JP2003166794A - Internally threaded tube - Google Patents

Internally threaded tube

Info

Publication number
JP2003166794A
JP2003166794A JP2001366505A JP2001366505A JP2003166794A JP 2003166794 A JP2003166794 A JP 2003166794A JP 2001366505 A JP2001366505 A JP 2001366505A JP 2001366505 A JP2001366505 A JP 2001366505A JP 2003166794 A JP2003166794 A JP 2003166794A
Authority
JP
Japan
Prior art keywords
fin
tube
fins
lead angle
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001366505A
Other languages
Japanese (ja)
Inventor
Koji Yamamoto
孝司 山本
Yasutoshi Mori
康敏 森
Toshiaki Hashizume
利明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001366505A priority Critical patent/JP2003166794A/en
Publication of JP2003166794A publication Critical patent/JP2003166794A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internally threaded tube preventing decrease of heat conductivity of fins even when forming the high and sharp inner fins and having high heat conductivity as the entire tube by fully transferring heat transferred from outer surface of the tube to the tip of the fins. <P>SOLUTION: Many fins 10 with a fin level H of 0.2-0.4 mm having a predetermined lead angle β for the tube axis are formed in parallel on inner surface of the tube. A ratio SH/H of a sectional area SH and the fin level H of the respective fins 10 on a section orthogonal to the lead angle β is 0.06-0.09. A width between both side inclined faces at a predetermined level in a root direction of the fins 10 preferably gradually increases as approaching the root than a width between extending faces in the root direction of both side inclined faces at a predetermined level in a top direction of the fins 10. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍機や空調機等
の熱交換器に使用される内面溝付管(伝熱管)に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved tube (heat transfer tube) used for heat exchangers such as refrigerators and air conditioners.

【0002】[0002]

【従来の技術】前記のような熱交換器の伝熱管には、管
内面に多数の螺旋状のフィンを平行に形成した内面溝付
管が多く使用されている。この種の伝熱管においては、
熱交換器の小型化・高性能化の傾向に伴い小型かつ高性
能化が要請されており、このため、内面フィンのフィン
高さをより高くし、フィンの断面形状をよりシャープに
(細く)しかも密に形成することが試みられている。
2. Description of the Related Art As a heat transfer tube for a heat exchanger as described above, an inner grooved tube having a large number of spiral fins formed in parallel on the inner surface of the tube is often used. In this type of heat transfer tube,
With the trend toward miniaturization and higher performance of heat exchangers, there is a demand for smaller size and higher performance. Therefore, the fin height of the inner surface fins is made higher and the fin cross-section shape becomes sharper (thinner). Moreover, attempts have been made to form them densely.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、フィン
を細くシャープにしすぎると、管外からの熱がフィン先
端部にゆくほど伝わりにくくなり、フィン全体としての
熱伝導効率(フィン熱伝導効率)が低下して管外と管内
の熱交換が妨げられ、ひいては管内面全体としての熱の
伝わりが妨げられる。また、フィンは高い方が管内の伝
熱効率は向上するが、フィン高さをある高さ以上にする
とフィン加工効率が極端に低下する。本発明の目的は、
加工性を阻害しない範囲でフィン高さをできるだけ高く
てシャープな内面フィンを形成してもフィン熱伝導効率
を低下させることがなく、管外面から伝達される熱がフ
ィン先端部まで十分に伝わり、管全体としても高い熱効
率を有する内面溝付管を提供することにある。
However, if the fins are made too thin and sharp, the heat from the outside of the tube becomes harder to transfer to the tip of the fins, and the heat transfer efficiency of the fins as a whole (fin heat transfer efficiency) decreases. As a result, heat exchange between the outside of the pipe and the inside of the pipe is hindered, which in turn hinders the transfer of heat as the entire inner surface of the pipe. Further, the higher the fin is, the more the heat transfer efficiency in the tube is improved, but if the fin height is set higher than a certain height, the fin processing efficiency is extremely lowered. The purpose of the present invention is to
Even if the fin height is made as high as possible and sharp inner fins are formed within the range that does not hinder workability, the heat transfer efficiency of the fins is not reduced, and the heat transferred from the outer surface of the pipe is sufficiently transferred to the fin tips. An object of the present invention is to provide an inner grooved tube having high thermal efficiency as a whole tube.

【0004】[0004]

【課題を解決するための手段】本発明に係る内面溝付管
は、前述の課題を解決するため以下のように構成したも
のである。すなわち、請求項1に記載の内面溝付管は、
管内面に管軸に対して所定のリード角βをもつフィン高
さH=0.2〜0.4mmの多数のフィン10が平行に
形成され、前記リード角βと直交する断面における各フ
ィン10の断面積SHとフィン高さHとの比SH/H=
0.06〜0.09であることを特徴としている。
The inner grooved tube according to the present invention is constructed as follows in order to solve the above-mentioned problems. That is, the inner grooved tube according to claim 1,
A large number of fins 10 having a predetermined lead angle β with respect to the pipe axis and having a fin height H = 0.2 to 0.4 mm are formed in parallel on the inner surface of the pipe, and each fin 10 in a cross section orthogonal to the lead angle β. Ratio SH / H = of cross-sectional area SH of fin and height H of fin
It is characterized by being 0.06 to 0.09.

【0005】請求項2に記載の内面溝付管は、請求項1
の内面溝付管において、前記フィン10の根元方向の所
定高さ部分における両側傾斜面相互間の幅は、フィン1
0の頂部方向の所定高さ部分における両側傾斜面の根元
方向への延長面相互間の幅よりも、根元に近づくにした
がって徐々に大きく広がっていることを特徴としてい
る。
The inner grooved pipe according to claim 2 is the pipe according to claim 1.
In the inner grooved tube, the width between the inclined surfaces on both sides at a predetermined height portion in the root direction of the fin 10 is equal to that of the fin 1
It is characterized in that it gradually widens as it approaches the root than the width between the extension surfaces of the inclined surfaces on both sides in the root direction at the predetermined height portion of 0.

【0006】請求項3に記載の内面溝付管は、請求項1
又は2の内面溝付管において、前記リード角βが25〜
45°であることを特徴としている。
[0006] The inner grooved pipe according to claim 3 is the pipe according to claim 1.
Or in the inner grooved tube of 2, the lead angle β is 25 to
It is characterized by being 45 °.

【0007】請求項4に記載の内面溝付管は、請求項1
〜3のいずれかの内面溝付管において、フィンピッチP
が0.35〜1.0mmであることを特徴としている。
The inner grooved pipe according to claim 4 is the pipe according to claim 1.
To the inner grooved pipe of any one of 3 to 3, the fin pitch P
Is 0.35 to 1.0 mm.

【0008】請求項5に記載の内面溝付管は、請求項1
〜4のいずれかの内面溝付管において、管の外径が10
mm以下であることを特徴としている。
The inner grooved pipe according to claim 5 is the pipe according to claim 1.
In the inner grooved tube of any one of to 4, the outer diameter of the tube is 10
It is characterized by being less than mm.

【0009】請求項6に記載の内面溝付管は、請求項1
〜5のいずれかの内面溝付管において、管の材質が銅又
は銅合金であることを特徴としている。
The inner grooved tube according to the sixth aspect is the first aspect.
In the inner grooved tube of any one of to 5, the material of the tube is copper or copper alloy.

【0010】[0010]

【発明の実施の形態】以下図面を参照しながら本発明に
係る内面溝付管の好ましい実施形態を説明する。図1の
(a)図は本発明による一実施形態の内面溝付管の部分
展開平面図、(b)図は図1の矢印A−Aに沿う部分拡
大断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of an inner grooved tube according to the present invention will be described below with reference to the drawings. 1A is a partially developed plan view of an inner grooved tube according to an embodiment of the present invention, and FIG. 1B is a partially enlarged sectional view taken along the arrow AA of FIG.

【0011】図1のように、管1の内面には管軸に対し
て25〜45°のリード角βをもつ多数のフィン10が
平行に形成されている。管1は銅又は銅合金を材質と
し、外径=4〜10mm,溝底肉厚(溝底の最も深い部
分の肉厚)T=0.3mmである。各フィン10は、フ
ィン高さH=0.2〜0.4mm,フィンピッチP=
0.35〜1mmであり、リード角βと直交する断面に
おける各フィン10の断面積SHとフィン高さHとの
(単位を除いた数値の)比SH/Hは、0.06〜0.
09の範囲内である。
As shown in FIG. 1, a large number of fins 10 having a lead angle β of 25 to 45 ° with respect to the tube axis are formed in parallel on the inner surface of the tube 1. The tube 1 is made of copper or a copper alloy and has an outer diameter of 4 to 10 mm and a groove bottom wall thickness (thickness of the deepest part of the groove bottom) T = 0.3 mm. Each fin 10 has a fin height H = 0.2 to 0.4 mm and a fin pitch P =.
The ratio SH / H of the cross-sectional area SH of each fin 10 and the fin height H (a value excluding the unit) in the cross section orthogonal to the lead angle β is 0.06 to 0.
It is within the range of 09.

【0012】フィン10の断面形状は、(b)図で示す
ように、その根元方向の所定高さ部分(根元部分)にお
ける両側傾斜面相互間の幅Wが、フィン10の頂部方向
の所定高さ部分における両側傾斜面の根元方向への延長
面相互間の幅wよりも、根元に近づくにしたがって徐々
に大きく広がっている。(b)図では、根元部分11を
フィン頂角αよりも開き角度α1の大きい台形形状に形
成しているが、例えば同図の二点鎖線で示すように、当
該根元部分11の両側傾斜面を断面凹円弧状に形成して
も実施することができる。
The cross-sectional shape of the fin 10 has a width W between the inclined surfaces on both sides at a predetermined height portion (root portion) in the root direction thereof as shown in FIG. The width w between the extension surfaces of the inclined surfaces on both sides of the salient portion in the direction of the root gradually widens toward the root. In the diagram (b), the root portion 11 is formed in a trapezoidal shape having an opening angle α1 larger than the fin apex angle α, but, for example, as shown by the chain double-dashed line in FIG. Can also be implemented by forming a concave arc shape in cross section.

【0013】この実施形態の内面溝付管は、第1に、フ
ィン高さH=0.2〜0.4であって、リード角βと直
交する断面における各フィン10の断面積SHとフィン
高さHとの比SH/Hが0.06〜0.09であるよう
にフィン10を内面に形成したので、加工性を阻害しな
い範囲でできるだけ高くかつシャープな断面形状のフィ
ンを形成しても、フィン熱伝導効率が低下することな
く、管外から管壁を通じた熱がフィン10の先端部まで
十分に伝わり、管全体が高い熱効率を示す。フィン高さ
Hが0.2mm未満では管内熱伝達率の向上が期待でき
ず、他方フィン高さHが0.4mmを超えると、熱伝達
率は向上するが高速でのフィンの加工が困難となり生産
性が著しく低下する。前記SH/Hが0.06未満で
は、フィン10の断面形状がシャープになり過ぎて管外
からの熱がフィン10の先端まで伝わりにくくなり、フ
ィン熱伝導効率が低下して管外と管内の熱交換が妨げら
れ、ひいては管内面全体としての熱の伝わりが妨げられ
る。他方、SH/Hが0.09を超えると、フィン10
の断面形状がシャープでなくなるため伝熱効率が低下す
る。
In the inner grooved tube of this embodiment, firstly, the fin height H is 0.2 to 0.4, and the cross-sectional area SH of each fin 10 in the cross section perpendicular to the lead angle β and the fin Since the fins 10 are formed on the inner surface so that the ratio SH / H with the height H is 0.06 to 0.09, the fins having the highest and sharpest cross-sectional shape can be formed within the range that does not hinder the workability. However, the heat transfer efficiency from the outside of the tube through the tube wall is sufficiently transmitted to the tips of the fins 10 without lowering the fin heat transfer efficiency, and the entire tube exhibits high thermal efficiency. If the fin height H is less than 0.2 mm, the heat transfer coefficient in the pipe cannot be expected to improve. On the other hand, if the fin height H exceeds 0.4 mm, the heat transfer coefficient improves, but it becomes difficult to machine the fin at high speed. Productivity is significantly reduced. When the SH / H is less than 0.06, the cross-sectional shape of the fin 10 becomes too sharp and heat from the outside of the tube is less likely to be transferred to the tips of the fin 10, and the heat transfer efficiency of the fin decreases and the heat inside and outside the tube decreases. The heat exchange is hindered, and thus the heat transfer through the entire inner surface of the tube is hindered. On the other hand, if SH / H exceeds 0.09, the fin 10
Since the sectional shape of is not sharp, the heat transfer efficiency is reduced.

【0014】第2に、各フィン10はその根元方向の所
定高さ部分(根元部分)における両側傾斜面相互間の幅
が、フィン10の頂部方向の所定高さ部分における両側
傾斜面の根元方向への延長面相互間の幅よりも、根元に
近づくにしたがって徐々に大きく広がっているので、フ
ィン先端への熱の伝導性を及び熱効率を向上させること
ができる。
Secondly, in each fin 10, the width between the inclined surfaces on both sides at a predetermined height portion (root portion) in the root direction is such that the width between both inclined surfaces at the predetermined height portion in the top direction of the fin 10 is in the root direction. The width between the extension surfaces of the fins gradually widens toward the root, so that the heat conductivity to the fin tips and the thermal efficiency can be improved.

【0015】第3に、フィン10のリード角βが25〜
45°であるので、フィン高さHが比較的低くても管内
での冷媒の流れがよく攪拌され、細いフィン先端での熱
効率がより向上する。フィンのリード角βが25°未満
では、フィン高さHが比較的低い場合管内での冷媒の攪
拌が緩慢になり、高い伝熱効率が期待できず、他方前記
リード角βが45°を超えると例えば転造工具によるに
よるフィンの加工が困難になる。
Thirdly, the lead angle β of the fin 10 is 25 to
Since it is 45 °, even if the fin height H is relatively low, the flow of the refrigerant in the tube is well agitated, and the thermal efficiency at the thin fin tips is further improved. If the fin lead angle β is less than 25 °, agitation of the refrigerant in the pipe becomes slow when the fin height H is relatively low, and high heat transfer efficiency cannot be expected. On the other hand, if the lead angle β exceeds 45 °. For example, it becomes difficult to process the fin with a rolling tool.

【0016】第4に、フィンピッチP=0.35〜1.
0mmであるので、管1内にフィンがより多く形成さ
れ、管内の伝熱面積がより増大し伝熱効率がより高ま
る。フィンピッチPが0.35mm未満では、溝幅が狭
過ぎて溝が凝縮液で埋まり性能が低下する。他方フィン
ピッチPが1.0mmを超えると、管内にフィンを多く
形成して伝熱面積を増大させるという利点を有効に活用
できなくなる。第5に、管1の外径が10mm以下であ
るので、前述の効果がよりよく発揮される。管外径が1
0mmを超えると管内を流れる冷媒液に作用する重力の
影響が大きくなり、管を熱交換器に組み込んだ状態にお
ける管内下側に冷媒が溜まり易く、円周方向でのフィン
効率を最適化することが困難になる。第6に、内面溝付
管の材料として熱伝導性に優れた銅又は銅合金を用いる
ことにより、フィン効率をより向上させることができ
る。
Fourth, the fin pitch P = 0.35 to 1.
Since it is 0 mm, more fins are formed in the tube 1, the heat transfer area in the tube is increased, and the heat transfer efficiency is further increased. If the fin pitch P is less than 0.35 mm, the groove width is too narrow, and the grooves are filled with the condensate, resulting in poor performance. On the other hand, if the fin pitch P exceeds 1.0 mm, it becomes impossible to effectively utilize the advantage of forming a large number of fins in the tube and increasing the heat transfer area. Fifthly, since the outer diameter of the tube 1 is 10 mm or less, the above-mentioned effects are more effectively exhibited. Pipe outer diameter is 1
If it exceeds 0 mm, the influence of gravity acting on the refrigerant liquid flowing in the pipe becomes large, and the refrigerant easily accumulates in the lower side of the pipe when the pipe is installed in the heat exchanger, and the fin efficiency in the circumferential direction is optimized. Becomes difficult. Sixth, fin efficiency can be further improved by using copper or a copper alloy having excellent thermal conductivity as the material of the inner grooved tube.

【0017】試験例 表1のように、フィン数,フィンのリード角β,フィン
高さH,フィンピッチP,リード角βと直交する断面に
おけるフィン断面積SHのいずれかが異なっていて、外
径=10mm,溝底肉厚T=0.3mmのリン脱酸銅製
の内面溝付管のサンプルNo.1〜14を試作し、それ
らについて以下の要領で単管伝熱性能を測定した。測定
結果は同じく表1に示されている。
Test Example As shown in Table 1, any one of the number of fins, the fin lead angle β, the fin height H, the fin pitch P, and the fin cross-sectional area SH in the cross section orthogonal to the lead angle β is different, and Sample No. of inner grooved pipe made of phosphorus deoxidized copper with diameter = 10 mm, groove bottom wall thickness T = 0.3 mm. 1 to 14 were prototyped, and the single tube heat transfer performance was measured for them in the following manner. The measurement results are also shown in Table 1.

【0018】単管伝熱測定方法 水平に設置した二重管式熱交換器の内管としてサンプル
を挿入し、サンプル内に冷媒(フロン)を流すととも
に、外管と内管の間の二重管部には冷却水を冷媒に対し
て対向に流し、冷却水と冷媒とで熱交換させることによ
り、冷媒を凝縮させた。そのときの交換熱量から管内凝
縮熱伝達率を算出した。管内熱伝達率は管外面基準で求
めたものであり、管そのものの熱伝導率も含めたかたち
で算出した。なお、測定時の冷媒質量流速は300kg
/m2 sである。
Single-tube heat transfer measuring method A sample is inserted as an inner tube of a double-tube heat exchanger installed horizontally, and a refrigerant (freon) is flown into the sample, and a double tube between the outer tube and the inner tube is inserted. Cooling water was made to flow in the pipe portion in opposition to the refrigerant, and heat was exchanged between the cooling water and the refrigerant to condense the refrigerant. The in-tube condensation heat transfer coefficient was calculated from the amount of heat exchanged at that time. The heat transfer coefficient in the tube was obtained based on the outer surface of the tube, and was calculated in the form that includes the thermal conductivity of the tube itself. The refrigerant mass flow rate during measurement is 300 kg.
/ M 2 s.

【0019】 [0019]

【0020】表1の測定結果から明らかなとおり、フィ
ン高さHが0.2〜0.4mmの領域でSH/Hが0.0
6〜0.09の範囲内(表1の太枠内)のサンプルは、
それ以外のサンプルよりも平均的に高い伝熱性能を示し
ている。SH/Hが0.06〜0.09でもフィン高さ
が0.2mm未満のケース(No.1)では伝熱性能が
低下している。フィン高さHが0.4mmを超えるケー
ス(No.8,14)では高い伝熱性能を示している
が、これらのケースでは、例えば転造工具を用いて管を
転造加工する場合加工速度を抑えなければ加工すること
ができす、生産性の点で問題があった。フィンのリード
角βは、25〜45°の範囲でより性能が向上してい
る。No.2〜7は本発明の範囲内のケースであるが、
この中例えばNo.2〜4は、フィン高さHは比較的低
いけれどもフィンのリード角βが25°以上であるため
相対的に高い伝熱性能を示しているのに対し、No.
6,7は、フィン高さHは比較的高いけれどもフィンの
リード角βが15°と小さいため、伝熱性能の向上の程
度が小さくなっている。表1の結果により、フィンピッ
チPは0.35mm以上1.0mm以下であるのが好ま
しい。例えば、No.6はフィン高さHは比較的高いが
フィンピッチが0.35mmを下回っているため、N
o.5はフィンピッチPが大き過ぎて必要な伝熱面積が
確保できないため、それぞれ管内熱伝達率は相対的に低
い。
As is clear from the measurement results of Table 1, SH / H is 0.0 in the region where the fin height H is 0.2 to 0.4 mm.
Samples within the range of 6 to 0.09 (inside the thick frame in Table 1) are
It exhibits higher average heat transfer performance than the other samples. Even if SH / H is 0.06 to 0.09, the heat transfer performance is deteriorated in the case where the fin height is less than 0.2 mm (No. 1). High heat transfer performance is shown in the case where the fin height H exceeds 0.4 mm (No. 8 and 14), but in these cases, for example, when rolling a pipe using a rolling tool, the processing speed is There was a problem in terms of productivity because it could be processed if it was not suppressed. The fin lead angle β is in the range of 25 to 45 °, and the performance is further improved. No. 2 to 7 are cases within the scope of the present invention,
Among these, for example, No. Nos. 2 to 4 show relatively high heat transfer performance because the fin lead angle β is 25 ° or more, although the fin height H is relatively low.
In Nos. 6 and 7, the fin height H is relatively high, but the fin lead angle β is as small as 15 °, so the degree of improvement in heat transfer performance is small. From the results of Table 1, the fin pitch P is preferably 0.35 mm or more and 1.0 mm or less. For example, No. 6 has a relatively high fin height H, but the fin pitch is less than 0.35 mm, so N
o. In No. 5, since the fin pitch P is too large to secure the required heat transfer area, the heat transfer coefficient in each tube is relatively low.

【0021】[0021]

【発明の効果】本発明に係る内面溝付管は、フィン高さ
H=0.2〜0.4であって、リード角βと直交する断
面における各フィン10の断面積SHとフィン高さHと
の比SH/Hが0.06〜0.09であるように内面に
フィン10を形成したので、高くかつシャープな断面形
状のフィンを形成しても、フィン熱伝導効率が低下する
ことなく、管外から管壁を通じた熱がフィン10の先端
部まで十分に伝わり、管全体の伝熱熱効率が高まる。ま
た、フィン形状をシャープにできることにより、より多
数のフィンを内面に形成して伝熱面積を最大限に広げ、
伝熱性能の向上をはかることができる。
INDUSTRIAL APPLICABILITY The inner grooved tube according to the present invention has a fin height H = 0.2 to 0.4, and the cross-sectional area SH and fin height of each fin 10 in a cross section orthogonal to the lead angle β. Since the fin 10 is formed on the inner surface so that the ratio SH / H with H is 0.06 to 0.09, even if a fin having a high and sharp cross-sectional shape is formed, the fin heat transfer efficiency decreases. Instead, the heat from the outside of the pipe through the pipe wall is sufficiently transmitted to the tips of the fins 10, and the heat transfer efficiency of the entire pipe is improved. Also, by making the fin shape sharper, more fins can be formed on the inner surface to maximize the heat transfer area,
The heat transfer performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)図は本発明による実施形態の内面溝付管
の部分展開平面図、(b)図は(a)図の矢印A−Aに
沿う拡大断面図である。
FIG. 1 (a) is a partially developed plan view of an inner grooved tube according to an embodiment of the present invention, and FIG. 1 (b) is an enlarged sectional view taken along the arrow AA of FIG. 1 (a).

【符号の説明】[Explanation of symbols]

1 管 10 フィン 11 根元部分 α フィン頂角 α1 根元部分の開き角度 β フィンのリード角 H フィン高さ T 溝底肉厚 SH フィンの断面積 P フィンピッチ W フィンの根元方向部分の両側傾斜面相互間の幅 w フィンの頂部方向部分の両側傾斜面の根元方向への
延長面相互間の幅
1 Tube 10 Fin 11 Root part α Fin apex angle α 1 Root opening angle β Fin lead angle H Fin height T Groove bottom wall thickness SH Fin cross-sectional area P Fin pitch W Both slopes on both sides of root direction Width w The width between the extension surfaces in the root direction of the inclined surfaces on both sides of the top part of the fin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋爪 利明 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiaki Hashizume             2-6-1, Marunouchi, Chiyoda-ku, Tokyo             Kawa Electric Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 管内面に管軸に対して所定のリード角β
をもつフィン高さH=0.2〜0.4mmの多数のフィ
ン10が平行に形成され、前記リード角βと直交する断
面における各フィン10の断面積SHとフィン高さHと
の比SH/H=0.06〜0.09であることを特徴と
する内面溝付管。
1. A predetermined lead angle β with respect to the tube axis on the inner surface of the tube
A large number of fins 10 having a fin height H = 0.2 to 0.4 mm are formed in parallel, and the ratio SH of the cross-sectional area SH of each fin 10 and the fin height H in the cross section orthogonal to the lead angle β. /H=0.06 to 0.09, an inner grooved tube.
【請求項2】 前記フィン10の根元方向の所定高さ部
分における両側傾斜面相互間の幅は、フィン10の頂部
方向の所定高さ部分における両側傾斜面の根元方向への
延長面相互間の幅よりも、根元に近づくにしたがって徐
々に大きく広がっていることを特徴とする、請求項1に
記載の内面溝付管。
2. The width between the inclined surfaces on both sides at a predetermined height portion in the root direction of the fin 10 is defined by the distance between the extension surfaces in the root direction of both inclined surfaces at the predetermined height portion in the top direction of the fin 10. The inner grooved pipe according to claim 1, wherein the inner surface grooved pipe is wider than the width gradually toward the base.
【請求項3】 前記リード角βが25〜45°であるこ
とを特徴とする、請求項1又は2に記載の内面溝付管。
3. The inner grooved tube according to claim 1 or 2, wherein the lead angle β is 25 to 45 °.
【請求項4】 フィンピッチPが0.35〜1.0mm
であることを特徴とする、請求項1〜3のいずれかに記
載の内面溝付管。
4. The fin pitch P is 0.35 to 1.0 mm.
The inner grooved tube according to any one of claims 1 to 3, characterized in that
【請求項5】 管の外径が10mm以下であることを特
徴とする、請求項1〜4のいずれかに記載の内面溝付
管。
5. The inner grooved pipe according to claim 1, wherein the outer diameter of the pipe is 10 mm or less.
【請求項6】 材質が銅又は銅合金であることを特徴と
する、請求項1〜5のいずれかに記載の内面溝付管。
6. The inner grooved tube according to claim 1, wherein the material is copper or a copper alloy.
JP2001366505A 2001-11-30 2001-11-30 Internally threaded tube Pending JP2003166794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366505A JP2003166794A (en) 2001-11-30 2001-11-30 Internally threaded tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366505A JP2003166794A (en) 2001-11-30 2001-11-30 Internally threaded tube

Publications (1)

Publication Number Publication Date
JP2003166794A true JP2003166794A (en) 2003-06-13

Family

ID=19176393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366505A Pending JP2003166794A (en) 2001-11-30 2001-11-30 Internally threaded tube

Country Status (1)

Country Link
JP (1) JP2003166794A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242553A (en) * 2005-02-03 2006-09-14 Furukawa Electric Co Ltd:The Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater
JP2006322661A (en) * 2005-05-18 2006-11-30 Furukawa Electric Co Ltd:The Heat transfer tube for heat dissipation, and radiator
JP2008241193A (en) * 2007-03-28 2008-10-09 Furukawa Electric Co Ltd:The Inner surface grooved pipe made of aluminum

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242553A (en) * 2005-02-03 2006-09-14 Furukawa Electric Co Ltd:The Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater
JP4615422B2 (en) * 2005-02-03 2011-01-19 古河電気工業株式会社 Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2006322661A (en) * 2005-05-18 2006-11-30 Furukawa Electric Co Ltd:The Heat transfer tube for heat dissipation, and radiator
JP2008241193A (en) * 2007-03-28 2008-10-09 Furukawa Electric Co Ltd:The Inner surface grooved pipe made of aluminum

Similar Documents

Publication Publication Date Title
CA2200671C (en) Heat exchanger tube
EP0499257A2 (en) Heat-transfer small size tube and method of manufacturing the same
EP2236972A2 (en) Fin for heat exchanger and heat exchanger using the fin
CN1125000A (en) Grooved tubes for heat exchangers used in air conditioning and cooling apparatuses, and corresponding exchangers
KR20040101283A (en) Slotted tube with reversible usage for heat exchangers
JP3947158B2 (en) Heat exchanger
JP4294183B2 (en) Internal grooved heat transfer tube
JP4389565B2 (en) Boiling heat transfer tube and manufacturing method thereof
JP4913371B2 (en) Manufacturing method of heat exchanger
JP2003166794A (en) Internally threaded tube
JP2005195192A (en) Heat transfer pipe with grooved inner face
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP5281676B2 (en) Aluminum fin for cross fin tube type heat exchanger and cross fin tube type heat exchanger using the same
JP2012002453A (en) Heat transfer tube with inner face groove, and heat exchanger
JP2009243864A (en) Inner surface grooved pipe for heat pipe, and heat pipe
JP2008267625A (en) Heat transfer tube for falling liquid film-type refrigerating machine and its manufacturing method
JPH09101093A (en) Heat transfer pipe with inner surface groove
JP2008267779A (en) Heat transfer tube
JPH0579783A (en) Heat transfer tube with inner surface groove
EP3115730B1 (en) Refrigeration cycle device
JP3292043B2 (en) Heat exchanger
JP2009243863A (en) Internally grooved pipe for heat pipe, and heat pipe
JP5446163B2 (en) Grooved tube for heat exchanger
JPH08233480A (en) Heat transfer tube with inner surface groove
JPH0849992A (en) Heat transfer tube with internal groove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040701

A977 Report on retrieval

Effective date: 20051116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060127

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20060424

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060508

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060602