JPS59104445A - Copper alloy excellent in corrosion resistance - Google Patents

Copper alloy excellent in corrosion resistance

Info

Publication number
JPS59104445A
JPS59104445A JP21270082A JP21270082A JPS59104445A JP S59104445 A JPS59104445 A JP S59104445A JP 21270082 A JP21270082 A JP 21270082A JP 21270082 A JP21270082 A JP 21270082A JP S59104445 A JPS59104445 A JP S59104445A
Authority
JP
Japan
Prior art keywords
copper alloy
corrosion resistance
alloy
copper
final annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21270082A
Other languages
Japanese (ja)
Inventor
Susumu Kawauchi
川内 進
「つじ」 正博
Masahiro Tsuji
Michiharu Yamamoto
山本 道晴
Kiyoaki Nishikawa
西川 清明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP21270082A priority Critical patent/JPS59104445A/en
Publication of JPS59104445A publication Critical patent/JPS59104445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a copper alloy showing good corrosion resistance and weld cracking resistance and also good in solderability, wherein Zn, Sn and Al are contained respectively in predetermined ratios and the remainder comprises Cu and inevitable impurities. CONSTITUTION:A copper alloy contains 25-40wt% Zn, 0.05-1.0wt% Sn and 0.05-1.0wt% Al and comprises the remainder Cu and inevitable impurities. In addition, this copper alloy is obtained by a method wherein the aforementioned copper alloy is subjected to cold rolling in a processing degree of 3-20% after final annealing or adjusted so as to bring the crystal particle size to 0.015min or less by final annealing. This copper alloy has excellent corrosion resistance and is optimum as a material for a heat exchanger such as a condenser, a water supply heater, a distillation vessel, a cooler or a water making apparatus, especially, as the materials of the tank and the fin of the radiator used in an automobile.

Description

【発明の詳細な説明】 本発明は、優れた耐食性を有する銅合金で復水器、給水
加熱器、蒸留器、冷却器、遣水装置々どの熱交換器用の
材料として、特に自動車等に用いられるラジェーターの
タンク(容器)。
Detailed Description of the Invention The present invention is a copper alloy that has excellent corrosion resistance and is used as a material for heat exchangers such as condensers, feed water heaters, distillers, coolers, water supply devices, etc., especially in automobiles, etc. Radiator tank (container).

チューブ(管)、フィン等の材料として最適な銅合金に
関するものである。
It relates to copper alloys that are optimal as materials for tubes, fins, etc.

黄銅は、一般に機械的性質や成形性が良好でちシ、その
ほかの銅合金に比べて価格も安いため、広範囲の用途で
使用されている。熱交換器特に自動車ラジェーターとし
ても好んで使用されているが、黄銅は環境によっては脱
亜鉛腐食現象が起き、これが大きな問題となっている。
Brass generally has good mechanical properties and formability, and is cheaper than other copper alloys, so it is used in a wide range of applications. Brass is also popularly used in heat exchangers, especially automobile radiators, but depending on the environment, brass can undergo dezincification corrosion, which is a major problem.

自動車用ラジェーターは2本体の温度を調節するために
液体を冷却媒体としてエンジンとうジエーターとを循環
させて熱を放散させるもので、ラジェーターは冷却媒体
と常時接触しておシ、この冷却媒体によシ内面から腐食
が生じる問題がある。また、自動車の走行中にラジェー
ターは排気ガス、塩分を含む海岸大気、さらには工場大
気のSO,ガス等にさらされている場合には、外面から
も腐食される。
Automobile radiators dissipate heat by circulating liquid as a cooling medium between the engine and the radiator in order to adjust the temperature of the two bodies. There is a problem that corrosion occurs from the inner surface of the housing. Further, when the radiator is exposed to exhaust gas, salt-containing coastal air, and even SO and gas in the factory air while the car is running, the radiator is corroded from the outside as well.

従来ラジェーターに使用されている材料としては、銅6
5 wtl、亜鉛35 wtlからなる黄銅が用いられ
ているが、腐食環境の悪化等によシ従来の黄銅を用いた
ラジェーターの寿命が短かくなシつつある。
The material conventionally used for radiators is copper 6.
Brass consisting of 5 wtl and 35 wtl of zinc is used, but the lifespan of conventional radiators using brass is becoming shorter due to deterioration of the corrosive environment.

さらにまた近年2%にラジェーターチューブ(管)には
、従来のカシメによるロックシームチューブにかわって
、コスト低減と生産効率の向上の面から高周波抵抗溶接
または高周波誘導溶接による銅合金溶接管が採用される
ようになってきた。しかしながら銅合金溶接管はその溶
接組織の特異性からその溶接部は他の部分と比較して耐
食性が大幅に劣るという欠点を持っている。このことは
銅合金溶接管の使用上の大きな制約となる。さらには銅
合金溶接管の製造の際に溶接方法として高周波誘導溶接
もしくは高周波抵抗溶接を用いた場合、その溶接方法の
特徴から特に溶接割れを発生しやすいという製造上の難
点を持っている。
Furthermore, in recent years, 2% of radiator tubes have been adopting copper alloy welded tubes made by high-frequency resistance welding or high-frequency induction welding, instead of the conventional swaged lock-seam tubes, in order to reduce costs and improve production efficiency. It's starting to happen. However, copper alloy welded pipes have the disadvantage that the welded part has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure. This poses a major restriction on the use of copper alloy welded pipes. Furthermore, when high-frequency induction welding or high-frequency resistance welding is used as a welding method when manufacturing copper alloy welded pipes, there is a manufacturing difficulty in that weld cracks are particularly likely to occur due to the characteristics of the welding method.

このような状況から熱交換器、特にラジェーターのタン
ク(容器)、チューブ(管)、フィン等に耐食性の向上
が要求されると同時に、溶接部位においては耐食性と同
時に溶接割れ感受性の低い材料の開発が望まれてきた。
Under these circumstances, improved corrosion resistance is required for heat exchangers, especially radiator tanks, tubes, fins, etc. At the same time, for welded parts, we are developing materials that are both corrosion resistant and less susceptible to weld cracking. has been desired.

本発明は、かかる点に鑑み、従来の黄銅を改良し熱交換
器用とくにラジェーター用材料として優れた耐食性を有
する銅合金を提供するもの′Cある。
In view of these points, the present invention provides a copper alloy that improves conventional brass and has excellent corrosion resistance as a material for heat exchangers, particularly radiators.

本発明は、亜鉛25〜40 wtチ、錫005〜1、 
Owt俤2アルミニウム0.05〜1. Owt俤を含
み、残部銅及び不可避的な不純物からなる合金。
The present invention uses zinc 25 to 40 wt, tin 005 to 1,
Owt 2 aluminum 0.05~1. An alloy containing Owt and the balance consisting of copper and unavoidable impurities.

および該合金を最終焼鈍後さらに3〜20%の加工度で
冷間圧延を施した合金、および該合金を最終焼鈍で結晶
粒度が0.015m以下となるように調整した合金、な
らびに該合金を最終焼鈍で結晶粒度が0.015w以下
となるように調整したのち、さらに3〜20チの加工度
で冷間圧延を施した合金であって優れた耐食性を有する
銅合金に関する。
and an alloy in which the alloy is further cold-rolled with a working degree of 3 to 20% after final annealing, an alloy in which the grain size is adjusted to 0.015 m or less in the final annealing, The present invention relates to a copper alloy having excellent corrosion resistance, which is an alloy which is subjected to final annealing so that the grain size is 0.015W or less, and then cold-rolled at a working degree of 3 to 20 inches.

次に本発明合金を構成する合金成分および内容の限定理
由を説明する。銅と亜鉛は本発明合金の基本材料となる
もので加工性2機械的強度に優れていると共に熱伝導性
にも優れている。
Next, the reasons for limiting the alloy components and contents constituting the alloy of the present invention will be explained. Copper and zinc are the basic materials of the alloy of the present invention, and have excellent workability, mechanical strength, and thermal conductivity.

亜鉛含有量を25〜40twt%とする理由は、亜鉛含
有量が25 wt%未満では加工性が悪くなること、お
よび亜鉛含有量が40 wtlを越えると銅−亜鉛合金
におけるβ相の析出が顕著にみられ耐食性および冷間加
工性が悪くなるためである。錫の含有量をα05〜1.
 Owtlとする理由は、錫の含有量が(105wt%
未満では耐食性。
The reason why the zinc content is set to 25 to 40 twt% is that if the zinc content is less than 25 wt%, the workability will be poor, and if the zinc content exceeds 40 wtl, the precipitation of β phase in the copper-zinc alloy will be noticeable. This is because corrosion resistance and cold workability deteriorate. The tin content is α05~1.
The reason why it is Owtl is that the tin content is (105wt%).
Less than corrosion resistance.

特に溶接した場合溶接部の耐食性の向上が認められず、
また1、 Owtlを越えるとその効果が飽和するため
である。アルミニウムの含有量を0、05〜1. Ow
tlとする理由は、アルミニウムの含有量が(L O5
wtチ未満では耐食性1%に溶接した場合溶接部の耐食
性の向上が認められず。
In particular, when welding, no improvement in the corrosion resistance of the welded part was observed.
Also, 1. This is because the effect becomes saturated when it exceeds Owtl. Aluminum content is 0.05~1. Ow
The reason why the aluminum content is (L O5
When welding to a corrosion resistance of less than 1% wt, no improvement in the corrosion resistance of the welded part was observed.

また1、 Owtlを越えるとその効果が飽和するため
である。
Also, 1. This is because the effect becomes saturated when it exceeds Owtl.

このように錫とアルミニウムを添加することによシ素材
および溶接した場合の溶接部に耐食性を付加するもので
ある。
By adding tin and aluminum in this manner, corrosion resistance is added to the material and the welded part when welded.

さらに結晶粒度を0.015+u以下に限定した理由に
ついて述べる。高周波誘導溶接もしくは高周波抵抗溶接
によって起こる溶接割れの原因について調査した結果1
本発明者らは溶融した母材金属と接触していると粒界が
脆化して軽い衝撃を受けた場合に溶接割れが発生するこ
とを知見した。そこでこのような現象について調査を行
なった結果、結晶粒度の影響が大きく結晶粒度を小さく
することによりこのような現象を大幅に抑制することが
できることを知見した。
Furthermore, the reason why the crystal grain size was limited to 0.015+u or less will be described. Results of investigating the causes of weld cracking caused by high frequency induction welding or high frequency resistance welding 1
The present inventors have discovered that grain boundaries become brittle when in contact with molten base metal, and weld cracking occurs when subjected to a light impact. Therefore, as a result of investigating such phenomena, it was found that the effect of crystal grain size is large and that such phenomena can be significantly suppressed by reducing the crystal grain size.

さらに本発明者らは、耐食性に及はす結晶粒度の影響に
ついても調査した結果、耐食性とくに耐脱亜鉛腐食性は
結晶粒度の影響を受は結晶粒度を小さくすることにより
耐食性を向上させることができることを知見した。結晶
粒度を0015同以下に限定した理由は、結晶粒度が0
015閣を越えると溶接割れが発生しゃすぐ々す、まだ
耐食性の劣化が認められるためである。
Furthermore, the present inventors investigated the influence of grain size on corrosion resistance and found that corrosion resistance, especially dezincification corrosion resistance, is affected by grain size. I learned that it is possible. The reason why the crystal grain size is limited to 0015 or less is that the crystal grain size is 0.
If the welding temperature exceeds 0.015, weld cracking is likely to occur, but deterioration of corrosion resistance is still observed.

また本発明合金を最終焼鈍したのち3〜20チの加工度
で冷間圧延をほどこす理由は、冷間圧延をほどこすこと
により本発明合金のはんだ付は性が向上するだめである
が、加工度が6係未満では、はんだ付は性の向上が認め
られず。
The reason why the alloy of the present invention is cold rolled at a working degree of 3 to 20 inches after final annealing is that cold rolling improves the solderability of the alloy of the present invention. When the degree of processing is less than 6, no improvement in soldering properties is observed.

また20係を越えると機械的強度が高く々り成形性1%
にラジェーターチューブ加工時の成形性が劣化するため
である。
In addition, when the ratio exceeds 20, the mechanical strength is high and the crack formability is 1%.
This is because the formability during processing of the radiator tube deteriorates.

このような本発明合金は、良好な耐食性および耐溶接割
れ性を示すとともに、はんだ付は性も良好々合金である
ため熱交換器用、特にラジェーター用銅合金として適し
た材料である。
The alloy of the present invention exhibits good corrosion resistance and weld cracking resistance, and has good solderability, so it is a material suitable as a copper alloy for heat exchangers, particularly for radiators.

実施例 第1表に示す諸組成の合金で溶製し熱間圧延および適宜
焼きな甘しを加えなから冷間圧延によシ1R厚さの板と
し、最終的に種々の温度で焼きなましを加え第2表に示
す結晶粒度に調整した。耐食性試験に供する溶接部材は
、第2表に示された結晶粒度をもつ1M厚さの諸組成の
合金を突き合せTIG溶接することによって作製した。
Examples An alloy having the various compositions shown in Table 1 was melted, hot-rolled, annealed as appropriate, and then cold-rolled to a thickness of 1R, and finally annealed at various temperatures. In addition, the crystal grain size was adjusted to be as shown in Table 2. The welded parts to be subjected to the corrosion resistance test were fabricated by butt TIG welding 1M thick alloys of various compositions having the grain sizes shown in Table 2.

耐食性試験は1tの蒸留水に 炭酸水素ナトリウム     1.3  y/を倣酸ナ
トリウム   1.5 y/を 塩化ナトリウム   t 6 y/l を各々浴かした液を液温88℃に保持し毎分100−の
空気を吹き込み、この液の中に500時間浸漬した。そ
の時発生した最大脱亜鉛腐食除さを溶接部および母材部
について測定し、これをもって耐食性を評価した。その
結果を第3表に示した。
Corrosion resistance test was carried out by bathing 1 ton of distilled water with 1.3 y/l of sodium bicarbonate, 1.5 y/l of sodium chloride, and t 6 y/l of sodium chloride, and maintaining the liquid temperature at 88°C at a rate of 100 per minute. - air was blown into the sample, and the sample was immersed in this solution for 500 hours. The maximum dezincification corrosion that occurred at that time was measured for the welded part and the base metal part, and the corrosion resistance was evaluated based on this. The results are shown in Table 3.

溶融した母材金属と接触した場合に粒界が脆化して溶接
割れが発生することに対する耐性についての試験は第2
表に示される結晶粒度をもつ諸組成の合金を第1図に示
されるようにパイプ状に加工し、これを同一組成の融点
+50℃に保持された溶融金属に3秒間浸漬し、その後
取り出して保持炉中で付着している金属が溶融している
状態で第2図のように衝撃を加えた。
The second test was for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with molten base metal.
Alloys of various compositions with the grain sizes shown in the table are processed into pipe shapes as shown in Figure 1, immersed in molten metal of the same composition maintained at +50°C melting point for 3 seconds, and then taken out. While the attached metal was melted in the holding furnace, an impact was applied as shown in Figure 2.

その時変形したパイプの断面を顕微鏡によって観察し粒
界破壊の有無を確認し、これをもって溶接割れに対する
耐性を評価した。その結果を第4表に示した。
The cross section of the deformed pipe was then observed under a microscope to confirm the presence or absence of intergranular fracture, and this was used to evaluate resistance to weld cracking. The results are shown in Table 4.

さらに第2表に示された結晶粒度をもつ1月厚さの合金
を第5表に示す加工度で冷間圧延を加えたのちはんだ付
は性試験に供した。はんだ付は性試験は直径a80wA
、深さ60闘の円筒形ルツボにSn20wt%−Pb8
0wt%からなるはんだを520℃に加熱して溶湯をつ
くり、その中に降下速度25 w / seCでサンプ
ル(表面を清浄にした巾10u、長さ50寵の形状)を
浸漬したときはんだ浴からサンプルが受ける浮力とはん
だ浴に引き込まれる力とが平衡に達するまでの時間を測
定し、これをもってはんだ付は性を評価した。その結果
を第6表に示した。
Further, alloys having a thickness of 1/2 inch and having the grain size shown in Table 2 were cold rolled at the working degree shown in Table 5, and then subjected to a soldering test. For soldering, the diameter is a80wA.
, Sn20wt%-Pb8 in a cylindrical crucible with a depth of 60mm.
0wt% solder was heated to 520℃ to create a molten metal, and when a sample (with a clean surface and a shape of 10U in width and 50cm in length) was immersed in the molten metal at a descending rate of 25W/sec, the melt was removed from the solder bath. The time required for the buoyant force exerted on the sample and the force drawn into the solder bath to reach equilibrium was measured, and the soldering properties were evaluated based on this. The results are shown in Table 6.

第5表、第4表、第6表かられかるように本発明合金は
、脱亜鉛腐食に対して素材および溶接した場合溶接部に
おいて優れた耐食性を示すとともに耐溶接割れ性および
はんだ付は性も良好な合金であることが判明した。
As can be seen from Tables 5, 4, and 6, the alloy of the present invention exhibits excellent corrosion resistance against dezincification corrosion in the raw material and welded parts, and also exhibits excellent weld cracking resistance and soldering resistance. was also found to be a good alloy.

すなわち、比較合金(試料番号1〜6)では最大脱亜鉛
腐食深さが素材で213μ〜667μ。
That is, for the comparative alloys (sample numbers 1 to 6), the maximum dezincification corrosion depth was 213μ to 667μ.

溶接部で564μ〜771μに達するのに対し本発明合
金(試料番号7〜23)は素材で最低値20μ〜最高値
90μ、溶接部で最低値54μ〜最高値137μであり
、耐脱亜鉛腐食性に優れていることが分る。そして本発
明合金の中でも結晶粒度が0.015w以下の合金は、
よシ耐脱亜鉛腐食に優れている。
In contrast, the alloys of the present invention (sample numbers 7 to 23) have a minimum value of 20 μ to a maximum value of 90 μ in the raw material, a minimum value of 54 μ to a maximum value of 137 μ in the weld, and have good dezincification corrosion resistance. It turns out that it is excellent. Among the alloys of the present invention, alloys with a grain size of 0.015w or less are
Excellent resistance to dezincification and corrosion.

また本発明合金は、上記のように耐脱亜鉛腐食性に優れ
ているが、さらに結晶粒度がO,O15關以下であるも
の(試料番号7.8.9.12.14.15゜16.1
a、 19.21.23)は第2図に示される溶接割れ
性において単に延性変形するのみで割れの発生がなく耐
溶接割れ性が改善される。逆に結晶粒度が10150を
越えるものについては粒界破壊を起こすので好ましくな
い。
The alloy of the present invention has excellent dezincification corrosion resistance as described above, but it also has a crystal grain size of O, O15 or less (sample number 7.8.9.12.14.15°16. 1
a, 19.21.23), the weld cracking resistance shown in FIG. 2 is simply ductile deformation, no cracking occurs, and the weld cracking resistance is improved. On the other hand, a crystal grain size exceeding 10,150 is not preferable because it causes grain boundary fracture.

さらに本発明合金の、うち、加工度3〜20%の冷間圧
延を施したもの(試料番号7〜16)は同冷間圧延を施
していないもの(試料番号17〜23)のはんだ付は性
の評価(はんだ浴からサンプルが受ける浮力とはんだ浴
に引き込まれる力が平衡に達する時間による)において
205秒〜2.20秒と比較的長時間かかるのに較べて
、より短時間に平衡に達しはんだ付は性に優れているこ
とが分る。
Furthermore, among the alloys of the present invention, those that were cold-rolled with a workability of 3 to 20% (sample numbers 7 to 16) and those that were not cold-rolled (sample numbers 17 to 23) were soldered. Compared to the comparatively long time of 205 seconds to 2.20 seconds required for evaluating the properties of the sample (depending on the time it takes for the buoyant force exerted on the sample from the solder bath and the force drawn into the solder bath to reach equilibrium), it is possible to achieve equilibrium in a shorter time. It can be seen that the soldering properties are excellent.

以上本発明合金は、熱交換器用1%にラジェーター用銅
合金として極めて優れた特性を有するものである。
As described above, the alloy of the present invention has extremely excellent properties as a copper alloy for use in 1% heat exchangers and radiators.

第1表 (単位wtチ) 第  2  表 第  3  表 第  4  表 第  5  表 第6表Table 1 (Unit: wt) Table 2 Table 3 Table 4 Table 5 Table 6

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶接割れ性の試験に用いる厚さ1Hの合金パイ
プの断面図、第2図は耐溶接割れ性の試験装置の概略説
明図である。 1:厚さ10の合金パイプ(長さ10 yur )2:
自由落下体(重量200 gw )6:支持台 4:加熱保持炉 a:パイプ内径(z2oIIJ) b:パイプ外径(022m ) C:落下体2の落下距離(50m ) 特許出願人 日本鉱業株式会社 代理人 弁理士(7569)並川啓志
FIG. 1 is a cross-sectional view of an alloy pipe having a thickness of 1H used for testing weld cracking resistance, and FIG. 2 is a schematic illustration of a weld cracking resistance testing apparatus. 1: Alloy pipe with thickness 10 (length 10 yur) 2:
Free falling object (weight 200 gw) 6: Support stand 4: Heating and holding furnace a: Pipe inner diameter (z2oIIJ) b: Pipe outer diameter (022 m) C: Falling distance of falling object 2 (50 m) Patent applicant Nippon Mining Co., Ltd. Agent Patent Attorney (7569) Keishi Namikawa

Claims (4)

【特許請求の範囲】[Claims] (1)  亜鉛25〜40wt係、錫0.05〜1. 
Owt%。 アルミニウム0.05〜1. Owt%を含み、残部銅
及び不可避的な不純物から々る耐食性に優れた銅合金。
(1) Zinc 25-40wt, tin 0.05-1.
Owt%. Aluminum 0.05~1. Copper alloy with excellent corrosion resistance, containing 50% by weight, the balance being copper and unavoidable impurities.
(2)  最終焼鈍後さらに3〜20チの加工度で冷間
圧延をほどこした亜鉛25〜40wt%、錫005〜1
. Owt係、アルミニウム0.05〜1.0wt%を
含み、残部鋼及び不可避的な不純物からなる耐食性に優
れた銅合金。
(2) Zinc 25-40 wt%, tin 005-1 which was further cold-rolled with a working degree of 3-20 inches after final annealing.
.. A copper alloy with excellent corrosion resistance, containing 0.05 to 1.0 wt% of aluminum, and the balance being steel and unavoidable impurities.
(3)最終焼鈍で結晶粒度が[1,015m以下となる
ように調整された亜鉛25〜40 wt% 、錫005
〜1. Owt俤、アルミニウム005〜1.0wt5
を含み、残部銅及び不可避的な不純物からなる耐食性に
優れた銅合金。
(3) Zinc 25-40 wt%, tin 005 adjusted so that the grain size is [1,015 m or less] in the final annealing
~1. Owt 俤, aluminum 005~1.0wt5
A copper alloy with excellent corrosion resistance, consisting of copper and unavoidable impurities.
(4)  最終焼鈍で結晶粒度が0.015w以下とな
るように調整したのち、さらに3〜20チの加工度で冷
間圧延を施した亜鉛25〜40wtqII。 錫105〜1. Owt96 、アルミニウムα05〜
1.0曽、tSを含み、残部銅及び不可避的な不純物か
らなる耐食性に優れた銅合金。
(4) Zinc 25-40wtqII which was adjusted to have a grain size of 0.015w or less by final annealing, and then further cold-rolled at a workability of 3-20mm. Tin 105~1. Owt96, aluminum α05~
A copper alloy with excellent corrosion resistance that contains 1.0 so, tS, and the remainder is copper and unavoidable impurities.
JP21270082A 1982-12-06 1982-12-06 Copper alloy excellent in corrosion resistance Pending JPS59104445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21270082A JPS59104445A (en) 1982-12-06 1982-12-06 Copper alloy excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21270082A JPS59104445A (en) 1982-12-06 1982-12-06 Copper alloy excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JPS59104445A true JPS59104445A (en) 1984-06-16

Family

ID=16626974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21270082A Pending JPS59104445A (en) 1982-12-06 1982-12-06 Copper alloy excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPS59104445A (en)

Similar Documents

Publication Publication Date Title
JP3878640B2 (en) Heat resistant copper alloy material
JP3794971B2 (en) Copper alloy tube for heat exchanger
EP1576332A1 (en) Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
CN115418533A (en) High strength and corrosion resistant alloy for HVAC & R systems
JPH03193849A (en) Copper alloy having fine crystalline grain and low strength and its production
JPH03170646A (en) Manufacture of copper alloy having fine crystalline grains as well as low strength
JPS646265B2 (en)
JPS6230862A (en) Manufacture of copper alloy having superior corrosion resistance
JPS59104445A (en) Copper alloy excellent in corrosion resistance
JP3230685B2 (en) Copper base alloy for heat exchanger
JPS59153854A (en) Copper alloy with superior corrosion resistance
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPS59118841A (en) Copper alloy having excellent corrosion resistance
JPS61199043A (en) Copper alloy having superior corrosion resistance and its manufacture
JP3243479B2 (en) Copper base alloy for heat exchanger
JPS6082632A (en) Copper alloy having superior corrosion resistance
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS6082635A (en) Copper alloy having superior corrosion resistance
JPS59107051A (en) Copper alloy with superior corrosion resistance
JPS6139387B2 (en)
JPS59153855A (en) Copper alloy with superior corrosion resistance
JPS59118839A (en) Copper alloy having excellent corrosion resistance
JPS6082630A (en) Copper alloy having superior corrosion resistance
JPS59150044A (en) Copper alloy with superior corrosion resistance