JP5006155B2 - Heat transfer tube - Google Patents
Heat transfer tube Download PDFInfo
- Publication number
- JP5006155B2 JP5006155B2 JP2007272380A JP2007272380A JP5006155B2 JP 5006155 B2 JP5006155 B2 JP 5006155B2 JP 2007272380 A JP2007272380 A JP 2007272380A JP 2007272380 A JP2007272380 A JP 2007272380A JP 5006155 B2 JP5006155 B2 JP 5006155B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- fin
- transfer tube
- tube
- degrees
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Metal Extraction Processes (AREA)
Description
本発明は冷凍機や空調機等の熱交換器に用いられる伝熱管に関するものである。 The present invention relates to a heat transfer tube used in a heat exchanger such as a refrigerator or an air conditioner.
一般に空調機や冷凍機の熱交換器に用いられる伝熱管は、管内に冷媒としてフロン等を流して熱交換を行わせるもので、最近では管内面に断面形状が三角形や台形のフィンを持つ伝熱管(内面溝付管)を使用することによって熱交換器の高効率化や省エネルギー化が進められている。これらの伝熱管は、一般に、転造加工により製造される。 In general, heat transfer tubes used in heat exchangers for air conditioners and refrigerators exchange heat by flowing chlorofluorocarbon as a refrigerant in the tubes. Recently, the heat transfer tubes have triangular or trapezoidal fins on the inner surface of the tubes. The use of heat pipes (inner grooved pipes) has promoted higher efficiency and energy saving of heat exchangers. These heat transfer tubes are generally manufactured by a rolling process.
空調機用熱交換器に対しては高性能化、小型軽量化の要求が強く、またヒートポンプ式エアコンの普及により同一の伝熱管で蒸発性能と凝縮性能の両性能をともに向上させた伝熱管が必要とされている。このような要求に応えるべく、フィン間の溝の深さ、溝のリード角、底肉厚、溝の形状等を規定した伝熱管が提案されている(特許文献1)。 There is a strong demand for higher performance, smaller size and lighter weight for heat exchangers for air conditioners, and with the widespread use of heat pump air conditioners, heat transfer tubes that have improved both evaporation and condensation performance with the same heat transfer tubes is needed. In order to meet such demands, a heat transfer tube that defines the groove depth between fins, groove lead angle, bottom wall thickness, groove shape, and the like has been proposed (Patent Document 1).
一方、前記伝熱管にはこれまで主に銅や銅合金等の銅系材料が使用されてきたが、空調機用熱交換器の小型軽量化の要求に対応するため、アルミニウムやアルミニウム合金等のアルミ系材料を使用することが検討されている(特許文献2)。 On the other hand, copper-based materials such as copper and copper alloys have been mainly used so far for the heat transfer tubes. However, in order to meet the demand for smaller and lighter heat exchangers for air conditioners, aluminum and aluminum alloys are used. The use of aluminum-based materials has been studied (Patent Document 2).
しかしながら、銅系材料の伝熱管で採用していた内面の溝(フィン)形状を、そのままアルミ系材料の伝熱管に用いると伝熱管の耐圧強度基準を満足することができず、熱交換器に使用できないという問題が生じた。これはアルミ系材料の強度が低いことが原因なので、対策としては伝熱管の底肉厚を厚くすることが考えられるが、そうすると内面のフィン(溝)の加工が困難になり、場合によっては、フィンが加工中に千切れてしまうといった問題が発生した。
本発明は、十分な耐圧強度を有し、かつ内面溝加工が良好に行えるアルミ系材料からなる伝熱管の提供を目的とする。
However, if the inner groove (fin) shape used in copper-based heat transfer tubes is used as is in aluminum-based heat transfer tubes, the pressure resistance strength standard of the heat transfer tubes cannot be satisfied, and the heat exchanger There was a problem that it could not be used. Since this is due to the low strength of the aluminum-based material, it is conceivable to increase the bottom wall thickness of the heat transfer tube as a countermeasure, but doing so makes it difficult to process the fins (grooves) on the inner surface, There was a problem that the fins were broken during processing.
An object of this invention is to provide the heat exchanger tube which consists of an aluminum-type material which has sufficient pressure-resistant intensity | strength and can perform internal surface groove processing satisfactorily.
請求項1に記載の発明は、JISA3000系(Al−Mn系)アルミニウム合金からなる素管を転造加工して、管内面にフィンが形成された伝熱管であって、前記伝熱管の外径(D)と底肉厚(t)の比[D/t]が13.0以上、17.5以下であり、かつ前記フィン底幅Wが0.12mm以上0.3mm以下であるとともに、前記伝熱管の内面に形成されたフィンの頂角αが11度以上16度以下であり、前記伝熱管の内面に形成されたフィンのリード角βが20度以上であることを特徴とする伝熱管である。
The invention according to
本発明の伝熱管は、JISA3000系(Al−Mn系)アルミニウム合金からなる素管を転造加工して、管内面にフィンが形成された伝熱管であって、その外径(D)と底肉厚(t)の比[D/t]を13.0以上、17.5以下に規定し、さらに前記フィン底幅Wを0.12mm以上0.3mm以下に規定したものなので、十分な耐圧強度を付与するために底肉厚を厚くしても、内面の溝加工を良好に行うことができる。従って溝形状および耐圧強度に優れる。 The heat transfer tube of the present invention is a heat transfer tube in which fins are formed on the inner surface of a tube made of a JISA3000 (Al-Mn) aluminum alloy by rolling , and its outer diameter (D) and bottom the ratio of the thickness (t) [D / t] 1 3.0 or more, defined 17.5 below, so that further defined the fin base width W below 0.3mm or 0.12 mm, sufficient Even if the bottom wall thickness is increased in order to impart pressure resistance, the inner surface can be grooved satisfactorily. Accordingly, the groove shape and pressure strength are excellent.
さらに前記フィンの頂角αを11度以上16度以下とし、或いは前記フィンのリード角βを20度以上とすることにより伝熱特性が向上する。しかも本発明の伝熱管はアルミ系材料からなるため軽量である。よって産業上顕著な効果を奏する。 Furthermore, heat transfer characteristics are improved by setting the apex angle α of the fin to 11 degrees or more and 16 degrees or less , or by setting the lead angle β of the fin to 20 degrees or more. Moreover, the heat transfer tube of the present invention is lightweight because it is made of an aluminum-based material. Therefore, there is a significant industrial effect.
本発明の伝熱管を構成するJISA3000系(Al−Mn系)アルミニウム合金は、溝付加工時におけるメタルフローが良好でフィンが高品質に形成される。さらにフィン成形時に外表面に発生し易いまくれ込みなどの欠陥が生じ難い。中でもJISA3003およびJISA3004はメタルフローが特に良好で推奨される。 The JIS A 3000 series (Al-Mn series) aluminum alloy constituting the heat transfer tube of the present invention has a good metal flow during grooving and high quality fins. Furthermore, defects such as curling up that are likely to occur on the outer surface during fin molding are unlikely to occur. Among them, JISA3003 and JISA3004 have a particularly good metal flow and are recommended.
本発明において、伝熱管の外径D(図1(イ)参照)と底肉厚t(図1(ハ)参照)の比[D/t]を10.0以上、17.5以下に規定する理由は、10.0未満では伝熱管の外径Dに対して底肉厚tが厚くなり、その結果、溝付加工時に材料が長さ方向に伸び易くなってフィン部へのメタルフローが悪化し、17.5を超えると管の外径Dに対して底肉厚tが薄くなって耐圧強度が低下するためである。メタルフローが悪化すると表面欠陥が発生し、極端に悪化するとフィンが千切れることもある。比[D/t]の好ましい範囲は12.1以上、17.5以下、より好ましくは13.0以上、17.5以下である。 In the present invention, the ratio [D / t] between the outer diameter D of the heat transfer tube (see FIG. 1 (a)) and the bottom wall thickness t (see FIG. 1 (c)) is defined as 10.0 or more and 17.5 or less. The reason for this is that if the thickness is less than 10.0, the bottom wall thickness t becomes thicker than the outer diameter D of the heat transfer tube, and as a result, the material tends to extend in the length direction during grooving and the metal flow to the fin portion is reduced. This is because when the pressure exceeds 17.5, the bottom wall thickness t becomes smaller than the outer diameter D of the tube, and the pressure resistance is lowered. When the metal flow deteriorates, surface defects occur, and when the metal flow deteriorates extremely, the fins may be broken. A preferable range of the ratio [D / t] is 12.1 or more and 17.5 or less, more preferably 13.0 or more and 17.5 or less.
本発明において、フィンの底幅Wを0.1mm以上に規定する理由は、0.1mm未満ではメタルフローが悪化して溝付加工性が低下するためである。フィンの底幅Wは大きいほど溝加工性は向上するが0.4mmを超えるとその効果が飽和する。フィン底幅Wの好ましい範囲は0.12〜0.3mmである。ここでフィンの底幅Wはフィンの長さ方向に垂直な断面における底幅のことをいう(図1(ロ)、(ハ)参照)。 In the present invention, the reason why the bottom width W of the fin is defined to be 0.1 mm or more is that if it is less than 0.1 mm, the metal flow is deteriorated and the grooving workability is lowered. Groove workability is improved as the bottom width W of the fin is increased, but the effect is saturated when the fin width exceeds 0.4 mm. A preferable range of the fin bottom width W is 0.12 to 0.3 mm. Here, the bottom width W of the fin refers to the bottom width in a cross section perpendicular to the length direction of the fin (see FIGS. 1B and 1C).
本発明において、伝熱管内面のフィンの頂角αを18度以下に規定することにより伝熱特性が向上する。フィンの頂角αは小さい程良いが、5度未満ではその効果が飽和する。フィンの頂角αの好ましい範囲は11度以上16度以下である。ここでフィンの頂角αはフィンの長さ方向に垂直な断面におけるフィンの頂角のことをいう(図1(ハ)参照)。 In the present invention, the heat transfer characteristics are improved by defining the apex angle α of the fin on the inner surface of the heat transfer tube to 18 degrees or less. The smaller the apex angle α of the fin, the better. However, if the angle is less than 5 degrees, the effect is saturated. A preferable range of the apex angle α of the fin is 11 degrees or more and 16 degrees or less. Here, the apex angle α of the fin refers to the apex angle of the fin in a cross section perpendicular to the length direction of the fin (see FIG. 1C).
本発明において、管内面のフィン(溝)のリード角β(リード角β:伝熱管の長さ方向とフィンの長さ方向とのなす角度、図1(ロ)参照)を20度以上に規定することにより伝熱特性が向上する。リード角βは大きい程良いが、60度以上ではその効果が飽和する。リード角βの好ましい範囲は25度以上55度以下である。 In the present invention, the lead angle β of the fin (groove) on the inner surface of the tube (lead angle β: angle formed between the length direction of the heat transfer tube and the length direction of the fin, see FIG. 1B) is specified to be 20 degrees or more. This improves the heat transfer characteristics. A larger lead angle β is better, but the effect is saturated at 60 ° or more. A preferable range of the lead angle β is 25 degrees or more and 55 degrees or less.
本発明において、伝熱管内面の各フィンの側面形状は、フィン相互間の溝に向かって一様に傾斜するフラットな斜面、円弧状の凸状斜面など任意であるが、円弧状或いは多角形状の凹状斜面は冷媒がフィン上に滞留し易く好ましい。 In the present invention, the shape of the side surface of each fin on the inner surface of the heat transfer tube is arbitrary, such as a flat slope or an arcuate convex slope that uniformly inclines toward the groove between the fins. The concave slope is preferable because the refrigerant tends to stay on the fins.
以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
[実施例1]
JISA3003系アルミニウム合金からなる素管を転造加工して伝熱管(内面螺旋溝付管)を製造した。前記伝熱管は、外径Dが7.00mm、フィン底幅Wが0.18mm、溝のリード角βが28度、フィン(隆起部)の数が48、フィンの高さHが0.22mm、フィン頂角αが15度である。底肉厚tは0.40〜0.70mmの範囲で種々に変化させた。フィンの側面形状は円弧状凹状斜面とした。
[Example 1]
A base pipe made of a JISA3003 series aluminum alloy was rolled to produce a heat transfer pipe (inner spiral grooved pipe). The heat transfer tube has an outer diameter D of 7.00 mm, a fin bottom width W of 0.18 mm, a groove lead angle β of 28 degrees, a number of fins (protrusions) of 48, and a fin height H of 0.22 mm. The fin apex angle α is 15 degrees. The bottom wall thickness t was variously changed in the range of 0.40 to 0.70 mm. The side surface shape of the fin was an arcuate concave slope.
得られた伝熱管について、管内面の溝(フィン)形状、耐圧強度、伝熱特性を調べた。
前記溝形状は、伝熱管(長さ300mm)を縦に2分割して管内面のフィンの高さ、底肉厚、底幅などを測定して調べた。前記測定値が基準値を満足し、かつ肉眼観察で皺などの欠陥が全く認められないものは溝形状が極めて良好(◎)、実用上問題ない程度の浅い皺が極少数認められる以外は欠陥が存在しないものは良好(○)、実用上問題ない程度の浅い皺が少数認められる以外は欠陥が存在しないものは略良好(□)、管内面のフィンの寸法が基準値を外れたり、フィン或いは溝に深い皺や亀裂が存在したり、フィンが破断したり、千切れたりしたものは不良(×)と評価した。
The obtained heat transfer tube was examined for the groove (fin) shape, pressure strength, and heat transfer characteristics of the tube inner surface.
The groove shape was examined by measuring the height, bottom thickness, bottom width, etc. of the fins on the inner surface of the heat transfer tube (length: 300 mm) divided into two vertically. If the measured value satisfies the reference value and no defects such as wrinkles are observed by visual observation, the groove shape is very good (◎), and there are only a few defects that are shallow enough to be practically acceptable. If there is no defect, it is good. Alternatively, a case where a deep flaw or crack was present in the groove, or the fin was broken or broken was evaluated as defective (x).
前記耐圧強度は、伝熱管(長さ300mm)の一方の開口部を閉塞し、他方の開口部から伝熱管内部に水を入れ、水圧発生器にて水圧を除々に上昇させ、伝熱管が破裂したときの水圧を測定した。各5本ずつ測定し、その平均値が基準値の12.45MPa(設計圧力の3倍)以上のものは耐圧強度が優れる(○)、基準値未満のものは劣る(×)と評価した。 The pressure resistance is such that one opening of a heat transfer tube (length: 300 mm) is closed, water is poured into the heat transfer tube from the other opening, the water pressure is gradually increased by a water pressure generator, and the heat transfer tube bursts. The water pressure was measured. Five samples were measured, and the average value of 12.45 MPa (three times the design pressure) or higher of the reference value was evaluated as excellent in pressure resistance (◯), and the average value of less than the reference value was evaluated as poor (×).
前記伝熱特性は従来公知の伝熱性能試験装置(図2(イ)、(ロ)参照)を用いて、管内熱伝達率(管内凝縮および管内蒸発)を測定して調べた。冷媒質量速度は250kg/m2・sとした。その他の試験条件は表1に示した。従来の銅製内面溝付伝熱管についても管内熱伝達率を上記と同じ方法で測定した。管内熱伝達率は各伝熱管3本について測定し、その平均値をその伝熱管の管内熱伝達率とした。 The heat transfer characteristics were examined by measuring the heat transfer coefficient in the tube (condensation in the tube and evaporation in the tube) using a conventionally known heat transfer performance test apparatus (see FIGS. 2A and 2B). The refrigerant mass rate was 250 kg / m 2 · s. Other test conditions are shown in Table 1. The heat transfer coefficient in the tube of the conventional copper inner grooved heat transfer tube was also measured by the same method as described above. The heat transfer coefficient in the tube was measured for each of the three heat transfer tubes, and the average value was defined as the heat transfer coefficient in the tube of the heat transfer tube.
[実施例2]
フィンの頂角αを20度または/およびフィンのリード角βを18度とした他は実施例1と同じ形状(寸法)の伝熱管を製造し、実施例1と同じ調査を行った。
[Example 2]
A heat transfer tube having the same shape (dimension) as in Example 1 was manufactured except that the apex angle α of the fin was 20 degrees and / or the lead angle β of the fin was 18 degrees, and the same investigation as in Example 1 was performed.
[比較例1]
底肉厚tを0.80mmまたは0.39mmとした他は、実施例1と同じ形状(寸法)の伝熱管を製造し、実施例1と同じ調査を行った。
[Comparative Example 1]
A heat transfer tube having the same shape (dimension) as in Example 1 was manufactured except that the bottom wall thickness t was set to 0.80 mm or 0.39 mm, and the same investigation as in Example 1 was performed.
[比較例2]
フィン底幅Wを0.08mmとした他は、実施例1と同じ形状(寸法)の伝熱管を製造し、実施例1と同じ調査を行った。
[Comparative Example 2]
A heat transfer tube having the same shape (dimension) as in Example 1 was manufactured except that the fin bottom width W was 0.08 mm, and the same investigation as in Example 1 was performed.
実施例1、2、比較例1、2の調査結果を表2に示した。伝熱特性は実施例1と同じ方法で測定した銅製内面溝付伝熱管の管内熱伝達率(n=3の平均値)を100としたときの比で示した。 The investigation results of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 2. The heat transfer characteristics are shown as a ratio when the pipe heat transfer coefficient (average value of n = 3) of the copper internally grooved heat transfer tube measured by the same method as in Example 1 is 100.
表2から明らかなように、本発明例の実施例1、2の伝熱管はいずれも溝(フィン)形状および耐圧強度が優れた。これは、比[D/t]およびフィン底幅Wを適正に規定したため溝付加工時のメタルフローが良好だったことによる。特に比[D/t]が13.0〜17.5の範囲内にあるNo.4〜11の伝熱管は溝(フィン)形状が極めて優れた。
伝熱特性(管内熱伝達率)については、実施例1、2の伝熱管はいずれも実用上問題のない特性を示した。実施例2の伝熱管はいずれも実施例1のNo.5の伝熱管(α、β以外は同じ寸法)と較べて伝熱特性が劣った。これはフィンの頂角αおよびリード角βがより好ましい範囲(請求項1または2の規定範囲)を外れたためである。
As is apparent from Table 2, the heat transfer tubes of Examples 1 and 2 of the present invention example were excellent in the groove (fin) shape and pressure strength. This is because the metal flow during grooving was good because the ratio [D / t] and the fin bottom width W were appropriately defined. In particular, the ratio [D / t] is in the range of 13.0 to 17.5. The heat transfer tubes 4 to 11 were extremely excellent in groove (fin) shape.
Regarding the heat transfer characteristics (heat transfer coefficient in the tube), the heat transfer tubes of Examples 1 and 2 both exhibited practically no problem. The heat transfer tubes of Example 2 are all No. 1 of Example 1. The heat transfer characteristics were inferior to those of No. 5 heat transfer tubes (same dimensions except α and β). This is because the apex angle α and the lead angle β of the fin are out of the more preferable ranges (the prescribed range of
一方、比較例1のNo.12の伝熱管は比[D/t]が小さすぎたためフィンに亀裂や千切れが生じた。No.13は比[D/t]が大きすぎたため耐圧強度が低下した。比較例2のNo.14はフィンの底幅wが小さすぎたためフィンの形成が困難でフィンに亀裂が生じた。 On the other hand, no. In the heat transfer tube of No. 12, the ratio [D / t] was too small, so that the fins were cracked or broken. No. Since the ratio [D / t] of No. 13 was too large, the pressure resistance decreased. No. of Comparative Example 2 In No. 14, since the fin bottom width w was too small, it was difficult to form the fin, and the fin was cracked.
1 伝熱管
2 伝熱管内面のフィン
3 伝熱管内面の溝
1
Claims (1)
前記伝熱管の外径(D)と底肉厚(t)の比[D/t]が13.0以上、17.5以下であり、かつ
前記フィン底幅Wが0.12mm以上0.3mm以下であるとともに、前記伝熱管の内面に形成されたフィンの頂角αが11度以上16度以下であり、
前記伝熱管の内面に形成されたフィンのリード角βが20度以上であることを特徴とする
伝熱管。
A heat transfer tube in which fins are formed on the inner surface of a tube by rolling a base tube made of a JIS A3000 (Al-Mn) aluminum alloy,
The ratio of the outer diameter of the heat transfer tube (D) and the bottom wall thickness (t) [D / t] is 1 3.0 or more and 17.5 or less, and the fin base width W is more than 0.12 mm 0. together is less than 3mm, Ri 16 degrees der below apex angle α is 11 degrees or more fins formed on an inner surface of the heat transfer tube,
The lead angle β of the fin formed on the inner surface of the heat transfer tube is 20 degrees or more, and the heat transfer tube is characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007272380A JP5006155B2 (en) | 2006-10-19 | 2007-10-19 | Heat transfer tube |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006285391 | 2006-10-19 | ||
JP2006285391 | 2006-10-19 | ||
JP2007084755 | 2007-03-28 | ||
JP2007084755 | 2007-03-28 | ||
JP2007272380A JP5006155B2 (en) | 2006-10-19 | 2007-10-19 | Heat transfer tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008267779A JP2008267779A (en) | 2008-11-06 |
JP5006155B2 true JP5006155B2 (en) | 2012-08-22 |
Family
ID=40047509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007272380A Active JP5006155B2 (en) | 2006-10-19 | 2007-10-19 | Heat transfer tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5006155B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5446163B2 (en) * | 2008-08-04 | 2014-03-19 | ダイキン工業株式会社 | Grooved tube for heat exchanger |
JP5882615B2 (en) * | 2011-06-30 | 2016-03-09 | 株式会社Uacj | Aluminum alloy inner surface grooved tube for air conditioner, air conditioner including the grooved tube, aluminum alloy inner surface grooved tube manufacturing method, and air conditioner aluminum inner surface grooved tube manufacturing method |
JP6986942B2 (en) * | 2016-11-30 | 2021-12-22 | 三菱アルミニウム株式会社 | Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube |
CN110763068A (en) * | 2019-11-30 | 2020-02-07 | 广东美的制冷设备有限公司 | Heat exchanger and air conditioner |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085278A (en) * | 1994-06-20 | 1996-01-12 | Mitsubishi Shindoh Co Ltd | Heat transfer tube with inner surface grooves |
JPH09101093A (en) * | 1995-10-02 | 1997-04-15 | Mitsubishi Shindoh Co Ltd | Heat transfer pipe with inner surface groove |
JPH1054686A (en) * | 1996-08-08 | 1998-02-24 | Mitsubishi Shindoh Co Ltd | Heat transfer tube with grooved inner surface and roll for manufacturing the same |
JP2001289585A (en) * | 2000-04-05 | 2001-10-19 | Mitsubishi Alum Co Ltd | Inner grooved aluminum tube and heat exchanger comprising the same |
JP2002048487A (en) * | 2000-08-01 | 2002-02-15 | Mitsubishi Shindoh Co Ltd | Heat transfer pipe with inner surface groove |
-
2007
- 2007-10-19 JP JP2007272380A patent/JP5006155B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008267779A (en) | 2008-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4759226B2 (en) | Tube expansion tool and tube expansion method using the same | |
JP6154610B2 (en) | Aluminum alloy inner surface grooved heat transfer tube | |
JP2007271123A (en) | Inner face-grooved heat transfer tube | |
RU2289076C2 (en) | Pipes with grooves for reversible usage at heat exchangers | |
JP6154611B2 (en) | Aluminum alloy inner surface grooved heat transfer tube | |
WO2012117440A1 (en) | Heat exchanger, refrigerator with the heat exchanger, and air conditioner with the heat exchanger | |
JP5006155B2 (en) | Heat transfer tube | |
JP2009243715A (en) | Leakage detecting tube and heat exchanger | |
JP4550451B2 (en) | Heat exchanger using inner surface grooved heat transfer tube and inner surface grooved heat transfer tube | |
JP2006322661A (en) | Heat transfer tube for heat dissipation, and radiator | |
JP2008267791A (en) | Leakage detecting tube and heat exchanger using the same | |
JP2006162100A (en) | Heat transfer tube with inner helical groove for high pressure refrigerant | |
JP2011075122A (en) | Aluminum internally-grooved heat transfer tube | |
JP2008190858A (en) | Leakage detecting tube | |
JP5607294B2 (en) | Heat transfer tube | |
JP2006130558A (en) | Method for manufacturing heat exchanger | |
JP2009186130A (en) | Heat transfer tube for radiator with inner face fin | |
WO2011152384A1 (en) | Pipe having grooved inner surface with excellent extrudability | |
JP2011021844A (en) | Inner face grooved heat transfer tube and cross fin tube type heat exchanger for evaporator | |
JP7524299B2 (en) | Long-life aluminum alloy with excellent corrosion resistance and spiral grooved pipe manufactured from said alloy | |
JP5882615B2 (en) | Aluminum alloy inner surface grooved tube for air conditioner, air conditioner including the grooved tube, aluminum alloy inner surface grooved tube manufacturing method, and air conditioner aluminum inner surface grooved tube manufacturing method | |
JP2007271238A (en) | Heat exchanger | |
JP2912826B2 (en) | Heat transfer tube with internal groove | |
JP2010019489A (en) | Heat transfer pipe with inner helical groove for evaporator | |
JP4948136B2 (en) | Heat transfer tube and radiator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081201 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100804 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110719 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110726 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20110902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120323 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120524 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150601 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5006155 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150601 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |