JPS6230861A - Manufacture of copper alloy having superior corrosion resistance - Google Patents

Manufacture of copper alloy having superior corrosion resistance

Info

Publication number
JPS6230861A
JPS6230861A JP16558586A JP16558586A JPS6230861A JP S6230861 A JPS6230861 A JP S6230861A JP 16558586 A JP16558586 A JP 16558586A JP 16558586 A JP16558586 A JP 16558586A JP S6230861 A JPS6230861 A JP S6230861A
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy
final annealing
copper alloy
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16558586A
Other languages
Japanese (ja)
Other versions
JPS646265B2 (en
Inventor
Susumu Kawauchi
川内 進
Masahiro Tsuji
正博 辻
Kiyoaki Nishikawa
西川 清明
Junji Miyake
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP16558586A priority Critical patent/JPS6230861A/en
Publication of JPS6230861A publication Critical patent/JPS6230861A/en
Publication of JPS646265B2 publication Critical patent/JPS646265B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve the corrosion and weld crack resistances of a Cu alloy by restricting the contents of Zn, P, Sn, Al and Si and carrying out cold rolling again at a specified draft after final annealing. CONSTITUTION:An alloy consisting of, by weight, 25-40% Zn, 0.005-0.070% P, 0.05-1.0% Sn, 0.05-1.0% Al, 0.005-1.0% Si and the balance Cu with inevitable impurities is cold rolled again at 3-20% draft after final annealing. By the final annealing, the grain size of the alloy is regulated to <=0.015mm as required. By this method, a Cu alloy having low weld crack sensitivity as well as superior corrosion resistance can be obtd. The Cu alloy can be utilized as a material for a heat exchanger, especially for a radiator.

Description

【発明の詳細な説明】 本発明は、優れた耐食性を有する銅合金の製造方法であ
り、復水器、給水加熱器、蒸留器、冷却器、清水装置な
どの熱交換器用の材料として、特に自動車等に用いられ
るラジェーターのタンク(容器)、チューブ(管)、フ
ィン等の材料として最適な銅合金の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for producing a copper alloy having excellent corrosion resistance, and is particularly suitable as a material for heat exchangers such as condensers, feed water heaters, distillers, coolers, and water purifiers. The present invention relates to a method for producing a copper alloy that is optimal as a material for radiator tanks, tubes, fins, etc. used in automobiles and the like.

黄銅は、一般に機械的性質、加工性、熱伝導性が良好で
あり、また価格の点でも比較的安価なため、広範囲で好
んで使用されている。熱交換器特に、自動車用ラジェー
ターにも多く使用されてはいるが、特定の腐食環境では
黄銅は脱亜↑G腐食を起こし、使用上致命的な欠陥の一
つとされている。
Brass generally has good mechanical properties, workability, and thermal conductivity, and is also relatively inexpensive, so it is widely used. Brass is widely used in heat exchangers, particularly automobile radiators, but in certain corrosive environments, brass undergoes denitrification ↑G corrosion, which is considered to be one of the fatal defects in use.

自動車用ラジェーターは、エンジンの温度−ヒ昇を抑え
るためのものであり、エンジンとラジェーターの間に液
体の冷却媒体を循環させて、エンジンで温度と昇した液
体をうジエーターで放熱させ、エンジンの冷却を行なっ
ている。従ってラジェーターは常に冷却媒体と接触して
おり、この冷却媒体により内面から腐食が発生する問題
がある。また、自動車の走行中には、排気ガス、]ニ業
地帯付近でのS○2カス、 、毎岸地帯での塩分などに
より外面からも腐食される。
Automotive radiators are used to suppress the rise in engine temperature.A liquid cooling medium is circulated between the engine and the radiator, and the liquid that has risen in temperature is dissipated by the radiator, thereby increasing the temperature of the engine. Cooling is in progress. Therefore, the radiator is always in contact with the cooling medium, and there is a problem in that the cooling medium causes corrosion from the inner surface. In addition, while a car is running, it is corroded from the outside by exhaust gas, S○2 scum near industrial areas, and salt in coastal areas.

従来ラジェーターに使用されている月科としては、銅6
5wt%、亜鉛35wし%からなる黄銅が用いられてい
るが、公害などで腐食環境が悪化しているため、従来の
黄銅を用いたラジェーターの寿命が次第に短かくなって
きている。
Copper 6 is traditionally used in radiators.
Brass consisting of 5wt% zinc and 35wt% zinc is used, but as the corrosive environment is worsening due to pollution, the lifespan of conventional radiators using brass is gradually becoming shorter.

さらにまた近年特に、ラジェーターチューブ(管)には
、従来のカシメによるロックシームチューブにかわって
高周波抵抗溶接または高周波誘導溶接による溶接チュー
ブが採用されるようになってきた。これは溶接チューブ
がロックシームチューブに比べてコス]・及び生産効率
の面で有f11なためであるが、溶接チューブは、その
溶接組織の特異性からその溶接部は他の部分と比較して
耐食性が大幅に劣化するという欠点を持っており、使用
ヒの大きな制約となる。さらに、高周波誘導溶接または
高周波抵抗溶接を用いて溶接チューブを製造する際、そ
の溶接方法の特徴として、溶接割れを発生し易いという
製造上の欠点も合わせてもっている。
Furthermore, particularly in recent years, welded tubes by high frequency resistance welding or high frequency induction welding have been used for radiator tubes (pipe) instead of conventional lock seam tubes by caulking. This is because welded tubes are cheaper than lock-seamed tubes in terms of cost and production efficiency, but due to the uniqueness of the weld structure, the welded part of welded tubes is less expensive than other parts. It has the disadvantage of significantly deteriorating corrosion resistance, which is a major restriction on its use. Furthermore, when a welded tube is manufactured using high-frequency induction welding or high-frequency resistance welding, the welding method also has the drawback of being susceptible to weld cracking.

二のような状況から熱交換器特にラジェーターのタンク
(容器)、チューブ(管)、フィン等に耐食性の向−ヒ
が要求さ、b乙と同時に、溶接部位においでは、耐食性
と同時に溶接割れ感受性の低い材料の開発が望まれてい
る。
Due to situations like 2, corrosion resistance is required for heat exchangers, especially radiator tanks, tubes, and fins. It is desired to develop materials with low

本発明は、かかる点に鑑み従来の黄銅を改良し、熱交換
器用特にラジェーター用材料として優れた耐食性を有す
る銅合金の製造方法を提供するものである。
In view of the above, the present invention improves conventional brass and provides a method for producing a copper alloy having excellent corrosion resistance as a material for heat exchangers, particularly radiators.

本発明は、亜鉛25−40 w t%、りん0.005
−0.070wt%、錫0.05−1.OwL%、アル
ミニウム0.05〜1.0wt%、けい素0.005〜
1.0wt%を含み、残部銅及び不可避的な不純物から
なる合金を最終焼鈍後さらに3〜20%の加工度で冷間
圧延を施すことを特徴とする耐食性に優れた銅合金の製
造方法並びに亜鉛25〜40wt%、りん0.005〜
0゜070wt%、Do、05−1.0wt%、アルミ
ニウム0.05〜1.0wt%、けい素0oO05〜]
2.0wt%を含み、残部銅及び不可避的な不純物から
なる合金を最終焼鈍で結晶粒度が0.015nn以下と
なるように調整した後、さらに23〜20%の加工度で
冷間圧延を施すことを特徴とするi1食性に優れた銅合
金の製造方法に関する。
The present invention contains 25-40 wt% zinc and 0.005% phosphorus.
-0.070wt%, tin 0.05-1. OwL%, aluminum 0.05~1.0wt%, silicon 0.005~
A method for producing a copper alloy with excellent corrosion resistance, which is characterized in that an alloy containing 1.0 wt% and the balance consisting of copper and unavoidable impurities is further cold rolled at a workability of 3 to 20% after final annealing, and Zinc 25~40wt%, phosphorus 0.005~
0°070wt%, Do, 05-1.0wt%, aluminum 0.05-1.0wt%, silicon 0oO05~]
After adjusting the alloy containing 2.0 wt% and the balance copper and unavoidable impurities so that the grain size is 0.015 nn or less by final annealing, it is further cold rolled at a working ratio of 23 to 20%. The present invention relates to a method for producing a copper alloy having excellent edibility.

次に本発明を構成する合金成分及び内容の限定理由を説
明する。銅と亜鉛は9本発明を構成する合金の基本材料
となるもので5機械的性質、加工性、熱伝導性に優れて
いる。亜鉛含有量を25〜40wt%とする理由は、亜
鉛含有量が25wt%未満では加工性が悪くなること及
び40wt%を越えると銅−亜鉛合金におけるβ相の析
出が顕著にみられ、耐食性及び冷間加工性が悪くなるた
めである。
Next, the reasons for limiting the alloy components and contents constituting the present invention will be explained. Copper and zinc are the basic materials of the alloy constituting the present invention, and have excellent mechanical properties, workability, and thermal conductivity. The reason why the zinc content is set to 25 to 40 wt% is that if the zinc content is less than 25 wt%, workability will deteriorate, and if it exceeds 40 wt%, precipitation of β phase in the copper-zinc alloy will be noticeable, resulting in poor corrosion resistance and This is because cold workability deteriorates.

りん含有量を0.0.05〜0.070wt%とする理
由は、りん含有量が0.005wt%未l)力では耐食
性の改善がみられず、逆にりんの含有量が0.070w
t%を越えると耐食性は改善されるが1粒界層食の徴候
がみられるためである。錫含有量を0.05〜1.0w
t%とする理由は、錫含有量が0.05wt%未満では
、Σ・を食性特に溶接した場合、溶接部の耐食性の改清
か認められず、また1、0wt%を越えるとその効果が
飽和するためである。アルミニウム含有量を0.05〜
1.0wt%とする理由は、アルミニウム含有量が0.
05wt%未満では、耐食性特に溶接した場合、溶接部
の耐食性の改善が認められず、また1、0wt%を越え
るとその効果が飽和するためである。けい素の含有量を
0.005〜1.0wt%とする理由は、けい素含有量
が0.005wt%未満では、耐食性特に溶接した場合
、溶接部の耐食性の改善が認められず、また1、0wt
%を越えるとその効果が飽和すると共に、逆に内面から
の腐食に対する耐食性が劣化するためである。
The reason why the phosphorus content is set to 0.0.05 to 0.070wt% is that no improvement in corrosion resistance is seen when the phosphorus content is 0.005wt%, and conversely, when the phosphorus content is 0.070w
This is because when the content exceeds t%, corrosion resistance is improved, but signs of single-grain boundary layer corrosion are observed. Tin content 0.05~1.0w
The reason why it is set as t% is that if the tin content is less than 0.05wt%, the corrosion resistance of the welded part will not be improved, especially when welded, and if the tin content exceeds 1.0wt%, the effect will be reduced. This is because it becomes saturated. Aluminum content from 0.05
The reason for setting it to 1.0 wt% is that the aluminum content is 0.0 wt%.
If the amount is less than 0.05 wt%, no improvement in corrosion resistance, particularly in the corrosion resistance of the welded part when welded, will be observed, and if it exceeds 1.0 wt%, the effect will be saturated. The reason why the silicon content is set to 0.005 to 1.0 wt% is that if the silicon content is less than 0.005 wt%, no improvement in corrosion resistance, especially of the welded part when welded, is observed; ,0wt
%, the effect becomes saturated and, conversely, the corrosion resistance against corrosion from the inner surface deteriorates.

このようにりんを添加することにより素材に耐食性を付
加し、錫、アルミニウム、けい素を添加することにより
素材及び溶接した場合、溶接部の耐食性を向上させるも
のである。
By adding phosphorus in this way, corrosion resistance is added to the material, and by adding tin, aluminum, and silicon, the corrosion resistance of the material and the welded part is improved when welded.

さらに結晶粒度をQ、Q15Iff11以下に限定した
理由について以下に述へる。高周波誘導溶接あるいは高
周波抵抗溶接に、よって起こる溶接割れの原因について
調査した結果、本発明者らは溶融した母材全屈と接触し
ていると粒界が脆化して軽い衝撃を受けた場合に溶接割
れが発生することを知見した。そこでこのような現象に
ついて調査を行なった結果、結晶粒度の影響が大きく、
結、W言′q度を小さくすることにより、このような現
象を大幅に抑制することができることを知見した。さら
に本発明者らは耐食性に及ぼす結晶粒度の影響について
も調査した結果、耐食性特に耐脱亜鉛腐食性は、結晶粒
度の影響を受け、結晶粒度を小さくすることにより耐食
性を向上させることができることを知見した。
Furthermore, the reason why the crystal grain size is limited to Q, Q15Iff11 or less will be described below. As a result of investigating the cause of weld cracking caused by high-frequency induction welding or high-frequency resistance welding, the present inventors found that when contacting with the molten base material, the grain boundaries become brittle and when subjected to a light impact. It was discovered that weld cracking occurs. Therefore, as a result of investigating this phenomenon, it was found that the influence of crystal grain size is large.
In conclusion, it has been found that such a phenomenon can be significantly suppressed by reducing the W degree. Furthermore, the present inventors also investigated the influence of grain size on corrosion resistance, and found that corrosion resistance, particularly dezincification corrosion resistance, is affected by grain size, and that corrosion resistance can be improved by reducing grain size. I found out.

結晶粒度をO,015nn以下に限定した理由は、結晶
粒度が0.015−を越えると溶接割れが発生し易くな
り、また耐食性の劣化が認められるためである。
The reason why the crystal grain size is limited to 0.015 nn or less is that if the crystal grain size exceeds 0.015 nm, welding cracks are likely to occur and deterioration of corrosion resistance is observed.

そして本発明において最終焼鈍した後;3〜20′冷の
加工度で冷間圧延を施こす理由は、冷間圧延を施こすこ
とにより、はんだ付は性を向」−させろためであるが、
加−L度が3%未満では、はんだ付は性の向上が認めら
れず、また、20゛Zを□域えると機械的強度が高くな
り成形性特にラジェーターチューブ加工時の成形性が劣
化するためである。
In the present invention, after final annealing, the reason why cold rolling is performed at a working degree of 3 to 20' is to improve soldering properties by cold rolling.
If the degree of addition L is less than 3%, no improvement in soldering properties will be observed, and if it exceeds 20゛Z□, the mechanical strength will increase and the formability, especially when processing the radiator tube, will deteriorate. It's for a reason.

このように本発明の製造方法によって1!)られる合金
は、良好な耐食性及び耐溶接割れ性を示すと共に、はん
だ付は性も良好な合金であるためとξへ交換器用、特に
ラジェーター用銅合金として適した材料である。
In this way, the manufacturing method of the present invention yields 1! ) is a material suitable as a copper alloy for exchangers, especially radiators, because it shows good corrosion resistance and weld cracking resistance, and also has good solderability.

次に実施例について説明する。Next, an example will be described.

実施例 第1−表に示す譜組成の合金を溶製り、700’Cで熱
間圧延を行ない厚さ8膿の板とし、これを冷間圧延で厚
さ3nnとした。これに500℃X1hrの焼鈍を行な
った後、@終冷間圧延でII、rさ1皿の板とした。
Example 1 An alloy having the composition shown in Table 1 was melted and hot rolled at 700'C to form a plate with a thickness of 8mm, which was then cold rolled to a thickness of 3nn. This was annealed at 500° C. for 1 hr, and then final cold rolled into a plate with II and r dimensions.

これをさらに350°C−600℃xlhrの各種温度
で熱処理し、第2表に示す結晶粒度に調整した。耐食性
試験に供する溶接部材は第2表に示された結晶粒度をも
つ1mm厚さの諸組成の合金を突き合せTIG溶接する
ことにより作製した。耐食性試験はIQの蒸留水に 炭酸水素ナトリウA    1.3g/Q硫酸ナトリウ
ム  1.5g/Q 塩化ナトリウム  1.6g/(1 を各々溶かした液を液温88℃に保持し、毎分100m
Qの空気を吹き込み、この液の中に500時間浸漬した
。その時発生した最大脱亜鉛腐食深さを溶接部及び母材
部について測定し、これをもって耐食性を評価した。そ
の結果を第3表に示した。
This was further heat treated at various temperatures from 350°C to 600°C x lhr to adjust the crystal grain size shown in Table 2. The welded parts to be subjected to the corrosion resistance test were fabricated by butt TIG welding 1 mm thick alloys of various compositions having the grain sizes shown in Table 2. Corrosion resistance test was carried out by dissolving 1.3 g of sodium bicarbonate A, 1.5 g of Q sodium sulfate, 1.6 g of sodium chloride (1) in IQ distilled water, maintaining the liquid temperature at 88°C, and heating at 100 m/min.
Q air was blown into the sample, and the sample was immersed in this solution for 500 hours. The maximum dezincification corrosion depth that occurred at that time was measured for the welded part and the base metal part, and the corrosion resistance was evaluated based on this. The results are shown in Table 3.

溶融した母材全屈と接触した場合に粒界が脆化して溶接
割れが発生することに対する耐性についての試験は第2
表に示、される結晶粒度をもつ諸組成の合金を第1図に
示されるようにパイプ状に加工し、これを同一組成の融
点+50℃に保持された溶融金属に3秒間浸漬し、その
後取り出して保持炉中で付着している金属が溶融してい
る状態で第2図のように衝撃を加えた。その時変形した
パイプ断面を顕微鏡によって観察し、粒界破壊の有無を
確認し、これをもって溶接割れに対する耐性を評価した
。その結果を第4表に示した。
The second test was for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with the molten base material.
Alloys of various compositions with the grain sizes shown in the table are processed into a pipe shape as shown in Figure 1, and this is immersed in molten metal of the same composition maintained at +50°C, melting point, for 3 seconds, and then It was taken out and placed in a holding furnace while the metal adhering to it was molten and an impact was applied as shown in Figure 2. The cross section of the deformed pipe was then observed under a microscope to confirm the presence or absence of intergranular fracture, and this was used to evaluate resistance to weld cracking. The results are shown in Table 4.

さらに第2表に示された結晶粒度をもつ1mP′!。Furthermore, 1 mP' with the grain size shown in Table 2! .

さの合金を第5表に示す加工度で冷間圧延を加えた後、
はんだ付は性試験に供した。はんだ付は性試験は直径8
0mm、深さ60nn+の円筒形ルツボにSn20wt
%−Pb80wt%からなるはんだを320 ℃に加熱
して溶湯をつくり、その中に降下速度25nn/see
でサンプル(表面を清浄にした幅]−〇m、長さ50叫
の形状)を浸漬した時はんだ浴からサンプルが受ける)
を力とはんだ浴に引き込まれる力とが平衡に達するまで
の時間をa1g定し、これをもってはんだ付は性を評価
した。その結果を第6表に示した。
After cold rolling the alloy at the working degree shown in Table 5,
The soldering was subjected to a sex test. For soldering, the diameter is 8.
0mm, depth 60nn+ cylindrical crucible with Sn20wt
%-Pb 80 wt% was heated to 320 °C to make a molten metal, and a descending rate of 25 nn/see was added to the melt.
(When the sample (width with clean surface - 〇m, length 50mm) is immersed in the solder bath)
The time required for the force and the force drawn into the solder bath to reach equilibrium was determined as a1g, and the soldering properties were evaluated using this value. The results are shown in Table 6.

第3表、第4表、第6表かられかるように本発明によっ
て得られる合金は脱亜鉛腐食に対して素材及び溶接した
場合、溶接部においてfグれた耐食性を示すとともに耐
溶接割れ性及びはんだ付は性も良好であることが判明し
た。
As can be seen from Tables 3, 4, and 6, the alloy obtained by the present invention exhibits excellent corrosion resistance in the welded part when used as a raw material and welded against dezincification corrosion, and has good resistance to weld cracking. It was also found that soldering properties were good.

すなわち比較例(試料番号1〜10)では最大脱亜tイ
)腐食深さが母材で168μ〜489μ、溶接部で26
1μ〜782μに達するのに対し本発明合金(試料番号
11〜23)は母材で最低値26μ〜最高値103μ、
溶接部で最低値58μ〜最高値197μで耐脱亜鉛腐食
性に優れていることがわかる。そして本発明を構成する
合金の中でも結晶粒度がO’、015nn以下の合金は
より耐脱亜鉛腐食性に優れている。
That is, in the comparative examples (sample numbers 1 to 10), the maximum corrosion depth was 168μ to 489μ in the base metal and 26μ in the welded part.
1μ to 782μ, whereas the alloys of the present invention (sample numbers 11 to 23) have a minimum value of 26μ to a maximum value of 103μ,
It can be seen that the welded part has excellent dezincification corrosion resistance with a minimum value of 58μ to a maximum value of 197μ. Among the alloys constituting the present invention, alloys with a crystal grain size of O', 015 nn or less have better dezincification corrosion resistance.

また本発明を構成する合金は上記のように耐脱亜鉛腐食
性に優れているが、さらに結晶粒度が0、○15nn以
下であるもの(試料番号12.14.16.18.20
)は第2図に示される溶接割れ性の試験において単に延
性変形するのみで割れの発生がなく耐溶接割れ性が改善
される。逆に結晶粒度が0.015me+を越えるもの
については粒界破壊を起こすので好ましくない。
In addition, although the alloy constituting the present invention has excellent dezincification corrosion resistance as described above, it also has a crystal grain size of 0, 15 nn or less (sample number 12.14.16.18.20
) undergoes only ductile deformation in the weld cracking test shown in FIG. 2, with no cracking occurring, and the weld cracking resistance is improved. On the other hand, a crystal grain size exceeding 0.015me+ is not preferable because it causes grain boundary fracture.

そして本発明の加工度3〜20%の冷間圧延を施したも
の(試料番号11〜19)は同冷間圧延を施していない
ものく試料番号20〜23)のはんだ付は性の評価(は
んだ浴からサンプルが受ける浮力とはんだ浴に引き込ま
れる力とが平禅iに1汐するまでの時間)において2.
13秒〜2.35秒と比較的長時間かかるのに比べてよ
り短時間に平明に達しはんだ付は性に優れていることが
わかる。
In addition, the soldering properties of those subjected to cold rolling with a workability of 3 to 20% according to the present invention (sample numbers 11 to 19) and those that were not subjected to the same cold rolling (sample numbers 20 to 23) were evaluated ( 2. The time it takes for the buoyant force that the sample receives from the solder bath and the force that is drawn into the solder bath to become equal to 1.
It can be seen that soldering is excellent in soldering properties as it reaches a clear state in a shorter time than it takes a relatively long time of 13 seconds to 2.35 seconds.

以上本発明の製造方法によって得られる合金は熱交換器
用、特にラジェーター用として極めて優れた特性を有す
るものである。
The alloy obtained by the manufacturing method of the present invention has extremely excellent properties for use in heat exchangers, especially radiators.

以下余白 第  1  表 第  2  表 第   3   表 第  5  表 第  4   表 第  6  表Below margin Table 1 Table 2 Table 3 Table 5 Table 4 Table 6

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐溶接割れけの試験に用いる厚さ1mの合金パ
イプの断面図、第2図は耐溶接割れ性の試験装置の概略
説明図である。 1 :  ffXさ1mの合金パーイブ(長さ10 n
vu ’)2: 自由落下体(重置200とり) 3:支持台 4: 加熱保持炉
FIG. 1 is a sectional view of a 1 m thick alloy pipe used in the weld cracking resistance test, and FIG. 2 is a schematic explanatory diagram of the weld cracking resistance testing apparatus. 1: Alloy parve of ffX length 1m (length 10n
vu') 2: Free falling object (200 stacks) 3: Support stand 4: Heating and holding furnace

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛25〜40wt%、りん0.005〜0.0
70wt%、錫0.05〜1.0wt%、アルミニウム
0.05〜1.0wt%、けい素0.005〜1.0w
t%を含み、残部銅及び不可避的な不純物からなる合金
を最終焼鈍後さらに3〜20%の加工度で冷間圧延を施
すことを特徴とする耐食性に優れた銅合金の製造方法。
(1) Zinc 25-40wt%, phosphorus 0.005-0.0
70wt%, tin 0.05-1.0wt%, aluminum 0.05-1.0wt%, silicon 0.005-1.0w
A method for producing a copper alloy with excellent corrosion resistance, which comprises further cold rolling an alloy containing copper and unavoidable impurities at a working ratio of 3 to 20% after final annealing.
(2)亜鉛25〜40wt%、りん0.005〜0.0
70wt%、錫0.05〜1.0wt%、アルミニウム
0.05〜1.0wt%、けい素0.005〜1.0w
t%を含み、残部銅及び不可避的な不純物からなる合金
を最終焼鈍で結晶粒度が0.015mm以下となるよう
に調整した後、さらに3〜20%の加工度で冷間圧延を
施すことを特徴とする耐食性に優れた銅合金の製造方法
(2) Zinc 25-40wt%, phosphorus 0.005-0.0
70wt%, tin 0.05-1.0wt%, aluminum 0.05-1.0wt%, silicon 0.005-1.0w
After final annealing the alloy, which contains copper and unavoidable impurities, is further subjected to cold rolling at a working ratio of 3 to 20%. A method for manufacturing a copper alloy with excellent corrosion resistance.
JP16558586A 1986-07-16 1986-07-16 Manufacture of copper alloy having superior corrosion resistance Granted JPS6230861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16558586A JPS6230861A (en) 1986-07-16 1986-07-16 Manufacture of copper alloy having superior corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16558586A JPS6230861A (en) 1986-07-16 1986-07-16 Manufacture of copper alloy having superior corrosion resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2378283A Division JPS59150044A (en) 1983-02-17 1983-02-17 Copper alloy with superior corrosion resistance

Publications (2)

Publication Number Publication Date
JPS6230861A true JPS6230861A (en) 1987-02-09
JPS646265B2 JPS646265B2 (en) 1989-02-02

Family

ID=15815150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16558586A Granted JPS6230861A (en) 1986-07-16 1986-07-16 Manufacture of copper alloy having superior corrosion resistance

Country Status (1)

Country Link
JP (1) JPS6230861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115363A1 (en) * 2012-02-01 2013-08-08 Toto株式会社 Brass with excellent corrosion resistance
EP3690069B1 (en) 2018-12-19 2023-01-25 Poongsan Corporation Free-cutting lead-free copper alloy to which lead and bismuth are not added

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397095U (en) * 1990-01-19 1991-10-04
KR102647662B1 (en) * 2020-01-16 2024-03-13 주식회사 엘지화학 Optical lens and wearable device comprising the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115363A1 (en) * 2012-02-01 2013-08-08 Toto株式会社 Brass with excellent corrosion resistance
CN103958708A (en) * 2012-02-01 2014-07-30 Toto株式会社 Brass with excellent corrosion resistance
JPWO2013115363A1 (en) * 2012-02-01 2015-05-11 Toto株式会社 Brass with excellent corrosion resistance
EP2743360A4 (en) * 2012-02-01 2015-06-24 Toto Ltd Brass with excellent corrosion resistance
CN103958708B (en) * 2012-02-01 2016-11-16 Toto株式会社 The pyrite of excellent corrosion resistance
EP2743360B1 (en) 2012-02-01 2018-04-04 Toto Ltd. Brass with excellent corrosion resistance
US10351933B2 (en) 2012-02-01 2019-07-16 Toto Ltd. Brass with excellent corrosion resistance
EP3690069B1 (en) 2018-12-19 2023-01-25 Poongsan Corporation Free-cutting lead-free copper alloy to which lead and bismuth are not added

Also Published As

Publication number Publication date
JPS646265B2 (en) 1989-02-02

Similar Documents

Publication Publication Date Title
JP3794971B2 (en) Copper alloy tube for heat exchanger
EP1250468B8 (en) Process of producing aluminum fin alloy
JPS6230861A (en) Manufacture of copper alloy having superior corrosion resistance
JPH03193849A (en) Copper alloy having fine crystalline grain and low strength and its production
JPH03170646A (en) Manufacture of copper alloy having fine crystalline grains as well as low strength
JPS646266B2 (en)
JP3230685B2 (en) Copper base alloy for heat exchanger
JPS61199043A (en) Copper alloy having superior corrosion resistance and its manufacture
JPS59153854A (en) Copper alloy with superior corrosion resistance
JP3243479B2 (en) Copper base alloy for heat exchanger
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS6158537B2 (en)
JPS59118841A (en) Copper alloy having excellent corrosion resistance
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPS59118840A (en) Copper alloy having excellent corrosion resistance
JPS59107051A (en) Copper alloy with superior corrosion resistance
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS6082635A (en) Copper alloy having superior corrosion resistance
JPS6139387B2 (en)
JPS59118839A (en) Copper alloy having excellent corrosion resistance
JPS59153855A (en) Copper alloy with superior corrosion resistance
JPS6082632A (en) Copper alloy having superior corrosion resistance
JPS59126744A (en) Copper alloy with superior corrosion resistance
JPS6082630A (en) Copper alloy having superior corrosion resistance
JPS59104445A (en) Copper alloy excellent in corrosion resistance