JP2011106746A - Heat transfer tube, heat exchanger, and processed product of heat transfer tube - Google Patents

Heat transfer tube, heat exchanger, and processed product of heat transfer tube Download PDF

Info

Publication number
JP2011106746A
JP2011106746A JP2009262553A JP2009262553A JP2011106746A JP 2011106746 A JP2011106746 A JP 2011106746A JP 2009262553 A JP2009262553 A JP 2009262553A JP 2009262553 A JP2009262553 A JP 2009262553A JP 2011106746 A JP2011106746 A JP 2011106746A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
peripheral surface
height
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009262553A
Other languages
Japanese (ja)
Inventor
Hironori Kitajima
寛規 北嶋
Masaru Horiguchi
賢 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009262553A priority Critical patent/JP2011106746A/en
Priority to CN2010105524325A priority patent/CN102072683A/en
Publication of JP2011106746A publication Critical patent/JP2011106746A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer tube with high heat exchange rate compared with the one having a constant depth of a corrugated groove, and reducing a pressure loss, and also to provide a heat exchanger, and a processed product of the heat transfer tube. <P>SOLUTION: The heat transfer tube 1 includes: a main tube 2 having an inner peripheral surface 2a and an outer peripheral surface 2b; and spiral convex parts 31 formed on the inner peripheral surface 2a of the main tube 2 by forming the spiral corrugated grooves 3 on the outer peripheral surface 2b. The inner peripheral surface 2a of the main tube 2 has an area where the heights of the convex parts 31 periodically change. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、伝熱管、熱交換器及び伝熱管加工品に関する。   The present invention relates to a heat transfer tube, a heat exchanger, and a heat transfer tube processed product.

水−冷媒熱交換器に代表される自然冷媒ヒートポンプ給湯機は、主に夜間などに時間をかけてお湯を沸かすものであり、水の流速が小さく、流れの分類としては全体として層流になる。このような条件下で、熱交換器の性能を上げるためには、水管の伝熱性能の向上が不可欠である。これに対応する伝熱管として、コルゲート管がある(例えば、特許文献1参照)。   Natural refrigerant heat pump water heaters typified by water-refrigerant heat exchangers boil hot water mainly at night, etc., and the flow rate of water is small, and the flow classification is laminar as a whole. . In order to improve the performance of the heat exchanger under such conditions, it is essential to improve the heat transfer performance of the water pipe. There exists a corrugated pipe | tube as a heat exchanger tube corresponding to this (for example, refer patent document 1).

特許文献1に記載の伝熱管は、主管と、主管の外周面に形成された深さが一定の主管の内周面に形成されコルゲート溝と、コルゲート溝による凸状部とを有する伝熱管が記載されている。   The heat transfer tube described in Patent Document 1 is a heat transfer tube having a main tube, a corrugated groove formed on the inner peripheral surface of the main tube having a constant depth formed on the outer peripheral surface of the main tube, and a convex portion formed by the corrugated groove. Are listed.

特開2007−218486号公報JP 2007-218486 A

しかし、特許文献1に記載の伝熱管は、コルゲート溝深さの深いものを用いることで熱交換の高性能化を図ることはできるものの、より性能の高いものを得ようとした場合、コルゲート深さをさらに深くすると、圧力損失が増加してしまう。一方、圧力損失を低減しようと、コルゲート溝深さを浅くすれば、熱交換率の向上は望めない。   However, although the heat transfer tube described in Patent Document 1 can improve the performance of heat exchange by using a tube having a deep corrugated groove depth, when trying to obtain a higher performance, the corrugated depth If the depth is further increased, the pressure loss increases. On the other hand, if the corrugated groove depth is reduced to reduce the pressure loss, the heat exchange rate cannot be improved.

したがって、本発明の目的は、コルゲート溝深さが一定のものと比較して、熱交換率が高く、かつ、圧力損失を低減することができる伝熱管、熱交換器及び伝熱管加工品を提供することにある。   Accordingly, an object of the present invention is to provide a heat transfer tube, a heat exchanger, and a heat transfer tube processed product that have a high heat exchange rate and can reduce pressure loss as compared with a corrugated groove having a constant depth. There is to do.

本発明は、上記目的を達成するため、内周面及び外周面を有する主管と、外周面にらせん状に設けられるコルゲート溝を形成することにより内周面に形成されたらせん状の凸部とを備え、主管の内周面は凸部の高さが周期的に変化している領域を有する伝熱管を提供する。   In order to achieve the above object, the present invention provides a main pipe having an inner peripheral surface and an outer peripheral surface, and a spiral convex portion formed on the inner peripheral surface by forming a corrugated groove provided in a spiral shape on the outer peripheral surface. The inner peripheral surface of the main tube provides a heat transfer tube having a region where the height of the convex portion is periodically changed.

上記伝熱管は、内周面の凸部の最大高さ及び最小高さが、それぞれ一周毎に現れるように形成した伝熱管でもよい。   The heat transfer tube may be a heat transfer tube formed such that the maximum height and the minimum height of the convex portions on the inner peripheral surface appear every round.

また、上記伝熱管に加え、凸部の最大高さの部位が最小高さの部位よりも重力方向に位置するように配置された伝熱管と、凸部の最大高さの部位に接するように伝熱管内に配置された冷媒管を備えた熱交換器を提供することもできる。   Further, in addition to the heat transfer tube, the heat transfer tube disposed so that the maximum height portion of the convex portion is positioned in the direction of gravity than the minimum height portion, and the portion of the maximum height of the convex portion It is also possible to provide a heat exchanger that includes a refrigerant pipe disposed in the heat transfer pipe.

さらに、凸部の最大高さの部位が最小高さの部位よりも重力方向に位置するように配置された伝熱管と、凸部の最大高さの部位に対応する外周面の部分に接するように冷媒管を備えた熱交換器を提供することもできる。   Furthermore, the heat transfer tube disposed so that the maximum height portion of the convex portion is positioned in the direction of gravity more than the minimum height portion, and the outer peripheral surface portion corresponding to the maximum height portion of the convex portion It is also possible to provide a heat exchanger provided with a refrigerant pipe.

加えて、上記伝熱管を凸部の最大高さの部位が形成された側の外周面よりも、凸部の前記最小高さの部位が形成された側の外周面の曲率半径を小さくするように曲げ加工された伝熱管加工品を提供することもできる。   In addition, the radius of curvature of the outer peripheral surface on the side where the minimum height portion of the convex portion is formed is made smaller than the outer peripheral surface on the side where the maximum height portion of the convex portion is formed in the heat transfer tube. It is also possible to provide a heat transfer tube processed product that has been bent into a bent shape.

上記の各構成によれば、コルゲート溝による凸部の高さが高い箇所にて伝熱性能の向上を図り、一方、コルゲート溝による凸部の高さが低い箇所にて圧力損失の低減を実現できる。   According to each of the above configurations, heat transfer performance is improved at locations where the height of the convex portion due to the corrugated groove is high, while pressure loss is reduced at locations where the height of the convex portion due to the corrugated groove is low it can.

本発明によれば、コルゲート溝深さが一定のものと比較して、熱交換率が高く、かつ、圧力損失を低減することができる。   According to the present invention, the heat exchange rate is high and the pressure loss can be reduced compared to a corrugated groove having a constant depth.

図1は、本発明の第1の実施の形態に係る伝熱管の縦断面図である。FIG. 1 is a longitudinal sectional view of a heat transfer tube according to the first embodiment of the present invention. 図2は、本発明の第1の実施の形態に係る伝熱管の製造方法の一例を示し、(a)は第1の製造方法、(b)は第2の製造方法、(c)〜(e)は第3の製造方法に用いるディスクを示す図である。FIG. 2 shows an example of a method for manufacturing a heat transfer tube according to the first embodiment of the present invention, in which (a) is a first manufacturing method, (b) is a second manufacturing method, and (c) to (c) e) is a diagram showing a disk used in the third manufacturing method. 図3(a)は、本発明の第2の実施の形態に係る熱交換器が適応されたヒートポンプ式給湯器を示す図、図3(b)は熱交換器10の縦断面図である。FIG. 3A is a view showing a heat pump type water heater to which a heat exchanger according to the second embodiment of the present invention is applied, and FIG. 3B is a longitudinal sectional view of the heat exchanger 10. 図4は、本発明の第3の実施の形態に係る熱交換器10の概要図である。FIG. 4 is a schematic diagram of a heat exchanger 10 according to the third embodiment of the present invention. 図5(a)は、本発明の第4の実施の形態に係る伝熱管1の縦断面図、図5(b)は伝熱管加工品4の縦断面図である。FIG. 5A is a longitudinal sectional view of the heat transfer tube 1 according to the fourth embodiment of the present invention, and FIG. 5B is a longitudinal sectional view of the heat transfer tube processed product 4.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る伝熱管の縦断面の概要を示す。この伝熱管1は、内周面2a及び外周面2bを有する主管2と、外周面2bにらせん状のコルゲート溝3を形成することにより主管2の内周面2aに形成されたらせん状の凸部31とを備え、主管2の内周面2aは凸部31の高さが周期的に変化している領域を有する。
[First Embodiment]
FIG. 1: shows the outline | summary of the longitudinal cross-section of the heat exchanger tube which concerns on the 1st Embodiment of this invention. The heat transfer tube 1 includes a main tube 2 having an inner peripheral surface 2a and an outer peripheral surface 2b, and a helical convex formed on the inner peripheral surface 2a of the main tube 2 by forming a spiral corrugated groove 3 on the outer peripheral surface 2b. The inner peripheral surface 2a of the main pipe 2 has a region where the height of the convex portion 31 is periodically changed.

なお、「凸部の高さが周期的に変化する」とは、凸部の最大高さの位置及び最小高さ(ゼロを含む)の位置が、其々凸部に沿って周期的に現れるように変化することをいい、例えば、n(nは整数)周毎に最大値が現れるようにしてもよい。本実施の形態では、n=1としている。   Note that “the height of the convex portion changes periodically” means that the position of the maximum height and the position of the minimum height (including zero) appear periodically along the convex portion. For example, the maximum value may appear every n (n is an integer). In this embodiment, n = 1.

「凸部の高さが周期的に変化している領域」は、全長に渡って設けられてもよいが、両端を除く部分に設けられてもよいし、複数の箇所に設けられてもよい。本実施の形態では全長に渡って設けられている。   The “region in which the height of the convex portion periodically changes” may be provided over the entire length, but may be provided in a portion excluding both ends, or may be provided in a plurality of locations. . In this embodiment, it is provided over the entire length.

本実施の形態では、コルゲート溝3による凸部31の高さが最も高くなる箇所、最大高さ部位31a(以後、凸部31の最大高さ部位31aまたは単に、最大高さ部位31aと呼ぶ)が周期的に存在し、この高さをHc1とする。この部分に対応している外周面2bのコルゲート溝3は深くなっている。   In the present embodiment, the location where the height of the convex portion 31 by the corrugated groove 3 is the highest, the maximum height portion 31a (hereinafter, referred to as the maximum height portion 31a of the convex portion 31 or simply the maximum height portion 31a). Periodically exists, and this height is defined as Hc1. The corrugated groove 3 on the outer peripheral surface 2b corresponding to this portion is deep.

一方、コルゲート溝3による凸部31の高さが最も低い箇所、最小高さ部位31b(以後、凸部31の最小高さ部位31b、または単に、最小高さ部位31bと呼ぶ)が周期的に存在し、この高さをHc2とする。この部分に対応している外周面2bのコルゲート溝3は浅くなっている。   On the other hand, the place where the height of the convex part 31 by the corrugated groove 3 is the lowest, the minimum height part 31b (hereinafter referred to as the minimum height part 31b of the convex part 31 or simply the minimum height part 31b) periodically. It exists and this height is designated as Hc2. The corrugated groove 3 on the outer peripheral surface 2b corresponding to this portion is shallow.

なお、最大高さHc1、最小高さHc2は、主管2の内周面2aからの高さで定義するものとし、主管2の厚み(以後、底肉厚Twと呼ぶこともある)は考慮しないものとする。   The maximum height Hc1 and the minimum height Hc2 are defined by the height from the inner peripheral surface 2a of the main pipe 2, and the thickness of the main pipe 2 (hereinafter also referred to as the bottom wall thickness Tw) is not considered. Shall.

最小高さHc2は、主管2の外管OD、底肉厚Twや、想定する流れの状態、求められる圧力損失の低減率に応じて、0〜0.1mmとすることができる。同様に最大高さHc1は、0.3〜0.5mmとすることができる。また、Hc2とHc1の比Hc2/Hc1を0〜0.2とすることができる。   The minimum height Hc2 can be set to 0 to 0.1 mm according to the outer pipe OD of the main pipe 2, the bottom wall thickness Tw, the assumed flow state, and the required reduction rate of pressure loss. Similarly, the maximum height Hc1 can be set to 0.3 to 0.5 mm. Further, the ratio Hc2 / Hc1 between Hc2 and Hc1 can be set to 0 to 0.2.

また、最大高さHc1と主管の外径ODの比Hc1/ODを、0.03〜0.06とし、かつ、最小高さHc2と主管の外径ODの比Hc2/ODを0〜0.02とすることができる。   The ratio Hc1 / OD between the maximum height Hc1 and the outer diameter OD of the main pipe is set to 0.03 to 0.06, and the ratio Hc2 / OD between the minimum height Hc2 and the outer diameter OD of the main pipe is set to 0 to 0.00. 02.

図1において、主管2の内周面2a上の、軸に平行な箇所の凸部31の高さが変化しない場合、すなわち、凸部31の最大高さHc1が現れるように主管2の断面を複数切った場合において常に同じ箇所が最も高くなるように、周期的にコルゲート溝3を主管2に形成する。コルゲート溝3による凸部31は、最大高さHc1から、最小高さHc2へと徐々に変化している。   In FIG. 1, when the height of the convex portion 31 at a location parallel to the axis on the inner peripheral surface 2a of the main tube 2 does not change, that is, the cross section of the main tube 2 is set so that the maximum height Hc1 of the convex portion 31 appears. The corrugated grooves 3 are periodically formed in the main pipe 2 so that the same place is always the highest when a plurality of pieces are cut. The convex portion 31 formed by the corrugated groove 3 gradually changes from the maximum height Hc1 to the minimum height Hc2.

本実施の形態の具体的な寸法の一例は、主管2の外径ODは9.53mm、主管2の底肉厚Twは0.7mm、最大高さHc1を0.5mm、最小高さHc2は0.1mmである。   As an example of specific dimensions of the present embodiment, the outer diameter OD of the main pipe 2 is 9.53 mm, the bottom wall thickness Tw of the main pipe 2 is 0.7 mm, the maximum height Hc1 is 0.5 mm, and the minimum height Hc2 is 0.1 mm.

なお、本実施の形態においては、最大高さHc1を有する最大高さ部位31aと最小高さHc2を有する最小高さ部位31bの間の螺旋状に形成された凸部31の高さは、連続的に減少または連続的に増加させた形状を採用しているが、両者の間は、Hc1とHc2の間の高さの範囲内で高低をつけてもかまわない。例えば、熱交換率のより一層の向上を目的として、最大高さHc1を持つ最大高さ部位31aの周辺において、比較的高さの高い箇所を複数形成してもよい。   In the present embodiment, the height of the convex portion 31 formed in a spiral shape between the maximum height portion 31a having the maximum height Hc1 and the minimum height portion 31b having the minimum height Hc2 is continuous. Although a shape that is reduced or continuously increased is employed, the height may be increased or decreased within the range of the height between Hc1 and Hc2. For example, a plurality of relatively high places may be formed around the maximum height portion 31a having the maximum height Hc1 for the purpose of further improving the heat exchange rate.

また、最大高さHc1と最小高さHc2の現れる周期が、異なっていても構わない。例えば、Hc1がHc2の周期の2倍となっていて、隣接するHc1同士の中間に位置する凸部の高さHc3が、Hc1>Hc3≧Hc2となるような高さであっても構わない。   Further, the period in which the maximum height Hc1 and the minimum height Hc2 appear may be different. For example, Hc1 may be twice the period of Hc2, and the height Hc3 of the convex portion located in the middle between adjacent Hc1s may be such that Hc1> Hc3 ≧ Hc2.

(伝熱管1の材質等)
伝熱管1は、伝熱性が良好な材料からなる。例えば、銅、銅合金、アルミニウムやアルミニウム合金等の金属から形成することが可能である。
(Material of heat transfer tube 1)
The heat transfer tube 1 is made of a material having good heat transfer properties. For example, it can be formed from a metal such as copper, copper alloy, aluminum or aluminum alloy.

(製造方法)
図2は、伝熱管1の製造方法の一例を示している。
(Production method)
FIG. 2 shows an example of a method for manufacturing the heat transfer tube 1.

(第1の製造方法)
第1の製造方法としては、図2(a)に示したように、コルゲート溝3は、コルゲート形成用の円盤状のディスク5を、平滑管すなわち管軸に対して垂直に切ったときの内周面の断面が真円である管からなる主管2の中心軸20に垂直な方向に対して傾斜をつけた状態で、主管2に連続的に押し付けながら回転させつつ、主管2の周囲に公転させ、主管2を所定の速度で引き抜くことで、形成することができる。
(First manufacturing method)
As a first manufacturing method, as shown in FIG. 2 (a), the corrugated groove 3 is formed by cutting the corrugated disk-like disk 5 perpendicularly to the smooth tube, that is, the tube axis. Revolving around the main pipe 2 while being rotated while being continuously pressed against the main pipe 2 in a state inclined with respect to a direction perpendicular to the central axis 20 of the main pipe 2 made of a pipe having a circular cross section on the peripheral surface. Then, the main pipe 2 can be formed by pulling out at a predetermined speed.

すなわち、コルゲート形成用の円盤状のディスク5の中心50をディスクの回転軸51とし、この回転軸51と主管の中心軸20との距離52を変化させながら上記のようにコルゲート溝3を形成することにより、凸部31の高さが変化した伝熱管1を形成することができる。   That is, the center 50 of the disc-shaped disk 5 for forming a corrugate is used as the disk rotating shaft 51, and the corrugated groove 3 is formed as described above while changing the distance 52 between the rotating shaft 51 and the center axis 20 of the main pipe. Thereby, the heat exchanger tube 1 from which the height of the convex part 31 changed can be formed.

ここで、ディスク5の直径や傾斜角度は、主管2の引き抜き速度、主管2の外径OD、回転軸51と中心軸20の距離52及び所望のコルゲート溝ピッチPdから、決定すればよい。   Here, the diameter and inclination angle of the disk 5 may be determined from the drawing speed of the main pipe 2, the outer diameter OD of the main pipe 2, the distance 52 between the rotary shaft 51 and the central axis 20, and the desired corrugated groove pitch Pd.

(第2の製造方法)
第2の製造方法は、図2(b)に示すように、コルゲート形成用ディスク5の回転軸51をディスクの中心50からずらして、この回転軸51と主管2の中心軸20からの距離52を一定に保ちながら、主管2の中心軸20に垂直な方向に対して傾斜をつけた状態で、主管2に連続的に押し付けながら回転させつつ、主管2の周囲に公転させ、主管2を所定の速度で引き抜くことで、形成することができる。
(Second manufacturing method)
In the second manufacturing method, as shown in FIG. 2B, the rotation shaft 51 of the corrugating disk 5 is shifted from the center 50 of the disk, and the distance 52 between the rotation shaft 51 and the center axis 20 of the main pipe 2 is shifted. While maintaining a constant angle, the main pipe 2 is rotated around the main pipe 2 while being continuously pressed against the main pipe 2 while being inclined with respect to the direction perpendicular to the central axis 20 of the main pipe 2, and the main pipe 2 is revolved. It can be formed by pulling out at a speed of.

(第3の製造方法)
第3の製造方法は、ディスク5の形状を真円以外にしたものを用いる方法である。例えば、図2(c)のように、主管2の外周面上2bを一周する距離とディスクの円周の半分が等しくなるような楕円状ディスクを用いて、回転軸51と主管2の中心軸20からの距離52を一定に保ちながら、主管2の中心軸20に垂直な方向に対して傾斜をつけた状態で、主管2に連続的に押し付けながら回転させつつ、主管2の周囲に公転させ、主管2を所定の速度で引き抜くことで、形成することができる。
(Third production method)
The third manufacturing method is a method using a disk 5 having a shape other than a perfect circle. For example, as shown in FIG. 2 (c), using an elliptical disk in which the distance that goes around the outer peripheral surface 2b of the main pipe 2 and half of the circumference of the disk are equal, the rotation axis 51 and the central axis of the main pipe 2 are used. While maintaining a constant distance 52 from 20, while being inclined with respect to a direction perpendicular to the central axis 20 of the main pipe 2, it is rotated around the main pipe 2 while being rotated while being continuously pressed against the main pipe 2. It can be formed by pulling out the main pipe 2 at a predetermined speed.

また、図2(d)のように、コルゲート形成用ディスク5の一部を、ディスク基準半径53より短くした形状のディスク5を用いて、回転軸51と主管2の中心軸20からの距離52を一定に保ちながら、主管2の中心軸20に垂直な方向に対して傾斜をつけた状態で、主管2に連続的に押し付けながら回転させつつ、主管2の周囲に公転させ、主管2を所定の速度で引き抜くことで、形成することができる。   Further, as shown in FIG. 2D, a distance 52 from the rotary shaft 51 and the central axis 20 of the main pipe 2 is obtained by using a disk 5 having a part of the corrugated disk 5 shorter than the disk reference radius 53. While maintaining a constant angle, the main pipe 2 is rotated around the main pipe 2 while being continuously pressed against the main pipe 2 while being inclined with respect to the direction perpendicular to the central axis 20 of the main pipe 2, and the main pipe 2 is revolved. It can be formed by pulling out at a speed of.

逆に、図2(e)のように、コルゲート形成用ディスク5の一部を、ディスク基準半径53より長くなるように形成したディスク5を用いて、回転軸51と主管2の中心軸20からの距離52を一定に保ちながら、主管2の中心軸20に垂直な方向に対して傾斜をつけた状態で、主管2に連続的に押し付けながら回転させつつ、主管2の周囲に公転させ、主管2を所定の速度で引き抜くことで、形成することもできる。   Conversely, as shown in FIG. 2 (e), a part of the corrugated disk 5 is formed from the rotating shaft 51 and the central axis 20 of the main pipe 2 by using the disk 5 formed so as to be longer than the disk reference radius 53. While maintaining the distance 52 of the main pipe 2 constant, the main pipe 2 is rotated around the main pipe 2 while being rotated while being continuously pressed against the direction perpendicular to the central axis 20 of the main pipe 2. It can also be formed by pulling out 2 at a predetermined speed.

なお、上記の方法を組み合わせて形成することも可能である。例えば、第1の製造方法と第2の製造方法を組み合わせることで、加工パターンをより自由度の高いものとすることもできる。   It is also possible to form a combination of the above methods. For example, the processing pattern can be made more flexible by combining the first manufacturing method and the second manufacturing method.

(本実施の形態の効果)
凸部31の高さの高い部分、すなわち最大高さHc1を有する最大高さ部位31a周辺では水の攪拌が大きくなり、熱伝達を向上させることができ、一方、凸部31の高さの低い部分すなわち、最小高さHc2を有する最大高さ部位31b周辺では、圧力損失の増大を最小限に抑えることができる。
(Effect of this embodiment)
In the portion where the height of the convex portion 31 is high, that is, around the maximum height portion 31a having the maximum height Hc1, the agitation of water becomes large and heat transfer can be improved, while the height of the convex portion 31 is low. In the vicinity of the portion, that is, the maximum height portion 31b having the minimum height Hc2, an increase in pressure loss can be minimized.

さらに、流量が小さく層流付近(たとえば、レイノルズ数5000以下)で使われる場合には、前縁効果による熱伝達率向上も期待できる。   Furthermore, when the flow rate is small and used in the vicinity of a laminar flow (for example, Reynolds number of 5000 or less), an improvement in heat transfer coefficient due to the leading edge effect can be expected.

[第2の実施の形態]
図3(a)は、本発明の第2の実施の形態に係る熱交換器が適応されたヒートポンプ式給湯器の構成を示す。
[Second Embodiment]
Fig.3 (a) shows the structure of the heat pump type water heater to which the heat exchanger according to the second embodiment of the present invention is applied.

(構成)
ヒートポンプ式給湯器100は、第1の実施の形態に係る伝熱管1を用いた熱交換器10を有し、この熱交換器10において、冷媒管11からの熱を水へ伝えることで、お湯を供給する装置である。熱交換器10にて熱を奪われた低温高圧の冷媒は、減圧器12において、低温低圧の状態で配管13を通過し、吸熱機14において高温低圧の状態となり、圧縮器15にて高温高圧の状態となり、熱交換器10へ再び戻る。
(Constitution)
The heat pump type hot water heater 100 has a heat exchanger 10 using the heat transfer tube 1 according to the first embodiment, and in this heat exchanger 10, the heat from the refrigerant tube 11 is transferred to water. It is a device which supplies. The low-temperature and high-pressure refrigerant deprived of heat in the heat exchanger 10 passes through the pipe 13 in a low-temperature and low-pressure state in the decompressor 12 and becomes a high-temperature and low-pressure state in the heat absorber 14. It returns to the heat exchanger 10 again.

図3(b)は、図3(a)の熱交換器10の一例を示す。熱交換器10は、主管2内周面2aの凸部31の最大高さHc1および最小高さHc2が一周毎に現れるようにコルゲート溝3が形成された伝熱管1、すなわち、主管2内周面2a上の軸に平行な箇所の凸部31の高さが変化しないようにコルゲート溝3が形成された伝熱管1の内部に、冷媒が通過するための冷媒管11を配置したものである。   FIG.3 (b) shows an example of the heat exchanger 10 of Fig.3 (a). The heat exchanger 10 includes the heat transfer pipe 1 in which the corrugated groove 3 is formed such that the maximum height Hc1 and the minimum height Hc2 of the convex portion 31 of the inner peripheral surface 2a of the main pipe 2 appear every round, that is, the inner circumference of the main pipe 2 A refrigerant pipe 11 through which a refrigerant passes is arranged inside the heat transfer pipe 1 in which the corrugated groove 3 is formed so that the height of the convex portion 31 at a location parallel to the axis on the surface 2a does not change. .

冷媒管11としては、銅などの熱伝導性のよい材料を用いた平滑管や内面溝付管等を用いることができる。さらに、冷媒管11内の冷媒や冷媒とともに循環している冷凍機油の漏洩検知機能を有する管を用いることもできる。例えば、平滑管または内面溝付管の厚み部分に複数の漏洩検知路を設けた冷媒管11を用いることができる。この構造は、一般的に、伝熱管1内に流す水に安全性が要求される場合、より具体的には、伝熱管1内へ、冷媒管11内の冷媒や冷媒とともに循環している冷凍機油が漏洩することが許されない場合に採用される。   As the refrigerant tube 11, a smooth tube or an internally grooved tube using a material having good thermal conductivity such as copper can be used. Furthermore, it is also possible to use a pipe having a function of detecting leakage of refrigeration oil circulating with the refrigerant and refrigerant in the refrigerant pipe 11. For example, the refrigerant | coolant pipe | tube 11 which provided the some leak detection path in the thickness part of a smooth pipe or an inner surface grooved pipe | tube can be used. In general, in the case where safety is required for the water flowing in the heat transfer tube 1, this structure is more specifically refrigerated into the heat transfer tube 1 together with the refrigerant in the refrigerant tube 11 and the refrigerant. Used when machine oil is not allowed to leak.

また、伝熱管1において、最大高さHc1を有する最大高さ部位31aは、最も低い箇所に位置している、すなわち、重力方向を向いている。さらに、伝熱管1内には内管として冷媒管11が挿入されている。このとき、冷媒管11は、伝熱管1内にその下部を接触させるように配置される。伝熱管1と冷媒管11は、両端部でロウ付けにより固定される。   Further, in the heat transfer tube 1, the maximum height portion 31a having the maximum height Hc1 is located at the lowest portion, that is, faces the direction of gravity. Further, a refrigerant pipe 11 is inserted into the heat transfer pipe 1 as an inner pipe. At this time, the refrigerant tube 11 is disposed in the heat transfer tube 1 so that the lower portion thereof is in contact. The heat transfer tube 1 and the refrigerant tube 11 are fixed by brazing at both ends.

換言すると、冷媒管11は、その断面の下方において、伝熱管1の内側で伝熱管1に接すると共に、伝熱管1側の接点は、最大高さHc1を有する最大高さ部位31aとなるように固定される。   In other words, the refrigerant tube 11 is in contact with the heat transfer tube 1 inside the heat transfer tube 1 below the cross section, and the contact on the heat transfer tube 1 side is the maximum height portion 31a having the maximum height Hc1. Fixed.

(熱交換器の作用)
内管である冷媒管11に冷媒を流し、外管である伝熱管1と冷媒管11の外壁とで形成される空間に水を流す。伝熱管1内下方(すなわち重力方向)は、内周面2aと冷媒管11との距離が近いため、主管2内の水と、冷媒管11の冷媒との間の熱交換に大きく寄与する。この部分では、凸部31の高さが高い箇所(最大高さHc1を有する最大高さ部位31a周辺)となっているため、水がよく攪拌され、冷媒管の配置による効果と相まって、熱交換率をより一層高く維持できる。
(Operation of heat exchanger)
A refrigerant is caused to flow through the refrigerant pipe 11 which is an inner pipe, and water is caused to flow into a space formed by the heat transfer pipe 1 which is an outer pipe and the outer wall of the refrigerant pipe 11. Since the distance between the inner peripheral surface 2a and the refrigerant pipe 11 is close to the lower side in the heat transfer pipe 1 (that is, in the direction of gravity), it greatly contributes to heat exchange between the water in the main pipe 2 and the refrigerant in the refrigerant pipe 11. In this portion, since the height of the convex portion 31 is high (around the maximum height portion 31a having the maximum height Hc1), the water is well stirred and combined with the effect of the arrangement of the refrigerant pipe, heat exchange is performed. The rate can be kept even higher.

一方、伝熱管1内上方は冷媒管11との距離が、伝熱管1内下方と冷媒管11の距離よりも遠いので、熱交換に寄与する割合が少ない。このため、伝熱管の下方の凸部31より凸部31の高さを低くすることで、圧力損失の低減を図っている。   On the other hand, since the distance between the upper portion in the heat transfer tube 1 and the refrigerant tube 11 is farther than the distance between the lower portion in the heat transfer tube 1 and the refrigerant tube 11, the ratio contributing to heat exchange is small. For this reason, pressure loss is reduced by making the height of the convex portion 31 lower than the convex portion 31 below the heat transfer tube.

(本実施の形態の効果)
伝熱管1は、上述したように、平滑管や、コルゲート溝による凸部の高さが一定の管に比べて、管内に流す液体から管への熱伝達率を向上させることができる。特に自然冷媒ヒートポンプ式給湯機の水管のように小さい流量のときにその性能向上が著しい。
(Effect of this embodiment)
As described above, the heat transfer tube 1 can improve the heat transfer rate from the liquid flowing in the tube to the tube as compared with a smooth tube or a tube having a constant height of the convex portion due to the corrugated groove. In particular, the performance improvement is remarkable when the flow rate is small like a water pipe of a natural refrigerant heat pump type water heater.

また、同心円上に配置された通常の2重管熱交換器では内管を外管の中空に保つことは困難であり、重力により管内下方に位置してしまうことがある。このとき、外管である伝熱管1と内管が接触して水の流れを妨げ、熱交換率の低下や圧力損失の急増につながってしまうことが懸念される。一方、本実施の形態によれば、凸部31の中でも最大高さHc1を有する最大高さ部位31aが形成されているため、内管と外管の内周面が接触していても、熱交換率を低下させるおそれがなく、むしろ、向上させることが可能である。このため、予め内管(すなわち、冷媒管11)を接触させた状態で固定することができる。これにより、固定構造を簡易なものにでき、また、長尺のものにも適応できる。   Moreover, it is difficult to keep the inner tube hollow in the outer tube in a normal double tube heat exchanger arranged concentrically, and it may be positioned below the tube by gravity. At this time, there is a concern that the heat transfer tube 1 and the inner tube, which are outer tubes, come into contact with each other and hinder the flow of water, leading to a decrease in heat exchange rate and a rapid increase in pressure loss. On the other hand, according to the present embodiment, since the maximum height portion 31a having the maximum height Hc1 is formed among the convex portions 31, even if the inner peripheral surface of the inner tube and the outer tube are in contact, There is no risk of lowering the exchange rate, but rather it can be improved. For this reason, it can fix in the state which made the inner pipe (namely, refrigerant pipe 11) contact beforehand. Thereby, the fixing structure can be simplified and can be applied to a long one.

さらに、このような構造とすることで、伝熱管1の下方では伝熱性能を高め、上方では圧力損失を下げるという、相反する効果を引き出すことに成功している。通常、コルゲート溝3による凸部31の高さの高いものは伝熱性能が大きくなるが、コルゲート溝3による凸部31の高さが高くなるにつれて、圧力損失も大きくなってしまい、伝熱性能の向上と圧力損失は両立し得ない。よって、圧力損失を考慮した場合、採用できる凸部31の高さにも限界が生じる。一方、この構造を用いた場合、熱交換器性能向上に大きく寄与する部分の伝熱性能を向上させ、寄与が少ない部分は圧力損失の上昇を抑えることが可能となる。   Furthermore, by adopting such a structure, the heat transfer performance is improved below the heat transfer tube 1 and the contradictory effect of reducing the pressure loss above is succeeded. Usually, the thing with the high height of the convex part 31 by the corrugated groove | channel 3 becomes large in heat transfer performance, However, as the height of the convex part 31 by the corrugated groove | channel 3 becomes high, a pressure loss also becomes large, and heat transfer performance. Improvement in pressure and pressure loss cannot be achieved at the same time. Therefore, when the pressure loss is taken into consideration, there is a limit to the height of the convex portion 31 that can be adopted. On the other hand, when this structure is used, it is possible to improve the heat transfer performance of the portion that greatly contributes to the improvement of the heat exchanger performance, and it is possible to suppress the increase in pressure loss in the portion that does not contribute much.

なお、圧力損失の低減を強く望む場合、例えば、外径ODを大きくできず、底肉厚Twが比較的厚いものを採用しなければならないときのように、圧力損失が増大することが懸念される場合は、冷媒管11から遠い位置となる最小高さHc2をゼロとし、実質、溝加工を施さなくても良い。   In addition, when it is strongly desired to reduce the pressure loss, there is a concern that the pressure loss may increase, for example, when the outer diameter OD cannot be increased and the bottom wall thickness Tw must be relatively large. In this case, the minimum height Hc2 at a position far from the refrigerant pipe 11 is set to zero, and the groove processing may not be performed substantially.

[第3の実施の形態]
図4は、第3の実施の形態に係る熱交換器を示す。本実施の形態に係る伝熱管は、冷媒管11を伝熱管1の内側ではなく、外側に隣接させるものである。
[Third Embodiment]
FIG. 4 shows a heat exchanger according to the third embodiment. In the heat transfer tube according to the present embodiment, the refrigerant tube 11 is adjacent not to the inside of the heat transfer tube 1 but to the outside.

すなわち、冷媒管11は、伝熱管1の下方の外周面2bに隣接して設けられる。伝熱管1の凸部31の最大高さ部位31aに対応する外周面2b、すなわち、コルゲート溝3の最も深い箇所が、冷媒管11と接触している。この構造を用いる場合、冷媒管11は、直接水に接触しないため、漏洩検知路を有する必要がない。よって、一般的な平滑管や内面溝付管を冷媒管11として採用することができ、コスト低減を図ることができる。   That is, the refrigerant tube 11 is provided adjacent to the outer peripheral surface 2 b below the heat transfer tube 1. The outer peripheral surface 2 b corresponding to the maximum height portion 31 a of the convex portion 31 of the heat transfer tube 1, that is, the deepest portion of the corrugated groove 3 is in contact with the refrigerant tube 11. When this structure is used, the refrigerant pipe 11 does not need to have a leakage detection path because it does not directly contact water. Therefore, a general smooth tube or an internally grooved tube can be adopted as the refrigerant tube 11, and cost reduction can be achieved.

ここで、「接触する」とは、ロウ付け材料や、他の導電性の高い部材などを介して冷媒管11を配置する場合も含む。   Here, “contacting” includes the case where the refrigerant pipe 11 is disposed via a brazing material or another highly conductive member.

[第4の実施の形態]
図5は、本発明の第4の実施の形態に係る伝熱管加工品の製造方法の一例を示す。まず、第1の実施の形態の管軸が直線の伝熱管1を形成する。この伝熱管1を図5(b)に示すように曲げ加工して伝熱管加工品4を形成する。曲げ加工は、最大高さ部位31aよりも、最小高さ部位31bの方が、曲げ加工後に曲率半径が小さくなるように形成する。
[Fourth Embodiment]
FIG. 5 shows an example of a method for manufacturing a heat transfer tube processed product according to the fourth embodiment of the present invention. First, the heat transfer tube 1 in which the tube axis of the first embodiment is a straight line is formed. The heat transfer tube 1 is bent as shown in FIG. 5B to form a heat transfer tube processed product 4. In the bending process, the minimum height part 31b is formed to have a smaller radius of curvature after the bending process than the maximum height part 31a.

この曲げ加工により、曲率半径が小さい側の最小高さ部位31bは、最小高さHc2より高くなり、曲率半径が大きい側の最大高さ部位31aは最大高さHc1より低くなる。   By this bending process, the minimum height portion 31b on the side with the smaller curvature radius becomes higher than the minimum height Hc2, and the maximum height portion 31a on the side with the larger curvature radius becomes lower than the maximum height Hc1.

曲げ加工前の最大高さHc1と最小高さHc2に対応する曲げ加工後の凸部の高さをそれぞれHc3およびHc4とすれば、Hc1とHc2の差が、Hc3とHc4の差より大きくなるように、コルゲート溝3による凸部31の高さを曲げ加工後の曲率中心からの距離に応じて予め変化させて形成しておけばよい。Hc1とHc2の具体的な値は、曲率半径、主管2の外径OD、底肉厚Twに応じて決定すればよい。   If the heights of the convex portions after bending corresponding to the maximum height Hc1 and the minimum height Hc2 before bending are Hc3 and Hc4, respectively, the difference between Hc1 and Hc2 is larger than the difference between Hc3 and Hc4. In addition, the height of the convex portion 31 formed by the corrugated groove 3 may be changed in advance according to the distance from the center of curvature after bending. Specific values of Hc1 and Hc2 may be determined according to the radius of curvature, the outer diameter OD of the main pipe 2, and the bottom wall thickness Tw.

さらに、曲げ加工前の凸部の高さHc1及びHc2に対応する、曲げ加工後の凸部の高さをHc3及びHc4とするとき、Hc3≒Hc4となるように形成することも可能である。   Furthermore, when the heights of the protrusions after bending corresponding to the heights Hc1 and Hc2 of the protrusions before bending are Hc3 and Hc4, it is also possible to form Hc3≈Hc4.

(本実施の形態の効果)
通常のコルゲート管、すなわち、曲げ加工前の凸部の高さを一律に高くした伝熱管を用いた場合には、曲げ加工後には曲率半径が小さい部分の凸部が突出しすぎて、局所的な乱流が生じる。これに起因して圧力損失が増大しすぎる。これに対して、本実施の形態に係る伝熱管加工品は曲率半径の小さい部分、すなわち、曲げの内側の凸部が突出しすぎることはない。
(Effect of this embodiment)
When using a normal corrugated tube, that is, a heat transfer tube in which the height of the convex portion before bending is uniformly increased, the convex portion of the portion with a small curvature radius protrudes too much after bending, and the local Turbulence occurs. Due to this, the pressure loss increases too much. In contrast, in the heat transfer tube processed product according to the present embodiment, a portion having a small radius of curvature, that is, a convex portion on the inner side of the bending does not protrude too much.

また、曲げ加工前の凸部の高さを一律に低くした場合には、曲率半径の大きい部分が平坦になってしまい熱交換率が悪化する。これに対して、本実施の形態に係る伝熱管加工品では曲率半径の大きい部分、すなわち曲げの外側の凸部が適度な高さを維持しているため、熱交換率を高く維持できる。   Moreover, when the height of the convex part before a bending process is made low uniformly, a part with a large curvature radius will become flat, and a heat exchange rate will deteriorate. On the other hand, in the heat transfer tube processed product according to the present embodiment, the portion with a large curvature radius, that is, the convex portion on the outside of the bend maintains an appropriate height, so that the heat exchange rate can be maintained high.

以下、第4の実施の形態に関する実施例1について説明する。実施例1に係る伝熱管加工品、比較例1、2に係る伝熱管加工品として、表1に示す構成を備える伝熱管加工品をそれぞれ作製した。   Example 1 relating to the fourth embodiment will be described below. As the heat transfer tube processed product according to Example 1 and the heat transfer tube processed product according to Comparative Examples 1 and 2, heat transfer tube processed products having the configurations shown in Table 1 were produced.

実施例1の伝熱管加工品4は、曲げ加工前の高さがそれぞれHc1=0.1mm、Hc2=1.0mmとなるようコルゲート溝3を形成した伝熱管1を用い、その後、Hc2が曲率半径の小さい側、Hc1が曲率半径の大きい側となるよう曲げ加工を施し、伝熱管加工品4を作製する。このとき、曲げ加工後の高さHc3及びHc4の高さが0.5mmで等しくなっている。   The heat transfer tube processed product 4 of Example 1 uses the heat transfer tube 1 in which the corrugated groove 3 is formed so that the heights before bending are Hc1 = 0.1 mm and Hc2 = 1.0 mm, respectively. The heat transfer tube processed product 4 is manufactured by bending so that Hc1 is on the side having a small radius and the side having a large curvature radius. At this time, the heights Hc3 and Hc4 after bending are equal at 0.5 mm.

一方、比較例1は、曲げ加工前の凸部の最大高さHc1と最小高さHc2が一致するようにコルゲート溝3を形成した伝熱管を用い、曲げ加工を施し伝熱管加工品を作製する。また、比較例2として平滑管を曲げ加工して伝熱管加工品を作成する。   On the other hand, Comparative Example 1 uses a heat transfer tube in which the corrugated groove 3 is formed so that the maximum height Hc1 and the minimum height Hc2 of the convex portion before bending are matched, and is bent to produce a heat transfer tube processed product. . Further, as Comparative Example 2, a smooth tube is bent to produce a heat transfer tube processed product.

Figure 2011106746
Figure 2011106746

表1の実施例1及び比較例1に係る伝熱性能の平滑管比(より正確には比較例2に係る、平滑管から形成された伝熱管加工品との性能比)と圧力損失について、表2に示す。伝熱性能については、K値を用いた。
ここでK値とは、単位面積あたりの総熱コンダクタンス[W/m・K]で示される熱通過率を表す。ここでは、冷媒管11から水への熱の伝わり安さを示す。圧力損失に関しては、絶対値の一例を記す。
About the smooth tube ratio of heat transfer performance according to Example 1 and Comparative Example 1 in Table 1 (more precisely, the performance ratio of the heat transfer tube processed product formed from the smooth tube according to Comparative Example 2) and pressure loss, It shows in Table 2. The K value was used for the heat transfer performance.
Here, the K value represents a heat passage rate indicated by total heat conductance [W / m 2 · K] per unit area. Here, the low heat transfer from the refrigerant pipe 11 to water is shown. Regarding pressure loss, an example of an absolute value is described.

Figure 2011106746
Figure 2011106746

表2により、実施例1の伝熱管加工品4では、平滑管から作成した伝熱管加工品(比較例2)より14%伝熱性能が改善されていることが分かる。一方比較例1は、平滑管から作成した伝熱管加工品(比較例2)より16%伝熱性能が改善されており、伝熱性能の向上という点だけを見れば、ほぼ同等の結果が得られた。   From Table 2, it can be seen that in the heat transfer tube processed product 4 of Example 1, the heat transfer performance is improved by 14% compared to the heat transfer tube processed product (Comparative Example 2) prepared from the smooth tube. On the other hand, in Comparative Example 1, the heat transfer performance was improved by 16% compared to the heat transfer tube processed product made from a smooth tube (Comparative Example 2). It was.

一方、圧力損失については、実施例1に係る伝熱管加工品は、平滑管から作成した伝熱管加工品(比較例2)と比較して5倍に抑える結果となっているのに対し、比較例1は、比較例2の伝熱管加工品の9倍に達する結果となっている。   On the other hand, regarding the pressure loss, the heat transfer tube processed product according to Example 1 has a result that the heat transfer tube processed product made from the smooth tube is suppressed to 5 times compared with the heat transfer tube processed product (Comparative Example 2). The result of Example 1 reaches 9 times that of the heat transfer tube processed product of Comparative Example 2.

上記より、圧力損失が大きすぎることから、比較例1の伝熱管加工品は採用できないことが分かる。一方、実施例1の伝熱管加工品は、K値110%以上かつ、圧力損失35Kpa以下を達成しており、総合的に、伝熱性能を向上させつつ、圧力損失を低減することに成功している。   From the above, it can be seen that the heat transfer tube processed product of Comparative Example 1 cannot be adopted because the pressure loss is too large. On the other hand, the heat transfer tube processed product of Example 1 achieved a K value of 110% or more and a pressure loss of 35 Kpa or less, and succeeded in reducing the pressure loss while improving the heat transfer performance comprehensively. ing.

1…伝熱管、2…主管、2a…内周面、2b…外周面、3…コルゲート溝、4…伝熱管加工品、5…ディスク、10…熱交換器、11…冷媒管、12…減圧器、13…配管、14…吸熱器、15…圧縮器、20…中心軸、31…凸部、31a…最大高さ部位、31b…最小高さ部位、50…ディスクの中心、51…回転軸、52…回転軸と中心軸の距離、53…ディスク基準半径、100…ヒートポンプ給湯器 DESCRIPTION OF SYMBOLS 1 ... Heat transfer tube, 2 ... Main pipe, 2a ... Inner peripheral surface, 2b ... Outer peripheral surface, 3 ... Corrugated groove, 4 ... Heat transfer tube processed product, 5 ... Disk, 10 ... Heat exchanger, 11 ... Refrigerant tube, 12 ... Depressurization 13 ... pipe, 14 ... heat absorber, 15 ... compressor, 20 ... center axis, 31 ... convex part, 31a ... maximum height part, 31b ... minimum height part, 50 ... center of disk, 51 ... rotary axis 52 ... Distance between the rotation axis and the central axis, 53 ... Disc reference radius, 100 ... Heat pump water heater

Claims (8)

内周面及び外周面を有する主管と、
前記外周面にらせん状のコルゲート溝を形成することにより前記内周面に形成されたらせん状の凸部とを備え、
前記主管の内周面は、前記凸部の高さが周期的に変化している領域を有する伝熱管。
A main pipe having an inner peripheral surface and an outer peripheral surface;
A helical projection formed on the inner peripheral surface by forming a spiral corrugated groove on the outer peripheral surface;
The inner peripheral surface of the main pipe is a heat transfer pipe having a region where the height of the convex portion is periodically changed.
前記内周面の凸部の最大高さ及び最小高さが、それぞれ一周毎に現れるように形成された請求項1に記載の伝熱管。   2. The heat transfer tube according to claim 1, wherein the maximum height and the minimum height of the convex portions on the inner peripheral surface are formed so as to appear every round. 前記凸部において、前記最大高さHc1に対する前記最小高さHc2の比Hc2/Hc1が0〜0.2である請求項2に記載の伝熱管。   The heat transfer tube according to claim 2, wherein a ratio Hc2 / Hc1 of the minimum height Hc2 to the maximum height Hc1 is 0 to 0.2 in the convex portion. 前記最大高さHc1と前記主管の外径ODの比Hc1/ODが0.03〜0.06であり、かつ前記最小高さHc2と前記主管の外径ODの比Hc2/ODが0〜0.02である請求項2又は3に記載の伝熱管。   The ratio Hc1 / OD between the maximum height Hc1 and the outer diameter OD of the main pipe is 0.03 to 0.06, and the ratio Hc2 / OD between the minimum height Hc2 and the outer diameter OD of the main pipe is 0 to 0. The heat transfer tube according to claim 2 or 3, which is 0.02. 前記凸部の前記最大高さの部位が前記最小高さの部位よりも重力方向に位置するように配置された請求項2に記載の伝熱管と、
前記凸部の前記最大高さの部位に接するように前記伝熱管内に配置された冷媒管とを備えた熱交換器。
The heat transfer tube according to claim 2, wherein the portion of the maximum height of the convex portion is disposed so as to be positioned in the direction of gravity than the portion of the minimum height.
The heat exchanger provided with the refrigerant | coolant pipe | tube arrange | positioned in the said heat exchanger tube so that the site | part of the said convex part may contact the said maximum height.
前記凸部の前記最大高さの部位が前記最小高さの部位よりも重力方向に位置するように配置された請求項2に記載の伝熱管と、
前記凸部の前記最大高さの部位に対応する前記外周面の部分に接するように配置された冷媒管とを備えた熱交換器。
The heat transfer tube according to claim 2, wherein the portion of the maximum height of the convex portion is disposed so as to be positioned in the direction of gravity than the portion of the minimum height.
A heat exchanger comprising: a refrigerant pipe disposed so as to be in contact with a portion of the outer peripheral surface corresponding to the maximum height portion of the convex portion.
請求項2記載の伝熱管を、
前記凸部の前記最大高さの部位が形成された側の外周面の曲率半径よりも前記凸部の前記最小高さの部位が形成された側の外周面の曲率半径を小さくするように曲げ加工された伝熱管加工品。
The heat transfer tube according to claim 2,
Bending so that the radius of curvature of the outer peripheral surface of the convex portion on the side where the minimum height portion is formed is smaller than the radius of curvature of the outer peripheral surface of the convex portion on the side where the maximum height portion is formed. Processed heat transfer tube processed product.
請求項3または4に記載の伝熱管を、
前記凸部の前記最大高さの部位が形成された側の外周面の曲率半径よりも前記凸部の前記最小高さの部位が形成された側の外周面の曲率半径を小さくするように曲げ加工された伝熱管加工品。
The heat transfer tube according to claim 3 or 4,
Bending so that the radius of curvature of the outer peripheral surface of the convex portion on the side where the minimum height portion is formed is smaller than the radius of curvature of the outer peripheral surface of the convex portion on the side where the maximum height portion is formed. Processed heat transfer tube processed product.
JP2009262553A 2009-11-18 2009-11-18 Heat transfer tube, heat exchanger, and processed product of heat transfer tube Pending JP2011106746A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009262553A JP2011106746A (en) 2009-11-18 2009-11-18 Heat transfer tube, heat exchanger, and processed product of heat transfer tube
CN2010105524325A CN102072683A (en) 2009-11-18 2010-11-17 Heat transfer tube, heat exchanger, and heat transfer tube workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262553A JP2011106746A (en) 2009-11-18 2009-11-18 Heat transfer tube, heat exchanger, and processed product of heat transfer tube

Publications (1)

Publication Number Publication Date
JP2011106746A true JP2011106746A (en) 2011-06-02

Family

ID=44031323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262553A Pending JP2011106746A (en) 2009-11-18 2009-11-18 Heat transfer tube, heat exchanger, and processed product of heat transfer tube

Country Status (2)

Country Link
JP (1) JP2011106746A (en)
CN (1) CN102072683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166141A (en) * 2012-01-16 2013-08-29 Sasakura Engineering Co Ltd Vacuum evaporation type fresh water generator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331207A (en) * 2011-07-11 2012-01-25 上海科米钢管有限公司 Spiral arc-shaped heat exchange pipe and machining processes thereof
CN102331116A (en) * 2011-07-11 2012-01-25 上海科米钢管有限公司 Condenser applying spiral arc-shaped heat exchange pipe
CN105222620B (en) * 2015-10-20 2017-04-05 宁波迪源制冷科技有限公司 Heat exchanger with segmented screw thread inner tube
CN106311877B (en) * 2016-11-25 2017-11-14 西南石油大学 A kind of pit heat-transfer pipe roll forming device
EP4006475A4 (en) * 2019-10-23 2023-08-23 UACJ Corporation Heat transfer double tube, inner tube for heat transfer double tube and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166141A (en) * 2012-01-16 2013-08-29 Sasakura Engineering Co Ltd Vacuum evaporation type fresh water generator

Also Published As

Publication number Publication date
CN102072683A (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP2011106746A (en) Heat transfer tube, heat exchanger, and processed product of heat transfer tube
KR101717072B1 (en) Heat transfer tube and method for manufacturing heat transfer tube
US20210033351A1 (en) Shell and tube heat exchanger, finned tubes for such heat exchanger and corresponding method
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
JP2008164245A (en) Heat exchanger
JP2008261566A (en) Double-pipe heat exchanger
JP2009243715A (en) Leakage detecting tube and heat exchanger
JP2017075711A (en) Heat transfer pipe for heat exchanger and heat exchanger using it
JP2010256000A (en) Internally-grooved pipe for heat pipe, and heat pipe
JP2005257160A (en) Heat transfer pipe with grooved inner surface and heat exchanger using the heat transfer tube with grooved inner surface
JP2008139008A (en) Heat exchanger tube and heat exchanger using the same
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP2009186130A (en) Heat transfer tube for radiator with inner face fin
JP2009264644A (en) Heat exchanger
JP2008267625A (en) Heat transfer tube for falling liquid film-type refrigerating machine and its manufacturing method
JP5642462B2 (en) Heat exchanger tube for heat exchanger and heat exchanger using the same
JP2009243864A (en) Inner surface grooved pipe for heat pipe, and heat pipe
JP2011021844A (en) Inner face grooved heat transfer tube and cross fin tube type heat exchanger for evaporator
JP5289088B2 (en) Heat exchanger and heat transfer tube
JP2009243863A (en) Internally grooved pipe for heat pipe, and heat pipe
US20170074599A1 (en) Welded titanium pipe and welded titanium pipe manufacturing method
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP5243831B2 (en) Inner grooved tube for heat pipe and heat pipe
JP2010133581A (en) Inner helically grooved tube for heat pipe and the heat pipe
JP4948136B2 (en) Heat transfer tube and radiator