JP2009243864A - Inner surface grooved pipe for heat pipe, and heat pipe - Google Patents

Inner surface grooved pipe for heat pipe, and heat pipe Download PDF

Info

Publication number
JP2009243864A
JP2009243864A JP2008094347A JP2008094347A JP2009243864A JP 2009243864 A JP2009243864 A JP 2009243864A JP 2008094347 A JP2008094347 A JP 2008094347A JP 2008094347 A JP2008094347 A JP 2008094347A JP 2009243864 A JP2009243864 A JP 2009243864A
Authority
JP
Japan
Prior art keywords
fin
pipe
tube
groove
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008094347A
Other languages
Japanese (ja)
Inventor
Nobuaki Hinako
伸明 日名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2008094347A priority Critical patent/JP2009243864A/en
Publication of JP2009243864A publication Critical patent/JP2009243864A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inner surface grooved pipe, excellent in workability and productivity, stable in quality, and excellent in cooling performance. <P>SOLUTION: In the inner surface grooved pipe for a heat pipe made of copper or copper alloy provided with fins 3 extending to a direction in parallel with or inclined to a pipe axial direction on an inner surface of a pipe 1, a lead angle of the fin 3 to the pipe axis is from 0 to 5 degrees. Regarding a shape of the fin 3 on the pipe axis orthogonal cross section, 40 quantity% of fins or more have fin apexes divided to be a V shape or a Y shape. In the pipe axis orthogonal cross section, two or more of five fins continuously aligned have notch-shaped concave parts 4, each of which is provided in a direction in parallel with the pipe axis, or in a direction of climbing a slope, or in a direction of going down the slope, on one or both sides of the slope formed from the apex of the fin 3 to a bottom part of a groove 2 between the fins 3. A crest angle θ of the apex of the fin 3 which does not have a V-shaped or Y-shaped apex form is 40 degrees or smaller. A groove bottom width L between the fins 3 formed within the pipe axis orthogonal cross section is 0.1-0.3 mm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はパソコンの中央演算処理装置(CPU)等の放熱・冷却に用いられるヒートパイプ及びこのヒートパイプの製造に供され、水を冷媒(作動液)として用いる内面溝付管に関する。   The present invention relates to a heat pipe used for heat dissipation and cooling of a central processing unit (CPU) of a personal computer and the like, and an inner grooved pipe used for manufacturing the heat pipe and using water as a refrigerant (working fluid).

近時、パソコンの高速化に伴いCPUの発熱量が大きくなり、CPUの冷却に使用されるヒートパイプに高伝熱性能が求められている。更に、携帯性の要求からノート型パソコンの薄肉化が進められている。このように発熱量の大きな薄肉化されたノート型パソコンへの内蔵の必要性から、ヒートパイプには銅又は銅合金製の伝熱管の内面に溝を設け、溝間の突起としてのフィンを形成することにより、伝熱管と冷媒(作動液)である水との接触面積を増やすことによって伝熱性能を向上させた内面溝付管が使用されている。この内面溝付管は、偏平加工してヒートパイプに供される。図2(a)は偏平加工された内面溝付管の断面図、(b)は、偏平加工された内面溝付管の曲線部を示す断面図である。図2に示すように、内面溝付管1は偏平加工されることにより、管軸直交断面において半円形の曲線部11bを直線部11aで結んだ形状となる。そして、曲線部11bの管内面における曲率半径は、元の内面溝付管の内半径より小さくなっている。そのため、管の曲線部にあるフィン同士は接近し、曲線部におけるフィン間の溝の幅は狭まり、曲線部の溝部、特に曲線部中央付近の溝部断面積は小さくなる。そのため、溝部に保持できる作動液量が減少するとともに作動液の流れは阻害される。   Recently, as the speed of personal computers increases, the amount of heat generated by the CPU increases, and high heat transfer performance is required for heat pipes used for cooling the CPU. In addition, notebook computers are being made thinner due to portability requirements. Due to the necessity of being built into a thin laptop computer with a large amount of heat generated in this way, the heat pipe is provided with grooves on the inner surface of the heat transfer tube made of copper or copper alloy, and fins are formed as protrusions between the grooves. Thus, an internally grooved tube having improved heat transfer performance by increasing the contact area between the heat transfer tube and water as the refrigerant (working fluid) is used. This internally grooved tube is flattened and used as a heat pipe. FIG. 2A is a cross-sectional view of an internally grooved tube that has been flattened, and FIG. 2B is a cross-sectional view that shows a curved portion of the internally grooved tube that has been flattened. As shown in FIG. 2, the internally grooved tube 1 is flattened to have a shape in which a semicircular curved portion 11b is connected by a straight portion 11a in a cross section perpendicular to the tube axis. And the curvature radius in the pipe inner surface of the curved part 11b is smaller than the inner radius of the original inner surface grooved pipe. Therefore, the fins in the curved portion of the pipe approach each other, the width of the groove between the fins in the curved portion is narrowed, and the groove portion of the curved portion, particularly the groove cross-sectional area near the center of the curved portion is reduced. Therefore, the amount of hydraulic fluid that can be held in the groove is reduced and the flow of hydraulic fluid is inhibited.

ヒートパイプ内の作動液は気体と液体の状態で存在する。作動液はCPU等の熱源(蒸発部側)付近で管壁から熱を奪い、液体から気体となる。そのため蒸発部側の圧力が高くなり、気体となった作動液は圧力の低い放熱部側(凝縮部側)へ管断面中心部を流れる。放熱部側に流れた気体は熱を管壁に放出し、気体から液体となり、毛細管力によってフィン間の溝部を凝縮部側から蒸発部側へと流れる。   The working fluid in the heat pipe exists in the state of gas and liquid. The hydraulic fluid removes heat from the tube wall in the vicinity of a heat source (evaporator side) such as a CPU, and changes from a liquid to a gas. For this reason, the pressure on the evaporation section side becomes high, and the working fluid that has become a gas flows through the central portion of the pipe cross section to the heat radiation section side (condensing section side) where the pressure is low. The gas that has flowed to the heat radiating portion releases heat to the tube wall, turns the gas into a liquid, and flows through the groove portion between the fins from the condensation portion side to the evaporation portion side by capillary force.

従来、ヒートパイプには溝部が管軸に対するリード角を有し、フィン根元に傾斜部を持つことにより、作動液が溝部を凝縮部から蒸発部へと流れやすくしている内面溝付管が使用されている。   Conventionally, heat pipes have an internally grooved tube that has a grooved lead angle with respect to the tube axis and an inclined portion at the base of the fin, making it easy for hydraulic fluid to flow from the condensing part to the evaporation part. Has been.

例えば、特許文献1には、管軸に対してリード角を有する複数本の溝を転造によって管材の内面に成形し、更に、フィン傾斜部と溝底部の境界に設ける平滑な緩斜面の高さを最適化することによって、加工性及び工具寿命を向上させた内面溝付管が提案されている。   For example, Patent Document 1 discloses that a plurality of grooves having a lead angle with respect to a tube axis are formed on the inner surface of a tube material by rolling, and a smooth gentle slope provided on the boundary between the fin inclined portion and the groove bottom portion is provided. By optimizing the thickness, an internally grooved tube with improved workability and tool life has been proposed.

また、特許文献2には、管軸に平行又はリード角を有する複数本のU字状の主溝及びこの主溝に対して交差角を持つ複数本のV字状の副溝を圧延加工によって断続的に板材に形成し、その後ロールフォーミングによって溝成形面を内側に向けて円弧状に丸め、電縫加工によって管体にする方法が開示されている。そして、この内面溝付管は、成形されたV字状のフィンに対し、溝上部の開口幅を部分的に狭めて管状溝を形成し、この管状溝内に気泡が発生しやすくなるようにしている。この気泡が核となって蒸発を促進することによって気化効率を高め、更に、溝内での表面張力による作動液の輸送効率を向上させている。   Further, in Patent Document 2, a plurality of U-shaped main grooves having a parallel or lead angle to the tube axis and a plurality of V-shaped sub-grooves having crossing angles with respect to the main grooves are formed by rolling. A method is disclosed in which a plate material is intermittently formed, and thereafter a groove forming surface is rounded in an arc shape by roll forming, and a tubular body is formed by electric sewing. And this inner surface grooved tube forms a tubular groove by partially narrowing the opening width of the groove upper part with respect to the formed V-shaped fin, and it is made easy to generate bubbles in this tubular groove. ing. This bubble serves as a nucleus to promote evaporation, thereby increasing the vaporization efficiency and further improving the transport efficiency of the hydraulic fluid due to the surface tension in the groove.

また、特許文献3には、管軸に平行又は螺旋状に延びる複数本の主溝を圧延加工によって板材に形成した後、主溝と一定角度で交差するV字状の副溝を間欠的に板材に形成し、その後ロールフォーミングによって溝成形面を内側に向けて円弧状に丸め、電縫加工によって管体にする方法が開示されている。管内面に形成される主溝とV字溝の交差部では、主溝間に形成される突条がV字溝によって分割されて、左右に傾斜した傾斜壁が形成されている。この隣接する傾斜壁の間には、底部よりも開口幅が小さい管状溝が間欠的に形成されている。突条のみが形成された領域と管状溝が形成された領域とが交互に形成されることで、管状溝内では作動液の気泡が発生しやすくなるようにし、突条のみが形成された領域では気泡が滞留しないようにして、作動液の流速が大きい場合においても熱媒流体と伝熱管との伝熱効率低下を少なくしている。   In Patent Document 3, a plurality of main grooves extending in parallel or spirally with the tube axis are formed on a plate by rolling, and then V-shaped sub grooves that intersect the main grooves at a constant angle are intermittently formed. A method is disclosed in which a sheet material is formed, then the groove forming surface is rounded in an arc shape by roll forming, and the tube body is formed by electric sewing. At the intersection of the main groove and the V-shaped groove formed on the inner surface of the tube, the ridge formed between the main grooves is divided by the V-shaped groove to form an inclined wall inclined right and left. Between the adjacent inclined walls, tubular grooves having an opening width smaller than the bottom are intermittently formed. Regions where only the ridges are formed and regions where the tubular grooves are formed are alternately formed, so that bubbles of hydraulic fluid are easily generated in the tubular grooves, and regions where only the ridges are formed. In this case, the bubbles are not retained, so that the reduction in heat transfer efficiency between the heat transfer fluid and the heat transfer tube is reduced even when the flow rate of the hydraulic fluid is large.

特開2003−222480号公報JP 2003-222480 A 特開平3−234302号公報JP-A-3-234302 特開平6−101986号公報JP-A-6-101986

しかしながら、前述の従来技術には以下のような問題点がある。ヒートパイプにおいて、凝縮部を流れる凝縮液にはフィンに対して垂直な速度成分がある。凝縮液が持つフィンに対して垂直な速度成分は内面溝の管軸に対するリード角の増大とともに増えて、フィンが抵抗要素として強く作用するようになるのに加え、溝底部を流れる凝縮液の流動長さはリード角の増大とともに長くなり、ヒートパイプの一定断面を通過する凝縮液の流速は小さくなる。また、管中央部を蒸発部から凝縮部へと流れる蒸気と管壁に沿って凝縮部から蒸発部へと流れる作動液とは流れる方向が逆であり、その境界には摩擦が生じる。そして、凝縮液の流速が低下したり、蒸気と凝縮液の間に生じる摩擦によって凝縮液の凝縮部側から蒸発部側への流れが妨げられると、蒸発部側に作動液が不足してドライアウトし、熱伝達率が急激に低下するためヒートパイプとしての役割を果たせなくなる。特許文献1に記載の内面溝付管はリード角が大きいため、作動液の流速が遅いことに加え、管断面中心部を流れる蒸気と管壁に沿って流れる凝縮液との接触面積が広く、境界に摩擦を生じやすいため、蒸発部側に作動液が不足してドライアウトしやすく、冷却性能が十分に得られないものである。また、リード角が大きいため、管内面に溝加工する際に溝付プラグの損耗が大きく、加工性が悪く、加工コストが大きくなる。   However, the above-described prior art has the following problems. In the heat pipe, the condensate flowing through the condensing part has a velocity component perpendicular to the fins. The velocity component perpendicular to the fins of the condensate increases with an increase in the lead angle of the inner groove with respect to the tube axis, and the fins act strongly as resistance elements, and the flow of condensate flowing through the groove bottom The length becomes longer as the lead angle increases, and the flow rate of the condensate passing through a certain section of the heat pipe becomes smaller. In addition, the flow direction of the steam flowing from the evaporation section to the condensation section in the center of the tube and the working fluid flowing from the condensation section to the evaporation section along the tube wall is opposite, and friction occurs at the boundary. If the flow rate of the condensate drops or the friction between the vapor and the condensate prevents the flow of the condensate from the condensing part side to the evaporating part side, the working liquid is insufficient on the evaporating part side and dry. The heat transfer coefficient drops rapidly, so that it can no longer serve as a heat pipe. Since the inner grooved tube described in Patent Document 1 has a large lead angle, in addition to the low flow rate of the working fluid, the contact area between the steam flowing in the center of the tube cross section and the condensate flowing along the tube wall is wide. Since friction is likely to occur at the boundary, the working fluid is insufficient on the evaporation side, and it is easy to dry out, so that sufficient cooling performance cannot be obtained. Further, since the lead angle is large, the grooved plug is greatly worn when the groove is formed on the inner surface of the tube, the workability is poor, and the processing cost is increased.

更に、特許文献1に記載の内面溝付管は、フィン傾斜部と溝底部の境界に平滑な緩斜面を設け、その緩斜面の高さを規定することで内面溝付管の加工性を向上させているが、前記緩斜面の溝底部における幅が広いために溝部面積が減少し、溝部を流れる作動液の量が減ることによって冷却性能の低下を招く。   Furthermore, the internally grooved tube described in Patent Document 1 is provided with a smooth gentle slope at the boundary between the fin inclined portion and the groove bottom, and the workability of the internally grooved tube is improved by defining the height of the gentle slope. However, since the width at the bottom of the groove of the gentle slope is wide, the area of the groove is reduced, and the amount of hydraulic fluid flowing through the groove is reduced, leading to a decrease in cooling performance.

また、特許文献2及び3に記載の内面溝付管は、板材に圧延による溝加工及びロールフォーミングを施した後、電縫加工によって管に成形するため、管内面に電縫加工による溶接部が生じてしまい品質上安定しないという欠点を有している。   In addition, since the internally grooved tubes described in Patent Documents 2 and 3 are formed into a tube by electro-sewing after performing groove processing and roll forming by rolling on the plate material, the welded portion by electro-sewing processing is formed on the tube inner surface. This has the disadvantage of being unstable and not stable in quality.

本発明はかかる問題点に鑑みてなされたものであって、加工性及び生産性に優れ、品質上も安定し、更に、冷却性能に優れたヒートパイプ用内面溝付管及びヒートパイプを提供することを目的とする。   The present invention has been made in view of such problems, and provides an internally grooved tube for heat pipe and a heat pipe that are excellent in workability and productivity, stable in quality, and excellent in cooling performance. For the purpose.

本発明に係るヒートパイプ用内面溝付管は、管内面に管軸方向と平行又は傾斜する方向に伸びるフィンが形成された銅又は銅合金製のヒートパイプ用内面溝付管において、前記フィンの管軸に対するリード角βが0乃至5°であり、管軸直交断面における前記フィンの形状は、40数量%以上のフィンがフィン頂部がV字形又はY字形に分断されたものであり、更に、管軸直交断面において、連続して並ぶ5個のフィンの内2個以上の割合で、前記フィンの頂部から前記溝底にかけて形成される斜面の片側又は両側に管軸と平行若しくは斜面を上る方向若しくは斜面を下る方向に切り欠き状の凹みが形成されており、前記V字形又はY字形の頂部形状を有しないフィンの頂部の山頂角θが40°以下、管軸直交断面内に形成される前記フィン間の溝底幅Lが0.1乃至0.3mmであることを特徴とする。   An inner grooved tube for a heat pipe according to the present invention is an inner grooved tube for a heat pipe made of copper or copper alloy in which a fin extending in a direction parallel to or inclined with respect to the tube axis direction is formed on the inner surface of the tube. The lead angle β with respect to the tube axis is 0 to 5 °, and the shape of the fin in the cross section perpendicular to the tube axis is such that 40% by mass or more of fins are divided into V-shaped or Y-shaped fins, In the cross-section perpendicular to the tube axis, the direction parallel to or up the tube axis on one or both sides of the slope formed from the top of the fin to the groove bottom at a ratio of 2 or more of the 5 fins arranged in a row Alternatively, a notch-shaped recess is formed in the direction of going down the slope, and the peak angle θ of the top of the fin that does not have the V-shaped or Y-shaped top shape is 40 ° or less and is formed in the cross section perpendicular to the tube axis. Between the fins Groove bottom width L is being 0.1 to 0.3 mm.

更に、本発明に係るヒートパイプ用内面溝付管は、管内面に第1の溝付プラグによる転造加工を施して第1の溝を形成することにより、前記第1の溝間の突起として前記フィンが管内面に形成されており、前記第1の溝形成後、管内面に第2の溝付プラグによる転造加工を施して第2の溝を前記フィンの頂部に形成することにより、少なくとも一部の前記フィンの頂部が分断されていることが好ましい。   Furthermore, the internally grooved pipe for heat pipes according to the present invention is formed as a projection between the first grooves by forming a first groove by rolling the inner surface of the pipe with a first grooved plug. The fin is formed on the inner surface of the pipe, and after forming the first groove, by rolling the inner surface of the pipe with a second grooved plug to form the second groove on the top of the fin, It is preferable that at least some of the tops of the fins are divided.

本発明に係るヒートパイプは、前述のヒートパイプ用内面溝付管を、その円形断面を偏平状に成形したものであることを特徴とする。   The heat pipe according to the present invention is characterized in that the above-mentioned inner grooved pipe for heat pipe is formed by flattening the circular cross section thereof.

本発明のヒートパイプ用内面溝付管によれば、フィン斜面に切り欠き状の凹みを設けたことで性能が向上する。つまり、蒸発部では切り欠き状の凹みが気泡の起点となって核沸騰が起こりやすくなり、最大熱容量が増加する。また、凝縮部及び凝縮と蒸発の中間域においては、切り欠き状の凹みが作動液を毛細管力で蒸発部側へと流れやすくし、熱抵抗が低下する。更に本発明の内面溝付管は、少なくとも一部のフィンの頂部に、第2溝が形成されてフィン頂部が分断されているので、V字形又はY字形に頂部が分断されたフィンが溝上部の開口幅を狭め、溝形状が管状に近くなるため高い毛細管力が得られ、また、溝部を流れる作動液の相と管中央部を流れる気相の境界面積が減るため前記境界で気相と液相の間に摩擦を生じなくなり、作動液が蒸発部側に供給され続けるため冷却効率が高くドライアウトしにくい。   According to the internally grooved pipe for a heat pipe of the present invention, performance is improved by providing a notch-like recess on the fin slope. That is, in the evaporation part, the notch-shaped dent becomes the starting point of bubbles, and nucleate boiling is likely to occur, and the maximum heat capacity increases. Further, in the condensing part and in the intermediate region between condensing and evaporation, the notch-like dent facilitates the flow of the working fluid to the evaporating part side by the capillary force, and the thermal resistance is lowered. Further, in the inner grooved tube of the present invention, since the second groove is formed at the top of at least a part of the fin and the fin top is divided, the fin whose top is divided into a V shape or a Y shape is the upper portion of the groove. Since the groove shape is close to a tube, a high capillary force is obtained, and the boundary area between the phase of the hydraulic fluid flowing through the groove and the gas phase flowing through the center of the tube is reduced, so that the gas Friction does not occur between the liquid phases, and the hydraulic fluid is continuously supplied to the evaporation section side, so that the cooling efficiency is high and it is difficult to dry out.

また、本発明のヒートパイプ用内面溝付管を、その円形断面を偏平状に成形したヒートパイプは、管内面に溝付プラグにより溝形状を転造加工することにより、溝を成形した場合は、電縫加工による溶接部がなく、品質上安定しており、成形される溝の管軸に対するリード角が小さいため溝付プラグの損耗を抑えられ、加工性、生産性に優れている。   In addition, the heat pipe in which the circular cross section of the inner surface grooved tube for heat pipe of the present invention is formed into a flat shape is formed by rolling the groove shape with a grooved plug on the inner surface of the tube. There is no welded part by electro-sewing process, it is stable in quality, and since the lead angle of the formed groove with respect to the tube axis is small, wear of the grooved plug can be suppressed, and the workability and productivity are excellent.

以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。図1(a)は本発明の実施形態に係る内面溝付管における、管軸直交断面での内面溝付管の一部を示す断面図、図1(b)は図1(a)の斜視図、図3は図1(a)の一部拡大断面図、図4は管軸平行断面における断面図、図7及び図8は、本実施形態のヒートパイプ用内面溝付管を偏平加工後に管軸方向に曲線部で切断した断面を示す概略図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. 1A is a cross-sectional view showing a part of an internally grooved tube in a tube axis orthogonal cross section in an internally grooved tube according to an embodiment of the present invention, and FIG. 1B is a perspective view of FIG. FIG. 3, FIG. 3 is a partially enlarged cross-sectional view of FIG. 1 (a), FIG. 4 is a cross-sectional view in a tube axis parallel cross section, and FIGS. 7 and 8 are views after flattening the internally grooved tube for heat pipe of this embodiment It is the schematic which shows the cross section cut | disconnected by the curved part in the pipe-axis direction.

まず、本発明の内面溝付管の形状について説明する。図1(a)及び図4に示すように、内面溝付管は、管1内面に管軸方向と平行又は傾斜する方向に複数の溝2が螺旋状に形成されており、この螺旋溝2間の突起として螺旋状に伸びるフィン3が形成されている。フィン3は管軸直交断面において、頂部の幅が底部より小さい台形型、頂部の幅が底部より小さく頂部が円弧状をした頂部の丸い台形型、頂部の幅が底部より大きい逆台形型、V字形又はY字形の形状を有する。図1及び図3に示すように、本発明においては、フィン3は、管軸直交断面において、連続して並ぶ5個のフィンの内2個以上の割合で、フィン3の頂部から溝2の底部にかけて形成されるフィン斜面の片側又は両側に管軸と平行若しくは斜面を上る方向若しくは斜面を下る方向に切り欠き状の凹み4が形成されている。また、フィン3の一部が更に分断されて管軸直交断面においてV字形又はY字形の形状を形成している。本発明においては、溝2の管軸方向に対するリード角βは0乃至5°である。更に、切り欠き状の凹み4は、フィン3の斜面上フィン頂部から溝部との境界まで高さ方向全体にあってもよいし、途中で途切れていてもよい。また、切り欠き状の凹み4は、フィン長手方向に規則性のある間隔で並んで存在していることが好ましい。更に、V字形又はY字形の形状を有しないフィンにおいて、V字形又はY字形の頂部形状を有しないフィン3の山頂角θは40°以下、フィンとフィンの間に形成される溝2の溝底幅Lは0.1乃至0.3mmであり、好ましくは山頂角θが0乃至30°、溝底幅Lが0.13乃至0.2mmである。更にまた、頂部にV字形又はY字形の形状を持つフィンは全体の40数量%以上、好ましくは全体の50数量%以上含まれている。   First, the shape of the inner grooved tube of the present invention will be described. As shown in FIG. 1A and FIG. 4, the internally grooved tube has a plurality of grooves 2 spirally formed on the inner surface of the tube 1 in a direction parallel to or inclined with respect to the tube axis direction. Fins 3 that extend in a spiral shape are formed as protrusions therebetween. The fin 3 has a trapezoidal shape in which the top width is smaller than the bottom, a round trapezoidal shape with a top that is smaller than the bottom and an arc at the top, an inverted trapezoid with a top width greater than the bottom, V It has the shape of a letter or Y. As shown in FIGS. 1 and 3, in the present invention, the fins 3 are formed from the top of the fin 3 to the groove 2 at a ratio of two or more of the five fins continuously arranged in the cross section perpendicular to the tube axis. A notch-like recess 4 is formed on one side or both sides of the fin slope formed over the bottom in a direction parallel to the tube axis, or in a direction up or down the slope. Further, a part of the fin 3 is further divided to form a V shape or a Y shape in the cross section perpendicular to the tube axis. In the present invention, the lead angle β of the groove 2 with respect to the tube axis direction is 0 to 5 °. Furthermore, the notch-shaped dent 4 may exist in the entire height direction from the top of the fin on the inclined surface of the fin 3 to the boundary with the groove, or may be interrupted in the middle. Moreover, it is preferable that the notch-shaped dents 4 are arranged at regular intervals in the fin longitudinal direction. Further, in a fin not having a V-shaped or Y-shaped shape, the peak angle θ of the fin 3 not having the V-shaped or Y-shaped top shape is 40 ° or less, and the groove of the groove 2 formed between the fins and the fins. The bottom width L is 0.1 to 0.3 mm, preferably the peak angle θ is 0 to 30 °, and the groove bottom width L is 0.13 to 0.2 mm. Furthermore, fins having a V-shaped or Y-shaped shape at the top are included in an amount of 40% or more of the whole, preferably 50% or more of the whole.

次に、本発明の実施形態に係る内面溝付管の製造方法について説明する。まず、素管内に、螺旋状の溝が表面に形成された溝付プラグと縮径プラグとを連結した状態で挿入し、前記プラグの位置において素管外面に接するダイスを設ける。そして、前記素管を引き抜くことにより、縮径ダイスにより前記素管を縮径加工すると共に、素管を介して縮径プラグを素管の引抜力に抗してその位置に保持し、前記溝付プラグを連結軸を介してフローティング状態でその位置に保持する。溝付プラグは縮径プラグと回転可能に連結されており、溝付プラグの位置において、管外面に遊星回転するように複数個の転造ボール又は複数個の転造ロールを配置し、この転造ボール又は転造ロールにより前記素管を前記溝付プラグに向けて押圧すると、素管内面の管肉が溝付プラグの溝内に侵入して素管内面に溝付プラグの溝に対応するフィン3が形成される。また、溝付プラグのフィンの部分が素管内面において溝2となり、溝付プラグの外面の溝形状が、素管内面に転写されてフィン3となる。このとき形成されるフィン3の形状は頂部の幅が底部より小さい台形型又は頂部の幅が底部より小さく頂部が円弧状をした頂部の丸い台形型である。またこのとき、溝付プラグの頂部と溝部斜面との境界部における曲率半径をフィン高さに対して十分小さくすると、溝付プラグの頂部と溝部斜面の境界部において管肉の溝付プラグ溝内への侵入が阻害されて、形成されるフィン3の一部は、フィン3の頂部からフィン3間の溝2の底部にかけて形成されるフィン斜面の片側又は両側に、切り欠き状に管肉が満たされない凹み4が形成される。また、溝付プラグの溝に侵入してフィン形状となった素管内面の管肉が、転造ロール又は転造ボールと溝付プラグの間を抜ける際、溝付プラグによって引き抜きに対して逆方向の抗力を受け、管内面に生成されたフィン斜面に切り欠き状の凹み4が形成される。次に、第1の溝付プラグによる転造加工を施されて第1の溝が形成された管内面に、第2の溝付プラグによる転造加工を施すと、第2の溝がフィン3の頂部に形成され、少なくとも一部のフィン3の頂部が分断される。そして、第1の溝を施すことによって形成され、管軸直交断面において台形型及び頂部の丸い台形型の形状をしたフィン3の一部は、第2の溝によって分断され、前記台形型及び頂部の丸い台形型に加え、フィン頂部の幅が底部より大きい逆台形型及びV字形並びにY字形の形状のフィンが形成される。   Next, a method for manufacturing an internally grooved tube according to an embodiment of the present invention will be described. First, a grooved plug having a spiral groove formed on the surface and a reduced diameter plug are inserted into the raw tube, and a die that contacts the outer surface of the raw tube is provided at the position of the plug. Then, by pulling out the raw pipe, the raw pipe is reduced in diameter by a diameter reducing die, and the reduced diameter plug is held in position against the pulling force of the raw pipe through the raw pipe, and the groove The attached plug is held in that position in a floating state via the connecting shaft. The grooved plug is rotatably connected to the reduced-diameter plug, and at the position of the grooved plug, a plurality of rolling balls or a plurality of rolling rolls are arranged on the outer surface of the pipe so as to perform planetary rotation. When the raw tube is pressed toward the grooved plug by the ball making or the rolling roll, the inner wall of the raw tube enters the groove of the grooved plug and corresponds to the groove of the grooved plug on the inner surface of the raw tube. Fins 3 are formed. Further, the fin portion of the grooved plug becomes the groove 2 on the inner surface of the raw tube, and the groove shape on the outer surface of the grooved plug is transferred to the inner surface of the raw tube to become the fin 3. The shape of the fin 3 formed at this time is a trapezoidal shape whose top width is smaller than the bottom portion or a round trapezoidal shape whose top portion is smaller than the bottom portion and whose top portion has an arc shape. At this time, if the radius of curvature at the boundary between the top of the grooved plug and the groove slope is sufficiently small with respect to the fin height, the inside of the grooved plug groove of the tubular wall at the boundary between the top of the grooved plug and the slope of the groove Part of the fin 3 that is formed in the form of a cutout is formed on one or both sides of the fin slope formed from the top of the fin 3 to the bottom of the groove 2 between the fins 3. An unfilled recess 4 is formed. In addition, when the tube wall on the inner surface of the fin tube that has entered the groove of the grooved plug and has become a fin shape passes between the rolling roll or rolling ball and the grooved plug, the grooved plug reverses the drawing. A notch-like recess 4 is formed on the fin slope generated on the inner surface of the pipe by receiving the direction drag. Next, when the rolling process using the second grooved plug is performed on the inner surface of the pipe on which the first groove is formed by the rolling process using the first grooved plug, the second groove becomes the fin 3. The top of at least a part of the fins 3 is divided. A part of the fin 3 formed by applying the first groove and having a trapezoidal shape and a round trapezoidal shape at the top in the cross section perpendicular to the tube axis is divided by the second groove, and the trapezoidal shape and the top In addition to the round trapezoidal die, inverted trapezoidal and V-shaped and Y-shaped fins having a fin top width larger than the bottom are formed.

以下、上記各数値限定の理由について説明する。   Hereinafter, the reason for limiting each numerical value will be described.

「リード角β:0乃至5°」
前述の如く内面溝付管を偏平加工すると、図2(a)に示すように、内面溝付管1は直線部11a及び曲線部11bを有する形状となる。この偏平加工した内面溝付管1をヒートパイプとして使用する場合においては、管の曲線部11bにあるフィン同士は接近し、フィン間の溝の幅は狭まるため、溝部を凝縮部側から蒸発部側へと流れる液体の作動液の循環量は減少する。図7及び図8の破線は、偏平加工による曲線部の影響を受けるフィン、実線は偏平加工による曲線部の影響を受けないフィンを示す。また、図7はリード角βが小さい場合、図8はリード角βが大きい場合を示す。図8に示すように、リード角が大きくなるに従って、単位長さ当たりの管において曲線部を通るフィンの数は増えるため、性能は低下する。更に、蒸発部から凝縮部へと流れる蒸気がほぼ管軸に平行な流れであるのに対し、凝縮部から蒸発部へと流れる液体の作動液の流れはリード角によってフィン斜面に垂直な速度成分を持ち、リード角が大きくなるに伴いより強く流れが阻害されてしまう。また、凝縮部で液体となった作動液は毛細管力によって溝底部を蒸発部側へと流れるが、リード角βが大きくなると、作動液の流動長さがそれだけ増大するため流れが遅くなる。そして、作動液の循環量低下により蒸発部側に作動液が不足するとドライアウトしやすくなり、急激に冷却性能が低下する。更にまた、リード角が大きいと管内面に溝を加工する際に、溝付プラグの損耗が大きく、加工性が低下し、加工コストが増大する。リード角が5°を超えると、偏平加工された管において、管の曲線部において溝部面積が減少する頻度が増えて作動液の循環量が減るのに加え、作動液のフィン斜面に直交する速度成分が大きくなり、更に、作動液の流動長さが増大してドライアウトしやすくなる。従って、前記溝が管軸方向となすリード角βは0乃至5°である。
“Lead angle β: 0 to 5 °”
When the inner grooved tube is flattened as described above, the inner grooved tube 1 has a shape having a straight portion 11a and a curved portion 11b as shown in FIG. When this flattened inner surface grooved tube 1 is used as a heat pipe, the fins in the curved portion 11b of the tube approach each other, and the width of the groove between the fins is narrowed. The amount of hydraulic fluid circulating to the side decreases. The broken lines in FIGS. 7 and 8 indicate fins that are affected by the curved portion due to flattening, and the solid lines indicate fins that are not affected by the curved portion due to flattening. 7 shows a case where the lead angle β is small, and FIG. 8 shows a case where the lead angle β is large. As shown in FIG. 8, as the lead angle increases, the number of fins passing through the curved portion in the pipe per unit length increases, and therefore the performance decreases. Furthermore, while the vapor flowing from the evaporating part to the condensing part is a flow almost parallel to the tube axis, the flow of the hydraulic fluid flowing from the condensing part to the evaporating part is a velocity component perpendicular to the fin slope due to the lead angle. As the lead angle increases, the flow is more strongly inhibited. Further, the hydraulic fluid that has become liquid in the condensing part flows through the bottom of the groove toward the evaporation part due to the capillary force. However, when the lead angle β increases, the flow length of the hydraulic fluid increases accordingly and the flow becomes slower. And if the working fluid is insufficient on the evaporation part side due to a decrease in the circulating amount of the working fluid, it becomes easy to dry out, and the cooling performance is drastically lowered. Furthermore, when the lead angle is large, when the groove is machined in the pipe inner surface, the grooved plug is greatly worn, the workability is lowered, and the machining cost is increased. When the lead angle exceeds 5 °, in the flattened pipe, the frequency of the groove area decreasing in the curved part of the pipe increases and the circulation amount of the hydraulic fluid decreases, and the speed orthogonal to the fin slope of the hydraulic fluid Ingredients increase, and the flow length of the working fluid increases, making it easier to dry out. Accordingly, the lead angle β between the groove and the tube axis direction is 0 to 5 °.

「切り欠き状の凹みを持つ突起の割合:連続する5つの内2つ以上」
突起部斜面に切り欠き状の凹みを設けると、蒸発部では切り欠き状の凹みが気泡の起点となって核沸騰が起こりやすく最大熱容量が増加する。また、凝縮部及び凝縮と蒸発の中間域においては、切り欠き状の凹みが作動液を毛細管力で蒸発部側へと流れやすくし、熱抵抗が低下する。切り欠き状の凹みを持つ突起の割合が連続する5つの内2つ未満であると、最大熱容量の増加及び熱抵抗の低下が十分得られず、切り欠き状の凹みを持つ突起の割合が連続する5つの内2つ以上になると、核沸騰の頻度が大きくなり、毛細管力で作動液を凝縮部から蒸発部側へと供給しやすくなるため冷却効率が高まり、ドライアウトしにくくなる。従って、切り欠き状の凹みを持つ突起の割合は、連続する5つの内2つ以上である。
“Percentage of protrusions with cutout dents: 2 or more of the 5 in a row”
When a notch-like recess is provided on the slope of the protrusion, the notch-like recess becomes a starting point of bubbles in the evaporation part, and nucleate boiling is likely to occur, and the maximum heat capacity increases. Further, in the condensing part and in the intermediate region between condensing and evaporation, the notch-like dent facilitates the flow of the working fluid to the evaporating part side by the capillary force, and the thermal resistance is lowered. If the ratio of protrusions with notch-shaped dents is less than two of the five continuous, the maximum heat capacity cannot be sufficiently increased and the thermal resistance is not sufficiently reduced, and the ratio of protrusions with notch-shaped dents is continuous. If two or more of these five are used, the frequency of nucleate boiling will increase, and it will be easier to supply the working fluid from the condensing unit to the evaporating unit side by capillary force, so the cooling efficiency will increase and it will be difficult to dry out. Therefore, the ratio of the protrusions having a notch-like recess is two or more of the five consecutive.

「山頂角θ:0乃至40°、溝底幅L:0.1乃至0.3mm」
同一突起数及び同一溝底幅の場合、山頂角が小さいほど突起と溝底とのなす角が直角に近く、溝形状が管状に近くなり、更に、作動液が形成するメニスカスが高くなることによって高い毛細管力が得られるようになる。そのため、作動液の凝縮部側から蒸発部側への流れが向上し、冷却性能が向上する。また、溝底幅が広くなると溝部面積が増えて保持しうる作動液の量が増えるため、作動液の循環量が増加して冷却性能は向上するが、溝底幅が広くなりすぎるとメニスカスの高さが低くなって毛細管力が得られなくなり、冷却性能は低下する。山頂角が40°を超えると毛細管力が低下して作動液循環量が減り、また、溝部又は突起斜面と気相との接触面積が増えて気相と液相の境界での摩擦が大きくなって作動液の流れが阻害されやすくなるため、冷却性能が低下する。溝底幅Lが0.1mm未満であると作動液の表面張力のために作動液が溝部に入り難く、溝底幅Lが0.3mmを超えるとメニスカスの高さが低くなり、毛細管力の低下によって冷却性能は低下する。従って、突起部の山頂角θは0乃至40°、溝底幅Lは0.1乃至0.3mmである。
“Crest angle θ: 0 to 40 °, groove bottom width L: 0.1 to 0.3 mm”
In the case of the same number of protrusions and the same groove bottom width, the smaller the peak angle, the closer the angle between the protrusion and the groove bottom becomes, the closer the groove shape is to a tube, and the higher the meniscus formed by the hydraulic fluid. High capillary force can be obtained. Therefore, the flow of hydraulic fluid from the condensing part side to the evaporation part side is improved, and the cooling performance is improved. Also, as the groove bottom width increases, the groove area increases and the amount of hydraulic fluid that can be retained increases, so the amount of hydraulic fluid circulated increases and cooling performance improves. As the height is lowered, the capillary force cannot be obtained, and the cooling performance is lowered. When the summit angle exceeds 40 °, the capillary force decreases and the circulating amount of the hydraulic fluid decreases, and the contact area between the groove or the slope of the projection and the gas phase increases, and the friction at the boundary between the gas phase and the liquid phase increases. As a result, the flow of the hydraulic fluid is likely to be hindered, so that the cooling performance is deteriorated. When the groove bottom width L is less than 0.1 mm, the hydraulic fluid hardly enters the groove due to the surface tension of the hydraulic fluid, and when the groove bottom width L exceeds 0.3 mm, the meniscus height decreases and the capillary force is reduced. The cooling performance decreases due to the decrease. Therefore, the peak angle θ of the protrusion is 0 to 40 °, and the groove bottom width L is 0.1 to 0.3 mm.

「頂部にV字形又はY字形の形状を持つフィン:全体の40数量%以上」
V字形又はY字形のフィン形状が溝上部の開口幅を狭め、溝形状が管状に近くなるため高い毛細管力が得られ、また、溝部を流れる作動液の相と管中央部を流れる気相の境界面積が減るため前記境界で摩擦を生じなくなり、作動液が蒸発部側に供給され続け、冷却性能は向上する。突起頂部にV字形又はY字形の形状を持つフィンが全体の40数量%未満であると、毛細管力の向上及び凝縮部から蒸発部への作動液供給量の向上よりも、V字形又はY字形のフィン形状を持たないフィンによる毛細管力の低下及び前記液相と気相の境界での摩擦増大による作動液供給量の低下の方が大きく、冷却性能が低下する。従って、突起頂部にV字形又はY字形の形状を持つフィンは全体の40数量%以上である。
“V-shaped or Y-shaped fins on top: 40% or more of the total”
The V-shaped or Y-shaped fin shape narrows the opening width at the top of the groove, and the groove shape is close to a tube, so that a high capillary force can be obtained, and the phase of the working fluid flowing in the groove and the gas phase flowing in the center of the tube Since the boundary area is reduced, friction does not occur at the boundary, and the hydraulic fluid continues to be supplied to the evaporation section, so that the cooling performance is improved. If the number of fins having a V-shaped or Y-shaped shape on the top of the projection is less than 40% by volume, the V-shaped or Y-shaped is better than the improvement in capillary force and the amount of hydraulic fluid supplied from the condensing unit to the evaporation unit. The decrease in the capillary force due to the fins having no fin shape and the decrease in the amount of hydraulic fluid supplied due to the increase in friction at the boundary between the liquid phase and the gas phase are larger, and the cooling performance decreases. Accordingly, the number of fins having a V-shaped or Y-shaped shape at the top of the protrusion is 40% or more of the whole.

以下、本発明の実施例の効果について比較例と対比して説明する。下記表1乃至3は、比較例、実施例の形状条件を示す。   The effects of the embodiments of the present invention will be described below in comparison with comparative examples. Tables 1 to 3 below show the shape conditions of the comparative examples and examples.

この実施例又は比較例のヒートパイプの製造には、外径10mm、肉厚0.40mmの素管に対し、上述の製造方法で溝(フィン)を形成し、外径6mm、底肉厚0.3mmに加工した内面溝付管を使用した。この内面溝付管の構成(形状、寸法)を下記表1乃至表4に示す。   In the production of the heat pipe of this example or comparative example, a groove (fin) was formed by the above-described manufacturing method on a base tube having an outer diameter of 10 mm and a wall thickness of 0.40 mm, and the outer diameter was 6 mm and the bottom wall thickness was 0. An internally grooved tube machined to 3 mm was used. Tables 1 to 4 below show the configurations (shapes and dimensions) of this internally grooved tube.

そして、この内面溝付管を長さ210mmに切断後、内面を洗浄し油分を除去した。次に、管の一方の端部を口絞り長さ5mm区間縮径し、TIG溶接で塞いだ後、他方の端部を口絞り長さ5mm区間縮径した。次に、TIG溶接していない管端より0.6±0.01cc入れた後、水が漏れないよう管を温め、管内の水を蒸発させながら、開口端をTIG溶接して塞ぐ。そして、両端を5mm区間ずつ縮径され、更に両端をTIG溶接によって塞がれて長さ200mmとなった管を、偏平加工後、図5に示すように、管端から100mmの位置にて曲げ半径30mmでL字状に曲げ加工した。この管の寸法は表4に示すとおりである。   And after cut | disconnecting this inner surface grooved pipe | tube to length 210mm, the inner surface was wash | cleaned and the oil component was removed. Next, one end of the tube was reduced in diameter by a section of 5 mm in the aperture length and closed by TIG welding, and then the diameter of the other end was reduced in a section by a length of 5 mm. Next, after inserting 0.6 ± 0.01 cc from the end of the tube not TIG-welded, the tube is warmed so that water does not leak, and the open end is closed by TIG welding while evaporating the water in the tube. Then, the pipe having both ends reduced in diameter by 5 mm sections and further closed at both ends by TIG welding to a length of 200 mm is bent at a position of 100 mm from the pipe end after flattening as shown in FIG. It was bent into an L shape with a radius of 30 mm. The dimensions of this tube are as shown in Table 4.

図6は本実施形態の内面溝付管の性能測定に用いた実験装置を示す。ヒートパイプ11は管端より25mmの区間を加熱部であるヒーター12によって加熱した。本実施例においては、ヒーター12により入力電力30Wにてヒートパイプ11を10分間加熱後、T型熱電対式温度計を用いて加熱部温度、凝縮部温度及び雰囲気温度を測定した。ここで加熱部温度はヒーター12によって加熱される管端より10mm位置14におけるヒートパイプ11の表面温度であり、凝縮部温度はヒートパイプ11のヒーター12によって加熱されない管端より20mm位置15におけるヒートパイプ表面温度であり、雰囲気温度は実験時の大気温度測定点16における温度である。   FIG. 6 shows an experimental apparatus used for measuring the performance of the internally grooved tube of this embodiment. In the heat pipe 11, a section 25 mm from the end of the pipe was heated by a heater 12 as a heating unit. In this example, after heating the heat pipe 11 for 10 minutes with an input power of 30 W by the heater 12, the heating part temperature, the condensing part temperature and the ambient temperature were measured using a T-type thermocouple thermometer. Here, the heating part temperature is the surface temperature of the heat pipe 11 at the position 14 mm from the pipe end heated by the heater 12, and the condensing part temperature is the heat pipe at the position 15 mm 20 mm from the pipe end not heated by the heater 12 of the heat pipe 11. It is the surface temperature, and the atmospheric temperature is the temperature at the atmospheric temperature measurement point 16 during the experiment.

ヒートパイプの性能は、下記数式1及び2にて算出したパラメータを用いて評価する。   The performance of the heat pipe is evaluated using the parameters calculated by the following formulas 1 and 2.

Figure 2009243864
Figure 2009243864


ここで、Qは管の冷却性能を示すパラメータとして用いる冷却効率であり、ヒーター12による加熱に対し、加熱部温度の上昇度を示す値である。ここで、Tは加熱部温度で、加熱される管端より10mm位置14におけるヒートパイプ11の表面温度、Tは雰囲気温度、Wはヒーターによる入力電力である。加熱部温度の上昇が少ない方がヒートパイプの冷却性能に優れるので、Q値が小さい方が冷却性能に優れていると判断できる。

Here, Q is the cooling efficiency used as a parameter indicating the cooling performance of the pipe, and is a value indicating the degree of increase in the temperature of the heating section with respect to the heating by the heater 12. Here, Th is the heating part temperature, the surface temperature of the heat pipe 11 at the position 14 mm from the end of the tube to be heated, Ta is the ambient temperature, and W is the input power by the heater. Since the one where there is little raise of heating part temperature is excellent in the cooling performance of a heat pipe, it can be judged that the one where Q value is small is excellent in cooling performance.

Figure 2009243864
Figure 2009243864


ここで、ΔTは管の加熱部と凝縮部の温度差で、ヒートパイプのように蒸気と液体が混合して流動する管内流において発生するドライアウトの有無を判断するのに用いる値であり、値が小さいほど性能に優れている。即ち、蒸気の割合が増して液体が管壁を流れることができなくなると、急激に熱伝達率が低下するためにヒートパイプがその役割を果たすことができなくなる。また、Tは凝縮部温度で、ヒートパイプ11のヒーター12によって加熱されない管端より20mm位置15におけるヒートパイプ表面温度である。

Here, ΔT is a temperature difference between the heating part and the condensing part of the pipe, and is a value used to determine the presence or absence of dryout that occurs in the pipe flow in which steam and liquid mix and flow like a heat pipe, The smaller the value, the better the performance. That is, when the ratio of the vapor increases and the liquid cannot flow through the tube wall, the heat transfer rate rapidly decreases, so that the heat pipe cannot play its role. Tc is the temperature of the condensing part, which is the surface temperature of the heat pipe at a position 15 mm from the end of the pipe not heated by the heater 12 of the heat pipe 11.

Figure 2009243864
Figure 2009243864

Figure 2009243864
Figure 2009243864

Figure 2009243864
Figure 2009243864

Figure 2009243864
Figure 2009243864

この表1乃至3に示すように、実施例1乃至13はリード角βが請求項1を満足するので、請求項1を満足しない比較例4に比して冷却性能に優れている。また、実施例1乃至13は切り欠き状の凹みを持つ突起の割合が請求項1を満足するので、請求項1を満足しない比較例1及び2に比して冷却性能に優れている。また、実施例1乃至13は突起の山頂角θが請求項1を満足するので、請求項1を満足しない比較例3に比して冷却性能に優れている。また、実施例1乃至13はV字形又はY字形の形状を頂部に持つフィンの割合が請求項1を満足するので、請求項1を満足しない比較例5に比して冷却性能に優れている。   As shown in Tables 1 to 3, since Examples 1 to 13 have the lead angle β that satisfies Claim 1, the cooling performance is superior to that of Comparative Example 4 that does not satisfy Claim 1. Further, in Examples 1 to 13, the ratio of the protrusions having a notch-like recess satisfies Claim 1, so that the cooling performance is superior to Comparative Examples 1 and 2 that do not satisfy Claim 1. Further, in Examples 1 to 13, the peak angle θ of the protrusions satisfies the first aspect, so that the cooling performance is excellent as compared with Comparative Example 3 that does not satisfy the first aspect. Further, in Examples 1 to 13, the proportion of fins having a V-shaped or Y-shaped shape at the top satisfies Claim 1, so that the cooling performance is superior to Comparative Example 5 that does not satisfy Claim 1. .

(a)は本実施形態の内面溝付管における管軸直交断面の一部を示す断面図であり、(b)はその斜視図である。(A) is sectional drawing which shows a part of pipe axis orthogonal cross section in the inner surface grooved pipe | tube of this embodiment, (b) is the perspective view. (a)は偏平加工された内面溝付管の断面図、(b)は、偏平加工された内面溝付管の曲線部を示す断面図である。(A) is sectional drawing of the internally grooved pipe which was flattened, (b) is sectional drawing which shows the curve part of the internally grooved pipe which was flattened. フィン頂部及び溝部を示す図である。It is a figure which shows a fin top part and a groove part. 本実施形態の内面溝付管における管軸直交断面の断面図である。It is sectional drawing of the pipe axis orthogonal cross section in the inner surface grooved pipe | tube of this embodiment. 試験に使用したヒートパイプを示す図である。It is a figure which shows the heat pipe used for the test. 冷却伝熱性能の試験装置を示す図である。It is a figure which shows the testing apparatus of cooling heat transfer performance. 本実施形態のヒートパイプ用内面溝付管を偏平加工後に管軸方向に曲線部で切断した断面を示す概略図である。It is the schematic which shows the cross section which cut | disconnected the curved inner surface pipe | tube for heat pipes of this embodiment in the pipe-axis direction after flattening. 本実施形態のヒートパイプ用内面溝付管を偏平加工後に管軸方向に曲線部で切断した断面を示す概略図である。It is the schematic which shows the cross section which cut | disconnected the curved inner surface pipe | tube for heat pipes of this embodiment in the pipe-axis direction after flattening.

符号の説明Explanation of symbols

1:内面溝付管、2:溝、3:フィン、4:切り欠き状の凹み、11:ヒートパイプ、11a:直線部、11b:曲線部、12:ヒーター、14:加熱部温度測定点、15:凝縮部温度測定点、16:雰囲気温度測定点、θ:山頂角、β:リード角、L:溝底幅、W:ヒーターによる入力電力、T:加熱部温度、T:雰囲気温度、T:凝縮部温度 1: inner grooved tube, 2: groove, 3: fin, 4: notch-shaped dent, 11: heat pipe, 11a: straight part, 11b: curved part, 12: heater, 14: heating part temperature measurement point, 15: condensation part temperature measurement point, 16: atmosphere temperature measurement point, θ: peak angle, β: lead angle, L: groove bottom width, W: input power by heater, Th : heating part temperature, Ta : atmosphere temperature , T c : condensing part temperature

Claims (3)

管内面に管軸方向と平行又は傾斜する方向に伸びるフィンが形成された銅又は銅合金製のヒートパイプ用内面溝付管において、前記フィンの管軸に対するリード角βが0乃至5°であり、管軸直交断面における前記フィンの形状は、40数量%以上のフィンがフィン頂部がV字形又はY字形に分断されたものであり、更に、管軸直交断面において、連続して並ぶ5個のフィンの内2個以上の割合で、前記フィンの頂部から前記溝底にかけて形成される斜面の片側又は両側に管軸と平行若しくは斜面を上る方向若しくは斜面を下る方向に切り欠き状の凹みが形成されており、前記V字形又はY字形の頂部形状を有しないフィンの頂部の山頂角θが40°以下、管軸直交断面内に形成される前記フィン間の溝底幅Lが0.1乃至0.3mmであることを特徴とするヒートパイプ用内面溝付管。 In an internally grooved tube for a heat pipe made of copper or copper alloy, in which a fin extending in a direction parallel to or inclined with respect to the tube axis direction is formed on the tube inner surface, the lead angle β of the fin to the tube axis is 0 to 5 ° The shape of the fin in the cross section perpendicular to the tube axis is 40 fin% or more of fins with the top of the fin divided into a V-shape or a Y-shape. Notch-shaped recesses are formed in one or both sides of the slope formed from the top of the fin to the groove bottom at a ratio of two or more of the fins in a direction parallel to the pipe axis or in a direction up or down the slope. The peak angle θ of the top of the fin not having the V-shaped or Y-shaped top shape is 40 ° or less, and the groove bottom width L between the fins formed in the cross section perpendicular to the tube axis is 0.1 to This is 0.3mm An inner grooved tube heat pipe according to claim. 管内面に第1の溝付プラグによる転造加工を施して第1の溝を形成することにより、前記第1の溝間の突起として前記フィンが管内面に形成されており、前記第1の溝の形成後、管内面に第2の溝付プラグによる転造加工を施して第2の溝を前記フィンの頂部に形成することにより、少なくとも一部の前記フィンの頂部が分断されていることを特徴とする請求項1に記載のヒートパイプ用内面溝付管。 By forming the first groove by rolling the inner surface of the tube with a first grooved plug, the fin is formed on the inner surface of the tube as a protrusion between the first grooves. After forming the groove, at least a part of the top of the fin is divided by rolling the inner surface of the pipe with a second grooved plug to form the second groove on the top of the fin. The internally grooved pipe for a heat pipe according to claim 1. 前記請求項1又は2に記載の内面溝付管を、その円形断面を偏平状に成形したものであることを特徴とするヒートパイプ。 3. A heat pipe, wherein the internally grooved tube according to claim 1 or 2 has a circular cross section formed into a flat shape.
JP2008094347A 2008-03-31 2008-03-31 Inner surface grooved pipe for heat pipe, and heat pipe Pending JP2009243864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094347A JP2009243864A (en) 2008-03-31 2008-03-31 Inner surface grooved pipe for heat pipe, and heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094347A JP2009243864A (en) 2008-03-31 2008-03-31 Inner surface grooved pipe for heat pipe, and heat pipe

Publications (1)

Publication Number Publication Date
JP2009243864A true JP2009243864A (en) 2009-10-22

Family

ID=41305965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094347A Pending JP2009243864A (en) 2008-03-31 2008-03-31 Inner surface grooved pipe for heat pipe, and heat pipe

Country Status (1)

Country Link
JP (1) JP2009243864A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083006A (en) * 2010-10-08 2012-04-26 Furukawa Electric Co Ltd:The Heat transfer tube, and method and device for manufacturing the same
CN104949564A (en) * 2015-07-08 2015-09-30 赤峰宝山能源(集团)贺麒铜业有限责任公司 Straight tooth and high-low tooth internal thread heat transfer pipe
CN112833692A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Radian-variable straight-plate uniform-temperature loop heat pipe
CN112833689A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Circular arc temperature-equalizing loop heat pipe with variable upstream angle
CN112833690A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Circular arc temperature-equalizing loop heat pipe with variable downstream angle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083006A (en) * 2010-10-08 2012-04-26 Furukawa Electric Co Ltd:The Heat transfer tube, and method and device for manufacturing the same
CN104949564A (en) * 2015-07-08 2015-09-30 赤峰宝山能源(集团)贺麒铜业有限责任公司 Straight tooth and high-low tooth internal thread heat transfer pipe
CN112833692A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Radian-variable straight-plate uniform-temperature loop heat pipe
CN112833689A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Circular arc temperature-equalizing loop heat pipe with variable upstream angle
CN112833690A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Circular arc temperature-equalizing loop heat pipe with variable downstream angle
CN112833692B (en) * 2021-01-08 2022-05-24 苏州好嗨哟智能科技有限公司 Radian-variable straight-plate uniform-temperature loop heat pipe
CN112833690B (en) * 2021-01-08 2022-05-27 东莞市立敏达电子科技有限公司 Circular arc temperature-equalizing loop heat pipe with variable downstream angle

Similar Documents

Publication Publication Date Title
JP2010256000A (en) Internally-grooved pipe for heat pipe, and heat pipe
JP2009243864A (en) Inner surface grooved pipe for heat pipe, and heat pipe
KR20110003498A (en) Tube with fins having wings
JP4389565B2 (en) Boiling heat transfer tube and manufacturing method thereof
JP2008261566A (en) Double-pipe heat exchanger
JP4925597B2 (en) Heat pipe for heat pipe and heat pipe
JP4073850B2 (en) Heat exchanger
JP2008241180A (en) Heat transfer tube for heat pipe and heat pipe
KR20150084778A (en) Evaporation heat transfer tube with a hollow caviity
JP2009243863A (en) Internally grooved pipe for heat pipe, and heat pipe
JP6738593B2 (en) Boiling heat transfer tube
JP2006189232A (en) Heat transfer pipe for heat pipe, and heat pipe
JP2011106746A (en) Heat transfer tube, heat exchanger, and processed product of heat transfer tube
JP5243831B2 (en) Inner grooved tube for heat pipe and heat pipe
JP2005291599A (en) Tube with internal groove for heat pipe and heat pipe
JP2010133581A (en) Inner helically grooved tube for heat pipe and the heat pipe
JP2007298266A (en) Water heat exchanger for water heater
JP2000121272A (en) Heat exchanger tube with internal groove and heat exchanger
JP5289088B2 (en) Heat exchanger and heat transfer tube
KR20150092210A (en) Tubing element for a heat exchanger means
CN115900416A (en) Evaporation heat exchange tube and manufacturing method thereof
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP4587545B2 (en) Heat exchanger tube for absorber
JP2000310495A (en) Heat transfer pipe with inner surface grooves