% or more, even more preferably 0.05% or more, even more preferably 0.10% or more, even more preferably 0.50% or more, even more preferably 1.0% or more, and even more preferably 1.2% or more. With such an Mn content, the effect of suppressing the dissolution of Cu from the copper phase into the aqueous phase is obtained, and good mechanical properties such as tensile strength are obtained.
 卑金属元素としてMnを含む場合に、Mn量は、好ましくは1.5%以下、より好ましくは1.4%以下、更に好ましくは1.3%以下である。Mn量が1.5%を超えると、耐力が高くなり、曲げ加工性が低下する。しかし、Mn量が1.5%以下であると、良好な加工性が得られると共に、高導電率を適切に確保できる。 When Mn is included as a base metal element, the Mn content is preferably 1.5% or less, more preferably 1.4% or less, and even more preferably 1.3% or less. If the Mn content exceeds 1.5%, the yield strength increases and bending workability decreases. However, if the Mn content is 1.5% or less, good workability is obtained and high electrical conductivity can be appropriately ensured.
(P:0%を超え0.040%以下)
 Pは、主に脱酸のために添加される。P量が多すぎると、靭性や加工性が低下すると共に、SCC感受性や蟻の巣状腐食感受性が高くなる。そのため、P量は、0.040%以下が好ましい。P量は、許容可能なO量等に応じて、0%を超え0.0003%以下としてもよいし、0.0003%を超え0.001%未満としてもよいし、0.001%を超え0.004%未満としてもよいし、0.004%以上0.015%未満としてもよいし、0.015%以上0.040%以下としてもよい。
(P: more than 0% and 0.040% or less)
P is added mainly for deoxidation. If the P content is too high, toughness and workability are reduced, and SCC susceptibility and ant nest corrosion susceptibility are increased. Therefore, the P content is preferably 0.040% or less. The P content may be more than 0% and less than 0.0003%, more than 0.0003% and less than 0.001%, more than 0.001% and less than 0.004%, 0.004% or more and less than 0.015%, or 0.015% or more and 0.040% or less, depending on the allowable O content, etc.
(不可避的不純物)
 不可避的不純物は、銅合金や銅合金管の製造上で添加が必要な物質や完全な分離除去が困難な物質に由来し、原料からの混入や製造工程上の混入が不可避的である不純物の元素を意味する。銅合金は、P:0%を超え0.040質量%以下であり、卑金属元素の合計が1.5質量%以下であり、残部がCuおよび不可避的不純物からなることが好ましい。
(Inevitable impurities)
The inevitable impurities are derived from substances that need to be added in the manufacture of copper alloys and copper alloy pipes, or substances that are difficult to completely separate and remove, and refer to elements of impurities that are inevitably mixed in from raw materials or during the manufacturing process. The copper alloy preferably contains more than 0% and 0.040% by mass or less of P, 1.5% by mass or less of the total of base metal elements, and the balance being Cu and inevitable impurities.
 不可避的不純物の具体例としては、卑金属元素以外の元素であって、O、H、S、Pb、Bi、Se、Te、As、Sb等が挙げられる。不可避的不純物量は、各元素の合計で、0.1%以下が好ましく、0.05%以下がより好ましく、0.01%以下が更に好ましい。不可避的不純物の合計が0.1%以下であれば、本発明の効果を阻害しない。 Specific examples of unavoidable impurities include elements other than base metal elements, such as O, H, S, Pb, Bi, Se, Te, As, and Sb. The amount of unavoidable impurities, in total, of each element is preferably 0.1% or less, more preferably 0.05% or less, and even more preferably 0.01% or less. If the total amount of unavoidable impurities is 0.1% or less, the effect of the present invention is not impaired.
(O:0.01%以下)
 Oは、水素雰囲気下での炉中ろう付け時等の高温環境下において、Hと反応して水蒸気を生成して水素脆化の要因となる。また、酸化物を形成して加工性を低下させる。そのため、O量は、0.01%以下が好ましく、0.005%以下がより好ましく、0.001%以下が更に好ましい。
(O: 0.01% or less)
O reacts with H to generate water vapor in a high-temperature environment such as furnace brazing in a hydrogen atmosphere, which causes hydrogen embrittlement. It also forms oxides that reduce workability. Therefore, the O content is preferably 0.01% or less, more preferably 0.005% or less, and even more preferably 0.001% or less.
(その他の元素)
 S量は、0.0018%以下が好ましい。Pb量、Bi量、Se量、Te量およびC量は、それぞれ、0.001%以下が好ましい。Zn量、Cd量およびHg量は、それぞれ、0.0001%以下が好ましい。
(Other elements)
The S content is preferably 0.0018% or less. Each of the Pb content, the Bi content, the Se content, the Te content, and the C content is preferably 0.001% or less. Each of the Zn content, the Cd content, and the Hg content is preferably 0.0001% or less.
(Cu:98.5%以上)
 Cuは、卑金属元素および不可避的不純物を除いて、銅合金の残部を構成する。Cu量は、銅合金の残部を構成する限り、特に限定されるものではない。但し、Cu量は、純銅相当の銅合金による特性、例えば、熱伝導性、曲げ加工性、ろう付け性等を得る観点からは、98.5%以上が好ましく、99.0%以上がより好ましく、99.5%以上が更に好ましく、99.80%以上が更に好ましく、99.90%以上が更に好ましい。
(Cu: 98.5% or more)
Cu constitutes the remainder of the copper alloy, excluding base metal elements and inevitable impurities. The amount of Cu is not particularly limited as long as it constitutes the remainder of the copper alloy. However, from the viewpoint of obtaining the properties of the copper alloy equivalent to pure copper, such as thermal conductivity, bending workability, brazing property, etc., the amount of Cu is preferably 98.5% or more, more preferably 99.0% or more, even more preferably 99.5% or more, even more preferably 99.80% or more, and even more preferably 99.90% or more.
 次に、本実施形態に係る銅合金の応力腐食割れ(SCC)に対する耐食性について説明する。 Next, we will explain the corrosion resistance of the copper alloy according to this embodiment to stress corrosion cracking (SCC).
 本実施形態に係る銅合金の応力腐食割れ(SCC)に対する耐食性は、日本伸銅協会 技術標準 JBMA T-301-1981に準拠してアンモニア水溶液による飽和環境に暴露させた後、所定の応力を付加した後に測定されるき裂深さによって評価できる。SCCによるき裂深さは、銅合金の表面からき裂の最深点までの最短距離として定義される。 The corrosion resistance against stress corrosion cracking (SCC) of the copper alloy according to this embodiment can be evaluated by the crack depth measured after applying a specified stress after exposing it to a saturated environment with an aqueous ammonia solution in accordance with the Japan Copper and Brass Association technical standard JBMA T-301-1981. The crack depth due to SCC is defined as the shortest distance from the surface of the copper alloy to the deepest point of the crack.
 JBMA T-301-1981に準拠したアンモニア試験は、14質量%のアンモニア水溶液を用いて行う。アンモニア水溶液は、25質量%以上のアンモニア水溶液を等量の純水で希釈して調製する。試験環境温度は室温とし、アンモニア水溶液を入れた容器は室温20℃±5℃に管理した室内に保持する。供試材は、アンモニア水溶液を入れた容量10Lの試験容器内に、アンモニア水溶液と直接接触しないように配置する。供試材の配置は、アンモニア水溶液の液面から100mmの距離とする。試験容器内のアンモニア雰囲気への暴露条件は、室温で72時間とする。 Ammonia testing in accordance with JBMA T-301-1981 is performed using a 14% by weight aqueous ammonia solution. The aqueous ammonia solution is prepared by diluting at least 25% by weight aqueous ammonia solution with an equal amount of pure water. The test environment temperature is room temperature, and the container containing the aqueous ammonia solution is kept in a room controlled at room temperature of 20°C ± 5°C. The test material is placed in a 10 L test container containing the aqueous ammonia solution, so as not to come into direct contact with the aqueous ammonia solution. The test material is placed 100 mm away from the liquid surface of the aqueous ammonia solution. The exposure conditions to the ammonia atmosphere in the test container are 72 hours at room temperature.
 アンモニア試験に供する銅合金で形成された供試材は、板材または管材とする。アンモニア雰囲気への曝露試験後に、板材の場合、図2に示すように、圧延方向と平行な中心線を曲げ軸として180度(180°)に折り曲げて外部応力を負荷する。管材の場合、管材の径方向から管材を外径の半分以下まで押しつぶして外部応力を負荷する。SCCによる割れの観察点は、板材の場合、折り曲げ時の山側の表面とする。管材の場合、押しつぶし時の屈曲部の外側の表面とする。 The copper alloy test material for the ammonia test is either plate or tube. After the exposure test to the ammonia atmosphere, in the case of plate material, as shown in Figure 2, the center line parallel to the rolling direction is bent 180 degrees (180°) as the bending axis to apply external stress. In the case of tube material, the tube is crushed from the radial direction to less than half of its outer diameter to apply external stress. In the case of plate material, the observation point for cracks due to SCC is the surface on the crest side when bent. In the case of tube material, it is the outer surface of the bent part when crushed.
 銅管の表面には、製管時に表面疵が形成されることがある。一般に、表面疵によるき裂深さは、最大で0.03mm程度である。SCCによる浅いき裂と表面疵によるき裂とは、判別が困難である。そのため、SCCによるき裂深さが0.03mmを超えていても、0.05mm以下であれば、SCCに対する耐食性が良好であると判定できる。また、0.03mm以下であれば、実質的にSCCが発生していないといえる。 Surface defects may form on the surface of copper pipes during pipe manufacturing. Generally, the maximum depth of cracks caused by surface defects is about 0.03 mm. It is difficult to distinguish between shallow cracks caused by SCC and cracks caused by surface defects. Therefore, even if the crack depth caused by SCC exceeds 0.03 mm, if it is 0.05 mm or less, it can be determined that the corrosion resistance to SCC is good. Also, if it is 0.03 mm or less, it can be said that SCC has not actually occurred.
 本実施形態に係る銅合金は、P:0.0065質量%以上0.040質量%以下である場合、質量%で銅合金のMg濃度をY[%]、P濃度をX[%]としたとき、次の式(I)を満たし、JBMA T-301-1981に準拠して、室温20±5℃に管理した室内にて、14質量%のアンモニア水溶液から100mmの距離で72時間にわたって暴露させた後、銅合金の板材を180度に折り曲げたとき、または、銅合金の管材を外径の半分以下に押しつぶしたときに測定されるき裂深さが、0.05mm以下であることが好ましい。
 Y≧2X-0.0130  (0.0065≦X≦0.0400)・・・(I)
In the copper alloy according to the present embodiment, when P is 0.0065% by mass or more and 0.040% by mass or less, when the Mg concentration of the copper alloy is Y [%] and the P concentration is X [%] in mass %, it is preferable that the copper alloy satisfies the following formula (I), and when the copper alloy is exposed to a 14 mass % aqueous ammonia solution at a distance of 100 mm for 72 hours in a room controlled at room temperature of 20±5° C. in accordance with JBMA T-301-1981, the copper alloy sheet is bent 180 degrees, or the copper alloy tube is crushed to half or less of its outer diameter, and the crack depth measured is 0.05 mm or less.
Y≧2X−0.0130 (0.0065≦X≦0.0400) (I)
 P:0.0065質量%以上0.040質量%以下である場合、Mg濃度が式(I)の条件を満たすと、JBMA T-301-1981に準拠したアンモニア試験において、SCCによるき裂深さを0.05mm以下に抑制できる。SCCが促進されるアンモニア環境下において、SCCの進展が小さく抑制されるため、耐SCC性に優れた銅合金を得ることができる。 When P is 0.0065% by mass or more and 0.040% by mass or less, if the Mg concentration satisfies the condition of formula (I), the crack depth due to SCC can be suppressed to 0.05 mm or less in an ammonia test conforming to JBMA T-301-1981. In an ammonia environment in which SCC is promoted, the progression of SCC is suppressed to a small extent, so a copper alloy with excellent SCC resistance can be obtained.
 本実施形態に係る銅合金は、P:0.040質量%以下である場合、質量%で銅合金のMg濃度をY[%]、P濃度をX[%]としたとき、次の式(II)を満たし、JBMA T-301-1981に準拠して、室温20±5℃に管理した室内にて、14質量%のアンモニア水溶液から100mmの距離で72時間にわたって暴露させた後、銅合金の板材を180度に折り曲げたとき、または、銅合金の管材を外径の半分以下に押しつぶしたときに測定されるき裂深さが、0.03mm以下であることがより好ましい。
 Y≧2X  (X≦0.0400)・・・(II)
In the copper alloy according to the present embodiment, when P is 0.040% by mass or less, and the Mg concentration in the copper alloy is Y [%] and the P concentration in mass % is X [%], it is more preferable that the copper alloy satisfies the following formula (II), and that after being exposed to a 14% by mass aqueous ammonia solution at a distance of 100 mm in a room controlled at room temperature of 20±5° C. for 72 hours in accordance with JBMA T-301-1981, when a copper alloy sheet is bent 180 degrees or when a copper alloy tube is crushed to half or less of its outer diameter, the crack depth measured is 0.03 mm or less.
Y≧2X (X≦0.0400) (II)
 P:0.040質量%以下である場合、Mg濃度が式(II)の条件を満たすと、JBMA T-301-1981に準拠したアンモニア試験において、応力腐食割れによるき裂深さを0.03mm以下に抑制できる。P:0.0065質量%未満であれば、卑金属元素が添加されていない場合であっても、SCCが進展し難い。しかし、この範囲であっても、銅合金は、依然としてSCC感受性を示す。そのため、より高度な耐SCC性を保証したい場合は、式(II)の条件を要求する。 When P is 0.040 mass% or less and the Mg concentration satisfies the condition of formula (II), the crack depth due to stress corrosion cracking can be suppressed to 0.03 mm or less in an ammonia test conforming to JBMA T-301-1981. When P is less than 0.0065 mass%, SCC is unlikely to progress even when no base metal elements are added. However, even in this range, copper alloys still exhibit SCC susceptibility. Therefore, if you want to guarantee a higher level of SCC resistance, the condition of formula (II) is required.
 より高度な耐SCC性が要求される場合としては、SCCの発生や進展が加速される条件で銅合金が使用される場合、例えば、工場や家屋等の密閉された環境中にアンモニアの発生源が存在する場合や、銅合金のSCCによる破損が厳格に制限される場合、例えば、銅合金が冷媒用配管や熱交換器用配管等の材料として用いられる場合であって、銅合金管の内部に可燃性冷媒が流される場合等が挙げられる。 Examples of cases where a higher level of SCC resistance is required include cases where copper alloys are used under conditions that accelerate the initiation and progression of SCC, such as when there is an ammonia source in a sealed environment such as a factory or house, and cases where damage to copper alloys due to SCC must be strictly controlled, such as when copper alloys are used as materials for refrigerant piping or heat exchanger piping, and a flammable refrigerant flows inside the copper alloy tube.
 次に、本実施形態に係る銅合金や銅合金管の用途、および、これらの製造方法について説明する。 Next, we will explain the uses of the copper alloy and copper alloy tubes according to this embodiment, as well as the manufacturing methods thereof.
 本実施形態に係る銅合金は、各種の銅製品の材料として用いることができる。銅製品としては、管材、板材、棒材、線材、その他の形状の成形材等が挙げられる。銅合金は、特に、銅合金管の材料として用いることが好ましい。 The copper alloy according to this embodiment can be used as a material for various copper products. Examples of copper products include pipes, plates, bars, wires, and other shaped materials. The copper alloy is particularly preferably used as a material for copper alloy pipes.
 銅合金管は、管内面に溝が形成された内面溝付管であってもよいし、管内面に溝が形成されていない平滑管であってもよい。内面溝付管は、例えば、管内面の全周にわたって所定の間隔の螺旋状の溝、または、互いに平行に配列した直線状の溝が設けられる。銅合金管として内面溝付管を製造する場合、溝の個数、溝の底幅、溝部の肉厚、溝部間のフィンの高さ、フィンの山頂角、管中心軸に対する溝のリード角等は、適宜の条件とすることができる。 The copper alloy tube may be an internally grooved tube, which has grooves formed on the inner surface, or a smooth tube, which has no grooves formed on the inner surface. An internally grooved tube has, for example, spiral grooves at a specified interval around the entire circumference of the inner surface of the tube, or linear grooves arranged parallel to each other. When manufacturing an internally grooved tube as a copper alloy tube, the number of grooves, the bottom width of the grooves, the wall thickness of the grooved portion, the height of the fins between the grooved portions, the apex angle of the fins, the lead angle of the grooves relative to the central axis of the tube, etc. can be set as appropriate.
 銅合金管によると、卑金属元素が添加されているため、脱酸のためにPが添加されていても、SCCの発生および進展を抑制できる。そのため、無酸素銅と比較してコストを抑制して、Pによる脱酸によって水素脆化を防止しつつ、Pによって増長されるSCCも抑制できる。P量の影響を受け難くなるため、材料選択の自由度が拡大する。 Copper alloy pipes contain base metal elements, so even if P is added for deoxidation, the occurrence and progression of SCC can be suppressed. Therefore, compared to oxygen-free copper, costs can be reduced, and hydrogen embrittlement can be prevented by deoxidation with P, while SCC, which is accelerated by P, can also be suppressed. As it is less affected by the amount of P, there is greater freedom in material selection.
 特に内面溝付管によると、銅合金管の表面積を拡大させると共に、銅合金管を流れる流体を溝によって攪拌できる。そのため、冷媒を通流させる用途において、高いエネルギ効率や、高い省エネルギ性能を得ることができる。また、表面積の拡大やエネルギ効率の向上によって、冷媒を通流させる配管の小型化が可能になる。 In particular, inner grooved pipes increase the surface area of the copper alloy pipe and the grooves allow the fluid flowing through the copper alloy pipe to be agitated. This allows for high energy efficiency and high energy saving performance in applications where refrigerants are passed through. Furthermore, the increased surface area and improved energy efficiency make it possible to reduce the size of the pipes through which the refrigerant passes.
 銅合金管は、鋳造工程と、ソーキング工程と、熱間押出工程と、圧延抽伸工程と、焼鈍工程と、を含む製造方法によって製造できる。内面溝付管は、銅合金管を製造した後に、転造加工工程と、最終焼鈍工程と、を経て製造できる。 Copper alloy tubes can be manufactured by a manufacturing method including a casting process, a soaking process, a hot extrusion process, a rolling and drawing process, and an annealing process. Inner grooved tubes can be manufactured by manufacturing copper alloy tubes, followed by a rolling process and a final annealing process.
(鋳造工程)
 鋳造工程では、還元性雰囲気下、銅合金の原料を溶解し、脱酸材を添加してP量を調整した後、所定の寸法の鋳塊を鋳造する。原料としては、電気銅、卑金属元素を含む地金等を用いることができる。脱酸材としては、りん銅等を用いることができる。鋳造法としては、半連続鋳造法等を用いてビレット等を鋳造できる。
(Casting process)
In the casting process, the raw material of the copper alloy is melted in a reducing atmosphere, a deoxidizer is added to adjust the P content, and then an ingot of a predetermined size is cast. As the raw material, electrolytic copper, ingots containing base metal elements, etc. can be used. As the deoxidizer, phosphorus copper, etc. can be used. As the casting method, a billet, etc. can be cast using a semi-continuous casting method, etc.
(ソーキング工程)
 ソーキング工程では、ビレット等の鋳塊を熱処理によって均質化させる。均質化によって、P等の偏析を除去すると共に、添加した卑金属元素を拡散させる。熱処理の温度は、例えば、680℃以上950℃以下とする。680℃以上であると、P等の偏析を十分に除去できる。950℃を超えると、均質化効果が頭打ちとなるが、950℃以下であると、熱処理コストを抑制できる。熱処理の時間は、例えば、15分以上2時間以下とする。
(Soaking process)
In the soaking process, the ingot such as the billet is homogenized by heat treatment. By homogenization, segregation of P and the like is removed and the added base metal elements are diffused. The heat treatment temperature is, for example, 680°C or higher and 950°C or lower. If the temperature is 680°C or higher, segregation of P and the like can be sufficiently removed. If the temperature exceeds 950°C, the homogenization effect reaches a plateau, but if the temperature is 950°C or lower, the heat treatment cost can be suppressed. The heat treatment time is, for example, 15 minutes to 2 hours.
(熱間押出工程)
 熱間押出工程では、加熱されたビレット等の鋳塊を、マンドレルを挿入したダイスに熱間で押し出して素管を形成する。熱間押出の温度は、例えば、680℃以上950℃以下とする。熱間押出における加工率は、割れ、表面欠陥等を生じない限り、適宜の条件とすることができる。押出後の素管は、例えば、自然放冷によって冷却する。なお、熱間押出および圧延加工に代えて、プラグとロールダイスを用いた穿孔圧延を行ってもよい。
(Hot extrusion process)
In the hot extrusion process, a heated ingot such as a billet is hot extruded into a die with a mandrel inserted therein to form a blank pipe. The temperature of the hot extrusion is, for example, 680° C. to 950° C. The processing rate in the hot extrusion can be any appropriate condition as long as cracks, surface defects, etc. are not generated. The blank pipe after extrusion is cooled, for example, by natural cooling. Note that piercing rolling using a plug and roll die may be performed instead of the hot extrusion and rolling.
(圧延抽伸工程)
 圧延抽伸工程では、成形された素管に、マンドレルを用いた圧延加工や抽伸加工を施して、引き延ばされた抽伸素管を形成する。圧延加工や抽伸加工における加工率は、適宜の条件とすることができるが、割れ、表面欠陥等を低減する観点から、95%以下とすることが好ましい。抽伸加工は、プラグを用いた連続抽伸機等を用いて、適宜のパス数で行うことができる。各パスにおける加工率は、割れ、表面欠陥等を低減する観点から、40%以下とすることが好ましい。
(Rolling and drawing process)
In the rolling and drawing process, the formed mother tube is subjected to rolling using a mandrel and drawing to form a drawn mother tube. The working ratio in the rolling and drawing processes can be set to appropriate conditions, but is preferably 95% or less from the viewpoint of reducing cracks, surface defects, etc. The drawing process can be performed in an appropriate number of passes using a continuous drawing machine using a plug, etc. The working ratio in each pass is preferably 40% or less from the viewpoint of reducing cracks, surface defects, etc.
(焼鈍工程)
 焼鈍工程では、加工された抽伸素管を熱処理によって焼鈍する。焼鈍によって、加工歪みを除去して柔軟化させる。焼鈍は、ローラーハース炉、高周波誘導加熱炉等を用いて行うことができる。熱処理の温度は、例えば、350℃以上700℃以下、好ましくは350℃以上500℃以下とする。350℃以上であると、加工歪みを適切に除去できる。熱処理の時間は、例えば、5分以上2時間以下とする。
(Annealing process)
In the annealing step, the processed drawn blank pipe is annealed by heat treatment. By annealing, processing strain is removed and the pipe is softened. The annealing can be performed using a roller hearth furnace, a high-frequency induction heating furnace, or the like. The temperature of the heat treatment is, for example, 350° C. or more and 700° C. or less, and preferably 350° C. or more and 500° C. or less. If the temperature is 350° C. or more, processing strain can be appropriately removed. The time of the heat treatment is, for example, 5 minutes to 2 hours.
 以上の工程によって、平滑管である銅合金管を製造できる。内面溝付管は、抽伸素管に溝付転造加工を施すことによって製造できる。 The above process allows the manufacture of smooth copper alloy tubes. Inner grooved tubes can be manufactured by carrying out groove rolling on drawn bare tubes.
(転造加工工程)
 転造加工工程では、抽伸素管に溝付転造加工を施して、抽伸素管の内面に溝を形成する。溝付転造加工は、例えば、溝付プラグを用いたロール転造によって行うことができる。溝を転写するための逆溝が形成された溝付プラグを素管内に挿入する。そして、回転するロールダイスで押し付けながら素管を引き抜いて、素管の内面に溝を成型する。溝付転造加工は、縮径プラグと連結された溝付プラグを用いて、抽伸加工の縮径パスから連続的に行うこともできる。また、ロールダイスに代えて、ベアリング構造のボールダイスを用いることもできる。
(Rolling process)
In the rolling process, the drawn blank tube is subjected to groove rolling to form grooves on the inner surface of the drawn blank tube. The groove rolling process can be performed, for example, by roll rolling using a grooved plug. A grooved plug having a reverse groove formed therein for transferring the groove is inserted into the blank tube. The blank tube is then pulled out while being pressed by a rotating roll die, forming grooves on the inner surface of the blank tube. The groove rolling process can also be performed continuously from the diameter reduction pass of the drawing process, using a grooved plug connected to a diameter reduction plug. Also, a ball die with a bearing structure can be used instead of the roll die.
(最終焼鈍工程)
 最終焼鈍工程では、溝付管を熱処理によって最終焼鈍する。最終焼鈍は、焼鈍工程と同様に、ローラーハース炉、高周波誘導加熱炉等で行うことができる。熱処理の温度は、例えば、350℃以上700℃以下、好ましくは350℃以上500℃以下とする。熱処理の時間は、例えば、5分以上2時間以下とする。
(Final annealing process)
In the final annealing step, the grooved pipe is subjected to final annealing by heat treatment. The final annealing can be performed in a roller hearth furnace, a high-frequency induction heating furnace, or the like, as in the annealing step. The temperature of the heat treatment is, for example, 350° C. or more and 700° C. or less, preferably 350° C. or more and 500° C. or less. The time of the heat treatment is, for example, 5 minutes or more and 2 hours or less.
 以上の工程によって、内面溝付管である銅合金管を製造できる。製造された銅合金管には、矯正加工、面取加工、切断加工等の加工処理や、外観検査を行うことができる。また、抽伸加工後、且つ、焼鈍前において、抽伸素管について、矯正加工、面取加工、探傷検査等を行うこともできる。 By using the above process, a copper alloy tube with an inner groove can be manufactured. The manufactured copper alloy tube can be subjected to processing such as straightening, chamfering, and cutting, and can also be subjected to visual inspection. In addition, after drawing and before annealing, the drawn blank tube can also be subjected to straightening, chamfering, flaw detection, etc.
 銅合金管は、各種の用途に用いることができる。銅合金管の用途としては、熱交換器用配管、冷媒用配管、給湯配管、給水配管等が挙げられる。熱交換器用配管としては、フィン等に接続されて熱交換器を構成する配管が挙げられる。冷媒用配管としては、冷媒を通流させる配管が挙げられる。給湯配管や給水配管としては、熱水、温水、冷水を通流させる配管が挙げられる。 Copper alloy pipes can be used for a variety of purposes. Applications of copper alloy pipes include heat exchanger piping, refrigerant piping, hot water supply piping, water supply piping, etc. Examples of heat exchanger piping include piping that is connected to fins or the like to form a heat exchanger. Examples of refrigerant piping include piping that carries refrigerant. Examples of hot water supply piping and water supply piping include piping that carries hot water, warm water, and cold water.
 これらの配管は、冷凍空調機器、熱交換装置、給湯器等に備えることができる。冷凍空調機器としては、空調機、冷凍機、蒸気圧縮式冷凍機、吸収式冷凍機等が挙げられる。吸収式冷凍機としては、アンモニア式や、臭化リチウム式等がある。臭化リチウム式では、冷媒の精製過程でアンモニアが不可避的に残留することがある。アンモニアは、SCCを増長する環境因子の一種である。本実施形態に係る銅合金管は、特に、アンモニア環境下で使用される用途に有効である。 These pipes can be installed in refrigeration and air conditioning equipment, heat exchangers, water heaters, etc. Refrigeration and air conditioning equipment includes air conditioners, freezers, vapor compression freezers, absorption freezers, etc. Absorption freezers include ammonia types and lithium bromide types. In lithium bromide types, ammonia may inevitably remain during the refrigerant refining process. Ammonia is a type of environmental factor that promotes SCC. The copper alloy tube of this embodiment is particularly effective for applications used in an ammonia environment.
 銅合金管は、熱交換器の材料として用いることが好ましい。熱交換器としては、フィンチューブ式、コルゲートチューブ式、二重管式等の各種の熱交換器が挙げられる。銅合金管は、直管部に用いられてもよいし、U字形ベンド部、主配管に対する螺旋状巻回部等の曲管部に用いられてもよい。銅合金管を用いた熱交換器は、例えば、空気調和機、冷凍ショーケース、冷蔵庫、オイルクーラ、ラジエータ等に用いることができる。 Copper alloy tubes are preferably used as a material for heat exchangers. Examples of heat exchangers include fin tube type, corrugated tube type, double tube type, and various other types. Copper alloy tubes may be used in straight pipe sections, or in curved pipe sections such as U-shaped bends and helical wound sections around the main pipe. Heat exchangers using copper alloy tubes can be used, for example, in air conditioners, freezer showcases, refrigerators, oil coolers, radiators, and the like.
 図1は、銅合金管を備えた熱交換器の一例を模式的に示す図である。
 図1に示すように、熱交換器30は、複数のフィン10と、伝熱管20と、を備えている。複数のフィン10は、所定の間隔を空けて配列しており、フィン10同士の間に通風路を形成している。伝熱管20は、複数箇所でU字形に曲げられており、複数のフィン10を貫通するように、フィン10上の貫通孔に挿入されて、ろう付けされている。
FIG. 1 is a schematic diagram showing an example of a heat exchanger equipped with copper alloy tubes.
1, the heat exchanger 30 includes a plurality of fins 10 and a heat transfer tube 20. The plurality of fins 10 are arranged at predetermined intervals, and air passages are formed between the fins 10. The heat transfer tube 20 is bent into a U-shape at multiple locations, and is inserted into through holes on the fins 10 so as to pass through the plurality of fins 10, and is brazed thereto.
 伝熱管20は、前記の卑金属元素が添加された銅合金管で形成される。銅合金管は、管内面に溝が形成された内面溝付管であってもよいし、管内面に溝が形成されていない平滑管であってもよい。銅合金管を用いた熱交換器によると、卑金属元素によってSCCが抑制されるため、長期間にわたって冷媒等の熱交換媒体が漏洩し難く、信頼性が高い熱交換器を得ることができる。 The heat transfer tube 20 is made of a copper alloy tube to which the above-mentioned base metal elements have been added. The copper alloy tube may be an internally grooved tube with grooves formed on the inner surface of the tube, or a smooth tube with no grooves formed on the inner surface of the tube. In a heat exchanger using a copper alloy tube, the base metal elements suppress SCC, so that it is difficult for the heat exchange medium such as a refrigerant to leak over a long period of time, and a highly reliable heat exchanger can be obtained.
 以下、本発明の実施例を示して本発明について具体的に説明を行う。但し、本発明の技術的範囲は、これに限定されるものではない。 The present invention will be specifically explained below with examples. However, the technical scope of the present invention is not limited to these examples.
 卑金属元素を添加した銅合金の供試材を作製し、応力腐食割れ(SCC)への影響や、その他の材料特性を評価した。その他の材料特性としては、耐蟻の巣状腐食性、引張強さ、ろう材の濡れ性を評価した。また、卑金属元素の含有量を変えた銅合金の供試材を作製し、含有量毎のSCCによるき裂深さを測定した。  Copper alloy test specimens containing added base metal elements were prepared and their effects on stress corrosion cracking (SCC) and other material properties were evaluated. Other material properties evaluated included resistance to termite nest corrosion, tensile strength, and wettability of the brazing filler metal. In addition, copper alloy test specimens containing different amounts of base metal elements were prepared and the crack depth due to SCC was measured for each content.
 供試材としては、りん脱酸銅相当の銅合金に所定の卑金属元素のみを添加した板材または管材を作製した。板材は、化学組成を調整して原料を鋳造した後、熱間圧延、冷間圧延、焼鈍を、この順に行って作製した。管材は、化学組成を調整して原料を鋳造した後、熱間押出、冷間抽伸、焼鈍を、この順に行って作製した。 The test materials were plate or tube materials made by adding only specified base metal elements to a copper alloy equivalent to phosphorus deoxidized copper. Plate materials were made by adjusting the chemical composition and casting the raw material, followed by hot rolling, cold rolling, and annealing, in that order. Tube materials were made by adjusting the chemical composition and casting the raw material, followed by hot extrusion, cold drawing, and annealing, in that order.
(耐蟻の巣状腐食性の評価)
 耐蟻の巣状腐食性の評価は、板材を供試材として、次の手順で行った。はじめに、長さ200mmの供試材を、腐食液を入れた試験容器に収納した。試験容器にはポリ瓶を使用し、ポリ瓶中蓋に孔をあけ、差し込んだシリコン栓を蓋とした。シリコン栓に孔をくりぬき、くりぬいた孔に板材を差し込む形で板材を保持した。このとき腐食液と直接接触しない高さに配置し、ポリ瓶内部の試験環境に板材の長さ100mmの区間が曝露されるようにした。このとき板材に生じる腐食の方向を統一するため、板材の観察面以外はシリコン樹脂で被覆した。そして、試験容器を密封して、所定のヒートサイクルを設定した乾燥炉内に投入し、所定の試験時間にわたってヒートサイクルを繰り返しながら静置させた。その後、供試材をアクリル樹脂またはエポキシ樹脂に埋設し、断面観察により供試材に発生した蟻の巣状腐食を観察した。
(Evaluation of ant nest corrosion resistance)
The evaluation of the ant nest corrosion resistance was carried out by the following procedure using a plate material as a test material. First, a test material with a length of 200 mm was placed in a test container containing a corrosive liquid. A plastic bottle was used as the test container, and a hole was made in the inner lid of the plastic bottle, and the inserted silicon plug was used as the lid. A hole was bored in the silicon plug, and the plate material was inserted into the bored hole to hold the plate material. At this time, the plate material was placed at a height where it did not come into direct contact with the corrosive liquid, and a section of the plate material with a length of 100 mm was exposed to the test environment inside the plastic bottle. In order to unify the direction of corrosion occurring on the plate material at this time, the plate material was covered with silicon resin except for the observation surface. Then, the test container was sealed and placed in a drying furnace with a specified heat cycle set, and the heat cycle was repeated for a specified test time while the plate material was left stationary. After that, the test material was embedded in acrylic resin or epoxy resin, and the ant nest corrosion occurring on the test material was observed by cross-sectional observation.
 耐蟻の巣状腐食性の評価の条件は、次のとおりである。
・供試材の寸法:幅10~13mm×長さ200mm×厚さ1.0mm(供試材の一部をゴム材で被覆し、試験容器内部の腐食環境への露出面積を片面のみとした。)。
・試験容器  :容量2Lのポリ容器
・腐食液   :500mLの0.5体積%蟻酸水溶液
・試験雰囲気 :工業用酸素(純度99.5vol.%以上)のボンベを元とし、屋内専用配管ならびに接続したシリコンチューブを経由して取り出した酸素ガスを置換ガスとした。2Lポリ容器内に100mm以上差し込んだシリコンチューブから1L/minの流量で5分間、置換ガスとして酸素ガスを流入し、容器内部を酸素雰囲気とした。
・温度条件(乾燥炉のヒートサイクル条件):20℃で2時間保持した後に40℃で22時間保持を繰り返し
・試験時間  :60日
The conditions for evaluating the resistance to termite nest corrosion are as follows.
- Dimensions of test material: Width 10-13 mm x Length 200 mm x Thickness 1.0 mm (A portion of the test material was covered with a rubber material, so that only one side was exposed to the corrosive environment inside the test container).
Test container: 2L plastic container Corrosive liquid: 500mL of 0.5% by volume formic acid solution Test atmosphere: Oxygen gas taken from a cylinder of industrial oxygen (purity 99.5vol.% or more) via indoor piping and connected silicon tube was used as replacement gas. Oxygen gas was introduced as replacement gas at a flow rate of 1L/min for 5 minutes from a silicon tube inserted 100mm or more into the 2L plastic container, creating an oxygen atmosphere inside the container.
Temperature conditions (heat cycle conditions of drying oven): 2 hours at 20°C, followed by 22 hours at 40°C, repeated. Test time: 60 days
 耐蟻の巣状腐食性の評価は、次の基準による。蟻の巣状腐食による最大腐食深さは、供試材の表面から腐食の最深点までの距離として測定した。各供試材ごとに3断面(断面間の間隔を1mm以上として観察したもの)を観察し、これらのうちの最大の距離を最大腐食深さとして求めた。
○:最大腐食深さ0.25mm以下 → 耐蟻の巣状腐食性が良好
×:最大腐食深さ0.25mm超え → 耐蟻の巣状腐食性が不良
The evaluation of ant nest corrosion resistance was based on the following criteria. The maximum corrosion depth due to ant nest corrosion was measured as the distance from the surface of the test material to the deepest point of corrosion. Three cross sections (observed with an interval of 1 mm or more between cross sections) were observed for each test material, and the maximum distance among these was calculated as the maximum corrosion depth.
○: Maximum corrosion depth 0.25 mm or less → Good resistance to ant nest corrosion ×: Maximum corrosion depth over 0.25 mm → Poor resistance to ant nest corrosion
(引張強さの評価)
 引張強さの評価は、板材を供試材として、次の条件で行った。引張強さの測定は、引張試験機を用いて行った。
(Evaluation of Tensile Strength)
The evaluation of tensile strength was carried out under the following conditions using plate materials as test materials: The tensile strength was measured using a tensile testing machine.
・供試材の寸法:幅10mm×長さ200mm×厚さ0.1mm
・試験方法 :JIS Z2241:2011 金属材料引張試験方法に準拠し、短冊状試験片を用いて行った。
Dimensions of test material: Width 10 mm x Length 200 mm x Thickness 0.1 mm
Test method: The test was performed in accordance with JIS Z2241:2011 Metallic material tensile test method using a rectangular test piece.
 引張強さ評価は、次の基準による。
○:引張強さ280N/mm以上 → 曲げ等の加工性を維持
×:引張強さ280N/mm超え → 曲げ等の加工性が低下
The tensile strength evaluation is based on the following criteria:
○: Tensile strength of 280 N/ mm2 or more → bending workability etc. is maintained ×: Tensile strength of more than 280 N/ mm2 → bending workability etc. is deteriorated
(耐応力腐食割れ性の評価)
 耐応力腐食割れ性の評価は、板材または管材を供試材として、JBMA T-301-1981に準拠したアンモニア試験を利用して、次の手順で行った。はじめに、供試材を、腐食液を入れた試験容器内の中板の上方に水平に収納し、腐食液と直接接触しない高さに配置した。図2に、板材の場合の供試材のサンプリング方法を記す。供試材に板材を用いる場合は、図2に示すように、幅10~13mm×長さ25mm×厚さ1mmとなるように圧延材から板材を切り出し、表裏が上下方向を向くよう中板の上方に設置した。管材の場合は長さ20mmを切り出した。供試材の両端部と中板との間には、樹脂被覆した直径2.5mmの銅製ワイヤを置いて、供試材と中板とが直接的に接触しないようにした。次いで、試験容器を密封して、所定の試験時間にわたって静置させた。そして、供試材を試験容器から取り出し、硫酸で酸洗した後に、前処理として外部応力を負荷した。
(Evaluation of stress corrosion cracking resistance)
The evaluation of stress corrosion cracking resistance was performed by the following procedure using ammonia test according to JBMA T-301-1981 using plate or pipe material as the test material. First, the test material was stored horizontally above the middle plate in a test vessel containing a corrosive liquid, and placed at a height that did not directly contact the corrosive liquid. Figure 2 shows the sampling method for the test material in the case of plate material. When a plate material was used as the test material, as shown in Figure 2, the plate material was cut out from the rolled material to have a width of 10 to 13 mm, a length of 25 mm, and a thickness of 1 mm, and placed above the middle plate so that the front and back faces in the up and down direction. In the case of pipe material, a length of 20 mm was cut out. Resin-coated copper wires with a diameter of 2.5 mm were placed between both ends of the test material and the middle plate to prevent direct contact between the test material and the middle plate. Next, the test vessel was sealed and left to stand for a predetermined test time. Then, the test material was taken out of the test vessel, pickled with sulfuric acid, and then external stress was applied as a pretreatment.
 図2は、銅合金で形成された供試材の前処理の方法を示す図である。図2の左上図は、供試材の作製に用いた圧延前の銅合金塊を示す。図2の右上図は、銅合金塊を圧延した圧延材と供試材の切り出し位置を示す。図2の下図は、応力を負荷するための供試材の曲げ位置を示す。
 図2に示すように、供試材が板材の場合は、圧延方向と平行な中心線を軸として、試験環境曝露時の上側の面が外側になるように、180度(180°)に折り曲げた。一方、管材については、外径が半部以下、例えばΦ9.52mmの場合は約4mmになるまで、圧延方向である径方向に沿って一軸方向に押しつぶした。押しつぶした面山側の外観から、光学顕微鏡(×69倍)でき裂の有無を観察した。外観からき裂が激しい箇所の断面を切り出し、アクリル樹脂またはエポキシ樹脂に埋設し、断面の割れを光学顕微鏡(×150倍)で観察した。き裂が激しい箇所が複数点ある場合は、供試材を分割して断面観察を行った。
Fig. 2 is a diagram showing a method of pretreatment of a test material formed of a copper alloy. The upper left diagram of Fig. 2 shows a copper alloy ingot before rolling used to prepare the test material. The upper right diagram of Fig. 2 shows a rolled material obtained by rolling the copper alloy ingot and the cutting position of the test material. The lower diagram of Fig. 2 shows a bending position of the test material to apply stress.
As shown in FIG. 2, when the test material was a plate material, it was bent 180 degrees (180°) with the center line parallel to the rolling direction as the axis so that the upper surface during the exposure to the test environment was on the outside. On the other hand, for the tube material, it was crushed uniaxially along the radial direction, which is the rolling direction, until the outer diameter was reduced to half or less, for example, about 4 mm in the case of Φ9.52 mm. The presence or absence of cracks was observed from the appearance of the crushed surface side with an optical microscope (×69 magnification). A cross section of a part with severe cracks from the appearance was cut out and embedded in acrylic resin or epoxy resin, and the cracks on the cross section were observed with an optical microscope (×150 magnification). When there were multiple points with severe cracks, the test material was divided and the cross section was observed.
 図3は、応力腐食割れによるき裂深さの測定方法を示す図である。図4は、図3の要部を拡大して示す図である。図4は、図3における矩形領域Sの拡大図に相当する。
 図3に示すように、応力腐食割れが発生した箇所には、供試材の本来の外表面が存在しない。そこで、供試材の断面画像を撮像し、供試材の外表面を表す仮想線を画像処理によって内挿して、応力腐食割れによる最大き裂深さを測定した。
Fig. 3 is a diagram showing a method for measuring the crack depth due to stress corrosion cracking. Fig. 4 is an enlarged view of a main part of Fig. 3. Fig. 4 corresponds to an enlarged view of a rectangular area S in Fig. 3.
As shown in Figure 3, the original outer surface of the test material does not exist at the location where stress corrosion cracking occurred. Therefore, a cross-sectional image of the test material was taken, and a virtual line representing the outer surface of the test material was inserted by image processing to measure the maximum crack depth due to stress corrosion cracking.
 図3に示すように、谷側のA点を中心として、左右の45度(45°)となる外表面にB点とB’点を定めた。そして、A点を中心として、B点およびB’点を通る円弧を仮想表面として内挿した。A点とき裂の最深点とを通る仮想直線Cを描画して、仮想直線Cと円弧状の仮想曲線との交点を求めた。この交点からき裂の最深点までの最短距離を、SCCによるき裂深さとして測定した。最大腐食深さは、所定の測定数観察している断面中に設けた円弧B-B’間に認められるき裂のうちで最大のき裂深さとした。 As shown in Figure 3, points B and B' were set on the outer surface at 45 degrees (45°) to the left and right of point A on the valley side as the center. Then, a circular arc passing through points B and B' was interpolated as a virtual surface with point A as the center. A virtual line C passing through point A and the deepest point of the crack was drawn, and the intersection of virtual line C and the arc-shaped virtual curve was obtained. The shortest distance from this intersection to the deepest point of the crack was measured as the crack depth due to SCC. The maximum corrosion depth was taken as the maximum crack depth among the cracks observed between arcs B-B' in the cross section observed for a specified number of measurements.
 耐応力腐食割れ性の評価の条件は、次のとおりである。
・板材の寸法 :幅10~13mm×長さ25mm×厚さ1.0mm
・管材の寸法 :外径9.52mm×厚さ0.8mm×長さ20mm
・試験容器  :容量10Lのデシケータ
・腐食液   :100mLの14質量%アンモニア水(市販の25質量%以上のアンモニア水溶液を等量の純水で希釈したもの)
・温度条件  :試験温度を室温とし、試験容器を保持する部屋の室温を、空調機にて20℃±5℃以内に管理した。
・暴露条件  :腐食液の液面から100mm
・試験時間  :最大72時間
The conditions for evaluating the stress corrosion cracking resistance are as follows.
・Plate dimensions: Width 10-13 mm x Length 25 mm x Thickness 1.0 mm
・Pipe dimensions: outer diameter 9.52 mm x thickness 0.8 mm x length 20 mm
Test container: 10 L desiccator Corrosive solution: 100 mL of 14% by mass ammonia water (a commercially available 25% by mass or higher ammonia water solution diluted with an equal amount of pure water)
Temperature conditions: The test temperature was room temperature, and the room temperature in the room in which the test container was held was controlled to within 20° C.±5° C. by an air conditioner.
Exposure conditions: 100 mm from the surface of the corrosive liquid
・Test time: Maximum 72 hours
 耐応力腐食割れ性の評価は、次の基準による。最大き裂深さが0.03mm以下の場合、製管時の表面疵との判別が困難なため、SCCによるき裂とは見做さなかった。
◎:最大き裂深さが0.03mm以下 → 耐応力腐食割れ性が優良
○:最大き裂深さが0.03mm超え0.05mm以下 → 耐応力腐食割れ性が良好
×:最大き裂深さが0.05mm超え → 耐応力腐食割れ性が不良
The evaluation of stress corrosion cracking resistance was based on the following criteria: When the maximum crack depth was 0.03 mm or less, it was not considered to be a crack caused by SCC because it was difficult to distinguish it from a surface defect during pipe manufacturing.
◎: Maximum crack depth is 0.03 mm or less → Excellent stress corrosion cracking resistance ○: Maximum crack depth is more than 0.03 mm and less than 0.05 mm → Good stress corrosion cracking resistance ×: Maximum crack depth is more than 0.05 mm → Poor stress corrosion cracking resistance
(ろう材の濡れ性の評価)
 ろう材の濡れ性の評価は、板材を供試材として、次の条件で行った。はじめに、供試材を長さ方向の中心線に沿って90度(90°)に折り曲げた。そして、供試材の谷側の中央に棒状のろう材を配置した。ろう材が配置された供試材を、所定の加熱条件で加熱した後に冷却した。その後、供試材の表面に濡れ広がったろう材の長手方向の長さを測定した。
(Evaluation of wettability of brazing filler metal)
The wettability of the brazing filler metal was evaluated under the following conditions using a plate material as the test material. First, the test material was bent 90 degrees (90°) along the center line in the longitudinal direction. Then, a rod-shaped brazing filler metal was placed in the center of the valley side of the test material. The test material with the brazing filler metal placed thereon was heated under predetermined heating conditions and then cooled. Then, the longitudinal length of the brazing filler metal that had spread over the surface of the test material was measured.
 ろう材の濡れ性の評価の条件は、次のとおりである。
・供試材の寸法:幅30mm×長さ100mm×厚さ1.0mm
・ろう材の種類:リン銅ろう BCuP-2(直径1.6mm×長さ20mm)
・加熱機器  :赤外線ゴールドイメージ炉(株式会社アルバック社製)
・加熱雰囲気 :窒素ガス雰囲気
・加熱条件  :昇温速度850℃/5分で室温から850℃まで加熱
・保持条件  :850℃で5分間保持
・冷却条件  :自然冷却
The conditions for evaluating the wettability of the brazing material are as follows.
Dimensions of test material: Width 30 mm x Length 100 mm x Thickness 1.0 mm
・Type of brazing material: Phosphorus copper brazing BCuP-2 (diameter 1.6 mm x length 20 mm)
Heating equipment: Infrared gold image furnace (ULVAC, Inc.)
Heating atmosphere: Nitrogen gas atmosphere Heating conditions: Heat from room temperature to 850°C at a heating rate of 850°C/5 minutes Holding conditions: Hold at 850°C for 5 minutes Cooling conditions: Natural cooling
 ろう材の濡れ性の評価は、次の基準による。
○:ろう材の長手方向の長さが100mm以上 → ろう材の濡れ性が良好
×:ろう材の長手方向の長さが100mm未満 → ろう材の濡れ性が不良
The wettability of the brazing material is evaluated according to the following criteria.
○: The length of the brazing material in the longitudinal direction is 100 mm or more → the wettability of the brazing material is good. ×: The length of the brazing material in the longitudinal direction is less than 100 mm → the wettability of the brazing material is poor.
(供試材の化学組成の分析)
 供試材の化学組成の分析は、発光分光分析装置PDA-7000(株式会社島津製作所社製)を使用して、JIS K0116:2014 発光分光分析通則の「5 スパーク放電発光分光分析」に準拠して、次の条件で行った。
(Analysis of Chemical Composition of Test Materials)
The chemical composition of the test material was analyzed using an optical emission spectrometer PDA-7000 (manufactured by Shimadzu Corporation) in accordance with "5 Spark discharge optical emission spectroscopic analysis" of JIS K0116:2014 General rules for optical emission spectroscopic analysis. It was performed under the following conditions.
 化学組成の分析の条件は、次のとおりである。
・分析雰囲気 :高純度アルゴンガス雰囲気(99.9995体積%)
・電極間隔  :7mm(放電ギャップの距離)
・定量方法  :強度比法による定時間積分
・予備放電  :1500パルス
・本放電   :1200パルス(積分時間として用いた放電時間)
The conditions for the analysis of the chemical composition are as follows:
Analysis atmosphere: High-purity argon gas atmosphere (99.9995% by volume)
・Electrode spacing: 7 mm (discharge gap distance)
Quantitative method: Fixed-time integration using the intensity ratio method Pre-discharge: 1500 pulses Main discharge: 1200 pulses (discharge time used as integration time)
 化学組成の分析は、焼鈍を終えた供試材の表面上の任意の3点について行った。板材については、平滑な主面上を測定した。管材については、管材を押しつぶした後に平滑な外表面上を測定した。各箇所で測定された測定値の平均値を計算して、各供試材の測定結果とした。 Chemical composition analysis was performed at three random points on the surface of the test material after annealing. For plate materials, measurements were taken on the smooth main surface. For tube materials, measurements were taken on the smooth outer surface after crushing the tube. The average values measured at each point were calculated and used as the measurement results for each test material.
 化学組成の分析に使用したスパーク放電発光分光分析の測定波長、および、その波長による測定感度は、次のとおりである。
 Al:波長396.1nm,測定感度44
 Cu:波長296.1nm,測定感度24
 Mg:波長285.2nm,測定感度24
  P:波長178.3nm,測定感度52
The measurement wavelengths of the spark discharge optical emission spectrometry used in the analysis of the chemical composition and the measurement sensitivity at each wavelength are as follows:
Al: Wavelength 396.1 nm, measurement sensitivity 44
Cu: Wavelength 296.1 nm, measurement sensitivity 24
Mg: Wavelength 285.2 nm, measurement sensitivity 24
P: Wavelength 178.3 nm, measurement sensitivity 52
 表1に、供試材の化学組成(Mg量の狙い値)と、耐蟻の巣状腐食性、引張強さ、耐応力腐食割れ性、ろう材の濡れ性の評価結果を示す。総合判定は、これらの総合的な評価である。
 
Table 1 shows the chemical composition of the test material (target value of Mg content) and the evaluation results of the termite nest corrosion resistance, tensile strength, stress corrosion cracking resistance, and brazing filler metal wettability. The overall evaluation is a comprehensive evaluation of these.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1および2は、Mg濃度が0.01mass%や0.25mass%であり、ろう材の濡れ性が基準を満たした。比較例1は、Mg濃度が0.29mass%であり、ろう材の濡れ性が基準を満たさなかった。ろう材の濡れ性の観点からは、Mg濃度は、0.25mass%以下が好ましいといえる。 As shown in Table 1, in Examples 1 and 2, the Mg concentration was 0.01 mass% and 0.25 mass%, respectively, and the wettability of the brazing filler metal met the standard. In Comparative Example 1, the Mg concentration was 0.29 mass%, and the wettability of the brazing filler metal did not meet the standard. From the viewpoint of the wettability of the brazing filler metal, it can be said that a Mg concentration of 0.25 mass% or less is preferable.
 表2に、供試材の化学組成(Mg量、Mn量、P量の分析値)と、応力腐食割れによる最大き裂深さの測定結果と、耐応力腐食割れ性の評価結果を示す。
 
Table 2 shows the chemical compositions of the test materials (analytical values of Mg content, Mn content, and P content), the measurement results of the maximum crack depth due to stress corrosion cracking, and the evaluation results of stress corrosion cracking resistance.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図5は、応力腐食割れによるき裂深さとP濃度との関係を示す図である。図5において、縦軸は、供試材で測定されたき裂深さ[μm]、横軸は、供試材のP濃度[mass%]を示す。○のプロットは、Mg量が0.1mass%である実施例に係る供試材の結果である。◇のプロットは、卑金属元素が添加されていない比較例に係る供試材の結果である。 Figure 5 shows the relationship between crack depth due to stress corrosion cracking and P concentration. In Figure 5, the vertical axis shows the crack depth [μm] measured in the test material, and the horizontal axis shows the P concentration [mass%] of the test material. The plots marked with ○ are the results for the test material according to the embodiment in which the Mg content is 0.1 mass%. The plots marked with ◇ are the results for the test material according to the comparative example in which no base metal elements are added.
 図5に示すように、銅合金のP濃度が低い場合、卑金属元素の添加の有無にかかわらず、応力腐食割れによるき裂が抑制された。き裂深さが30μm以下の場合、製管時の表面疵との判別が困難なため、SCCによるき裂が発生していないといえる。したがって、卑金属元素の添加は、P濃度が0.0065mass%(0.0065質量%)以上の場合に特に有効といえる。 As shown in Figure 5, when the P concentration of the copper alloy is low, cracks due to stress corrosion cracking are suppressed regardless of whether base metal elements are added. When the crack depth is 30 μm or less, it is difficult to distinguish this from surface defects during pipe manufacturing, so it can be said that cracks due to SCC are not occurring. Therefore, the addition of base metal elements is particularly effective when the P concentration is 0.0065 mass% or more.
 図6は、応力腐食割れによるき裂深さに対するMg濃度とP濃度との関係を示す図である。図6において、縦軸は、供試材のMg濃度[mass%]、横軸は、供試材のP濃度[mass%]を示す。●のプロットは、最大き裂深さが30μm以下である供試材の結果である。▲のプロットは、最大き裂深さが30μmを超え50μm以下である供試材の結果である。●のプロットは、最大き裂深さが50μmを超える供試材の結果である。 Figure 6 shows the relationship between Mg concentration and P concentration versus crack depth due to stress corrosion cracking. In Figure 6, the vertical axis shows the Mg concentration [mass%] of the test material, and the horizontal axis shows the P concentration [mass%] of the test material. The plots marked with ● show the results for test materials with a maximum crack depth of 30 μm or less. The plots marked with ▲ show the results for test materials with a maximum crack depth of more than 30 μm and less than 50 μm. The plots marked with ● show the results for test materials with a maximum crack depth of more than 50 μm.
 図6において、上側の破線は、Mg濃度をY[%]、P濃度をX[%]としたとき、式(I)で表される直線:Y=2X-0.0130を示す。下側の破線は、Mg濃度をY[%]、P濃度をX[%]としたとき、式(II)で表される直線:Y=2Xを示す。これらの直線は、表2に示す実施例1-1~1-20の結果に基づいて、線形的な境界条件として求めたものである。 In Figure 6, the upper dashed line indicates the straight line expressed by formula (I): Y = 2X - 0.0130 when the Mg concentration is Y [%] and the P concentration is X [%]. The lower dashed line indicates the straight line expressed by formula (II): Y = 2X when the Mg concentration is Y [%] and the P concentration is X [%]. These straight lines were determined as linear boundary conditions based on the results of Examples 1-1 to 1-20 shown in Table 2.
 表2および図6に示すように、実施例1-1~1-14は、式(II)で表される関係:Y≧2X(X≦0.0400)を満たし、P量に対して卑金属元素量が適切であるため、耐応力腐食割れ性が0.03mm以下の基準を満たした。実施例1-13は、0.02mass%のPに対して、0.041mass%のMgによって良好な耐応力腐食割れ性が得られており、耐応力腐食割れ性が0.03mm以下の基準を満たした。 As shown in Table 2 and Figure 6, Examples 1-1 to 1-14 satisfied the relationship expressed by formula (II): Y ≥ 2X (X ≤ 0.0400), and the amount of base metal elements was appropriate relative to the amount of P, so the stress corrosion cracking resistance met the criterion of 0.03 mm or less. Example 1-13 obtained good stress corrosion cracking resistance due to 0.041 mass% Mg relative to 0.02 mass% P, and the stress corrosion cracking resistance met the criterion of 0.03 mm or less.
 実施例1-15は、Pを含まないため、卑金属元素が添加されてなくても、耐応力腐食割れ性が0.03mm以下の基準を満たした。 Example 1-15 does not contain P, so even though no base metal elements are added, the stress corrosion cracking resistance met the standard of 0.03 mm or less.
 実施例1-16は、Pが微量であるため、耐応力腐食割れ性が0.03mm以下の基準を満たさなかったが、卑金属元素が添加されてなくても、耐応力腐食割れ性が0.05mm以下の基準を満たした。但し、実施例1-15と比較すると、Pの増加に連れて、き裂の深さが大きくなった。 In Example 1-16, the stress corrosion cracking resistance did not meet the standard of 0.03 mm or less due to the trace amount of P, but even though no base metal elements were added, the stress corrosion cracking resistance met the standard of 0.05 mm or less. However, compared to Example 1-15, the crack depth increased as the P content increased.
 実施例1-17は式(II)で表される関係:Y≧2X(X≦0.0400)を満たさなかったが、Pが微量であるため、耐応力腐食割れ性が0.05mm以下の基準を満たした。実施例1-18~1-19は、式(I)で表される関係:Y≧2X-0.0130(0.0065≦X≦0.0400)を満たし、P量に対して卑金属元素量が適切であるため、耐応力腐食割れ性が0.05mm以下の基準を満たした。 Example 1-17 did not satisfy the relationship represented by formula (II): Y ≥ 2X (X ≤ 0.0400), but because the amount of P was small, the stress corrosion cracking resistance met the criterion of 0.05 mm or less. Examples 1-18 to 1-19 satisfied the relationship represented by formula (I): Y ≥ 2X - 0.0130 (0.0065 ≤ X ≤ 0.0400), and because the amount of base metal elements was appropriate relative to the amount of P, the stress corrosion cracking resistance met the criterion of 0.05 mm or less.
 実施例1-21は、卑金属元素がMnであるが、P量に対して卑金属元素量が適切であるため、耐応力腐食割れ性が0.03mm以下の基準を満たした。卑金属元素がMnであっても、応力腐食割れによるき裂の進展が抑制されることが明らかとなった。 In Example 1-21, the base metal element is Mn, but because the amount of the base metal element is appropriate relative to the amount of P, the stress corrosion cracking resistance met the standard of 0.03 mm or less. It was revealed that even when the base metal element is Mn, the propagation of cracks due to stress corrosion cracking is suppressed.
 比較例1-1~1-5は、応力腐食割れ試験後のき裂深さが0.05mmを超えており、式(I)で表される関係や、式(II)で表される関係を満たさなかった。比較例1-2や1-3は卑金属元素を含んでおらず、特に比較例1-2は、低リン酸銅(JIS H3300 C1201)に相当するが、耐応力腐食割れ性が0.05mm以下の基準を満たさなかった。比較例1-1や1-4~1-5ではP量に対して卑金属元素量が不足しており、応力腐食割れに対する耐食性を向上させる効果が認められなかった。 In Comparative Examples 1-1 to 1-5, the crack depth after the stress corrosion cracking test exceeded 0.05 mm, and did not satisfy the relationship expressed by formula (I) or formula (II). Comparative Examples 1-2 and 1-3 did not contain base metal elements, and Comparative Example 1-2 in particular corresponds to low phosphate copper (JIS H3300 C1201), but did not satisfy the standard of 0.05 mm or less in stress corrosion cracking resistance. In Comparative Examples 1-1 and 1-4 to 1-5, the amount of base metal elements was insufficient relative to the amount of P, and no effect of improving corrosion resistance against stress corrosion cracking was observed.
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above, it goes without saying that the present invention is not limited to these examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the claims, and it is understood that these also naturally fall within the technical scope of the present invention. Furthermore, the components in the above embodiments may be combined in any manner as long as it does not deviate from the spirit of the invention.
 なお、本出願は、2022年10月7日出願の日本特許出願(特願2022-162811)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Patent Application No. 2022-162811) filed on October 7, 2022, the contents of which are incorporated by reference into this application.
 以上のとおり、本明細書には次の事項が開示されている。 As described above, this specification discloses the following:
(1) 標準電極電位でMnの電位以下である卑金属元素が添加された銅合金。
(2) 上記(1)に記載の銅合金であって、
 前記卑金属元素は、Pと化合物を形成するりん化合物形成元素である銅合金。
(3) 上記(1)または(2)に記載の銅合金であって、
 前記卑金属元素は、Mg及びMnのうち少なくとも一方である銅合金。
(4) 上記(3)に記載の銅合金であって、
 前記卑金属元素として前記Mgを含む場合に、Mg:0.25質量%以下であり、前記卑金属元素として前記Mnを含む場合に、Mn:1.5質量%以下である銅合金。
(5) 上記(1)から(4)のいずれか一つに記載の銅合金であって、
 P:0.0065質量%以上であり、
 前記銅合金のMg濃度をY[%]、P濃度をX[%]としたとき、次の式(I)を満たし、
 JBMA T-301-1981に準拠して、室温20±5℃に管理した室内にて、14質量%のアンモニア水溶液から100mmの距離で72時間にわたって暴露させた後、前記銅合金の板材を180度に折り曲げたとき、または、前記銅合金の管材を外径の半分以下に押しつぶしたときに測定されるき裂深さが、0.05mm以下である銅合金。
 Y≧2X-0.0130・・・(I)
(6) 上記(1)から(5)のいずれか一つに記載の銅合金であって、
 前記銅合金のMg濃度をY[%]、P濃度をX[%]としたとき、次の式(II)を満たし、
 JBMA T-301-1981に準拠して、室温20±5℃に管理した室内にて、14質量%のアンモニア水溶液から100mmの距離で72時間にわたって暴露させた後、前記銅合金の板材を180度に折り曲げたとき、または、前記銅合金の管材を外径の半分以下に押しつぶしたときに測定されるき裂深さが、0.03mm以下である銅合金。
 Y≧2X・・・(II)
(7) 上記(1)から(6)のいずれか一つに記載の銅合金であって、
 前記卑金属元素としてMnを含み、
 Mn:1.2質量%以上1.5質量%以下である銅合金。
(8) 上記(1)から(7)のいずれか一つに記載の銅合金で形成された銅合金管。
(9) 上記(8)に記載の銅合金管であって、
 管内面に溝が形成された内面溝付管である銅合金管。
(10) 上記(1)から(7)のいずれか一つに記載の銅合金で形成された銅合金管を用いた熱交換器。
(1) A copper alloy to which a base metal element has been added whose standard electrode potential is lower than that of Mn.
(2) The copper alloy according to (1) above,
The base metal element is a phosphorus compound forming element that forms a compound with P in the copper alloy.
(3) The copper alloy according to (1) or (2) above,
The copper alloy contains at least one of Mg and Mn as the base metal element.
(4) The copper alloy according to (3) above,
A copper alloy, in which, when Mg is contained as the base metal element, Mg is 0.25 mass% or less, and when Mn is contained as the base metal element, Mn is 1.5 mass% or less.
(5) The copper alloy according to any one of (1) to (4) above,
P: 0.0065% by mass or more;
When the Mg concentration of the copper alloy is Y [%] and the P concentration is X [%], the following formula (I) is satisfied:
A copper alloy, which has a crack depth of 0.05 mm or less, measured when a sheet material of the copper alloy is bent at 180 degrees or a tube material of the copper alloy is crushed to half or less of its outer diameter after being exposed to a 14 mass % aqueous ammonia solution at a distance of 100 mm for 72 hours in a room controlled at a room temperature of 20±5°C in accordance with JBMA T-301-1981.
Y≧2X−0.0130 (I)
(6) The copper alloy according to any one of (1) to (5) above,
When the Mg concentration of the copper alloy is Y [%] and the P concentration is X [%], the following formula (II) is satisfied:
A copper alloy, which has a crack depth of 0.03 mm or less, measured when a sheet material of the copper alloy is bent at 180 degrees or a tube material of the copper alloy is crushed to half or less of its outer diameter after being exposed to a 14 mass % aqueous ammonia solution at a distance of 100 mm for 72 hours in a room controlled at a room temperature of 20±5°C in accordance with JBMA T-301-1981.
Y≧2X (II)
(7) The copper alloy according to any one of (1) to (6) above,
The base metal element includes Mn,
A copper alloy containing 1.2 mass % or more and 1.5 mass % or less of Mn.
(8) A copper alloy tube formed from the copper alloy according to any one of (1) to (7) above.
(9) The copper alloy tube according to (8) above,
A copper alloy pipe with grooves formed on the inside surface.
(10) A heat exchanger using a copper alloy tube formed from the copper alloy according to any one of (1) to (7) above.

Claims (10)

  1.  標準電極電位でMnの電位以下である卑金属元素が添加された銅合金。 A copper alloy to which base metal elements have been added that have a standard electrode potential lower than that of Mn.
  2.  請求項1に記載の銅合金であって、
     前記卑金属元素は、Pと化合物を形成するりん化合物形成元素である銅合金。
    2. The copper alloy of claim 1,
    The base metal element is a phosphorus compound forming element that forms a compound with P in the copper alloy.
  3.  請求項1または請求項2に記載の銅合金であって、
     前記卑金属元素は、Mg及びMnのうち少なくとも一方である銅合金。
    The copper alloy according to claim 1 or 2,
    The copper alloy contains at least one of Mg and Mn as the base metal element.
  4.  請求項3に記載の銅合金であって、
     前記卑金属元素として前記Mgを含む場合に、Mg:0.25質量%以下であり、前記卑金属元素として前記Mnを含む場合に、Mn:1.5質量%以下である銅合金。
    4. The copper alloy of claim 3,
    A copper alloy, in which, when Mg is contained as the base metal element, Mg is 0.25 mass% or less, and when Mn is contained as the base metal element, Mn is 1.5 mass% or less.
  5.  請求項1から請求項4のいずれか一項に記載の銅合金であって、
     P:0.0065質量%以上であり、
     前記銅合金のMg濃度をY[%]、P濃度をX[%]としたとき、次の式(I)を満たし、
     JBMA T-301-1981に準拠して、室温20±5℃に管理した室内にて、14質量%のアンモニア水溶液から100mmの距離で72時間にわたって暴露させた後、前記銅合金の板材を180度に折り曲げたとき、または、前記銅合金の管材を外径の半分以下に押しつぶしたときに測定されるき裂深さが、0.05mm以下である銅合金。
     Y≧2X-0.0130・・・(I)
    The copper alloy according to any one of claims 1 to 4,
    P: 0.0065% by mass or more;
    When the Mg concentration of the copper alloy is Y [%] and the P concentration is X [%], the following formula (I) is satisfied:
    A copper alloy, which has a crack depth of 0.05 mm or less, measured when a sheet material of the copper alloy is bent at 180 degrees or a tube material of the copper alloy is crushed to half or less of its outer diameter after being exposed to a 14 mass % aqueous ammonia solution at a distance of 100 mm for 72 hours in a room controlled at a room temperature of 20±5°C in accordance with JBMA T-301-1981.
    Y≧2X−0.0130 (I)
  6.  請求項1から請求項5のいずれか一項に記載の銅合金であって、
     前記銅合金のMg濃度をY[%]、P濃度をX[%]としたとき、次の式(II)を満たし、
     JBMA T-301-1981に準拠して、室温20±5℃に管理した室内にて、14質量%のアンモニア水溶液から100mmの距離で72時間にわたって暴露させた後、前記銅合金の板材を180度に折り曲げたとき、または、前記銅合金の管材を外径の半分以下に押しつぶしたときに測定されるき裂深さが、0.03mm以下である銅合金。
     Y≧2X・・・(II)
    The copper alloy according to any one of claims 1 to 5,
    When the Mg concentration of the copper alloy is Y [%] and the P concentration is X [%], the following formula (II) is satisfied:
    A copper alloy, which has a crack depth of 0.03 mm or less, measured when a sheet material of the copper alloy is bent at 180 degrees or a tube material of the copper alloy is crushed to half or less of its outer diameter after being exposed to a 14 mass % aqueous ammonia solution at a distance of 100 mm for 72 hours in a room controlled at a room temperature of 20±5°C in accordance with JBMA T-301-1981.
    Y≧2X (II)
  7.  請求項1から請求項6のいずれか一項に記載の銅合金であって、
     前記卑金属元素としてMnを含み、
     Mn:1.2質量%以上1.5質量%以下である銅合金。
    The copper alloy according to any one of claims 1 to 6,
    The base metal element includes Mn,
    A copper alloy containing 1.2 mass % or more and 1.5 mass % or less of Mn.
  8.  請求項1から請求項7のいずれか一項に記載の銅合金で形成された銅合金管。 A copper alloy tube formed from the copper alloy according to any one of claims 1 to 7.
  9.  請求項8に記載の銅合金管であって、
     管内面に溝が形成された内面溝付管である銅合金管。
    9. The copper alloy tube according to claim 8,
    A copper alloy pipe with grooves formed on the inside surface.
  10.  請求項1から請求項7のいずれか一項に記載の銅合金で形成された銅合金管を用いた熱交換器。 A heat exchanger using a copper alloy tube formed from the copper alloy according to any one of claims 1 to 7.
PCT/JP2023/036289 2022-10-07 2023-10-04 Corrosion-resistant copper alloy, copper alloy pipe, and heat exchanger WO2024075797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-162811 2022-10-07
JP2022162811A JP2024055690A (en) 2022-10-07 2022-10-07 Corrosion-resistant copper alloys, copper alloy tubes and heat exchangers

Publications (1)

Publication Number Publication Date
WO2024075797A1 true WO2024075797A1 (en) 2024-04-11

Family

ID=90608183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036289 WO2024075797A1 (en) 2022-10-07 2023-10-04 Corrosion-resistant copper alloy, copper alloy pipe, and heat exchanger

Country Status (2)

Country Link
JP (1) JP2024055690A (en)
WO (1) WO2024075797A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337197A (en) * 1993-05-27 1994-12-06 Kobe Steel Ltd Corrosion resistant copper alloy tube for heat exchanger
JP2002235132A (en) * 2001-02-07 2002-08-23 Kobe Steel Ltd Internally grooved welded tube made of copper alloy and fin tube type heat exchanger using the same
JP2009114493A (en) * 2007-11-05 2009-05-28 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger
WO2015046470A1 (en) * 2013-09-26 2015-04-02 三菱伸銅株式会社 Copper alloy
WO2016072339A1 (en) * 2014-11-05 2016-05-12 株式会社Uacj Pipe with grooved inner surface for heat exchanger, and process for producing same
JP2017036467A (en) * 2015-08-07 2017-02-16 株式会社Uacj Copper alloy tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337197A (en) * 1993-05-27 1994-12-06 Kobe Steel Ltd Corrosion resistant copper alloy tube for heat exchanger
JP2002235132A (en) * 2001-02-07 2002-08-23 Kobe Steel Ltd Internally grooved welded tube made of copper alloy and fin tube type heat exchanger using the same
JP2009114493A (en) * 2007-11-05 2009-05-28 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger
WO2015046470A1 (en) * 2013-09-26 2015-04-02 三菱伸銅株式会社 Copper alloy
WO2016072339A1 (en) * 2014-11-05 2016-05-12 株式会社Uacj Pipe with grooved inner surface for heat exchanger, and process for producing same
JP2017036467A (en) * 2015-08-07 2017-02-16 株式会社Uacj Copper alloy tube

Also Published As

Publication number Publication date
JP2024055690A (en) 2024-04-18

Similar Documents

Publication Publication Date Title
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP3794971B2 (en) Copper alloy tube for heat exchanger
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
JP2009235428A (en) Copper alloy member and heat-exchanger
JP2008255379A (en) Copper alloy tube for heat exchanger
JP2010156002A (en) Copper alloy tube, method for manufacturing the same, and heat pump water heater
WO2024075797A1 (en) Corrosion-resistant copper alloy, copper alloy pipe, and heat exchanger
KR101911214B1 (en) High corrosion resistance copper pipe
JP2008174785A (en) Copper alloy tube for heat exchanger
JP6271826B1 (en) High corrosion resistance copper tube
JP5451217B2 (en) Manufacturing method of internally grooved tube
TW201446982A (en) Copper alloy seamless tube for heat exchanger tube
CN114058898A (en) Copper alloy tube for heat exchanger having excellent thermal conductivity and fracture strength and method for producing same
JP5638999B2 (en) Copper alloy tube
JP2013076123A (en) Copper alloy tube
WO2022224940A1 (en) Corrosion-resistant copper alloy, copper alloy pipe and heat exchanger
JP2013189664A (en) Copper alloy tube
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS6230862A (en) Manufacture of copper alloy having superior corrosion resistance
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS59153854A (en) Copper alloy with superior corrosion resistance
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPS59118841A (en) Copper alloy having excellent corrosion resistance
WO2018198408A1 (en) Copper tube having excellent ant nest corrosion resistance
WO2018123731A1 (en) Ant nest corrosion resistant copper pipe and method for improving corrosion resistance using same