JPH03193849A - Copper alloy having fine crystalline grain and low strength and its production - Google Patents

Copper alloy having fine crystalline grain and low strength and its production

Info

Publication number
JPH03193849A
JPH03193849A JP33128689A JP33128689A JPH03193849A JP H03193849 A JPH03193849 A JP H03193849A JP 33128689 A JP33128689 A JP 33128689A JP 33128689 A JP33128689 A JP 33128689A JP H03193849 A JPH03193849 A JP H03193849A
Authority
JP
Japan
Prior art keywords
alloy
weight
cold rolling
less
low strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33128689A
Other languages
Japanese (ja)
Inventor
Tamio Toe
東江 民夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP33128689A priority Critical patent/JPH03193849A/en
Publication of JPH03193849A publication Critical patent/JPH03193849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a Cu alloy having low strength and superior formability and excellent in stress corrosion cracking resistance, welding crack resistance, and solderability by regulating the crystalline grain size of a cold rolled sheet of a Cu-Zn alloy with a specific composition to a specific value or below by means of the final annealing and further carrying out cold rolling again, if necessary. CONSTITUTION:A hot rolled plate of a Cu alloy which has a composition consisting of, by weight, 3-25% Zn and the balance Cu or further containing 0.005-2.0%, in total, of one or >=2 elements among the group consisting of Pb, Fe, Sn, Al, Mn, Ni, P, As, Te, Cr, Co, Zr, V, Be, Cd, Si, B, In, Ti, Mg, Hf, and Ge is subjected to a repetition of cold rolling and annealing, by which an intermediate stock is prepared. This stock is annealed, cold-rolled at >=75% draft, and subjected to final annealing to undergo the regulation of crystalline grains to <=0.015mm, and then, cold rolling is applied, if necessary, to the above at 1-15% draft in order to improve solderability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、復水器、給水加熱器、蒸留器、冷却器、遣水
装置などの熱交換器用の材料として、特に自動車等に用
いられるラジェーターのタンク、チーブ、フィン等の材
料として最適な銅合金の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a material for heat exchangers such as condensers, feed water heaters, distillers, coolers, and water supply devices, particularly radiators used in automobiles, etc. The present invention relates to a method for producing a copper alloy that is optimal as a material for tanks, chives, fins, etc.

[従来の技術] 従来、ラジェーターに使用されている銅合金材料として
は、Cu85重量%、Z n 35重量%からなる黄銅
が知られている。又、近年耐応力腐食割れ性を向上させ
るためCu80重量%、Zn20重量%からなる丹銅も
使用されている。しかし、ラジェーターは冷却媒体と常
時接触しており、又、自動車走行中は排気ガス、塩分を
含む海岸大気更には工場排気のSO2ガス等にさらされ
ており、これら腐食環境により黄銅は応力腐食割れや脱
亜鉛腐食が起き、これが大きな問題になっている。更に
又、近年特にラジェーターチューブには従来のカシメに
よるロックシームチューブに代って、コスト低減と生産
効率の向上の面から高周波誘導溶接あるいは高周波抵抗
溶接による銅合金溶接管が採用されるようになってきた
。しかし、銅合金溶接管は、その溶接組織の特異性から
その溶接部は他の部分と比較して耐食性が大幅に劣ると
いう欠点をもっている。
[Prior Art] As a copper alloy material conventionally used for radiators, brass consisting of 85% by weight of Cu and 35% by weight of Zn is known. Furthermore, in recent years, red copper comprising 80% by weight of Cu and 20% by weight of Zn has been used to improve stress corrosion cracking resistance. However, the radiator is in constant contact with the cooling medium, and while the car is running, it is exposed to exhaust gas, coastal air containing salt, and SO2 gas from factory exhaust, and these corrosive environments cause brass to crack due to stress corrosion. and dezincification corrosion, which has become a major problem. Furthermore, in recent years, copper alloy welded tubes made by high-frequency induction welding or high-frequency resistance welding have been adopted, especially for radiator tubes, in place of the conventional lock-seam tubes that are caulked to reduce costs and improve production efficiency. It's here. However, copper alloy welded pipes have the disadvantage that the welded part has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure.

[発明が解決しようとする課題] 本発明者らは、上記の問題点について種々研究を行った
結果、結晶粒度を微細にすることが、溶接部の割れの減
少及び耐食性特に耐応力腐食割れ性の向上に有効な方法
であることが明らかになった。しかし、銅合金の結晶粒
を微細にすると、強度が向上し、それに伴ないチューブ
、フィン等への成形時の負荷や金型の摩耗の増加及び成
形性の低下等が問題になっていた。
[Problems to be Solved by the Invention] As a result of various studies on the above-mentioned problems, the present inventors have found that making the grain size finer reduces cracking in welds and improves corrosion resistance, especially stress corrosion cracking resistance. It has become clear that this is an effective method for improving However, when the crystal grains of a copper alloy are made finer, the strength is improved, but this causes problems such as increased load on tubes, fins, etc. during forming, increased wear of molds, and decreased formability.

このような状況から、本発明では結晶粒が微細でかつ結
晶粒の微細化に伴なう強度向上の起らない成形性に優れ
た材料を提供しようとするものである。
Under these circumstances, the present invention aims to provide a material with fine crystal grains and excellent formability that does not suffer from an improvement in strength due to the refinement of the crystal grains.

[課題を解決するための手段] 本発明は、Zn:3〜25重量%未満あるいは更にPb
5FeSSn、AI、Mn5Ni、P。
[Means for Solving the Problems] The present invention provides Zn: 3 to less than 25% by weight or further Pb
5FeSSn, AI, Mn5Ni, P.

Ass  Tes  Cr S Co、 2 「、 V
S Be。
Ass Tes Cr S Co, 2 ``, V
S Be.

CdS Si  、 B、  I  n S Ti、 
 Mg、  Hf。
CdS Si, B, InS Ti,
Mg, Hf.

Geよりなる群より1種又は2種以上を0.005〜2
.0重量%含み、残部Cu及び不可避的不純物からなる
合金材料を75%以上の加工度で冷間圧延後、最終焼鈍
により結晶粒度を0.015mm以下としてなることを
特徴とする結晶粒が微細でかつ低強度な銅合金並びに上
記組成の合金材料を75%以上の加工度で冷間圧延後、
最終焼鈍で結晶粒度が0.015mm以下となるように
調整した後、更に1〜15%の冷間圧延を施すことを特
徴とする製造方法である。
0.005 to 2 of one or two or more from the group consisting of Ge
.. After cold rolling an alloy material containing 0% by weight and the balance consisting of Cu and unavoidable impurities at a working degree of 75% or more, the crystal grain size is reduced to 0.015 mm or less by final annealing. After cold rolling a low-strength copper alloy and an alloy material with the above composition at a working degree of 75% or more,
This manufacturing method is characterized in that after final annealing the grain size is adjusted to 0.015 mm or less, cold rolling is further performed by 1 to 15%.

かかる本発明を構成する合金成分及び他の構成要件の限
定理由を説明する。
The reasons for limiting the alloy components and other constituent requirements constituting the present invention will be explained.

CuとZnとは本発明を構成する合金の基本材料となる
もので、加工性、機械的強度に優れていると共に、熱伝
導性にも優れている。Zn含有量を3〜25重量%未満
とする理由は、Zn含有量が3重量%未満では加工性が
悪くなり、又はんだ付は性が低下するためで、25重量
%以上では脱亜鉛腐食や応力腐食割れが起き易くなるた
めである。
Cu and Zn are the basic materials of the alloy constituting the present invention, and have excellent workability and mechanical strength, as well as excellent thermal conductivity. The reason why the Zn content is 3 to less than 25% by weight is that if the Zn content is less than 3% by weight, workability or soldering properties will deteriorate, whereas if it is more than 25% by weight, dezincification corrosion or This is because stress corrosion cracking is more likely to occur.

Pb5Fes 5nSA1% Mn、N15P%As、
 Tes Crs C0% Zr5V% Be5Cds
 S i、B、In5Ti、Mg、Hf。
Pb5Fes 5nSA1%Mn, N15P%As,
Tes Crs C0% Zr5V% Be5Cds
S i, B, In5Ti, Mg, Hf.

Geよりなる群より1種又は2種以上を0.005〜2
.0重量%含有する理由は、素材及び溶接部の耐食性を
改善するためで、0.005重量%未満では耐食性の改
善が認められず、又、2,0重量%を超えて含有しても
その効果が飽和して、加工性を劣化させるためである。
0.005 to 2 of one or two or more from the group consisting of Ge
.. The reason for containing 0% by weight is to improve the corrosion resistance of the material and welded parts; if it is less than 0.005% by weight, no improvement in corrosion resistance will be observed, and if it is contained more than 2.0% by weight, it will not improve the corrosion resistance. This is because the effect becomes saturated and the workability deteriorates.

更に、最終焼鈍前の冷間圧延の加工度を75%以上にし
た理由は、最終焼鈍後の強度を低下させ、成形性を改善
するためで、加工度が75%未満ではその効果が認めら
れないためである。
Furthermore, the reason why the working degree of cold rolling before final annealing is set to 75% or more is to reduce the strength after final annealing and improve formability, and this effect is not recognized when the working degree is less than 75%. This is because there is no

最終焼鈍により結晶粒度を0.015soi以下にする
理由は、結晶粒を小さくすることが、耐食性特に耐応力
腐食割れ性の向上に有効であること、更に高周波誘導溶
接あるいは高周波抵抗溶接によって起る溶接割れは溶融
した母材金属と接触していると粒界が脆化することが原
因であるが、結晶粒度を小さくすることによりこのよう
な現象を大幅に抑制することが可能となるためである。
The reason for reducing the grain size to 0.015 soi or less by final annealing is that reducing the grain size is effective in improving corrosion resistance, especially stress corrosion cracking resistance, and that welding caused by high-frequency induction welding or high-frequency resistance welding Cracking is caused by the embrittlement of grain boundaries when in contact with molten base metal, but this phenomenon can be significantly suppressed by reducing the grain size. .

結晶粒度がO,015mmを超えると溶接割れが発生し
易くなり、又、耐応力腐食割れ性の劣化が認められるた
めである。
This is because if the grain size exceeds 0.015 mm, weld cracking is likely to occur and deterioration of stress corrosion cracking resistance is observed.

そして、本発明において、最終焼鈍した後1〜15%の
加工度で冷間圧延を施す理由は、冷間圧延を施すことに
より、はんだ付は性を向上させるためであるが、加工度
が1%未満でははんだ付は性の向上が認められず、又、
15%を超えると機械的強度が高くなり、成形性特にラ
ジェーターチューブで加工時の成形性が劣化するためで
ある。
In the present invention, the reason why cold rolling is performed at a working degree of 1 to 15% after final annealing is that cold rolling improves soldering properties, but the working degree is 1 to 15%. If it is less than %, no improvement in soldering properties is observed, and
This is because if it exceeds 15%, the mechanical strength will increase and the moldability, especially the moldability during processing of the radiator tube, will deteriorate.

[実施例] 次に本発明の詳細な説明する。[Example] Next, the present invention will be explained in detail.

第1表に示す諸組成の合金を高周波溶解炉にて大気ある
いは不活性雰囲気中で溶解、鋳造し、熱間圧延後、冷間
圧延と焼鈍をくり返し中間板厚の素材とした。これを5
00℃で30〜60分焼鈍を行った後、第1表に示す加
工度で冷間圧延し、厚さ 0.8■の板とした。これを
更に500℃で60〜900秒熱処理し、第1表に示す
結晶粒度に調整した。又、1部の試料については更に冷
間圧延を行った。
Alloys having various compositions shown in Table 1 were melted and cast in a high-frequency melting furnace in air or an inert atmosphere, and after hot rolling, cold rolling and annealing were repeated to obtain intermediate thickness materials. This is 5
After annealing at 00° C. for 30 to 60 minutes, the samples were cold rolled at the working degree shown in Table 1 to form a plate with a thickness of 0.8 cm. This was further heat treated at 500°C for 60 to 900 seconds to adjust the crystal grain size shown in Table 1. Further, some of the samples were further cold rolled.

このような試料の評価として素材の強度、エリクセン値
、応力腐食割れ試験結果、溶接割れ発生に対する耐性及
びはんだ付は性を第1表に示す。
As an evaluation of such samples, Table 1 shows the strength of the material, Erichsen value, stress corrosion cracking test results, resistance to weld cracking, and solderability.

なお、応力腐食割れ試験としては、JISコニカルカッ
プ試験工具の17型円筒平底ポンチを用い、絞り比2.
0のカップを作り、これを水酸化ナトリウムと塩化アン
モニウムで作ったpH1Oのアンモニア雰囲気中に曝露
して割れ開始までの時間を測定した。
The stress corrosion cracking test was conducted using a JIS conical cup test tool type 17 cylindrical flat bottom punch with a drawing ratio of 2.
0 cup was made and exposed to an ammonia atmosphere of pH 1O made from sodium hydroxide and ammonium chloride, and the time until cracking started was measured.

溶接割れが発生することに対する耐性についての試験は
第1表に示される合金を第1図に示されるようにバイブ
1状に加工しく内径a:20鳳1、外径b : 21.
611%長さ: loms) 、これを同一組成の融点
+50℃に保持された溶融金属に3秒間浸漬し、その後
取り出して保持炉中で付着している金属が溶融している
状態で第2図に示すように、バイブlを加熱保持炉4内
で支持台3にて保持し、重さ200gvの自由落下体を
落下距離c : 5hvで落下させて衝撃を加えた。そ
の時変形したバイブ断面を顕微鏡によって観察し、粒界
破壊の有無を確認し、これをもって溶融割れに対する耐
性を評価した。
A test for resistance to weld cracking was carried out by processing the alloys shown in Table 1 into the shape of a vibrator 1 as shown in Fig. 1, inner diameter a: 20 mm, outer diameter b: 21 mm.
611% length: loms), this was immersed for 3 seconds in molten metal of the same composition maintained at +50°C, melting point, and then taken out and placed in a holding furnace with the attached metal melted as shown in Figure 2. As shown in Figure 2, the vibrator I was held on the support stand 3 in the heating and holding furnace 4, and a free-falling object weighing 200 gv was dropped at a falling distance c: 5 hv to apply an impact. The cross section of the vibrator deformed at that time was observed under a microscope to confirm the presence or absence of intergranular fracture, and this was used to evaluate the resistance to melt cracking.

又、はんだ付は性は直径8011%高さ601111の
円筒形のるつぼに5n20%−Pb80%からなるはん
だを230℃に加熱して溶湯を作り、その中に降下速度
25a+II/seeでサンプル(表面を清浄にした幅
1011%長さ50mmの形状)を浸漬したときはんだ
浴からサンプルが受ける浮力とはんだ浴に引き込まれる
力が平衡に達するまでの時間を測定し、評価した。
For soldering, heat the solder consisting of 5N20%-Pb80% to 230℃ in a cylindrical crucible with a diameter of 8011% and a height of 601111 to create a molten metal, and place the sample (surface When a cleaned sample (with a width of 1011% and a length of 50 mm) was immersed, the time required for the buoyant force exerted on the sample from the solder bath and the force drawn into the solder bath to reach equilibrium was measured and evaluated.

第1表から明らかなように、本発明の合金はすべての特
性において満足すべき結果を得たが、比較合金No、1
5〜20及びN o、22はそれぞれ本発明合金No、
1.2.4.5.8,11.13と合金組成、結晶粒度
は同じだが、最終焼鈍前加工度が低いため、本発明合金
に比べ引張強さが高く、エリクセン値が低くなっている
。又、比較合金No、23〜27はそれぞれ本発明合金
N o、1.4.B、Li2と合金組成、最終焼鈍前加
工度は同じだが、結晶粒度が大きいため、本発明合金に
比べ耐応力腐食割れ性が悪く、又、溶接割れ性の試験に
おいて粒界破壊をおこしており、耐溶接割れ性が悪い。
As is clear from Table 1, the alloy of the present invention obtained satisfactory results in all properties, but comparative alloy No. 1
5 to 20 and No, 22 are the invention alloy No.
The alloy composition and grain size are the same as 1.2.4.5.8 and 11.13, but because the degree of work before final annealing is lower, the tensile strength is higher and the Erichsen value is lower than the invention alloy. . Comparative alloy Nos. 23 to 27 are the invention alloys No. 1.4, respectively. Although the alloy composition and workability before final annealing are the same as B and Li2, the grain size is larger, so the stress corrosion cracking resistance is poorer than that of the invention alloy, and intergranular fracture occurred in the weld crackability test. , poor weld cracking resistance.

又、比較合金No、28はタフピッチ銅であるがZn含
有量が少ないため、成形性とはんだ付は性が悪い。又、
比較合金N o、29はZn含有量が多すぎるため、耐
応力腐食割れ性が悪い。更に、本発明合金No、3.1
0と比較合金N o、21は本発明合金No、2.9と
比較合金No、20にスキンパスの冷間圧延を行うこと
によりはんだ付は性が改善されている。
Comparative alloy No. 28 is tough pitch copper, but it has a low Zn content, so it has poor formability and soldering properties. or,
Comparative alloy No. 29 has too much Zn content, so it has poor stress corrosion cracking resistance. Furthermore, the present invention alloy No. 3.1
0 and Comparative Alloy No. 0, 21 is Invention Alloy No. 2.9 and Comparative Alloy No. 20 are subjected to skin pass cold rolling to improve solderability.

[発明の効果] 以上詳述したように、本発明は低強度で優れた成形性を
有し、かつ耐応力腐食割れ性、耐溶接割れ性及びはんだ
付は性を有し、熱交換器特にラジェーターのタンク、プ
レート、チューブ用銅合金として最適な材料を提供する
ことができる。
[Effects of the Invention] As detailed above, the present invention has low strength and excellent formability, and also has stress corrosion cracking resistance, welding cracking resistance, and soldering properties, and is suitable for heat exchangers, especially heat exchangers. We can provide the best materials for copper alloys for radiator tanks, plates, and tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐溶接割れ性の試験に用いる厚さ0.8■の合
金パイプの断面図、第2図は耐溶接割れ性の試験装置の
概略説明図である。 1・・・合金バイブ、2・・・自由落下体、3・・・支
持台、4・・・加熱保持炉。
FIG. 1 is a cross-sectional view of an alloy pipe with a thickness of 0.8 cm used in the weld cracking resistance test, and FIG. 2 is a schematic explanatory diagram of the weld cracking resistance testing apparatus. DESCRIPTION OF SYMBOLS 1... Alloy vibe, 2... Free falling body, 3... Support stand, 4... Heating and holding furnace.

Claims (4)

【特許請求の範囲】[Claims] (1)Zn:3〜25重量%未満、残部Cu及び不可避
的不純物からなる合金材料を75%以上の加工度で冷間
圧延後、最終焼鈍により結晶粒度を0.015mm以下
としてなることを特徴とする結晶粒が微細でかつ低強度
な銅合金。
(1) An alloy material consisting of Zn: 3 to less than 25% by weight, the remainder Cu and unavoidable impurities is cold rolled at a workability of 75% or more, and then final annealed to a grain size of 0.015mm or less. A copper alloy with fine grains and low strength.
(2)Zn:3〜25重量%未満及びPb、Fe、Sn
、Al、Mn、Ni、P、As、Te、Cr、Co、Z
r、V、Be、Cd、Si、B、In、Ti、Mg、H
f、Geよりなる群より1種又は2種以上を0.005
〜2.0重量%含み、残部Cu及び不可避的不純物から
なる合金材料を75%以上の加工度で冷間圧延後、最終
焼鈍により結晶粒度を0.015mm以下としてなるこ
とを特徴とする結晶粒が微細でかつ低強度な銅合金。
(2) Zn: 3 to less than 25% by weight and Pb, Fe, Sn
, Al, Mn, Ni, P, As, Te, Cr, Co, Z
r, V, Be, Cd, Si, B, In, Ti, Mg, H
f, one or two or more from the group consisting of Ge at 0.005
- 2.0% by weight of an alloy material, the balance of which is Cu and unavoidable impurities, is cold-rolled at a working degree of 75% or more, and then final annealed to have a crystal grain size of 0.015 mm or less. A copper alloy with fine grains and low strength.
(3)Zn:3〜25重量%未満、残部Cu及び不可避
的不純物からなる合金材料を75%以上の加工度で冷間
圧延後、最終焼鈍で結晶粒度が0.015mm以下とな
るように調整した後、更に1〜15%の冷間圧延を施す
ことを特徴とする結晶粒が微細でかつ低強度な銅合金の
製造方法。
(3) After cold rolling an alloy material consisting of Zn: 3 to less than 25% by weight, balance Cu and unavoidable impurities at a workability of 75% or more, the grain size is adjusted to 0.015mm or less by final annealing. 1. A method for producing a copper alloy with fine grains and low strength, which comprises further cold rolling by 1 to 15%.
(4)Zn:3〜25重量%未満及びPb、Fe、Sn
、Al、Mn、Ni、P、As、Te、Cr、Co、Z
r、V、Be、Cd、Si、B、In、Ti、Mg、H
f、Geよりなる群より1種又は2種以上を0.005
〜2.0重量%含み、残部Cu及び不可避的不純物から
なる合金材料を75%以上の加工度で冷間圧延後、最終
焼鈍で結晶粒度が0.015mm以下となるように調整
した後、更に1〜15%の冷間圧延をすることを特徴と
する結晶粒が微細でかつ低強度の銅合金の製造方法。
(4) Zn: 3 to less than 25% by weight and Pb, Fe, Sn
, Al, Mn, Ni, P, As, Te, Cr, Co, Z
r, V, Be, Cd, Si, B, In, Ti, Mg, H
f, one or two or more from the group consisting of Ge at 0.005
After cold rolling an alloy material containing ~2.0% by weight and the balance consisting of Cu and unavoidable impurities at a working degree of 75% or more, and after adjusting the grain size to 0.015 mm or less by final annealing, further A method for producing a copper alloy with fine grains and low strength, which comprises cold rolling at a rate of 1 to 15%.
JP33128689A 1989-12-22 1989-12-22 Copper alloy having fine crystalline grain and low strength and its production Pending JPH03193849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33128689A JPH03193849A (en) 1989-12-22 1989-12-22 Copper alloy having fine crystalline grain and low strength and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33128689A JPH03193849A (en) 1989-12-22 1989-12-22 Copper alloy having fine crystalline grain and low strength and its production

Publications (1)

Publication Number Publication Date
JPH03193849A true JPH03193849A (en) 1991-08-23

Family

ID=18241990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33128689A Pending JPH03193849A (en) 1989-12-22 1989-12-22 Copper alloy having fine crystalline grain and low strength and its production

Country Status (1)

Country Link
JP (1) JPH03193849A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048068A1 (en) * 1997-04-18 1998-10-29 Olin Corporation Grain refined tin brass
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
US5985055A (en) * 1996-11-07 1999-11-16 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
KR100232060B1 (en) * 1997-06-19 1999-12-01 박희선 The manufacturing method of cu-ge alloy with excellence corrosion resistance
US6132528A (en) * 1997-04-18 2000-10-17 Olin Corporation Iron modified tin brass
US20100226815A1 (en) * 2009-03-09 2010-09-09 Lazarus Norman M Lead-Free Brass Alloy
US8220697B2 (en) 2005-01-18 2012-07-17 Siemens Energy, Inc. Weldability of alloys with directionally-solidified grain structure
DE10065735B4 (en) * 2000-04-14 2012-08-16 Dowa Mining Co., Ltd. A method of making a copper alloy for a connector and copper alloy obtainable by the method
EP3272888A1 (en) * 2016-07-21 2018-01-24 Wieland-Werke AG Material made from a copper-zinc alloy, method for producing such a material and sliding member made of such a material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985055A (en) * 1996-11-07 1999-11-16 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
WO1998048068A1 (en) * 1997-04-18 1998-10-29 Olin Corporation Grain refined tin brass
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
US6132528A (en) * 1997-04-18 2000-10-17 Olin Corporation Iron modified tin brass
KR100232060B1 (en) * 1997-06-19 1999-12-01 박희선 The manufacturing method of cu-ge alloy with excellence corrosion resistance
DE10065735B4 (en) * 2000-04-14 2012-08-16 Dowa Mining Co., Ltd. A method of making a copper alloy for a connector and copper alloy obtainable by the method
US8220697B2 (en) 2005-01-18 2012-07-17 Siemens Energy, Inc. Weldability of alloys with directionally-solidified grain structure
US20100226815A1 (en) * 2009-03-09 2010-09-09 Lazarus Norman M Lead-Free Brass Alloy
JP2012519781A (en) * 2009-03-09 2012-08-30 ナショナル ブロンズ アンド メタルズ インコーポレイテッド Lead-free brass alloy
EP3272888A1 (en) * 2016-07-21 2018-01-24 Wieland-Werke AG Material made from a copper-zinc alloy, method for producing such a material and sliding member made of such a material
DE102016008928A1 (en) * 2016-07-21 2018-01-25 Wieland-Werke Ag Material of a copper-zinc alloy, process for producing such a material and sliding element made of such a material

Similar Documents

Publication Publication Date Title
TW486523B (en) Aluminum alloy fin stock and its preparation
NO336134B1 (en) Process for producing AlMn tapes or thin sheets.
EP1250468B8 (en) Process of producing aluminum fin alloy
JPH03193849A (en) Copper alloy having fine crystalline grain and low strength and its production
JPH03170646A (en) Manufacture of copper alloy having fine crystalline grains as well as low strength
CN115927923A (en) Single-layer brazing aluminum alloy material and manufacturing method thereof
JPH0368732A (en) Manufacture of copper alloy and copper alloy material for radiator plate
JPH0765131B2 (en) Heat-resistant copper alloy for heat exchangers with excellent hard brazing properties
JP3230685B2 (en) Copper base alloy for heat exchanger
JP3713976B2 (en) Aluminum alloy brazing material and aluminum alloy brazing sheet
JP3243479B2 (en) Copper base alloy for heat exchanger
JPS6230861A (en) Manufacture of copper alloy having superior corrosion resistance
EP0826785B1 (en) Method for the manufacture of heat exchangers
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPH11343532A (en) Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS6082635A (en) Copper alloy having superior corrosion resistance
JPS6082632A (en) Copper alloy having superior corrosion resistance
JPS59153854A (en) Copper alloy with superior corrosion resistance
JPS59118841A (en) Copper alloy having excellent corrosion resistance
JPS6082630A (en) Copper alloy having superior corrosion resistance
JPS6230862A (en) Manufacture of copper alloy having superior corrosion resistance
JPS59118839A (en) Copper alloy having excellent corrosion resistance
JPS6082634A (en) Copper alloy having superior corrosion resistance
JPS59107051A (en) Copper alloy with superior corrosion resistance