JP2005257160A - Heat transfer pipe with grooved inner surface and heat exchanger using the heat transfer tube with grooved inner surface - Google Patents

Heat transfer pipe with grooved inner surface and heat exchanger using the heat transfer tube with grooved inner surface Download PDF

Info

Publication number
JP2005257160A
JP2005257160A JP2004068654A JP2004068654A JP2005257160A JP 2005257160 A JP2005257160 A JP 2005257160A JP 2004068654 A JP2004068654 A JP 2004068654A JP 2004068654 A JP2004068654 A JP 2004068654A JP 2005257160 A JP2005257160 A JP 2005257160A
Authority
JP
Japan
Prior art keywords
fin
tube
heat transfer
height
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004068654A
Other languages
Japanese (ja)
Other versions
JP4550451B2 (en
Inventor
Kotaro Tsuri
弘太郎 釣
Toshiaki Hashizume
利明 橋爪
Shoji Kitamura
省治 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2004068654A priority Critical patent/JP4550451B2/en
Publication of JP2005257160A publication Critical patent/JP2005257160A/en
Application granted granted Critical
Publication of JP4550451B2 publication Critical patent/JP4550451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer tube with grooved inner surface, in which an inner surface fin does not fall down during expanding the tube, and which is suitable for a heat exchanger using carbon dioxide as a refrigerant. <P>SOLUTION: A heat transfer tube with grooved inner surface for use in an heat exchanger, comprising fins formed on the tube inner surface, wherein a first fin has a height of 0.10 mm to 0.22 mm, an apex angle of 20° to 60° and a ratio of the curvature radius to height of the top part of 5 or more, or a ratio of the width of a plane part to fin height of the top part of 0.3 to 1.0; a second fin has an apex angle of 20° to 60° and a height ratio of the first to second fins of 0.5 to 0.9; the thickness "t" of the pipe is 0.4 mm or more, and the ratio t/D of the thickness "t" to an outer diameter "D" ranges from 0.04 to 0.25. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、給湯器やエアコンに用いられる熱交換器において、特に二酸化炭素を冷媒とする熱交換器の伝熱管として用いる内面溝付伝熱管に関するものである。   The present invention relates to a heat exchanger tube used in a water heater or an air conditioner, and more particularly to an internally grooved heat transfer tube used as a heat transfer tube of a heat exchanger using carbon dioxide as a refrigerant.

従来、エアコンをはじめとする空調装置の熱交換器である蒸発器や凝縮器は、伝熱管内面に螺旋状の内面フィンを設ける転造加工工程と、転造加工により得られた内面溝付伝熱管を放熱用プレートフィンに圧入し、前記伝熱管を拡管する拡管工程により製造される。   Conventionally, evaporators and condensers, which are heat exchangers of air conditioners such as air conditioners, have a rolling process step in which a spiral inner fin is provided on the inner surface of a heat transfer tube, and an inner grooved transmission obtained by the rolling process. The heat pipe is press-fitted into a heat radiating plate fin, and is manufactured by a pipe expanding process for expanding the heat transfer pipe.

前記伝熱管は通常、管に溝付プラグを挿入し、周囲から回転するボールによりプラグに対して管を押圧することによって管内部に内面フィンを成形する。プレートフィンは板状であり、伝熱管の外径よりも大きな孔が開いており、そこに伝熱管を挿入し、次いで拡管を行う。すなわち伝熱管に拡管プラグを挿入し伝熱管の径を拡大することで管とプレートフィンを密着する作業を行う。   The heat transfer tube usually has an inner fin formed inside the tube by inserting a grooved plug into the tube and pressing the tube against the plug with a ball rotating from the periphery. The plate fin is plate-shaped and has a hole larger than the outer diameter of the heat transfer tube. The heat transfer tube is inserted into the plate fin and then expanded. That is, an operation of bringing the tube and the plate fin into close contact is performed by inserting a tube expansion plug into the heat transfer tube and enlarging the diameter of the heat transfer tube.

この際、拡管プラグにより伝熱管の内面フィンが押圧されるため、内面フィン頂部の潰れや変形、フィン倒れが発生する。また押圧力に分布が生じることによりプレートフィンに過大な応力が付加され割れが生じる。これらにより熱交換効率が低下する問題が発生する。この問題に対して、管の内面に、頂部が平面で台形断面を有する内面フィンを設けた内面溝付管の例がある(例えば、特許文献1参照)。   At this time, since the inner fins of the heat transfer tubes are pressed by the tube expansion plug, the inner fin tops are crushed and deformed, and fin collapse occurs. Further, the distribution of the pressing force causes an excessive stress to be applied to the plate fins, resulting in cracks. As a result, there arises a problem that the heat exchange efficiency is lowered. In order to solve this problem, there is an example of an internally grooved tube provided with an internal fin having a flat top surface and a trapezoidal cross section on the inner surface of the tube (for example, see Patent Document 1).

しかし、内面フィンが従来よりも大きくなるので、その分伝熱管の重量が増加し、コストが上がってしまう問題がある。重量増加を抑制するために内面フィンの数を減らすと熱伝達性能の低下を招く。   However, since the inner fin is larger than the conventional fin, there is a problem that the weight of the heat transfer tube is increased and the cost is increased accordingly. If the number of internal fins is reduced to suppress the increase in weight, the heat transfer performance is reduced.

内面フィンの形状を規定することで、伝熱性能を低下させることなく重量を低減した例がある(例えば、特許文献2参照)。また、2種以上の高さの内面フィンを形成することで伝熱性能を向上した例がある(例えば、特許文献3、4、5参照)。   There is an example in which the weight is reduced without reducing the heat transfer performance by defining the shape of the inner fin (see, for example, Patent Document 2). In addition, there is an example in which heat transfer performance is improved by forming inner fins of two or more heights (see, for example, Patent Documents 3, 4, and 5).

特開平4−327792号公報Japanese Patent Laid-Open No. 4-327792 特開平11−201680号公報Japanese Patent Laid-Open No. 11-201680 特開平7−4884号公報Japanese Patent Laid-Open No. 7-4884 特開平8−233480号公報JP-A-8-233480 特開平8−145583号公報JP-A-8-145583

ところで、最近は環境問題から脱フロン、特に二酸化炭素を使用する熱サイクル装置の開発が行われている。前記二酸化炭素を冷媒として使用するためには、冷媒の作動圧力を高圧にする必要がある。このために伝熱管は強度が必要となり、エアコン用と比較して管の肉厚が厚い伝熱管が用いられる。この際に内面フィンの高さが2種以上存在すると、拡管時において押圧力に分布が生じ、部位によって溝付プラグ材質の強度以上の押圧力が発生しプラグの破損や内面フィンの倒れが生じる。   By the way, recently, due to environmental problems, the development of a heat cycle apparatus using chlorofluorocarbons, particularly carbon dioxide, has been carried out. In order to use the carbon dioxide as a refrigerant, it is necessary to increase the operating pressure of the refrigerant. For this reason, the heat transfer tube requires strength, and a heat transfer tube having a thicker wall thickness than that for an air conditioner is used. At this time, if there are two or more types of inner fin heights, the distribution of the pressing force occurs during tube expansion, and the pressing force exceeding the strength of the grooved plug material is generated depending on the site, causing damage to the plug and collapse of the inner fin. .

本発明の目的は、二酸化炭素に代表される作動圧力の高い冷媒を使用する肉厚の厚い内面溝付伝熱管において、拡管しても内面フィンの倒れなどが生じず、且つ重量増加を抑制した内面溝付伝熱管を提供することにある。   An object of the present invention is to reduce the increase in weight of a thick inner surface grooved heat transfer tube that uses a refrigerant having a high operating pressure typified by carbon dioxide, even if the tube is expanded, and the inner fin does not collapse. The object is to provide an internally grooved heat transfer tube.

本発明者らは、熱交換器用途、特に冷媒に二酸化炭素を用いる熱交換器に適した内面溝付伝熱管について研究を行い、内面フィンの形状と拡管工程における内面フィンの倒れとの関連を見いだし、二酸化炭素冷媒用に適した内面溝付伝熱管の発明を完成させるに至った。すなわち本発明は、
(1)管内面にフィンが形成されている内面溝付管において、第一のフィンが高さ0.10〜0.22mm、頂角が20〜60度、頂部の曲率半径と高さとの比が5以上であり、第二のフィンの頂角が20〜60度であり、第二のフィンの高さと第一のフィンの高さとの比が0.5〜0.9であり、管の肉厚tは0.4mm以上で、且つ管の外径Dとの比t/Dが0.04〜0.25の範囲内であることを特徴とする熱交換器用内面溝付伝熱管
(2)管内面にフィンが形成されている内面溝付管において、第一のフィンの頂部の少なくとも一部に平面を有し、頂部の平面部の幅とフィン高さとの比が0.3〜1.0であることを特徴とする(1)記載の熱交換器用内面溝付伝熱管
(3)(1)または(2)記載の内面溝付伝熱管を用いた熱交換器
(4)(3)記載の熱交換器において、冷媒が二酸化炭素であることを特徴する熱交換器
を提供するものである。
The present inventors have researched heat transfer tubes with internal grooves suitable for heat exchanger applications, especially heat exchangers that use carbon dioxide as a refrigerant, and found the relationship between the shape of the internal fins and the collapse of the internal fins during the tube expansion process. As a result, the inventors have completed the invention of an internally grooved heat transfer tube suitable for a carbon dioxide refrigerant. That is, the present invention
(1) In an internally grooved tube in which fins are formed on the tube inner surface, the first fin has a height of 0.10 to 0.22 mm, the apex angle is 20 to 60 degrees, and the ratio of the radius of curvature and the height of the apex portion 5 or more, the apex angle of the second fin is 20 to 60 degrees, the ratio of the height of the second fin to the height of the first fin is 0.5 to 0.9, The wall thickness t is 0.4 mm or more, and the ratio t / D with the outer diameter D of the tube is in the range of 0.04 to 0.25. ) In an internally grooved tube in which fins are formed on the inner surface of the tube, at least a part of the top of the first fin has a flat surface, and the ratio of the width of the flat surface of the top to the height of the fin is 0.3 to 1. Heat exchange using the internally grooved heat transfer tube for the heat exchanger according to (1) (3) (1) or (2), characterized by being 0.0 In vessel (4) (3) A heat exchanger according, there is provided a heat exchanger wherein the refrigerant is carbon dioxide.

本発明の内面溝付伝熱管は、特に二酸化炭素のような作動圧力の高い冷媒を使用する肉厚の厚い内面溝付伝熱管を対象としており、アルミニウムのプレートフィンに拡管しても内面フィンの倒れなどが生じず、且つ重量増加を抑制することができるので、二酸化炭素冷媒用に適した伝熱管を提供することができる。   The inner surface grooved heat transfer tube of the present invention is particularly intended for a thick inner surface grooved heat transfer tube that uses a refrigerant having a high operating pressure such as carbon dioxide. Since a fall or the like does not occur and an increase in weight can be suppressed, a heat transfer tube suitable for a carbon dioxide refrigerant can be provided.

以下、本発明に係る内面溝付管に関する数値限定理由について説明する。図1と図2は内面溝付管の外径D、肉厚t、第一のフィンの高さh1、前記第一のフィンの頂部の曲率半径R1、前記第一のフィンの頂部平面部の幅wf1、前記第一のフィンの頂角γ1、第二のフィンの高さh2、前記第二のフィンの頂角γ2、前記第二のフィンの頂部の曲率半径R2を説明する模式的断面図である。   Hereinafter, the reason for numerical limitation regarding the internally grooved pipe according to the present invention will be described. 1 and 2 show the outer diameter D of the internally grooved tube, the wall thickness t, the height h1 of the first fin, the radius of curvature R1 of the top of the first fin, and the top flat portion of the first fin. Schematic cross-sectional view for explaining the width wf1, the apex angle γ1 of the first fin, the height h2 of the second fin, the apex angle γ2 of the second fin, and the curvature radius R2 of the apex of the second fin It is.

図1は本願発明の内面溝付管の例である。本願発明に係る内面溝付伝熱管は肉厚tが少なくとも0.4mm以上であって、且つ外径Dと肉厚tの比t/Dの値が0.04〜0.25である。これにより二酸化炭素等の超臨界サイクルを使用する冷媒を高圧にしても使用することができる。t/Dが0.04未満であると、管の強度が低いため冷媒の圧力に耐えられず破壊してしまう。0.25を超えると管の強度が高くなるが、転造加工ができなくなる。好ましくはt/Dの値は0.05〜0.20、より好ましくは0.06〜0.10である。但し肉厚tは少なくとも0.4mm以上は必要である。一般的に管の外径が小さいほど管の耐圧強度は高くなるが、0.4mm未満では曲げ加工部の強度が不足して割れが生じるためである。管の曲げ加工を考慮すると外径Dは4.0〜10.0mmが好ましい。また管内面の転造加工の点から肉厚tは0.4〜1.0mmが好ましい。   FIG. 1 is an example of the internally grooved tube of the present invention. The internally grooved heat transfer tube according to the present invention has a wall thickness t of at least 0.4 mm and a ratio t / D of the outer diameter D to the wall thickness t of 0.04 to 0.25. Thereby, even if the refrigerant | coolant which uses supercritical cycles, such as a carbon dioxide, is high pressure, it can be used. If t / D is less than 0.04, the strength of the tube is low, so that it cannot withstand the pressure of the refrigerant and is destroyed. If it exceeds 0.25, the strength of the tube will be high, but rolling will not be possible. Preferably the value of t / D is 0.05-0.20, more preferably 0.06-0.10. However, the wall thickness t needs to be at least 0.4 mm. Generally, the smaller the outer diameter of the tube, the higher the pressure resistance of the tube, but if it is less than 0.4 mm, the strength of the bent portion is insufficient and cracks occur. Considering bending of the tube, the outer diameter D is preferably 4.0 to 10.0 mm. Further, the wall thickness t is preferably 0.4 to 1.0 mm from the viewpoint of the rolling process on the inner surface of the pipe.

本願発明の内面溝付伝熱管はフィン高さの異なる二種類の内面フィンを有し、フィン高さの高い方を第一のフィン、低い方を第二のフィンとした。ここでフィン高さとは、管中心から管内面の溝部分との距離と、管中心から内面フィン頂部との距離の差のことをいう。フィンの頂角とは、内面フィンの一方の側面ともう一方の側面がなす角度のことをいう。フィン平面部の幅とは、内面フィンの頂部の平面と一方の側面がなす接線と、前記平面ともう一方の側面がなす接線との、二つの接線の距離のことをいう。フィンのねじれ角とは、内面溝付管を管軸に平行に切開し展開したとき、管軸方向と内面フィンが伸びる方向とがなす角度のことをいう。   The internally grooved heat transfer tube of the present invention has two types of internal fins with different fin heights, and the higher fin height is the first fin and the lower fin is the second fin. Here, the fin height means the difference between the distance from the tube center to the groove portion on the inner surface of the tube and the distance from the tube center to the top of the inner surface fin. The apex angle of the fin means an angle formed by one side surface of the inner fin and the other side surface. The width of the fin plane portion means a distance between two tangent lines, that is, a tangent line formed by one side surface of the top surface of the inner fin and a tangent line formed by the other side surface. The torsion angle of the fin refers to an angle formed by the tube axis direction and the direction in which the inner surface fin extends when the inner grooved tube is cut in parallel with the tube axis and deployed.

第一のフィンの高さh1は0.10〜0.22mmとする。0.10mm未満であると伝熱特性に劣り、0.22mmを超えると転造加工ができない。好ましくは0.13〜0.20mmである。前記第一のフィンの頂角γ1は20〜60度である。20度未満では拡管工程において内面フィンの倒れが生じてしまう。60度を超えると冷媒との接触面積が減少して伝熱性能が低下してしまう。好ましくは25〜40度である。前記第一のフィンの頂部は管の中心に向かって曲率半径R1を有する曲面でかつ凸形状か、あるいは平面が良い。前記頂部が管の中心に向かって凹形状にしても伝熱性能は向上せず、転造加工においてコストが上昇してしまう。前記フィン頂部の曲率半径R1とフィンの高さh1との比R1/h1は5以上とする。5より小さいと拡管工程において内面フィンの倒れが生じてしまう。好ましくは15以上である。なお、前記曲率半径R1は0.03mm以上が好ましく、大きければ大きいほどより好ましい。   The height h1 of the first fin is 0.10 to 0.22 mm. If it is less than 0.10 mm, the heat transfer characteristics are inferior, and if it exceeds 0.22 mm, rolling cannot be performed. Preferably it is 0.13-0.20 mm. The apex angle γ1 of the first fin is 20 to 60 degrees. If it is less than 20 degree | times, the fall of an internal fin will arise in a pipe expansion process. If it exceeds 60 degrees, the contact area with the refrigerant decreases and the heat transfer performance deteriorates. Preferably it is 25-40 degrees. The top of the first fin is a curved surface having a radius of curvature R1 toward the center of the tube, and may be convex or flat. Even if the top portion is concave toward the center of the pipe, the heat transfer performance is not improved, and the cost is increased in the rolling process. The ratio R1 / h1 between the curvature radius R1 of the fin top and the height h1 of the fin is 5 or more. If it is less than 5, the fins on the inner surface will fall during the tube expansion process. Preferably it is 15 or more. The radius of curvature R1 is preferably 0.03 mm or more, and it is more preferable as it is larger.

図2は第一のフィンの頂部の少なくとも一部に平面を有する本願発明の内面溝付管の例である。第一のフィンの形状においてR1/h1の比が5以上である場合のようにほぼ平面と考えられる程度であれば良いが、より好ましくは前記頂部が平面であることが望ましい。内面フィンにおいて平面部の幅wf1とフィン高さh1との比wf1/h1は0.3〜1.0とする。0.3未満であると拡管工程において内面フィンの倒れが生じてしまう。1.0を超えると冷媒と管との接触面積が減少して伝熱性能が低下してしまうだけでなく管の重量が増加してしまう。好ましくは0.35〜0.5である。   FIG. 2 is an example of the internally grooved tube of the present invention having a flat surface at least at a part of the top of the first fin. In the shape of the first fin, it is sufficient that the R1 / h1 ratio is approximately 5 as in the case where the ratio is 5 or more, but it is more preferable that the top is a plane. In the inner fin, the ratio wf1 / h1 between the width wf1 of the planar portion and the fin height h1 is set to 0.3 to 1.0. If it is less than 0.3, the fins on the inner surface will fall in the tube expansion process. If it exceeds 1.0, the contact area between the refrigerant and the tube will decrease and the heat transfer performance will deteriorate, and the weight of the tube will increase. Preferably it is 0.35-0.5.

次に第二のフィンについて説明する。第二のフィンの高さh2と第一のフィンの高さh1との比h2/h1は0.5〜0.9とする。0.5未満であると、転造加工工程において溝付プラグと第一のフィンとが接する部位に付加される押圧力が高くなり溝付プラグが破損してしまう。0.9を超えると冷媒と管との接触面積が減少して所望の伝熱性能が得られない。好ましくは0.5〜0.8である。前記第二のフィンの頂角γ2は20〜60度である。20度未満では転造加工工程において精度良く内面フィンを形成することができず伝熱性能が低下してしまう。60度を超えると冷媒と管との接触面積が減少して伝熱性能が低下してしまう。好ましくは25〜40度である。前記第二のフィンの頂部の曲率半径R2は0.02mm以上とする。0.02mmより小さいと転造加工ができない。好ましくは0.035mm以上である。   Next, the second fin will be described. The ratio h2 / h1 between the height h2 of the second fin and the height h1 of the first fin is 0.5 to 0.9. If it is less than 0.5, the pressing force applied to the part where the grooved plug and the first fin are in contact with each other in the rolling process is increased, and the grooved plug is damaged. If it exceeds 0.9, the contact area between the refrigerant and the tube decreases, and the desired heat transfer performance cannot be obtained. Preferably it is 0.5-0.8. The apex angle γ2 of the second fin is 20 to 60 degrees. If it is less than 20 degrees, the inner fins cannot be formed with high accuracy in the rolling process, and the heat transfer performance is degraded. If it exceeds 60 degrees, the contact area between the refrigerant and the tube will decrease, and the heat transfer performance will deteriorate. Preferably it is 25-40 degrees. The radius of curvature R2 of the top of the second fin is 0.02 mm or more. If it is smaller than 0.02 mm, the rolling process cannot be performed. Preferably it is 0.035 mm or more.

前記第一のフィンと第二のフィンのねじれ角は同じ角度とする。異なる角度とすると転造加工が複雑となりコストが上がってしまう。前記ねじれ角は5〜80度とする。5度未満では冷媒の攪拌効果が小さいため伝熱性能が低下する。80度を超えると冷媒の攪拌効果が飽和するばかりか、転造加工工程において溝付プラグに付加される押圧力が高まり破損してしまう。製造上安定して加工可能で、かつ製造コストを抑えることを考慮すれば好ましくは5〜30度である。また第一のフィンの数と第二のフィンの数の比は0.7〜1.5とする。0.7未満あるいは1.5を超えると冷媒と管が接触する面積が小さくなり伝熱性能に劣る。第一のフィンと第二のフィンの数は同数であることが好ましい。   The twist angles of the first fin and the second fin are the same. If the angle is different, the rolling process becomes complicated and the cost increases. The twist angle is 5 to 80 degrees. If it is less than 5 degrees, the heat transfer performance is lowered because the stirring effect of the refrigerant is small. If it exceeds 80 degrees, not only the stirring effect of the refrigerant is saturated, but also the pressing force applied to the grooved plug in the rolling process increases and breaks. Considering the fact that it can be stably processed for manufacturing and the manufacturing cost is suppressed, it is preferably 5 to 30 degrees. The ratio of the number of first fins to the number of second fins is 0.7 to 1.5. If it is less than 0.7 or exceeds 1.5, the area where the refrigerant and the pipe come into contact with each other is reduced, and the heat transfer performance is poor. The number of first fins and second fins is preferably the same.

本願発明の内面溝付伝熱管及び熱交換器は通常の方法により製造する。すなわち管に溝付プラグを挿入し、周囲から回転するボールによりプラグに対して管を押圧することによって管内面にフィンを成形する転造加工工程を行う。また前記伝熱管の外径よりも大きな孔が開いているプレートフィンに伝熱管を挿入し、次いで前記伝熱管に拡管プラグを挿入し伝熱管の径を拡大することで管とプレートフィンを密着させる拡管工程を行い、熱交換器を製造する。前記プレートフィンはアルミニウム若しくはアルミニウム合金等の金属材料にて形成される。   The internally grooved heat transfer tube and the heat exchanger of the present invention are manufactured by an ordinary method. That is, a rolling process is performed in which fins are formed on the inner surface of a pipe by inserting a grooved plug into the pipe and pressing the pipe against the plug with a ball rotating from the periphery. Further, a heat transfer tube is inserted into a plate fin having a hole larger than the outer diameter of the heat transfer tube, and then a tube expansion plug is inserted into the heat transfer tube to enlarge the diameter of the heat transfer tube, thereby bringing the tube and the plate fin into close contact with each other. A pipe expansion process is performed to manufacture a heat exchanger. The plate fin is formed of a metal material such as aluminum or an aluminum alloy.

本願発明の内面溝付伝熱管の材質は熱伝導に優れる材質であれば良い。例えば、銅、銅合金、アルミニウム、アルミニウム合金、鉄などの金属が挙げられるが、その中でも銅を99.0%以上でありその他不可避不純物からなるものが好ましい。より好ましくは、JIS C 1020(無酸素銅)、JIS C 1100(タフピッチ銅)、JIS C 1200(リン脱酸銅)からなる。   The material of the internally grooved heat transfer tube of the present invention may be any material that is excellent in heat conduction. For example, metals such as copper, copper alloy, aluminum, aluminum alloy, iron and the like can be mentioned. Among them, copper is preferably 99.0% or more and other unavoidable impurities. More preferably, it consists of JIS C 1020 (oxygen-free copper), JIS C 1100 (tough pitch copper), and JIS C 1200 (phosphorus deoxidized copper).

次に本発明に実施例に基づきさらに詳細に説明する。
リン脱酸銅(JIS C 1200)からなる管を転造加工することにより表1記載の伝熱管を製造し、拡管前の伝熱性能として熱伝達率を測定した。次いで前記伝熱管を拡管プラグにより拡管してアルミフィンへの装着を行い、内面フィンの倒れの有無、アルミフィンの割れ有無について評価した。さらに、前記伝熱管をアルミフィンから取りはずして、拡管後の伝熱性能として熱伝達率を測定した。なお比較例6を除いて外径Dを7mm、肉厚tを0.6mm、内面フィン総数を60、ねじれ角度を10度、第二のフィンの頂角γ2を25度とした。比較例6は平滑管であり、管内面に溝は無い。
Next, the present invention will be described in more detail based on examples.
A heat transfer tube shown in Table 1 was manufactured by rolling a tube made of phosphorous deoxidized copper (JIS C 1200), and the heat transfer rate was measured as the heat transfer performance before tube expansion. Next, the heat transfer tube was expanded with a tube expansion plug and attached to an aluminum fin, and the presence or absence of an internal fin collapsed and the presence or absence of cracking of the aluminum fin were evaluated. Further, the heat transfer tube was removed from the aluminum fin, and the heat transfer coefficient was measured as the heat transfer performance after the tube expansion. Except for Comparative Example 6, the outer diameter D was 7 mm, the wall thickness t was 0.6 mm, the total number of inner fins was 60, the twist angle was 10 degrees, and the apex angle γ2 of the second fin was 25 degrees. Comparative Example 6 is a smooth tube, and there is no groove on the tube inner surface.

なお、各評価項目の測定方法は以下の通りである。管内面形状の測定については、管を切断した後#1000の研磨紙にて研磨したのち、光学顕微鏡を用いて倍率100倍で写真撮影し断面形状を測定した。伝熱性能の評価については、水平に設置した二重管式熱交換器の内管としてサンプル挿入し、サンプル内に冷媒となる二酸化炭素を測定する内面溝付伝熱管の入り口側で3MPaの圧力で400kg/msecの冷媒流速で流すとともに、外管と内管の間の二重管部には被冷却水を冷媒に対して対向に流し、被冷却水と熱交換させて二酸化炭素を蒸発させる。なお、内面溝付伝熱管の二酸化炭素出口側で1℃の過熱度を設定して交換熱量を測定し、管内蒸発熱伝達率を算出した。ただし管内蒸発熱伝達率は管外面基準であり、管そのものの熱伝導率も含んだ値での評価である。また伝熱管の軸方向へフィンの倒れが発生している場合は、フィンが倒れている方向と同じ方向へ冷媒を流した。 In addition, the measuring method of each evaluation item is as follows. Regarding the measurement of the inner surface of the tube, the tube was cut and polished with # 1000 polishing paper, and then photographed with an optical microscope at a magnification of 100 to measure the cross-sectional shape. For the heat transfer performance evaluation, a sample was inserted as an inner tube of a horizontally installed double tube heat exchanger, and a pressure of 3 MPa was introduced at the inlet side of the internally grooved heat transfer tube for measuring carbon dioxide as a refrigerant in the sample. with flowing in the refrigerant flow rate of 400 kg / m 2 sec in the the double tube portion between the outer tube and the inner tube flowing in opposite the cooled water against refrigerant, by heat exchange the coolant CO Evaporate. In addition, the degree of superheat of 1 ° C. was set on the carbon dioxide outlet side of the internally grooved heat transfer tube, the exchange heat quantity was measured, and the evaporation heat transfer coefficient in the tube was calculated. However, the evaporation heat transfer coefficient in the tube is based on the outer surface of the tube, and the evaluation includes a value including the heat conductivity of the tube itself. In addition, when the fin collapsed in the axial direction of the heat transfer tube, the refrigerant was flowed in the same direction as the direction in which the fin fell.

表1の結果から、本発明例は拡管前も拡管後も熱伝達率が高く、拡管による内面フィンの倒れもアルミフィンの割れも発生しなかった。しかし比較例1は第一のフィンの高さが0.25mmで本願発明の範囲外なので内面フィンの倒れ及びアルミフィンの割れが発生した。比較例2は第一のフィンの頂部平面部の長さとフィン高さとの関係が本願発明の範囲外なので内面フィンの倒れ及びアルミフィンの割れが発生した。比較例3は第一のフィンの頂角が20度よりも小さくて本願発明の範囲外なので内面フィンの倒れ及びアルミフィンの割れが発生した。比較例4は第一のフィンの頂部の曲面半径とフィン高さとの関係が本願発明の範囲外なので内面フィンの倒れ及びアルミフィンの割れが発生した。前記比較例1乃至4は内面フィン倒れにより拡管後の熱伝達率の低下が著しい。比較例5はフィンの倒れは生じなかったが、第一のフィンの数が少ないため冷媒と管が接触する面積が小さくなり、伝熱性能が本願発明例より劣った。比較例6は管内面フィンが存在しないので熱伝達率が劣った。   From the results shown in Table 1, the heat transfer coefficient of the present invention example was high before and after the expansion, and neither the inner fin collapsed nor the aluminum fin cracked due to the expansion. However, in Comparative Example 1, the height of the first fin was 0.25 mm, which was outside the scope of the present invention, so that the inner fin collapsed and the aluminum fin cracked. In Comparative Example 2, since the relationship between the length of the top flat portion of the first fin and the fin height was outside the scope of the present invention, the inner fin collapsed and the aluminum fin cracked. In Comparative Example 3, since the apex angle of the first fin was smaller than 20 degrees and out of the scope of the present invention, the inner fin collapsed and the aluminum fin cracked. In Comparative Example 4, since the relationship between the radius of curvature of the top of the first fin and the fin height was outside the scope of the present invention, the inner fin collapsed and the aluminum fin cracked. In Comparative Examples 1 to 4, the heat transfer coefficient after pipe expansion is significantly reduced due to the fall of the inner fins. In Comparative Example 5, the fin collapse did not occur, but the area where the refrigerant and the pipe contacted was small because the number of the first fins was small, and the heat transfer performance was inferior to that of the present invention example. In Comparative Example 6, the heat transfer coefficient was inferior because there were no tube inner fins.

Figure 2005257160
Figure 2005257160

実施例1と同様の方法で内面溝付伝熱管を転造加工して製造した。管の寸法については表2に記載の値とした。ただし、内面フィンの総数を60、第一のフィンの数を30とした。第二のフィンについては、フィンの数を30、頂部の曲率半径R2を0.04mm、頂角γ2を25度とした。評価方法は実施例1と同様とした。   The inner grooved heat transfer tube was rolled and manufactured in the same manner as in Example 1. The tube dimensions were as shown in Table 2. However, the total number of inner fins was 60, and the number of first fins was 30. For the second fin, the number of fins was 30, the radius of curvature R2 at the top was 0.04 mm, and the apex angle γ2 was 25 degrees. The evaluation method was the same as in Example 1.

表2の結果から、本発明例は熱伝達率が高く、拡管による内面フィンの倒れもアルミニウムフィンの割れも発生しなかった。しかし比較例7は第一のフィンの頂角が20度よりも小さくて本願発明の範囲外なので内面フィンの倒れ及びアルミフィンの割れが発生した。比較例8は第一のフィンの高さが0.25mmであり本願発明の範囲外なので内面フィンの倒れ及びアルミフィンの割れが発生した。比較例9は第一のフィンの頂角が20度よりも小さくて本願発明の範囲外なので内面フィンの倒れ及びアルミフィンの割れが発生した。   From the results shown in Table 2, the heat transfer coefficient of the present invention example was high, and neither the inner fin collapsed nor the aluminum fin cracked due to the expansion. However, in Comparative Example 7, since the apex angle of the first fin was smaller than 20 degrees and was outside the scope of the present invention, the inner fin collapsed and the aluminum fin cracked. In Comparative Example 8, the height of the first fin was 0.25 mm, which was outside the scope of the present invention, so that the inner fin collapsed and the aluminum fin cracked. In Comparative Example 9, since the apex angle of the first fin was smaller than 20 degrees and out of the scope of the present invention, the inner fin collapsed and the aluminum fin cracked.

Figure 2005257160
Figure 2005257160

実施例1、2と同様に内面溝付伝熱管を転造加工して所望の外径に製造した。転造加工を長さ4000m行った時点での内面フィン形状および溝付プラグの状態を目視で確認した。管の寸法については表3に記載の値とした。ただしフィン総数を60とした。また第二のフィンについてはねじれ角度を10度、頂部の曲率半径を0.04mmとした。評価方法は実施例1と同様とした。   In the same manner as in Examples 1 and 2, the internally grooved heat transfer tube was rolled to produce a desired outer diameter. The inner fin shape and the state of the grooved plug at the time when the rolling process was performed 4000 m in length were visually confirmed. The tube dimensions were as shown in Table 3. However, the total number of fins was 60. For the second fin, the twist angle was 10 degrees and the curvature radius at the top was 0.04 mm. The evaluation method was the same as in Example 1.

表3の結果から本発明例は熱伝達率が高く、拡管による内面フィンの倒れもアルミフィンの割れも発生しなかった。しかし比較例10は第二のフィンの頂角が20度よりも小さく本願発明の範囲外なので転造加工によって目的とする内面フィンを加工できなかった。比較例11は第一のフィンの高さと第二のフィンの高さとの関係が本願発明の範囲外なので溝付プラグが破損して途中で製造を中止した。   From the results shown in Table 3, the heat transfer coefficient of the present invention example was high, and neither the inner fin collapsed nor the aluminum fin cracked due to the expansion. However, in Comparative Example 10, since the apex angle of the second fin was smaller than 20 degrees and outside the scope of the present invention, the intended inner fin could not be processed by rolling. In Comparative Example 11, since the relationship between the height of the first fin and the height of the second fin was outside the scope of the present invention, the grooved plug was damaged and the production was stopped midway.

Figure 2005257160
Figure 2005257160

本発明の内面溝付伝熱管を示す断面模式図である。It is a cross-sectional schematic diagram which shows the inner surface grooved heat exchanger tube of this invention. 本発明の内面溝付伝熱管を示す断面模式図である。It is a cross-sectional schematic diagram which shows the inner surface grooved heat exchanger tube of this invention.

符号の説明Explanation of symbols

1 内面溝付伝熱管
2 溝部分
3 第一のフィン
4 第二のフィン
DESCRIPTION OF SYMBOLS 1 Heat-transfer tube with inner surface groove 2 Groove part 3 1st fin 4 2nd fin

Claims (4)

管内面にフィンが形成されている内面溝付管において、第一のフィンが高さ0.10〜0.22mm、頂角が20〜60度、頂部の曲率半径と高さとの比が5以上であり、第二のフィンの頂角が20〜60度であり、第二のフィンの高さと第一のフィンの高さとの比が0.5〜0.9であり、管の肉厚tは0.4mm以上で、且つ管の外径Dとの比t/Dが0.04〜0.25であることを特徴とする熱交換器用内面溝付伝熱管。 In an internally grooved tube in which fins are formed on the tube inner surface, the first fin has a height of 0.10 to 0.22 mm, the apex angle is 20 to 60 degrees, and the ratio of the curvature radius to the height of the apex is 5 or more. The apex angle of the second fin is 20 to 60 degrees, the ratio of the height of the second fin to the height of the first fin is 0.5 to 0.9, and the wall thickness t of the tube Is 0.4 mm or more, and the ratio t / D to the outer diameter D of the tube is 0.04 to 0.25. 管内面にフィンが形成されている内面溝付管において、第一のフィンの頂部の少なくとも一部に平面を有し、頂部の平面部の幅とフィン高さとの比が0.3〜1.0であることを特徴とする請求項1記載の熱交換器用内面溝付伝熱管。 In the internally grooved tube in which fins are formed on the tube inner surface, at least a part of the top portion of the first fin has a flat surface, and the ratio of the width of the flat portion of the top portion to the fin height is 0.3 to 1. The heat transfer tube with an inner surface groove for a heat exchanger according to claim 1, wherein the heat transfer tube is zero. 請求項1又は2記載の内面溝付伝熱管を用いた熱交換器。 A heat exchanger using the internally grooved heat transfer tube according to claim 1 or 2. 請求項3記載の熱交換器において、冷媒が二酸化炭素であることを特徴する熱交換器。 4. The heat exchanger according to claim 3, wherein the refrigerant is carbon dioxide.
JP2004068654A 2004-03-11 2004-03-11 Heat exchanger using inner surface grooved heat transfer tube and inner surface grooved heat transfer tube Expired - Lifetime JP4550451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068654A JP4550451B2 (en) 2004-03-11 2004-03-11 Heat exchanger using inner surface grooved heat transfer tube and inner surface grooved heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068654A JP4550451B2 (en) 2004-03-11 2004-03-11 Heat exchanger using inner surface grooved heat transfer tube and inner surface grooved heat transfer tube

Publications (2)

Publication Number Publication Date
JP2005257160A true JP2005257160A (en) 2005-09-22
JP4550451B2 JP4550451B2 (en) 2010-09-22

Family

ID=35083054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068654A Expired - Lifetime JP4550451B2 (en) 2004-03-11 2004-03-11 Heat exchanger using inner surface grooved heat transfer tube and inner surface grooved heat transfer tube

Country Status (1)

Country Link
JP (1) JP4550451B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120787A (en) * 2005-10-25 2007-05-17 Hitachi Cable Ltd Heat exchanger tube with inner surface groove
JP2007322069A (en) * 2006-06-01 2007-12-13 Hitachi Cable Ltd Coolant heat transfer tube for heat pump type heat exchanger, and gas cooler using it
JP2009063270A (en) * 2007-09-10 2009-03-26 Furukawa Electric Co Ltd:The Heat transfer tube with inner face fin
JP2009068773A (en) * 2007-09-13 2009-04-02 Furukawa Electric Co Ltd:The Heat transfer tube
JP2009186130A (en) * 2008-02-08 2009-08-20 Furukawa Electric Co Ltd:The Heat transfer tube for radiator with inner face fin
JP2009530581A (en) * 2006-03-23 2009-08-27 ヴィーラント ウェルケ アクチーエン ゲゼルシャフト How to use heat exchanger tubes
JP2009250562A (en) * 2008-04-09 2009-10-29 Panasonic Corp Heat exchanger
JP2010249484A (en) * 2009-04-20 2010-11-04 Mitsubishi Electric Corp Heat exchanger and refrigerating cycle device
JP2011144989A (en) * 2010-01-13 2011-07-28 Mitsubishi Electric Corp Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle device and air conditioner
JP2013204960A (en) * 2012-03-29 2013-10-07 Sanden Corp Heat exchanger, and method for manufacturing the same
JP2014142175A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
JPWO2013046482A1 (en) * 2011-09-26 2015-03-26 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP2016509661A (en) * 2012-12-07 2016-03-31 ルバタ エスポー オサケ ユキチュアLuvata Espoo Oy Grooved tube
JP2019052829A (en) * 2017-09-19 2019-04-04 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353296A (en) * 2011-07-26 2012-02-15 金龙精密铜管集团股份有限公司 Heat exchanger and internal threaded copper tube thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121272A (en) * 1998-10-14 2000-04-28 Mitsubishi Shindoh Co Ltd Heat exchanger tube with internal groove and heat exchanger
JP2003222487A (en) * 2002-01-31 2003-08-08 Kobe Steel Ltd Pipe with inner face grooves for fin tube-type heat exchanger, and plate fin tube-type heat exchanger
JP2003247788A (en) * 2001-12-17 2003-09-05 Showa Denko Kk Heat exchanger and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121272A (en) * 1998-10-14 2000-04-28 Mitsubishi Shindoh Co Ltd Heat exchanger tube with internal groove and heat exchanger
JP2003247788A (en) * 2001-12-17 2003-09-05 Showa Denko Kk Heat exchanger and manufacturing method thereof
JP2003222487A (en) * 2002-01-31 2003-08-08 Kobe Steel Ltd Pipe with inner face grooves for fin tube-type heat exchanger, and plate fin tube-type heat exchanger

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120787A (en) * 2005-10-25 2007-05-17 Hitachi Cable Ltd Heat exchanger tube with inner surface groove
US8091615B2 (en) 2005-10-25 2012-01-10 Hitachi Cable, Ltd. Heat transfer pipe with grooved inner surface
JP4665713B2 (en) * 2005-10-25 2011-04-06 日立電線株式会社 Internal grooved heat transfer tube
JP2009530581A (en) * 2006-03-23 2009-08-27 ヴィーラント ウェルケ アクチーエン ゲゼルシャフト How to use heat exchanger tubes
JP2007322069A (en) * 2006-06-01 2007-12-13 Hitachi Cable Ltd Coolant heat transfer tube for heat pump type heat exchanger, and gas cooler using it
JP2009063270A (en) * 2007-09-10 2009-03-26 Furukawa Electric Co Ltd:The Heat transfer tube with inner face fin
JP2009068773A (en) * 2007-09-13 2009-04-02 Furukawa Electric Co Ltd:The Heat transfer tube
JP2009186130A (en) * 2008-02-08 2009-08-20 Furukawa Electric Co Ltd:The Heat transfer tube for radiator with inner face fin
JP2009250562A (en) * 2008-04-09 2009-10-29 Panasonic Corp Heat exchanger
JP2010249484A (en) * 2009-04-20 2010-11-04 Mitsubishi Electric Corp Heat exchanger and refrigerating cycle device
JP2011144989A (en) * 2010-01-13 2011-07-28 Mitsubishi Electric Corp Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle device and air conditioner
CN102713487A (en) * 2010-01-13 2012-10-03 三菱电机株式会社 Heat transfer tube for heat exchanger, heat exchanger, refrigeration cycle device, and air conditioning device
EP2765383A4 (en) * 2011-09-26 2015-07-08 Mitsubishi Electric Corp Heat exchanger and refrigeration cycle device using heat exchanger
US9879921B2 (en) 2011-09-26 2018-01-30 Mitsubishi Corporation Heat exchanger and refrigeration cycle device including the heat exchanger
JPWO2013046482A1 (en) * 2011-09-26 2015-03-26 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP2013204960A (en) * 2012-03-29 2013-10-07 Sanden Corp Heat exchanger, and method for manufacturing the same
JP2016509661A (en) * 2012-12-07 2016-03-31 ルバタ エスポー オサケ ユキチュアLuvata Espoo Oy Grooved tube
JP2014142175A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
JP2019052829A (en) * 2017-09-19 2019-04-04 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner
US11125505B2 (en) 2017-09-19 2021-09-21 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner including the same

Also Published As

Publication number Publication date
JP4550451B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4550451B2 (en) Heat exchanger using inner surface grooved heat transfer tube and inner surface grooved heat transfer tube
JP4759226B2 (en) Tube expansion tool and tube expansion method using the same
JP2007271123A (en) Inner face-grooved heat transfer tube
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2011153823A (en) Heat exchanger and air conditioner using the same
JP2008164245A (en) Heat exchanger
JP2008215733A (en) Fin and tube type heat exchanger
WO2006059544A1 (en) Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
JP2006322661A (en) Heat transfer tube for heat dissipation, and radiator
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP2008267791A (en) Leakage detecting tube and heat exchanger using the same
JP5006155B2 (en) Heat transfer tube
JP2006130558A (en) Method for manufacturing heat exchanger
WO2013094084A1 (en) Air conditioner
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
JP2011021844A (en) Inner face grooved heat transfer tube and cross fin tube type heat exchanger for evaporator
JP2002147981A (en) Heat exchanger tube and finned tube heat exchanger
JP5446163B2 (en) Grooved tube for heat exchanger
JP4948136B2 (en) Heat transfer tube and radiator
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP5607294B2 (en) Heat transfer tube
JP4119765B2 (en) Internal grooved heat transfer tube
JPH0712483A (en) Heat transfer tube with inner surface groove
JP4015047B2 (en) Internal grooved heat transfer tube
JP2010133668A (en) Inner helically grooved heat transfer tube and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R151 Written notification of patent or utility model registration

Ref document number: 4550451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term