JPS6230862A - Manufacture of copper alloy having superior corrosion resistance - Google Patents

Manufacture of copper alloy having superior corrosion resistance

Info

Publication number
JPS6230862A
JPS6230862A JP16558686A JP16558686A JPS6230862A JP S6230862 A JPS6230862 A JP S6230862A JP 16558686 A JP16558686 A JP 16558686A JP 16558686 A JP16558686 A JP 16558686A JP S6230862 A JPS6230862 A JP S6230862A
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy
copper alloy
copper
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16558686A
Other languages
Japanese (ja)
Other versions
JPS646266B2 (en
Inventor
Susumu Kawauchi
川内 進
Masahiro Tsuji
正博 辻
Kiyoaki Nishikawa
西川 清明
Junji Miyake
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP16558686A priority Critical patent/JPS6230862A/en
Publication of JPS6230862A publication Critical patent/JPS6230862A/en
Publication of JPS646266B2 publication Critical patent/JPS646266B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve the corrosion and weld crack resistances of a Cu alloy by restricting the contents of Zn, P, Sn, Al, Si and Fe and/or Pb and carrying out cold rolling again after final annealing. CONSTITUTION:An alloy consisting of, by weight, 25-40% Zn, 0.005-0.070% P, 0.05-1.0% Sn, 0.05-1.0% Al, 0.005-1.0% Si, 0.005-1.3% in total of 0.005-1.0% Fe and/or 0.005-0.3% Pb and the balance Cu with inevitable impurities is cold rolled again at 3-20% draft after final annealing. By the final annealing, the grain size of the alloy is regulated to <=0.015mm as required. By this method, a Cu alloy having superior corrosion resistance and low weld crack sensitivity can be obtd. The Cu alloy can be utilized as a material for a heat exchanger, especially for a radiator.

Description

【発明の詳細な説明】 本発明は優れた耐食性を有する銅合金の製造方法で、復
水器、給水加熱器、蒸留器、冷却器、造水装置などの熱
交換器用の材料として、特に自動車等に用いられるラジ
ェーターのタンク(容器)。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for producing a copper alloy having excellent corrosion resistance, and is particularly suitable for use as a material for heat exchangers such as condensers, feed water heaters, distillers, coolers, and water generators. Radiator tank (container) used for etc.

チューブ(管)、フィン等の材料として最適な銅合金の
製造方法に関するものである。
The present invention relates to a method for manufacturing a copper alloy that is optimal as a material for tubes, fins, etc.

黄銅は一般に機械的性質や成形性が良好であり、その他
の銅合金に比べて安価なため、広範囲の用途で使用され
ている。熱交換器特に、自動車用ラジェーターとしても
好んで使用されているが、黄銅は環境によって脱亜鉛腐
食が起き、これが大きな問題となっている。
Brass generally has good mechanical properties and formability, and is cheaper than other copper alloys, so it is used in a wide range of applications. Brass is often used as a heat exchanger, especially as a radiator for automobiles, but dezincification corrosion occurs in brass depending on the environment, which is a major problem.

自動車用ラジェーターは本体の温度を調節するために液
体を冷却媒体としてエンジンとラジェーターを循環させ
て熱を放散させるもので、ラジェーターは冷却媒体と常
時接触しており、この冷却媒体により、内面から腐食が
生じる問題がある。
An automobile radiator dissipates heat by circulating liquid between the engine and the radiator as a cooling medium to adjust the temperature of the body.The radiator is in constant contact with the cooling medium, and this cooling medium causes corrosion from the inside. There is a problem that arises.

また自動車の走行中にラジェーターは排気ガス、塩分を
含む海岸大気、さらには工場大気のSO。
Also, while the car is running, the radiator absorbs SO from exhaust gas, coastal air containing salt, and even factory air.

ガス等にさらされている場合には外面からも腐食される
If exposed to gas etc., it will corrode from the outside as well.

従来ラジェーターに使用されている材料としては、銅6
5wt%、亜鉛35 w t、%からなる黄銅が用いら
れているが、腐食環境の悪化等により従来の黄銅を用い
たラジェーターの寿命が短かくなりつつある。
The material conventionally used for radiators is copper 6.
Brass containing 5 wt% and 35 wt% zinc is used, but the lifespan of conventional radiators using brass is becoming shorter due to deterioration of the corrosive environment.

さらにまた近年特にラジェーターチューブ(管)には、
従来のカシメによるロックシームチューブにかわってコ
スト低減と生産効率の向上の面から高周波抵抗溶接また
は高周波誘導溶接による銅合金溶接管が採用されるよう
になってきた。しかしながら銅合金溶接管は、その溶接
組織の特異性からその溶接部は他の部分と比較して耐食
性が大幅に劣るという欠点を持っている。このことは銅
合金溶接管の使用−1−の大きな制約となる。さらしこ
は、銅合金溶接管の製造の際にイ容接方法として高周波
1′A導溶接もしくは、V″6周波抵抗溶接を用いた場
合、その溶接方法の特徴から特に溶接割才しを発生し易
いという製造玉の難点をもっている。
Furthermore, in recent years, especially in radiator tubes,
Copper alloy welded tubes made by high-frequency resistance welding or high-frequency induction welding have come to be used in place of conventional lock-seamed tubes made by caulking in order to reduce costs and improve production efficiency. However, copper alloy welded pipes have the disadvantage that the welded part has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure. This poses a major restriction on the use of copper alloy welded pipes. When manufacturing copper alloy welded pipes, high-frequency 1'A conduction welding or V''6-frequency resistance welding is used as a welding method, and due to the characteristics of the welding method, welding cracks occur. It has the disadvantage of being easy to manufacture.

このような状況から熱交換器特にラジェータータンク(
容器)、チューブ(管)、フィン等に耐食性の向上が要
求されると同時に溶接部位Fこおいては耐食性と同時に
溶接割れ感受性の低い材料の開発が望まれてきた。
In this situation, heat exchangers, especially radiator tanks (
At the same time, there has been a demand for improved corrosion resistance for containers (containers), tubes, fins, etc., and at the same time, for the welding area F, it has been desired to develop a material that is both corrosion resistant and less susceptible to weld cracking.

本発明はかかる点に鑑み、従来の黄銅を改良し、熱交換
器用特にラジェーター用材料として優れた耐食性を有す
る銅合金の製造方法を提供するものである。
In view of this, the present invention provides a method for producing a copper alloy that improves conventional brass and has excellent corrosion resistance as a material for heat exchangers, particularly radiators.

本発明は、亜鉛25〜40wt%、りん0.005〜0
.070wt%、錫0.05〜1.Ow七%、アルミニ
ウム0.05〜1.0wt%、けい素0.005〜1.
0wt、%を含み、さらに鉄0.005−1.0wt%
、釦0.005−0.3wt%の内面れか1種又は2種
を総量で0.005〜1.3wt%含み、残部銅及び不
可避的な不純物からなる合金を最終焼鈍後さらに3〜2
0%の加工度で冷間圧延を施すことを特徴とする耐食性
に優れた銅合金の製造方法並びに亜鉛25〜40wt%
、りん0.005〜0.070wt%、錫0,05〜1
.Qwt%、アルミニウム0.05〜1.0wt%、け
い素0.005〜1.0wt%を含み、さらに鉄0.0
05〜1.0wt%、釦0.005〜0.3wt%の内
面れか1種又は2種を総量で0.005〜1.3wt%
を含み。
The present invention has zinc 25 to 40 wt%, phosphorus 0.005 to 0
.. 070wt%, tin 0.05-1. Ow 7%, aluminum 0.05-1.0wt%, silicon 0.005-1.
Contains 0wt% and further contains iron 0.005-1.0wt%
, the inner surface of the button contains 0.005-1.3 wt% of any one or two of them in a total amount of 0.005-1.3 wt%, and the balance is copper and unavoidable impurities.
A method for producing a copper alloy with excellent corrosion resistance, characterized by cold rolling with a working degree of 0%, and 25 to 40 wt% zinc
, Phosphorus 0.005-0.070wt%, Tin 0.05-1
.. Qwt%, aluminum 0.05-1.0wt%, silicon 0.005-1.0wt%, and further iron 0.0
05 to 1.0 wt%, button 0.005 to 0.3 wt%, one or two of the inner surfaces in a total amount of 0.005 to 1.3 wt%
Including.

残部銅及び不可避的な不純物よりなる合金を最終焼鈍で
結晶粒度が0.015nta以下となるように調整した
後、さらに3〜20%の加工度で冷間圧延を施すことを
特徴とする耐食性に優れた銅合金の製造方法に関する。
After final annealing the alloy consisting of the remaining copper and unavoidable impurities so that the grain size is 0.015 nta or less, the alloy is further cold rolled at a working ratio of 3 to 20% to achieve corrosion resistance. This article relates to a method for producing an excellent copper alloy.

次に本発明を構成す、る合金成分及び内容の限定理由を
説明する。銅と亜鉛は、本発明を構成する合金の基本材
料となるもので加工性、機械的強度に優れていると共に
熱伝導性にも優れている。亜鉛含有量を25〜4Qwt
%とする理由は、亜2イ(含有量が25wし%未満では
加工性が悪くなること及び40wt%を越えると銅−亜
鉛合金におけるβ相の析出が顕著にみられ耐食性及び冷
間加圧性が悪くなるためである。
Next, the reasons for limiting the alloy components and contents constituting the present invention will be explained. Copper and zinc are the basic materials of the alloy constituting the present invention, and have excellent workability, mechanical strength, and thermal conductivity. Zinc content 25~4Qwt
% is because the content is 25 wt%, and if it is less than 40 wt%, the workability will be poor, and if it exceeds 40 wt%, the precipitation of β phase in the copper-zinc alloy will be noticeable, resulting in poor corrosion resistance and cold pressability. This is because it becomes worse.

りんの含有量を0.005〜0.070w!、%とする
理由は、りん含有量が0.005wt%未満では耐食性
の改善がみられず、逆にりん含有4が0.070wt%
を越えると耐食性は改Mされるが5粒界腐食の徴候がみ
られるためである15期含有量を0.05〜1.0wt
%とする理由は、錫含有量が0.05wt%未満では耐
食性時Lコ溶接した場合溶接部の耐食性の改善が認めら
れず、また1、0wt%を越えるとその効果が飽和する
ためである。アルミニウム含有量を0.05〜1.0w
t%とする理由は、アルミニウム含有量が0,05wt
%未満では耐食性特に溶接した場合溶接部の耐食性の改
善が認められず、また1゜0wt%を越えるとその効果
が飽和するためである。けい素含有量を0.005〜1
.0wt、■、とする理由は、けい素の含有量が0.0
05wt%未満では耐食性特に溶接した場合溶接部の耐
食性の改善が認められず、また1、0wt%を越えると
その効果が飽和すると共に、逆に内面からの腐食に対す
る耐食性が劣化するためである。鉄含有量を0.005
〜1.0wt%とす理由は、鉄含有量が0.005wt
%未満では耐食性の改善が認められず、また1、0wt
%を越えるとその効果が飽和するためである。鉛含有量
を0.005〜0.3wt%とする理由は、鉛含有量が
o、。
The phosphorus content is 0.005 to 0.070w! The reason why the phosphorus content is less than 0.005 wt% is that no improvement in corrosion resistance is observed;
If the content exceeds 0.05 to 1.0wt, the corrosion resistance will be improved, but signs of intergranular corrosion will be seen.
% is because if the tin content is less than 0.05 wt%, no improvement in the corrosion resistance of the welded part will be observed when L-welding is performed during corrosion resistance, and if it exceeds 1.0 wt%, the effect will be saturated. . Aluminum content 0.05~1.0w
The reason why it is set as t% is that the aluminum content is 0.05wt.
This is because if the content is less than 1.0% by weight, no improvement in corrosion resistance, especially of the welded part when welded, will be observed, and if it exceeds 1.0% by weight, the effect will be saturated. Silicon content 0.005-1
.. The reason for 0wt, ■ is that the silicon content is 0.0.
If it is less than 0.05 wt%, no improvement in corrosion resistance, especially of the welded part when welded, will be observed, and if it exceeds 1.0 wt%, the effect will be saturated and, conversely, the corrosion resistance against corrosion from the inner surface will deteriorate. Iron content 0.005
The reason for ~1.0wt% is that the iron content is 0.005wt.
%, no improvement in corrosion resistance is observed, and 1.0 wt.
%, the effect becomes saturated. The reason why the lead content is set to 0.005 to 0.3 wt% is that the lead content is o.

05wt%未満では耐食性の改善が認められず、また0
.3wt%を越えると加工性が劣化するためである。こ
のように、りん、鉄、鉛を添加することにより素材に耐
食性を付加し、錫、アルミニウム、けい素を添加するこ
とにより素材及び溶接した場合、溶接部の耐食性を付加
するものである。
If it is less than 0.05 wt%, no improvement in corrosion resistance is observed;
.. This is because if it exceeds 3 wt%, workability deteriorates. In this way, the addition of phosphorus, iron, and lead adds corrosion resistance to the material, and the addition of tin, aluminum, and silicon adds corrosion resistance to the material and the welded part when welded.

さらに結晶粒度を0.015Mn以下に限定した理由に
ついて以下に述べる。高周波誘導溶接あるいは高周波抵
抗溶接によって起こる溶接割れの原因について調査した
結果本発明者らは、溶融した母材金属と接触していると
粒界が脆化して軽い衝撃を受けた場合に溶接割れが発生
することを知見した。そこでこのような現象について調
査を行なった結果、結晶粒度の影響が大きく、結晶粒度
を小さくすることにより、このような現象を大幅に抑制
することができることを知見した。さらに本発明者らは
、耐食性に及ぼす結晶粒度の影響についても調査した結
果、耐食性とくに耐脱亜鉛腐食性は結晶粒度の影響を受
け、結晶粒度を小さくすることにより、耐食性を向上さ
せることができることを知見した。
Furthermore, the reason why the crystal grain size is limited to 0.015Mn or less will be described below. As a result of investigating the cause of weld cracking caused by high-frequency induction welding or high-frequency resistance welding, the present inventors found that when in contact with molten base metal, the grain boundaries become brittle, and when subjected to a light impact, weld cracking occurs. We found that this occurs. As a result of investigating this phenomenon, it was found that the influence of the crystal grain size is large, and that such a phenomenon can be significantly suppressed by reducing the crystal grain size. Furthermore, the present inventors investigated the influence of grain size on corrosion resistance and found that corrosion resistance, especially dezincification corrosion resistance, is affected by grain size, and that corrosion resistance can be improved by reducing grain size. I found out.

結晶粒度を0.015m以下に限定した理由は。The reason why the crystal grain size was limited to 0.015 m or less is.

結晶粒度が0.0150111を越えると溶接割れが発
生し易くなり、また耐食性の劣化が認められるためであ
る。
This is because if the grain size exceeds 0.0150111, welding cracks are likely to occur and deterioration of corrosion resistance is observed.

そして本発明において最終焼鈍した後、3〜20%の加
工度で冷間圧延を施こす理由は、冷間圧延を施こすこと
により、はんだ付は性を向上させるためであるが、加工
度が3%未満でははんだ付は性の向上が認められず、ま
た20%を越えると機械的強度が高くなり、成形性特に
ラジェーターチューブ加工時の成形性が劣化するためで
ある。
In the present invention, the reason why cold rolling is performed at a workability of 3 to 20% after final annealing is that cold rolling improves soldering properties, but the workability is This is because if it is less than 3%, no improvement in soldering properties will be observed, and if it exceeds 20%, the mechanical strength will increase and the moldability, particularly when processing the radiator tube, will deteriorate.

このような本発明の製造方法によって得られる合金は、
良好な耐食性及び耐78接割れ性を示すと共に、はんだ
付は性も良好な合金であるため熱交換器用特にラジェー
ター用鋼合金として適した材料である。
The alloy obtained by the manufacturing method of the present invention is
This alloy exhibits good corrosion resistance and 78 joint cracking resistance, and also has good solderability, making it a material suitable as a steel alloy for heat exchangers, especially radiators.

実施例 第1表に示す諸組成の合金を溶製し、700 ’Cで熱
間圧延を行ない厚さ8mの板とし、これを冷間圧延で厚
さ3mとした。これに500’CX1hrの焼鈍を行な
った後、最終冷間圧延で厚さ]−川の板とした。
EXAMPLE Alloys having the compositions shown in Table 1 were melted and hot rolled at 700'C to form a plate with a thickness of 8 m, which was then cold rolled to a thickness of 3 m. This was annealed for 500'CX 1 hr, and then finally cold rolled into a plate with a thickness of 200 mm.

これをさらに350℃〜600’CX1hrの各種温度
で熱処理し、第2表に示す結晶粒度に調整した。耐食性
試験に供する溶接部材は第2表に示された結晶粒度をも
つIWll厚さの譜組成の合金を突き合わせTIG?6
接することによって作製した。
This was further heat treated at various temperatures from 350°C to 600'CX 1 hr to adjust the crystal grain size shown in Table 2. The welded parts to be subjected to the corrosion resistance test were made by butting TIG? 6
It was made by touching.

耐食性試験はIQの蒸留水に(内面からの腐食を想定し
て) 炭酸水素ナトリウム   1.3 g/Q硫酸ナトリウ
ム  1.5g/Q 塩化ナトリウム  1 、6 g / Qを各々溶かし
た液を液温88℃に保持し、毎分100mQの空気を吹
き込み、この液の中に500時間浸漬した。その時発生
した最大脱亜鉛腐食深さを溶接部及び母材部について測
定し、これをもって耐食性を評価した。その結果を第3
表に示した。
The corrosion resistance test was performed by dissolving 1.3 g/Q of sodium bicarbonate, 1.5 g/Q of sodium sulfate, and 1.6 g/Q of sodium chloride (assuming corrosion from the inside) in IQ distilled water at a liquid temperature. The temperature was maintained at 88° C., air was blown at a rate of 100 mQ per minute, and the solution was immersed for 500 hours. The maximum dezincification corrosion depth that occurred at that time was measured for the welded part and the base metal part, and the corrosion resistance was evaluated based on this. The result is the third
Shown in the table.

溶融した母材金属と接触した場合粒界が脆化して溶接割
れが発生することに対する耐性についての試験は第2表
に示される結晶粒度をもつ諸組成の合金を第1図に示さ
れるようにパイプ状に加工し、これを同一組成の融点+
50℃に保持された溶融金属に3秒間浸漬し、その後取
り出して保持炉中で付着している金属が溶融している状
態で第2図のように衝撃を加えた。その時変形したパイ
プ断面を顕微鏡によって観察し粒界破壊の有無を確認し
、これをもって溶接割れに対する耐性を評価した。その
結果を第4表に示した。
Tests for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with molten base metal were conducted using alloys of various compositions with the grain sizes shown in Table 2 as shown in Figure 1. Processed into a pipe shape, this is made into a pipe with the same composition, melting point +
It was immersed in molten metal held at 50° C. for 3 seconds, then taken out and subjected to impact as shown in FIG. 2 in a holding furnace while the attached metal was molten. The cross section of the deformed pipe was then observed under a microscope to confirm the presence or absence of intergranular fracture, and this was used to evaluate resistance to weld cracking. The results are shown in Table 4.

さらに第2表に示された結晶粒度をもつIUn厚さの合
金を第5表に示す加工度で冷間圧延を加えた後、はんだ
付は性試験に供した。はんだ付は性試験は直径80++
+n+、深さ60mmの円筒形ルツボにSn20wt%
−Pb80wt%からなるはんだを320℃に加熱して
溶湯をつくり、その中に降下速度25m/secでサン
プル(表面を清浄にした幅10nn+、長さ50nn+
の形状)を浸漬したときはんだ浴からサンプルが受ける
浮力とはんだ浴に引き込まれる力が平衡に達するまでの
時間(ぬれ平衡時間)を測定し、これをもってはんだ付
は性を評価した。その結果を第6表に示した。
Further, alloys having IUn thickness and grain sizes shown in Table 2 were cold rolled at the working degrees shown in Table 5, and then subjected to solderability tests. Soldering test is 80++ diameter
+n+, 20wt% Sn in a cylindrical crucible with a depth of 60mm
- Heat the solder consisting of 80 wt% Pb to 320°C to create a molten metal, and drop the sample (width 10 nn + surface cleaned, length 50 nn +
The time required for the buoyant force exerted on the sample from the solder bath and the force drawn into the solder bath to reach equilibrium (wetting equilibrium time) was measured when the sample was immersed in the solder bath (wetting equilibrium time), and the soldering properties were evaluated using this. The results are shown in Table 6.

第3表、第4表、第6表かられかるように本発明によっ
て得られる合金は脱亜鉛腐食に対して素材及び溶接した
場合、溶接部が優れた耐食性を示すとともに耐溶接割れ
性及びはんだ付は性も良好であることが判明した。
As can be seen from Tables 3, 4, and 6, the alloy obtained by the present invention exhibits excellent corrosion resistance in the welded part when used as a material against dezincification corrosion and when welded, as well as exhibits excellent weld cracking resistance and solder resistance. It was found that the adhesive properties were also good.

すなわち比較例(試料番号1〜10)では最大脱亜鉛腐
食深さが母材で213μ〜392μ、溶接部で337μ
〜721μに達するのに対し本発明合金(試料番号11
〜23)は母材で最低値23μ〜最高値86μ、溶接部
で最低値53μ〜最高値192μであり耐脱亜鉛腐食性
に優れていることがわかる。そして本発明を構成する合
金の中でも結晶粒度が0.015n+m以下の合金はよ
り耐説亜鉛腐食性に優れている。
In other words, in the comparative examples (sample numbers 1 to 10), the maximum dezincification corrosion depth was 213μ to 392μ in the base metal and 337μ in the welded part.
The alloy of the present invention (sample no. 11) reached ~721 μ
~23) has a minimum value of 23μ to a maximum value of 86μ in the base metal, and a minimum value of 53μ to a maximum value of 192μ in the welded part, indicating that it has excellent dezincification corrosion resistance. Among the alloys constituting the present invention, alloys with a grain size of 0.015n+m or less have better zinc corrosion resistance.

また本発明を構成する合金は上記のように耐脱亜鉛腐食
性に優れているが、さらに結晶粒度が0.015na以
下であるもの(試料番号12.14゜16.18.20
)は第2図に示される溶接割れ性の試験において単に延
性変形するのみで割れ発生がなく耐溶接割れ性が改善さ
れる。逆に結晶粒度が0.O15mnを越えるものにつ
いては粒界破壊を起こすので好ましくない。
In addition, although the alloy constituting the present invention has excellent dezincification corrosion resistance as described above, it also has a crystal grain size of 0.015 na or less (sample number 12.14゜16.18.20
) undergoes only ductile deformation in the weld cracking test shown in FIG. 2, with no cracking occurring, and the weld cracking resistance is improved. On the other hand, if the grain size is 0. If it exceeds O15mn, it is not preferable because it causes grain boundary destruction.

そして本発明の加工度3〜20%の冷間圧延を施したも
の(試料番号11〜19)は同冷間圧延を施していない
もの(試料番号20〜23)のはんだ付は性の評価(は
んだ浴からサンプルが受ける浮力とはんだ浴に引き込ま
れる力とが平衡に達するまでの時間による)において2
.30秒〜2.70秒と比較的長時間かかるのに比べて
より短時間に平衡に達しはんだ付は性に優れていること
がわかる。
The soldering properties of those subjected to the cold rolling of the present invention with a workability of 3 to 20% (sample numbers 11 to 19) and those that were not subjected to the same cold rolling (sample numbers 20 to 23) were evaluated based on the soldering properties ( 2 depending on the time it takes for the buoyant force exerted on the sample from the solder bath and the force drawn into the solder bath to reach equilibrium).
.. It can be seen that the equilibrium is reached in a shorter time compared to the relatively long time of 30 seconds to 2.70 seconds, and the soldering is excellent.

以上のように本発明の製造方法によって得られる合金は
熱交換器用、特にラジェーター用として極めて優れた特
性を有するものである。
As described above, the alloy obtained by the production method of the present invention has extremely excellent properties for use in heat exchangers, especially radiators.

以下余白 第  2  表 第  3  表 第  4  表 第  5  表 第  6  表Below margin Table 2 Table 3 Table 4 Table 5 Table 6

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐溶接割れ性の試験に用いる厚さ1mの合金パ
イプの断面図、第2図は耐溶接割れ性の試験装置の概略
説明図である。 1: 厚さ1mの合金パイプ(長さ10mm)2: 自
由落下体(重量200gtz)3:支持台 4: 加熱保持炉 a: パイプ内径(φ20■) b: パイプ外径(φ22m)
FIG. 1 is a cross-sectional view of a 1 m thick alloy pipe used in the weld cracking resistance test, and FIG. 2 is a schematic explanatory diagram of the weld cracking resistance testing apparatus. 1: Alloy pipe 1m thick (length 10mm) 2: Free falling object (weight 200gtz) 3: Support stand 4: Heating and holding furnace a: Pipe inner diameter (φ20■) b: Pipe outer diameter (φ22m)

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛25〜40wt%、りん0.005〜0.0
70wt%、錫0.05〜1.0wt%、アルミニウム
0.05〜1.0wt%、けい素0.005〜1.0w
t%を含み、さらに鉄0.005〜1.0wt%、鉛0
.005〜0.3wt%の内何れか1種又は2種を総量
で0.005〜1.3wt%含み、残部銅及び不可避的
な不純物からなる合金を最終焼鈍後さらに3〜20%の
加工度で冷間圧延を施すことを特徴とする耐食性に優れ
た銅合金の製造方法。
(1) Zinc 25-40wt%, phosphorus 0.005-0.0
70wt%, tin 0.05-1.0wt%, aluminum 0.05-1.0wt%, silicon 0.005-1.0w
Contains t%, and further contains 0.005 to 1.0wt% iron and 0 lead.
.. After final annealing, an alloy containing one or two of 0.005 to 0.3 wt% in a total amount of 0.005 to 1.3 wt%, and the balance consisting of copper and unavoidable impurities, is further processed by 3 to 20%. A method for producing a copper alloy with excellent corrosion resistance, which is characterized by cold rolling.
(2)亜鉛25〜40wt%、りん0.005〜0.0
70wt%、錫0.05〜1.0wt%、アルミニウム
0.05〜1.0wt%、けい素0.005〜1.0w
t%を含み、さらに鉄0.005〜1.0wt%、鉛0
.005〜0.3wt%の内何れか1種又は2種を総量
で0.005〜1.3wt%を含み、残部銅及び不可避
的な不純物よりなる合金を最終焼鈍で結晶粒度が0.0
15mm以下となるように調整した後、さらに3〜20
%の加工度で冷間圧延を施すことを特徴とする耐食性に
優れた銅合金の製造方法。
(2) Zinc 25-40wt%, phosphorus 0.005-0.0
70wt%, tin 0.05-1.0wt%, aluminum 0.05-1.0wt%, silicon 0.005-1.0w
Contains t%, and further contains 0.005 to 1.0wt% iron and 0 lead.
.. An alloy containing one or two of 0.005 to 0.3 wt% in a total amount of 0.005 to 1.3 wt%, and the balance consisting of copper and unavoidable impurities is finally annealed to have a crystal grain size of 0.0.
After adjusting it so that it is 15mm or less, add another 3 to 20 mm.
A method for producing a copper alloy with excellent corrosion resistance, which is characterized by cold rolling with a working degree of 1.5%.
JP16558686A 1986-07-16 1986-07-16 Manufacture of copper alloy having superior corrosion resistance Granted JPS6230862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16558686A JPS6230862A (en) 1986-07-16 1986-07-16 Manufacture of copper alloy having superior corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16558686A JPS6230862A (en) 1986-07-16 1986-07-16 Manufacture of copper alloy having superior corrosion resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2378683A Division JPS59153855A (en) 1983-02-17 1983-02-17 Copper alloy with superior corrosion resistance

Publications (2)

Publication Number Publication Date
JPS6230862A true JPS6230862A (en) 1987-02-09
JPS646266B2 JPS646266B2 (en) 1989-02-02

Family

ID=15815170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16558686A Granted JPS6230862A (en) 1986-07-16 1986-07-16 Manufacture of copper alloy having superior corrosion resistance

Country Status (1)

Country Link
JP (1) JPS6230862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115363A1 (en) * 2012-02-01 2013-08-08 Toto株式会社 Brass with excellent corrosion resistance
KR20160140821A (en) 2014-03-31 2016-12-07 가부시키가이샤 구리모토 뎃코쇼 Low-lead brass alloy for plumbing member
CN111575530A (en) * 2020-05-29 2020-08-25 无锡隆达金属材料有限公司 Preparation method of copper alloy pipe resistant to high-pollution seawater corrosion

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115363A1 (en) * 2012-02-01 2013-08-08 Toto株式会社 Brass with excellent corrosion resistance
JPWO2013115363A1 (en) * 2012-02-01 2015-05-11 Toto株式会社 Brass with excellent corrosion resistance
EP2743360A4 (en) * 2012-02-01 2015-06-24 Toto Ltd Brass with excellent corrosion resistance
EP2743360B1 (en) 2012-02-01 2018-04-04 Toto Ltd. Brass with excellent corrosion resistance
US10351933B2 (en) 2012-02-01 2019-07-16 Toto Ltd. Brass with excellent corrosion resistance
KR20160140821A (en) 2014-03-31 2016-12-07 가부시키가이샤 구리모토 뎃코쇼 Low-lead brass alloy for plumbing member
CN111575530A (en) * 2020-05-29 2020-08-25 无锡隆达金属材料有限公司 Preparation method of copper alloy pipe resistant to high-pollution seawater corrosion
CN111575530B (en) * 2020-05-29 2021-12-03 江苏隆达超合金股份有限公司 Preparation method of copper alloy pipe resistant to high-pollution seawater corrosion

Also Published As

Publication number Publication date
JPS646266B2 (en) 1989-02-02

Similar Documents

Publication Publication Date Title
CN104105804B (en) High corrosion-resistant aluminium alloy brazing sheet material and the runner formation part using it
JPS6230862A (en) Manufacture of copper alloy having superior corrosion resistance
JPH03170646A (en) Manufacture of copper alloy having fine crystalline grains as well as low strength
JPH03193849A (en) Copper alloy having fine crystalline grain and low strength and its production
JPS6230861A (en) Manufacture of copper alloy having superior corrosion resistance
JPS59153854A (en) Copper alloy with superior corrosion resistance
CN115418533A (en) High strength and corrosion resistant alloy for HVAC &amp; R systems
JPS61199043A (en) Copper alloy having superior corrosion resistance and its manufacture
JP3230685B2 (en) Copper base alloy for heat exchanger
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS59153855A (en) Copper alloy with superior corrosion resistance
JPS59118841A (en) Copper alloy having excellent corrosion resistance
JPS59107051A (en) Copper alloy with superior corrosion resistance
JPS59118840A (en) Copper alloy having excellent corrosion resistance
JPS59118839A (en) Copper alloy having excellent corrosion resistance
JP3243479B2 (en) Copper base alloy for heat exchanger
JPS6139387B2 (en)
JPS59104445A (en) Copper alloy excellent in corrosion resistance
JPS59150044A (en) Copper alloy with superior corrosion resistance
JPS6082635A (en) Copper alloy having superior corrosion resistance
JPS6082630A (en) Copper alloy having superior corrosion resistance
JPS59126744A (en) Copper alloy with superior corrosion resistance
JPS59150046A (en) Copper alloy with superior corrosion resistance