JP2007322069A - Coolant heat transfer tube for heat pump type heat exchanger, and gas cooler using it - Google Patents

Coolant heat transfer tube for heat pump type heat exchanger, and gas cooler using it Download PDF

Info

Publication number
JP2007322069A
JP2007322069A JP2006153177A JP2006153177A JP2007322069A JP 2007322069 A JP2007322069 A JP 2007322069A JP 2006153177 A JP2006153177 A JP 2006153177A JP 2006153177 A JP2006153177 A JP 2006153177A JP 2007322069 A JP2007322069 A JP 2007322069A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
tube
transfer tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006153177A
Other languages
Japanese (ja)
Other versions
JP4826343B2 (en
Inventor
Masaru Horiguchi
賢 堀口
Mamoru Hofuku
守 法福
Kenichi Inui
謙一 乾
Katsumi Nomura
克己 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006153177A priority Critical patent/JP4826343B2/en
Publication of JP2007322069A publication Critical patent/JP2007322069A/en
Application granted granted Critical
Publication of JP4826343B2 publication Critical patent/JP4826343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coolant heat transfer tube capable of improving heat transfer performance 1.5 times or more compared to a plain tube even when the amount of lubricating oil for a compressor flowing into a coolant tube for a gas cooler is comparatively large in a gas cooler for a heat pump type heat exchanger using carbon dioxide as a coolant, and to provide a gas cooler using the heat transfer tube. <P>SOLUTION: The coolant heat transfer tube 40 is used in the gas cooler (a water heat exchanger) for the heat pump type heat exchanger using carbon dioxide as the coolant, and it is provided with three small diameter tubes 4 used as fins fixed to an inner face of its outer tube 1. It is characterized by that when an inner diameter of the outer tube 1 is ID, and a height of the fin (the small diameter tube 4) is H<SB>f</SB>, H<SB>f</SB>/ID is 0.1 or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自然冷媒を用いるヒートポンプ式給湯機やヒートポンプ式空調機等(以下、ヒートポンプ式給湯機やヒートポンプ式空調機等を総称して「ヒートポンプ式熱交換機器」という場合もある)の冷媒用伝熱管およびガスクーラに関し、特に、二酸化炭素を冷媒としたヒートポンプ式熱交換機器に用いる冷媒用伝熱管、および当該伝熱管を用いたガスクーラに関する。   The present invention is for refrigerants of heat pump water heaters and heat pump air conditioners that use natural refrigerants (hereinafter, heat pump water heaters and heat pump air conditioners may be collectively referred to as “heat pump heat exchangers”). The present invention relates to a heat transfer tube and a gas cooler, and more particularly to a refrigerant heat transfer tube used in a heat pump heat exchange device using carbon dioxide as a refrigerant, and a gas cooler using the heat transfer tube.

図11は、ヒートポンプ式熱交換機器と、そこで使用される冷媒との相関関係を例示した図である。   FIG. 11 is a diagram illustrating the correlation between the heat pump heat exchange device and the refrigerant used therein.

ヒートポンプとは、熱源(通常、大気や地下水、海水など安価で豊富にある資源)からの熱を圧縮機(コンプレッサ)を利用して汲み上げ、移動させることにより加熱や冷却を行うシステムをいう。例えば、電動ヒートポンプでは、電気エネルギーを熱エネルギーに直接変換するのではなく、熱を移動させる動力源として利用することにより、消費電力(消費エネルギー)の3倍近くの熱エネルギーが利用できると言われている。これは、石油などの化石燃料を燃焼させて熱エネルギーとする従来のシステムに比しても効率がよく、環境への負荷が小さいシステムといえる。このことから、ヒートポンプ式熱交換機器が近年広く利用されている。   A heat pump is a system that heats and cools by pumping and moving heat from a heat source (usually inexpensive and abundant resources such as air, groundwater, seawater, etc.) using a compressor (compressor). For example, in an electric heat pump, it is said that heat energy that is nearly three times the power consumption (consumed energy) can be used by using it as a power source that moves heat, instead of directly converting electric energy into heat energy. ing. This is a system that is more efficient and less burdensome on the environment than conventional systems that burn fossil fuels such as petroleum to produce thermal energy. For this reason, heat pump heat exchange devices have been widely used in recent years.

一方、冷凍サイクルを利用した一般的な熱交換機器(空調機、冷蔵庫、冷凍機、給湯機など)には、従来からフロン系の冷媒が使用されていた。しかし、フロン系の冷媒は地球温暖化への影響が懸念される等の理由から、環境への負荷が小さい自然冷媒、特に二酸化炭素が最近注目されている。そして、経済的・環境的理由により、例えばエコキュートやカーエアコン用として、上述のヒートポンプと組み合わせた自然冷媒(特に二酸化炭素)ヒートポンプ式熱交換機器への期待が急速に高まっている。   On the other hand, chlorofluorocarbon-based refrigerants have been conventionally used in general heat exchange devices (such as air conditioners, refrigerators, refrigerators, and water heaters) that use a refrigeration cycle. However, natural refrigerants, particularly carbon dioxide, that have a low environmental impact have recently been attracting attention because of the concern that there is concern about the impact on global warming. For economic and environmental reasons, expectations for a natural refrigerant (particularly carbon dioxide) heat pump heat exchange device combined with the above-described heat pump are rapidly increasing, for example, for eco-cutes and car air conditioners.

二酸化炭素冷媒を用いたヒートポンプ式熱交換機器には、一般的に、熱交換器として、ガスクーラ(放熱器)と蒸発器(吸熱器)が用いられており、それら熱交換器に使用される伝熱管として、ガスクーラ用冷媒管および蒸発器用冷媒管が使用されている。   Generally, a heat pump type heat exchange device using a carbon dioxide refrigerant uses a gas cooler (heat radiator) and an evaporator (heat absorber) as heat exchangers. As the heat pipe, a gas cooler refrigerant pipe and an evaporator refrigerant pipe are used.

また、例えば二酸化炭素冷媒を用いたヒートポンプ式給湯機においては、ガスクーラは水熱交換器とも呼ばれ、上記2種類の伝熱管に加えて、冷媒と熱交換する別の伝熱管(ガスクーラ用水管)も使用される。そして、これら伝熱管(ガスクーラ用水管、ガスクーラ用冷媒管、蒸発器用冷媒管)に要求される技術的仕様はそれぞれで異なっている。   For example, in a heat pump water heater using carbon dioxide refrigerant, the gas cooler is also called a water heat exchanger, and in addition to the above two types of heat transfer tubes, another heat transfer tube (gas tube for water cooler) that exchanges heat with the refrigerant. Also used. The technical specifications required for these heat transfer tubes (gas cooler water tube, gas cooler refrigerant tube, evaporator refrigerant tube) are different from each other.

このような二酸化炭素を冷媒とするヒートポンプ式給湯機に用いられる熱交換器としては、例えば、熱交換効率を向上させることを目的としてガスクーラ用水管内にインナーフィンを配設した熱交換器がある(特許文献1参照)。   As a heat exchanger used for such a heat pump type hot water heater using carbon dioxide as a refrigerant, for example, there is a heat exchanger in which inner fins are arranged in a water pipe for a gas cooler for the purpose of improving heat exchange efficiency ( Patent Document 1).

しかしながら、特許文献1には、ガスクーラ用冷媒管について熱交換効率を向上させる構成等は開示されていない。   However, Patent Document 1 does not disclose a configuration or the like that improves the heat exchange efficiency of the refrigerant pipe for the gas cooler.

ガスクーラ用冷媒管について熱交換効率を向上させることを目的としたものとしては、ガスクーラ用冷媒管を所定の内面溝付伝熱管とした熱交換器がある(特許文献2,3参照)。
特開2002−5516号公報 特開2005−257160号公報 特開2005−188789号公報
As an object of improving the heat exchange efficiency of the gas cooler refrigerant pipe, there is a heat exchanger in which the gas cooler refrigerant pipe is a heat transfer pipe with a predetermined inner surface groove (see Patent Documents 2 and 3).
JP 2002-5516 A JP-A-2005-257160 JP 2005-188789 A

しかしながら、ガスクーラ用冷媒管内を流れる二酸化炭素冷媒には、冷凍サイクルの圧縮機用の潤滑剤である圧縮機潤滑油が混入することにより、伝熱管の熱交換が阻害されるという重大な問題がある。これは、二酸化炭素冷媒と圧縮機潤滑油の相溶性が良くないためと考えられている。また、このような問題は、従来のフロン系冷媒には無かった課題である。   However, carbon dioxide refrigerant flowing in the refrigerant pipe for the gas cooler has a serious problem that heat exchange of the heat transfer pipe is hindered by mixing compressor lubricating oil that is a lubricant for the compressor of the refrigeration cycle. . This is considered because the compatibility between the carbon dioxide refrigerant and the compressor lubricating oil is not good. Moreover, such a problem is a problem that was not found in conventional fluorocarbon refrigerants.

二酸化炭素冷媒を使用したヒートポンプ式熱交換機器(給湯機や空調機等)では、圧縮機の潤滑油として、通常、ポリアルキレングリコール油(PAG油)を用い、差圧給油方式で給油している。このとき、二酸化炭素冷媒を使用することの特徴として差圧(圧縮機前後の圧力差)が大きいために、給油絶対量が多くなりやすく、圧縮機外のサイクルに圧縮機潤滑油が流れ出てしまう(二酸化炭素冷媒中に圧縮機潤滑油が混入する、さらに、混入する量が多くなりやすい)という問題が生じる。   In heat pump heat exchangers (such as water heaters and air conditioners) that use carbon dioxide refrigerant, polyalkylene glycol oil (PAG oil) is usually used as the lubricating oil for the compressor, and oil is supplied by the differential pressure oil supply method. . At this time, since the differential pressure (pressure difference before and after the compressor) is large as a feature of using the carbon dioxide refrigerant, the absolute amount of oil supply tends to increase, and the compressor lubricating oil flows out to the cycle outside the compressor. (The compressor lubricating oil is mixed in the carbon dioxide refrigerant, and the mixed amount tends to increase).

ちなみに、従来のフロン系冷媒を使用したヒートポンプ式熱交換機器では、圧縮機の差圧が1.5MPa程度で、フロン系冷媒中に混入する圧縮機潤滑油は、0.1〜0.15質量%程度と言われている。また、フロン系冷媒と圧縮機潤滑油の相溶性は問題ない(良い)と言われている。   Incidentally, in a heat pump type heat exchange device using a conventional chlorofluorocarbon refrigerant, the compressor lubricating oil mixed in the chlorofluorocarbon refrigerant has a differential pressure of about 1.5 MPa and is 0.1 to 0.15 mass. It is said to be about%. Further, it is said that the compatibility between the chlorofluorocarbon refrigerant and the compressor lubricating oil is satisfactory (good).

これに対し、二酸化炭素冷媒を使用したヒートポンプ式熱交換機器では、圧縮機の差圧がおよそ5.5〜7.5MPa程度と従来に比して4〜5倍も高いために、二酸化炭素冷媒中に混入する潤滑油濃度も非常に高くなることが考えられる。さらに、上述したように、二酸化炭素冷媒と圧縮機潤滑油の相溶性は良くないと考えられている。   On the other hand, in a heat pump heat exchange device using a carbon dioxide refrigerant, the differential pressure of the compressor is about 5.5 to 7.5 MPa, which is 4 to 5 times higher than the conventional one. It is conceivable that the concentration of the lubricating oil mixed therein becomes very high. Furthermore, as described above, it is considered that the compatibility between the carbon dioxide refrigerant and the compressor lubricating oil is not good.

特許文献2,3に記載の熱交換器では、管内を流れる冷媒中の圧縮機の潤滑油濃度による影響について検討されていない。例えば、特許文献3に記載の熱交換器では、冷媒中の圧縮機潤滑油の濃度が高いと熱交換効率向上の効果が得られない。これは、冷媒中に混在する圧縮機の潤滑油で伝熱管内面のフィン(伝熱管内面の溝)が埋もれてしまい、伝熱面積増大の寄与が相殺されてしまうためと考えられる。   In the heat exchangers described in Patent Documents 2 and 3, the influence of the lubricating oil concentration of the compressor in the refrigerant flowing in the pipe is not examined. For example, in the heat exchanger described in Patent Document 3, if the concentration of the compressor lubricating oil in the refrigerant is high, the effect of improving the heat exchange efficiency cannot be obtained. This is presumably because the fins on the inner surface of the heat transfer tube (grooves on the inner surface of the heat transfer tube) are buried with the lubricating oil of the compressor mixed in the refrigerant, and the contribution of the increase in the heat transfer area is offset.

また、ガスクーラ用冷媒管を流れる二酸化炭素は、レイノルズ数Reが非常に大きく、平滑管においても既に乱流化されているため、内面溝付管による乱流効果(乱流を発生させる作用)はほとんど意味を持たない。   In addition, carbon dioxide flowing through the gas cooler refrigerant pipe has a very large Reynolds number Re and is already turbulent in the smooth pipe. Therefore, the turbulent flow effect (the action of generating turbulent flow) by the inner grooved pipe is It has little meaning.

従って、本発明の目的は、二酸化炭素を冷媒としたヒートポンプ式熱交換機器において、特に、ガスクーラ用冷媒管内の圧縮機潤滑油が比較的多い場合(例えば、0.2質量%以上)でも、平滑管比1.5倍以上に伝熱性能を向上させることが可能な冷媒用伝熱管、および当該伝熱管を用いたガスクーラを提供することにある。   Accordingly, an object of the present invention is to provide a smooth heat pump type heat exchange device using carbon dioxide as a refrigerant, particularly when there is a relatively large amount of compressor lubricating oil (for example, 0.2% by mass or more) in a refrigerant pipe for a gas cooler. An object of the present invention is to provide a refrigerant heat transfer tube capable of improving heat transfer performance to a tube ratio of 1.5 times or more, and a gas cooler using the heat transfer tube.

第1の本発明は、上記目的を達成するため、冷媒として二酸化炭素を用いたヒートポンプ式熱交換機器のガスクーラに使用される冷媒用伝熱管であって、前記冷媒用伝熱管は、外管と、該外管の内面に固定設置されたフィンとを備え、前記外管の内径をIDおよび前記フィンの高さをHとすると、H/IDが0.1以上0.5以下であることを特徴とする冷媒用伝熱管を提供する。 In order to achieve the above object, the first aspect of the present invention is a refrigerant heat transfer tube used in a gas cooler of a heat pump heat exchange device using carbon dioxide as a refrigerant, wherein the refrigerant heat transfer tube includes: an outer tube; And a fin fixedly installed on the inner surface of the outer tube, where H f / ID is 0.1 or more and 0.5 or less, where ID is the inner diameter of the outer tube and H f is the height of the fin. A refrigerant heat transfer tube is provided.

本発明において、フィンの高さとは、伝熱管中心軸に直交する断面において、フィン材と伝熱管との接触部分から伝熱管の中心軸(前記断面の中心)方向へのフィンの最大高さをいう(従って、H/IDの最大は0.5)。 In the present invention, the height of the fin means the maximum height of the fin in the direction perpendicular to the central axis of the heat transfer tube from the contact portion between the fin material and the heat transfer tube in the direction of the central axis of the heat transfer tube (the center of the cross section). (Thus, the maximum of H f / ID is 0.5).

上記第1の本発明は、下記の特徴を有する発明を包含する。
(1)前記フィンは、板材により構成されている。
(2)前記フィンは、成形部材により構成されている。
(3)前記フィンは、複数の小径管により構成されている中空フィンである。
(4)前記フィンは、前記外管の肉厚以下の厚さを有する。
(5)前記フィンは、嵌合により前記外管の内面に固定設置されている。
(6)前記フィンを備えたことによる冷媒接触面積拡大率が1.5倍以上である。
(7)前記フィンの高さをHおよび前記外管の内径をIDとすると、H/IDが0.2以上である。
The first aspect of the present invention includes the invention having the following features.
(1) The fin is made of a plate material.
(2) The fin is formed of a molded member.
(3) The fin is a hollow fin configured by a plurality of small diameter tubes.
(4) The fin has a thickness equal to or less than a thickness of the outer tube.
(5) The fin is fixedly installed on the inner surface of the outer tube by fitting.
(6) The refrigerant contact area enlargement ratio due to the provision of the fins is 1.5 times or more.
(7) When the height of the fin is H f and the inner diameter of the outer tube is ID, H f / ID is 0.2 or more.

本発明において、フィンを備えたことによる冷媒接触面積拡大率とは、当該伝熱管の中心軸に直交する断面における冷媒に対する濡れ縁長さ(wetted perimeter)を、該伝熱管と同じ外径および同じ耐圧能力を有する平滑管のそれで除したものと定義する。   In the present invention, the expansion ratio of the refrigerant contact area due to the provision of the fins means the wetted perimeter with respect to the refrigerant in the cross section perpendicular to the central axis of the heat transfer tube, the same outer diameter and the same pressure resistance as the heat transfer tube. Defined as divided by that of a smooth tube with capacity.

第2の本発明は、上記目的を達成するため、冷媒として二酸化炭素を用いたヒートポンプ式熱交換機器のガスクーラに使用される冷媒用伝熱管であって、外管と、該外管の内面に外周の一部が固定設置された複数の小径管とを備えることを特徴とする冷媒用伝熱管を提供する。   In order to achieve the above object, the second aspect of the present invention is a refrigerant heat transfer tube used in a gas cooler of a heat pump heat exchange device using carbon dioxide as a refrigerant, and includes an outer tube and an inner surface of the outer tube. Provided is a refrigerant heat transfer tube comprising a plurality of small-diameter tubes whose outer circumferences are fixedly installed.

上記第2の本発明は、下記の特徴を有する発明を包含する。
(1)前記小径管は、その高さをHおよび前記外管の内径をIDとすると、H/IDが0.1以上である。より望ましくは、H/IDが0.2以上である。
(2)前記小径管は、前記外管の肉厚以下の厚さを有する。
(3)前記小径管を備えたことによる冷媒接触面積拡大率が1.5倍以上である。
The second aspect of the present invention includes an invention having the following features.
(1) When the height of the small diameter tube is H f and the inner diameter of the outer tube is ID, H f / ID is 0.1 or more. More desirably, H f / ID is 0.2 or more.
(2) The small diameter tube has a thickness equal to or less than the thickness of the outer tube.
(3) The refrigerant contact area enlargement ratio due to the provision of the small-diameter pipe is 1.5 times or more.

なお、小径管を備えたことによる冷媒接触面積拡大率は、前述の定義から、小径管の内周の総和を外管内周で除したものと規定することができる(中空フィンの内部にのみ冷媒が流通する場合)。   The expansion ratio of the refrigerant contact area due to the provision of the small-diameter pipe can be defined as the sum of the inner circumference of the small-diameter pipe divided by the inner circumference of the outer pipe from the above definition (the refrigerant only inside the hollow fin). Is distributed).

また、上記第1及び第2の本発明は、下記の特徴を有する発明を包含する。
(1)前記ガスクーラは、冷凍サイクルの圧縮機の潤滑油としてポリアルキレングリコール油を用いたヒートポンプ式熱交換機器に用いられるものである。
(2)前記冷媒としての二酸化炭素中には、前記ヒートポンプ式熱交換機器における冷凍サイクルを構成する圧縮機の潤滑油が0.2質量%以上混入している。
(3)前記ガスクーラがヒートポンプ式熱交換機器の放熱器である。
The first and second aspects of the present invention include the invention having the following characteristics.
(1) The said gas cooler is used for the heat pump type heat exchange apparatus using polyalkylene glycol oil as lubricating oil of the compressor of a refrigerating cycle.
(2) In the carbon dioxide as the refrigerant, 0.2% by mass or more of lubricating oil of a compressor constituting a refrigeration cycle in the heat pump heat exchange device is mixed.
(3) The gas cooler is a radiator of a heat pump heat exchange device.

第3の本発明は、上記目的を達成するため、上記本発明に係る冷媒用伝熱管を備えたことを特徴とするガスクーラを提供する。   In order to achieve the above object, a third aspect of the present invention provides a gas cooler comprising the refrigerant heat transfer tube according to the present invention.

本発明によれば、二酸化炭素を冷媒としたヒートポンプ式熱交換機器(例えば、給湯機や空調機など)の放熱器(ガスクーラ)において、特に、ガスクーラ用冷媒管内の圧縮機潤滑油が比較的多い場合(例えば、0.2質量%以上)でも、平滑管比1.5倍以上に伝熱性能を向上させることが可能な冷媒用伝熱管、および当該伝熱管を用いたガスクーラを得ることができる。なお、本発明における伝熱性能とは、後述の式で算出される管内熱伝達率と定義する。   According to the present invention, in a heat radiator (gas cooler) of a heat pump heat exchange device using carbon dioxide as a refrigerant (for example, a water heater or an air conditioner), the compressor lubricating oil in the refrigerant pipe for the gas cooler is relatively large. Even in the case (for example, 0.2% by mass or more), it is possible to obtain a refrigerant heat transfer tube capable of improving the heat transfer performance to a smooth tube ratio of 1.5 times or more, and a gas cooler using the heat transfer tube. . In addition, the heat transfer performance in the present invention is defined as an in-tube heat transfer coefficient calculated by an expression described later.

〔本発明の第1の実施の形態〕
(二酸化炭素冷媒ヒートポンプ式給湯機の構成)
二酸化炭素を冷媒としたヒートポンプ式熱交換機器として、給湯機を例にとって説明する。
[First embodiment of the present invention]
(Configuration of carbon dioxide refrigerant heat pump water heater)
A hot water heater will be described as an example of a heat pump heat exchange device using carbon dioxide as a refrigerant.

図1は、本発明の一実施の形態における二酸化炭素冷媒ヒートポンプ式給湯機の概略構成を示したものである。   FIG. 1 shows a schematic configuration of a carbon dioxide refrigerant heat pump water heater in an embodiment of the present invention.

二酸化炭素冷媒ヒートポンプ式給湯機10は、圧縮機11、ガスクーラ(水熱交換器)12、減圧器13および吸熱器(蒸発器)14を備え、これらを配管15で接続することにより冷凍サイクルを構成し、二酸化炭素冷媒が封入されている。ここで、「圧縮機11吐出部→水熱交換器12→減圧器13入口部」の領域は、冷媒が超臨界状態(臨界圧力を超える状態)になっている。圧縮機の潤滑油としては、例えばポリアルキレングリコール油(PAG油)が用いられている。   The carbon dioxide refrigerant heat pump water heater 10 includes a compressor 11, a gas cooler (water heat exchanger) 12, a decompressor 13 and a heat absorber (evaporator) 14, and these are connected by a pipe 15 to constitute a refrigeration cycle. And carbon dioxide refrigerant is enclosed. Here, in the region of “the discharge portion of the compressor 11 → the water heat exchanger 12 → the inlet portion of the decompressor 13”, the refrigerant is in a supercritical state (a state exceeding the critical pressure). For example, polyalkylene glycol oil (PAG oil) is used as the lubricating oil for the compressor.

(二酸化炭素冷媒ヒートポンプ式給湯機の動作)
次に、二酸化炭素冷媒ヒートポンプ式給湯機10の動作について説明する。
圧縮機11で圧縮された(本実施の形態では、例えば、約10MPa)二酸化炭素冷媒は、臨界圧力(約7.4MPa)を超える状態(超臨界状態)でガスクーラ(水熱交換器)12へ導入される。
(Operation of carbon dioxide refrigerant heat pump water heater)
Next, the operation of the carbon dioxide refrigerant heat pump type water heater 10 will be described.
The carbon dioxide refrigerant compressed by the compressor 11 (in this embodiment, for example, about 10 MPa) is transferred to the gas cooler (water heat exchanger) 12 in a state exceeding the critical pressure (about 7.4 MPa) (supercritical state). be introduced.

超臨界状態の二酸化炭素冷媒は、液化しない(気液二相状態にならない)高温高圧状態となり、ガスクーラ(水熱交換器)12において水などと熱交換(冷媒から放熱)する。その後、減圧器13で減圧されて(本実施の形態では、例えば、約3.5MPa)、低圧の気液二相状態となり、吸熱器14へ導入される。   The supercritical carbon dioxide refrigerant does not liquefy (does not enter a gas-liquid two-phase state) and is in a high-temperature and high-pressure state, and exchanges heat with water or the like (dissipates heat from the refrigerant) in the gas cooler (water heat exchanger) 12. Thereafter, the pressure is reduced by the pressure reducer 13 (in this embodiment, for example, about 3.5 MPa), and a low-pressure gas-liquid two-phase state is obtained and introduced into the heat absorber 14.

気液二相状態となった二酸化炭素冷媒は、吸熱器14において、空気(大気)から吸熱してガス状態(気相の単相状態)となり、再び圧縮機11に吸入される。このようなサイクルを繰り返すことにより、ガスクーラ(水熱交換器)12における冷媒からの放熱による加熱作用、吸熱器14における冷媒の吸熱による冷却作用が行われる。   The carbon dioxide refrigerant that has become a gas-liquid two-phase state absorbs heat from the air (atmosphere) in the heat absorber 14 to become a gas state (a single-phase state in a gas phase), and is sucked into the compressor 11 again. By repeating such a cycle, the heating action by the heat radiation from the refrigerant in the gas cooler (water heat exchanger) 12 and the cooling action by the heat absorption of the refrigerant in the heat absorber 14 are performed.

(冷媒用伝熱管の構成)
次に、本実施の形態に係る熱交換器であるガスクーラ(水熱交換器)12の冷媒用伝熱管について説明する。
(Configuration of refrigerant heat transfer tube)
Next, the refrigerant heat transfer tube of the gas cooler (water heat exchanger) 12 which is a heat exchanger according to the present embodiment will be described.

図2は、板材をフィン材とした第1の実施の形態に係る冷媒用伝熱管の断面図である。   FIG. 2 is a cross-sectional view of the refrigerant heat transfer tube according to the first embodiment in which the plate material is a fin material.

冷媒用伝熱管20は、板材からなるフィン材2を外管1内に挿入し、その外管1の内面にフィン材2が嵌合により固定設置された構成を有する(図2において、フィン数は2である)。   The refrigerant heat transfer tube 20 has a configuration in which the fin material 2 made of a plate material is inserted into the outer tube 1 and the fin material 2 is fixedly installed on the inner surface of the outer tube 1 by fitting (in FIG. 2, the number of fins). Is 2).

外管1の内径をIDおよびフィン材2からなるフィンの高さをHとすると、H/IDが0.1以上である0.5となっている。また、フィン材2からなるフィンを設置したことによる冷媒接触面積拡大率に関し、例えば、外管1の外径が4mm、外管1とフィン材2の肉厚がともに0.4mmの場合で、冷媒接触面積拡大率は1.5倍以上である約1.6倍となっている。これにより、圧縮機の潤滑油が伝熱管内を多く流れても(例えば、冷媒量の0.5質量%程度以上混入しても)、その影響を受けずに、伝熱を促進することが可能となる。 When the inner diameter of the outer tube 1 is ID and the height of the fin made of the fin material 2 is H f , H f / ID is 0.5 which is 0.1 or more. Further, regarding the refrigerant contact area expansion rate by installing the fins made of the fin material 2, for example, when the outer diameter of the outer tube 1 is 4 mm, and the wall thickness of the outer tube 1 and the fin material 2 are both 0.4 mm, The expansion ratio of the refrigerant contact area is about 1.6 times that is 1.5 times or more. As a result, even if a large amount of compressor lubricating oil flows in the heat transfer tube (for example, about 0.5% by mass or more of the refrigerant amount), heat transfer can be promoted without being affected by the influence. It becomes possible.

フィンの高さHをH/ID≧0.1、さらには冷媒接触面積拡大率を1.5倍以上とするために、管内面に設けるフィンを従来の転造加工によるものでなく、板材を挿入し、内面に密着させ、フィン材とすることで実現できる。 In order to make the height H f of the fin H f /ID≧0.1, and further to make the refrigerant contact area expansion ratio 1.5 times or more, the fin provided on the inner surface of the pipe is not based on the conventional rolling process, This can be realized by inserting a plate material and bringing it into intimate contact with the inner surface.

冷媒用伝熱管20の外管1の材質としては、銅のほか、熱伝導率や機械的強度を勘案して、銅合金、アルミニウム、アルミニウム合金などを用いることができる。   As a material of the outer tube 1 of the heat transfer tube 20 for the refrigerant, copper alloy, copper alloy, aluminum, aluminum alloy, or the like can be used in consideration of thermal conductivity and mechanical strength.

フィン材2の材質としては、外管1と同様に、銅、銅合金、アルミニウム、アルミニウム合金などを用いることができる。また、フィン材2の厚さは、外管1の肉厚以下の厚さとすることが望ましい。前述したように、二酸化炭素冷媒は非常に高圧(例えば、約10MPa)となるが、耐圧性は、外管1の肉厚で確保できるため、挿入する板材は、外管1の肉厚より薄くすることが可能である。これにより、冷媒用伝熱管20の質量増加(平滑管に対する)を最小限に抑えることができる。   As the material of the fin material 2, as with the outer tube 1, copper, copper alloy, aluminum, aluminum alloy, or the like can be used. Further, it is desirable that the thickness of the fin material 2 is equal to or less than the thickness of the outer tube 1. As described above, the carbon dioxide refrigerant has a very high pressure (for example, about 10 MPa). However, since the pressure resistance can be secured by the thickness of the outer tube 1, the plate member to be inserted is thinner than the thickness of the outer tube 1. Is possible. Thereby, the mass increase (with respect to a smooth tube) of the heat exchanger tube 20 for refrigerant | coolants can be suppressed to the minimum.

(第1の実施の形態の効果)
本実施の形態によれば、以下の効果を奏する。
二酸化炭素を冷媒としたヒートポンプ式熱交換機器(給湯機や空調機など)のガスクーラにおいて、ガスクーラ用冷媒管内の圧縮機の潤滑油が比較的多い場合(例えば、冷媒量の0.5質量%程度以上)であっても、平滑管比1.5倍以上に伝熱性能を向上させることが可能な冷媒用伝熱管が得られる。
(Effects of the first embodiment)
According to the present embodiment, the following effects can be obtained.
In a gas cooler of a heat pump heat exchange device (such as a water heater or an air conditioner) that uses carbon dioxide as a refrigerant, if the lubricant in the compressor in the refrigerant pipe for the gas cooler is relatively large (for example, about 0.5% by mass of the refrigerant amount) Even if it is above, the heat exchanger tube for refrigerant | coolants which can improve heat-transfer performance to 1.5 times or more smooth tube ratio is obtained.

〔本発明の第2の実施の形態〕
(冷媒用伝熱管の構成)
図3は、成形部材をフィン材とした第2の実施の形態に係る冷媒用伝熱管の断面図である。
[Second Embodiment of the Present Invention]
(Configuration of refrigerant heat transfer tube)
FIG. 3 is a cross-sectional view of a refrigerant heat transfer tube according to a second embodiment in which a molded member is a fin material.

冷媒用伝熱管30は、成形部材(図3では十字形)からなるフィン材3を外管1内に挿入し、その外管1の内面にフィン材3が嵌合により固定設置された構成を有する(図3において、フィン数は4である)。なお、成形部材の製造方法は特に限定されないが、押し出し加工などが好適に利用できる。   The refrigerant heat transfer tube 30 has a configuration in which a fin member 3 made of a molded member (cross shape in FIG. 3) is inserted into the outer tube 1 and the fin member 3 is fixedly installed on the inner surface of the outer tube 1 by fitting. (In FIG. 3, the number of fins is 4). In addition, although the manufacturing method of a shaping | molding member is not specifically limited, An extrusion process etc. can be utilized suitably.

外管1の内径をIDおよびフィン材3からなるフィンの高さをHとすると、H/IDが0.1以上である0.5となっている。また、フィン材3からなるフィンを設置したことによる冷媒接触面積拡大率に関し、例えば、外管1の外径が7mm、外管1とフィン材3(図3の十字形)の肉厚がともに0.7mmの場合で、冷媒接触面積拡大率は1.5倍以上である約1.9倍となっている。これにより、圧縮機の潤滑油が伝熱管内を多く流れても(例えば、冷媒量の0.2質量%程度以上混入しても)、その影響を受けずに、伝熱を促進することが可能となる。 When the inner diameter of the outer tube 1 is ID and the height of the fin made of the fin material 3 is H f , H f / ID is 0.5 which is 0.1 or more. Further, regarding the refrigerant contact area enlargement ratio due to the installation of fins made of the fin material 3, for example, the outer diameter of the outer tube 1 is 7 mm, and the wall thicknesses of the outer tube 1 and the fin material 3 (cross shape in FIG. 3) are both In the case of 0.7 mm, the refrigerant contact area expansion ratio is about 1.9 times, which is 1.5 times or more. As a result, even if a large amount of compressor lubricating oil flows in the heat transfer pipe (for example, about 0.2 mass% or more of the refrigerant amount), heat transfer can be promoted without being affected by the influence. It becomes possible.

フィンの高さHをH/ID≧0.1、さらには冷媒接触面積拡大率を1.5倍以上とするために、管内面に設けるフィンを従来の転造加工によるものでなく、成形部材を挿入し、内面に密着させ、フィン材とすることで実現できる。 In order to make the height H f of the fin H f /ID≧0.1, and further to make the refrigerant contact area expansion ratio 1.5 times or more, the fin provided on the inner surface of the pipe is not based on the conventional rolling process, This can be realized by inserting a molding member and bringing it into intimate contact with the inner surface.

冷媒用伝熱管30の外管1の材質、フィン材3の材質は、それぞれ第1の実施の形態の冷媒用伝熱管20の外管1、フィン材(板材)2と同様である。フィン材3の厚さは、外管1の肉厚以下の厚さとすることが望ましい。前述と同様に、二酸化炭素冷媒は非常に高圧となるが、耐圧性は、外管1の肉厚で確保できるため、挿入する成形部材は、外管1の肉厚より薄くすることが可能である。これにより、冷媒用伝熱管30の質量増加(平滑管に対する)を最小限に抑えることができる。   The material of the outer tube 1 of the refrigerant heat transfer tube 30 and the material of the fin material 3 are the same as those of the outer tube 1 and the fin material (plate material) 2 of the refrigerant heat transfer tube 20 of the first embodiment, respectively. As for the thickness of the fin material 3, it is desirable to set it as the thickness below the thickness of the outer tube | pipe 1. FIG. As described above, the carbon dioxide refrigerant has a very high pressure, but since the pressure resistance can be secured by the thickness of the outer tube 1, the inserted molding member can be made thinner than the thickness of the outer tube 1. is there. Thereby, the mass increase (with respect to a smooth tube) of the heat exchanger tube 30 for refrigerant | coolants can be suppressed to the minimum.

なお、フィン材3からなるフィンを設置したことによる冷媒接触面積拡大率は、フィン材3を設置したことによる圧力損失の増大率(該伝熱管の圧力損失/平滑管の圧力損失)を下回らないことが好ましい。これは、フィン材3の設置により該伝熱管内の冷媒流路断面積が減少し、冷媒接触面積拡大率以上に圧力損失が増大しないようにするためである。例えば、フィン材3と外管1の肉厚が同じ場合には、2.5倍以下とすることが好ましい。ただし、フィン材3の肉厚が外管1の肉厚よりも薄い場合、冷媒接触面積拡大率の上限は2.5倍よりも当然大きくなる。   The expansion ratio of the refrigerant contact area due to the installation of fins made of the fin material 3 does not fall below the rate of increase in pressure loss due to the installation of the fin material 3 (pressure loss of the heat transfer tube / pressure loss of the smooth tube). It is preferable. This is to prevent the refrigerant flow passage cross-sectional area in the heat transfer tube from being reduced by the installation of the fin material 3 so that the pressure loss does not increase more than the refrigerant contact area expansion rate. For example, when the thicknesses of the fin material 3 and the outer tube 1 are the same, it is preferably 2.5 times or less. However, when the thickness of the fin material 3 is smaller than the thickness of the outer tube 1, the upper limit of the refrigerant contact area expansion rate is naturally larger than 2.5 times.

(第2の実施の形態の効果)
本実施の形態によれば、第1の実施の形態の効果のほかに、以下の効果を奏する。
フィン材の実効表面積を板材に比べ大きくすることが容易であり、より高性能化を図ることができる。
(Effect of the second embodiment)
According to the present embodiment, in addition to the effects of the first embodiment, the following effects can be obtained.
It is easy to increase the effective surface area of the fin material compared to the plate material, and higher performance can be achieved.

〔本発明の第3の実施の形態〕
(冷媒用伝熱管の構成)
図4は、小径管をフィン材とした第3の実施の形態に係る冷媒用伝熱管の断面図である。
[Third embodiment of the present invention]
(Configuration of refrigerant heat transfer tube)
FIG. 4 is a sectional view of a refrigerant heat transfer tube according to a third embodiment using a small-diameter tube as a fin material.

冷媒用伝熱管40は、フィン材としての3本の小径管4を外管1内に挿入し、その外管1の内面に3本の小径管4が嵌合により固定設置された構成を有する(図4において、フィン数は3である)。   The refrigerant heat transfer tube 40 has a configuration in which three small diameter tubes 4 as fin materials are inserted into the outer tube 1 and the three small diameter tubes 4 are fixedly installed on the inner surface of the outer tube 1 by fitting. (In FIG. 4, the number of fins is three).

外管1の内径をIDおよび小径管4からなるフィン(中空フィン)の高さをHとすると、H/IDに関し、例えば図4における、外管1の外径が4mm、外管1の肉厚が0.4mm、小径管4の肉厚が0.1mmの場合で、H/IDは0.1以上である0.43となっている。また、3本の小径管4からなるフィンを設置したことによる冷媒接触面積拡大率は、1.5倍以上である約1.8倍以上となっている(小径管4の内側のみに冷媒を流通させた場合に約1.8倍となり、それ以外の部分を考慮した場合は1.8倍以上となる)。これにより、圧縮機の潤滑油が伝熱管内を多く流れても(例えば、冷媒量の0.2質量%程度以上混入しても)、その影響を受けずに、伝熱を促進することが可能となる。 When the height of the fins becomes the inner diameter of the outer tube 1 from the ID and the small diameter pipe 4 (hollow fins) and H f, relates H f / ID, for example, in FIG. 4, the outer diameter of the outer tube 1 is 4 mm, the outer tube 1 When the wall thickness of the small diameter tube 4 is 0.1 mm, H f / ID is 0.43 which is 0.1 or more. The expansion ratio of the refrigerant contact area due to the installation of the fins composed of the three small-diameter pipes 4 is about 1.8 times or more, which is 1.5 times or more (the refrigerant is placed only inside the small-diameter pipes 4). When it is distributed, it becomes about 1.8 times, and when other parts are considered, it becomes 1.8 times or more). As a result, even if a large amount of compressor lubricating oil flows in the heat transfer pipe (for example, about 0.2 mass% or more of the refrigerant amount), heat transfer can be promoted without being affected by the influence. It becomes possible.

フィンの高さHをH/ID≧0.1、さらには冷媒接触面積拡大率を1.5倍以上とするために、管内面に設けるフィンを従来の転造加工によるものでなく、小径管4を挿入し、内面に密着させ、中空のフィン材とすることで実現できる。 In order to make the height H f of the fin H f /ID≧0.1, and further to make the refrigerant contact area expansion ratio 1.5 times or more, the fin provided on the inner surface of the pipe is not based on the conventional rolling process, This can be realized by inserting the small-diameter pipe 4 and bringing it into close contact with the inner surface to form a hollow fin material.

冷媒用伝熱管40の外管1の材質、小径管4の材質は、それぞれ第1の実施の形態の冷媒用伝熱管20の外管1、フィン材(板材)2と同様である。小径管4の厚さは、外管1の肉厚以下の厚さとすることが望ましい。前述と同様に、二酸化炭素冷媒は非常に高圧となるが、耐圧性は、外管1の肉厚で確保できるため、挿入する小径管は、外管1の肉厚より薄くすることが可能である。これにより、冷媒用伝熱管40の質量増加(平滑管に対する)を最小限に抑えることができる。   The material of the outer tube 1 of the refrigerant heat transfer tube 40 and the material of the small diameter tube 4 are the same as those of the outer tube 1 and the fin material (plate material) 2 of the refrigerant heat transfer tube 20 of the first embodiment, respectively. The thickness of the small diameter tube 4 is preferably set to a thickness equal to or less than the thickness of the outer tube 1. As described above, the carbon dioxide refrigerant has a very high pressure, but the pressure resistance can be secured by the thickness of the outer tube 1, so that the small diameter tube to be inserted can be made thinner than the thickness of the outer tube 1. is there. Thereby, the mass increase (with respect to a smooth tube) of the heat exchanger tube 40 for refrigerant | coolants can be suppressed to the minimum.

また、第3の実施の形態において、小径管4の外側に形成される空間(外管と小径管により形成される第1の空間5、および小径管同士により形成される第2の空間6)に対しては、冷媒を流通させてもさせなくても良いが、冷媒を流通させることにより冷媒接触面積拡大率(濡れ縁長さ)を増大させることが可能となり、伝熱面積を有効活用できる。   In the third embodiment, a space formed outside the small diameter tube 4 (a first space 5 formed by the outer tube and the small diameter tube, and a second space 6 formed by the small diameter tubes). However, the refrigerant may or may not be circulated, but the refrigerant contact area enlargement ratio (wetting edge length) can be increased by circulating the refrigerant, and the heat transfer area can be effectively utilized.

一方、第1の空間5と第2の空間6をシールして、該第1の空間5と該第2の空間6に冷媒を流入させないようにする(例えば、ろう材などを用いて当該伝熱管40(あるいはガスクーラ)の両端末部分で密閉する)ことにより、該伝熱管40の耐圧性に係わる外管1の肉厚を小径管4の肉厚分だけ減じることが可能となる。これにより、冷媒用伝熱管40の質量増加(平滑管に対する)を最小限に抑えることができる。   On the other hand, the first space 5 and the second space 6 are sealed to prevent the refrigerant from flowing into the first space 5 and the second space 6 (for example, using a brazing material). It is possible to reduce the thickness of the outer tube 1 related to the pressure resistance of the heat transfer tube 40 by the thickness of the small-diameter tube 4 by sealing at both ends of the heat tube 40 (or gas cooler). Thereby, the mass increase (with respect to a smooth tube) of the heat exchanger tube 40 for refrigerant | coolants can be suppressed to the minimum.

(第3の実施の形態の効果)
本実施の形態によれば、第1の実施の形態の効果のほかに、以下の効果を奏する。
外管の内面と小径管の外面の密着長さを長くとることができるため、密着によるバラツキが小さく、安定した形状にすることができる。また、同じ理由により、伝熱に関するバラツキが小さくなり、安定した伝熱性能を得ることができる。
(Effect of the third embodiment)
According to the present embodiment, in addition to the effects of the first embodiment, the following effects can be obtained.
Since the contact length between the inner surface of the outer tube and the outer surface of the small-diameter tube can be increased, the variation due to the contact is small and a stable shape can be obtained. In addition, for the same reason, variation related to heat transfer is reduced, and stable heat transfer performance can be obtained.

〔本発明のそのほかの実施の形態〕
本発明の実施の形態としては、上記の第1〜3の実施の形態のほか、種々の形態があり、例えば、以下の形態が挙げられる。
(1)第3の実施の形態において、小径管4を3本としたが、2、4、5、7本としてもよい。この場合(3本の場合も含め)、小径管4を設置したことによる冷媒接触面積拡大率は、前述と同様に、小径管4を設置したことによる圧力損失の増大率(該伝熱管の圧力損失/平滑管の圧力損失)を下回らないことが好ましい。
[Other Embodiments of the Present Invention]
As an embodiment of the present invention, there are various forms in addition to the first to third embodiments described above. Examples include the following forms.
(1) In the third embodiment, the number of the small diameter tubes 4 is three, but may be 2, 4, 5, or 7. In this case (including three cases), the rate of expansion of the refrigerant contact area due to the installation of the small-diameter pipe 4 is the rate of increase in pressure loss due to the installation of the small-diameter pipe 4 (the pressure of the heat transfer pipe). Loss / pressure loss of the smooth tube).

(2)ヒートポンプ式給湯機を例に挙げて説明したが、ヒートポンプ式空調機などにおいても同様に適用できる。 (2) Although the heat pump type hot water heater has been described as an example, the present invention can be similarly applied to a heat pump type air conditioner.

図5に、伝熱性能を評価するための二重管式熱交換器の模式図を示す。図5に示すように、冷媒用伝熱管51を内管とし、該内管の外側に冷媒から熱を除去する水を環状(ジャケット状)に流すための水管52を有した二重管式熱交換器50を構成した。   FIG. 5 shows a schematic diagram of a double-pipe heat exchanger for evaluating heat transfer performance. As shown in FIG. 5, a double pipe heat having a heat transfer pipe 51 for refrigerant as an inner pipe and a water pipe 52 for flowing water for removing heat from the refrigerant in an annular shape (jacket shape) outside the inner pipe. An exchanger 50 was configured.

表1に、評価した冷媒用伝熱管の仕様を示す。
実施例1は、上記第3の実施の形態に係る伝熱管であり、外管(外径5.3mm、肉厚0.38mm)に、小径管(外径2mm、肉厚0.1mm)を3本挿入した後、共引き加工を施して作製した。
Table 1 shows the specifications of the evaluated refrigerant heat transfer tubes.
Example 1 is a heat transfer tube according to the third embodiment, and a small-diameter tube (outer diameter 2 mm, wall thickness 0.1 mm) is connected to an outer tube (outer diameter 5.3 mm, wall thickness 0.38 mm). After inserting three, it was produced by performing co-drawing.

比較例1〜6は、内面溝付管であり、従来の転造加工により作製した。参考例1〜3は、平滑管である。   Comparative Examples 1 to 6 are internally grooved tubes, which were produced by conventional rolling. Reference Examples 1 to 3 are smooth tubes.

なお、「ねじれ角」とは、内面溝付管における管中心軸方向と溝方向のなす角をいう。また、「底肉厚」とは、溝底部(内面溝付管において最も肉厚の薄い部分)での管の肉厚を意味し、管の耐圧性に関して、平滑管の肉厚および本発明の伝熱管における外管の肉厚と同義である。よって、内面溝付管における内径IDは、「ID=外径−底肉厚×2」とする。   The “twist angle” refers to an angle formed by the tube center axis direction and the groove direction in the internally grooved tube. In addition, the “bottom wall thickness” means the wall thickness of the tube at the groove bottom (the thinnest portion of the inner surface grooved tube), and with respect to the pressure resistance of the tube, It is synonymous with the thickness of the outer tube in the heat transfer tube. Therefore, the inner diameter ID of the inner grooved tube is “ID = outer diameter−bottom wall thickness × 2”.

Figure 2007322069
Figure 2007322069

表1に示した各冷媒用伝熱管の伝熱性能を測定した。表2に、伝熱性能測定における測定条件を示す。伝熱性能として管内熱伝達率を評価した。ここで、管内熱伝達率に対して、冷媒流路断面積による影響を抑制するために、冷媒用伝熱管の外径(φ4、φ5、φ7)ごとに冷媒質量速度を揃えた。   The heat transfer performance of each refrigerant heat transfer tube shown in Table 1 was measured. Table 2 shows the measurement conditions in the heat transfer performance measurement. The heat transfer coefficient in the pipe was evaluated as the heat transfer performance. Here, in order to suppress the influence of the cross-sectional area of the refrigerant flow path on the heat transfer coefficient in the pipe, the refrigerant mass velocity was made uniform for each outer diameter (φ4, φ5, φ7) of the refrigerant heat transfer tube.

また、熱流束による影響を抑制するために、冷媒用伝熱管の外径ごとに冷媒温度範囲(測定温度範囲)を調整しながら測定した(冷媒入口温度〜冷媒出口温度を5〜6領域に分割し、各領域での熱流束が同等になるように水の流量を調整して測定した)。   Moreover, in order to suppress the influence by a heat flux, it measured, adjusting the refrigerant | coolant temperature range (measurement temperature range) for every outer diameter of the refrigerant | coolant heat exchanger tube (divide the refrigerant | coolant inlet temperature-refrigerant | coolant outlet temperature into 5-6 area | regions). The water flow rate was adjusted so that the heat flux in each region was equal).

また、冷媒中の潤滑油濃度(PAG油濃度)は、流通している冷媒を二重管式熱交換器の冷媒入口の手前でサンプリング容器に採取し、サンプリング容器の容積と採取した冷媒の質量から(いわゆる重量法により)求めた。なお、測定条件における精度(制御・測定誤差)は、それぞれ表2の数値(数値は平均値)に対して、温度が±0.3℃程度、圧力が±0.1%程度、冷媒質量速度が±0.4%程度、PAG油濃度が±0.1質量%程度である。   The lubricating oil concentration (PAG oil concentration) in the refrigerant is determined by collecting the circulating refrigerant in a sampling container before the refrigerant inlet of the double-pipe heat exchanger, and the volume of the sampling container and the mass of the collected refrigerant. (By the so-called gravimetric method). The accuracy (control / measurement error) under the measurement conditions is about ± 0.3 ° C., pressure is about ± 0.1%, and the refrigerant mass velocity is relative to the values in Table 2 (the values are average values). Is about ± 0.4%, and the PAG oil concentration is about ± 0.1% by mass.

Figure 2007322069
Figure 2007322069

管内熱伝達率αは、以下のようにして求めた。
二重管式熱交換器における冷媒温度範囲ごとの冷媒入口温度Tr2[単位:K]、冷媒出口温度Tr1[単位:K]、水管の入口温度Tw1[単位:K]、水管の出口温度Tw2[単位:K]、および水の質量流量G[単位:kg/s]を計測する。水の入口/出口温度から算出される代表温度(平均温度T[単位:K])より、測定区間の水の定圧比熱Cpが求まり、次式(1),(2)の関係から熱流速q[単位:kW/m]および対数平均温度差ΔT[単位:K]が求まる。
The in-tube heat transfer coefficient α was determined as follows.
Refrigerant inlet temperature T r2 [unit: K], refrigerant outlet temperature T r1 [unit: K], water pipe inlet temperature T w1 [unit: K], outlet of water pipe for each refrigerant temperature range in the double pipe heat exchanger The temperature T w2 [unit: K] and the mass flow rate G w of water [unit: kg / s] are measured. From the representative temperature (average temperature T w [unit: K]) calculated from the water inlet / outlet temperature, the constant pressure specific heat Cp w of the water in the measurement section is obtained, and the heat is calculated from the relationship of the following equations (1) and (2). The flow rate q [unit: kW / m 2 ] and the logarithmic average temperature difference ΔT L [unit: K] are obtained.

Figure 2007322069
Figure 2007322069

ここで、Aは熱交換面積(前記二重管式熱交換器において、水と接する冷媒用伝熱管の表面積)[単位:m2]である。 Here, A is a heat exchange area (surface area of the refrigerant heat transfer tube in contact with water in the double-tube heat exchanger) [unit: m 2 ].

Figure 2007322069
Figure 2007322069

ここで、 here,

Figure 2007322069
Figure 2007322069

Figure 2007322069
である。
Figure 2007322069
It is.

また、熱流速qを対数平均温度差ΔTで除すことにより、二重管式熱交換器の熱通過率K[単位:kW/(mK)]を次式(5)から算出することができる。 Further, by dividing the heat flux q in logarithmic average temperature difference [Delta] T L, the heat transfer coefficient of the double-pipe heat exchanger K [Unit: kW / (m 2 K) ] is calculated from the following equation (5) be able to.

Figure 2007322069
Figure 2007322069

一方、水管の入口/出口温度から算出される代表温度(平均温度T)から、その温度における水の各物性値(密度、比熱、粘度、熱伝導率λ)が定まり、プラントル数Prが求まる。 On the other hand, from the representative temperature (average temperature T w ) calculated from the inlet / outlet temperature of the water pipe, each physical property value (density, specific heat, viscosity, thermal conductivity λ w ) of water at that temperature is determined, and the Prandtl number Pr is I want.

また、水の物性値と質量流量によりレイノルズ数Reが求まり、次式(6)の関係により、水の熱伝達率α[単位:kW/(mK)]が算出できる。 Further, the Reynolds number Re is obtained from the physical property value of water and the mass flow rate, and the heat transfer coefficient α w [unit: kW / (m 2 K)] of water can be calculated from the relationship of the following equation (6).

Figure 2007322069
Figure 2007322069

ここで、
は水の環状流通部分の相当直径(流路面積の4倍を濡れ縁長さで除したもの)[単位:m]
は水管の内径[単位:m]
ODは冷媒用伝熱管の外径[単位:m]
である。
here,
d e is (a value obtained by dividing 4 times the flow area at the wetted perimeter) equivalent diameter of the annular flow of the water [unit: m]
d i is the inner diameter of the water pipe [unit: m]
OD is the outer diameter of the refrigerant heat transfer tube [unit: m]
It is.

管内熱伝達率α[単位:kW/(mK)]は、熱通過率Kと水の熱伝達率α及び冷媒用伝熱管の外径OD、冷媒用伝熱管の内径ID[単位:m]を用いて、次式(7)のように算出できる。 The heat transfer coefficient α in the tube [unit: kW / (m 2 K)] is the heat transfer rate K, the heat transfer coefficient α w of water, the outer diameter OD of the refrigerant heat transfer tube, and the inner diameter ID of the refrigerant heat transfer tube [unit: m] can be calculated as in the following equation (7).

Figure 2007322069
Figure 2007322069

(実施例1、比較例1、参考例1)
図6は、実施例1、比較例1(内面溝付管)及び参考例1(平滑管)について平均冷媒温度と管内熱伝達率の関係を示した評価結果である。なお、平均冷媒温度とは、表2に示した冷媒入口温度〜冷媒出口温度を5〜6領域に分割した各温度領域における平均温度(該温度領域の冷媒入口温度と冷媒出口温度の平均)である。また、冷媒中の潤滑油濃度(PAG油濃度)は0.5質量%とした。
(Example 1, Comparative Example 1, Reference Example 1)
FIG. 6 is an evaluation result showing the relationship between the average refrigerant temperature and the heat transfer coefficient in the tube for Example 1, Comparative Example 1 (inner grooved tube) and Reference Example 1 (smooth tube). The average refrigerant temperature is an average temperature in each temperature region obtained by dividing the refrigerant inlet temperature to the refrigerant outlet temperature shown in Table 2 into 5 to 6 regions (average of the refrigerant inlet temperature and the refrigerant outlet temperature in the temperature region). is there. Moreover, the lubricating oil concentration (PAG oil concentration) in the refrigerant was 0.5 mass%.

図6より、実施例1の本発明に係る伝熱管の管内熱伝達率は、いずれの温度領域においても、平滑管(参考例1)や内面溝付管(比較例1)の管内熱伝達率よりも高いことが判る。また、その管内熱伝達率は、各温度領域において平滑管(参考例1)比で1.5倍以上高く、全体平均でも約1.7倍となっている。   From FIG. 6, the heat transfer coefficient in the tube of the heat transfer tube according to the present invention of Example 1 is the heat transfer coefficient in the tube of the smooth tube (Reference Example 1) and the internally grooved tube (Comparative Example 1) in any temperature region. It turns out that it is higher. Further, the heat transfer coefficient in the tube is 1.5 times or more higher than the smooth tube (Reference Example 1) in each temperature region, and the overall average is about 1.7 times.

(比較例2〜3、参考例2〜3)
表1に示す仕様の内面溝付管(比較例2〜3)、平滑管(参考例2〜3)について、上述と同様に管内熱伝達率の測定を行なった。図7、8は、比較例2〜3(内面溝付管)及び参考例2〜3(平滑管)について、PAG油濃度が0.5質量%の場合の平均冷媒温度と管内熱伝達率の関係を示した評価結果である。
(Comparative Examples 2-3, Reference Examples 2-3)
For the internally grooved tubes (Comparative Examples 2 to 3) and smooth tubes (Reference Examples 2 to 3) having the specifications shown in Table 1, the heat transfer coefficient in the tube was measured in the same manner as described above. 7 and 8 show the average refrigerant temperature and the heat transfer coefficient in the tube when the PAG oil concentration is 0.5% by mass for Comparative Examples 2-3 (inner grooved tube) and Reference Examples 2-3 (smooth tube). It is the evaluation result which showed the relationship.

冷媒接触面積拡大率が約2.0倍の伝熱管(比較例2)や、フロン系冷媒において凝縮性能が大きく向上する高ねじれ角の伝熱管(比較例3)など、いずれの伝熱管においても、平滑管比1.5倍を超える伝熱性能を有するものはない。これらは、フロン系冷媒では想定できない結果であり、二酸化炭素冷媒中に混在する圧縮機潤滑油の影響と考えられる。   In any heat transfer tube, such as a heat transfer tube (comparative example 2) having a refrigerant contact area expansion ratio of about 2.0 times, or a high torsion angle heat transfer tube (comparative example 3) that greatly improves the condensation performance of a fluorocarbon refrigerant. There is no heat transfer performance exceeding 1.5 times the smooth tube ratio. These are results that cannot be envisaged with chlorofluorocarbon refrigerants, and are considered to be the influence of compressor lubricant mixed in the carbon dioxide refrigerant.

(実施例1、比較例4〜6)
図9は、実施例1および比較例4〜6(内面溝付管)の管内熱伝達率について上記と同様の評価を行い、冷媒接触面積拡大率を約1.8倍で統一してH/IDで整理した図である。なお、図中の管内熱伝達率平滑管比とは、測定した各温度領域での管内熱伝達率を平均し(平均管内熱伝達率)、平滑管(参考例1)の平均管内熱伝達率で除したものである。また、冷媒中の潤滑油濃度(PAG油濃度)は0.5質量%とした。
(Example 1, Comparative Examples 4 to 6)
FIG. 9 shows the same evaluation as described above for the in-tube heat transfer coefficient of Example 1 and Comparative Examples 4 to 6 (inner grooved pipe), and unified the refrigerant contact area expansion ratio by about 1.8 times to H f. FIG. In the figure, the tube heat transfer coefficient smooth tube ratio is the average of the tube heat transfer coefficient in each measured temperature range (average tube heat transfer coefficient), and the average tube heat transfer coefficient of the smooth tube (Reference Example 1). Divided by. Moreover, the lubricating oil concentration (PAG oil concentration) in the refrigerant was 0.5 mass%.

図9の結果は、冷媒中の圧縮機潤滑油が比較的多い場合(例えば、0.5質量%)に、伝熱管のH/IDと管内熱伝達率平滑管比が強い相関を持つことを表している。比較例4〜6(内面溝付管)において管内熱伝達率平滑管比が小さかった理由は、冷媒中に混在する圧縮機の潤滑油で伝熱管内面のフィン(伝熱管内面の溝)が埋もれてしまい、伝熱面積増(冷媒接触面積拡大率=約1.8倍)の寄与が相殺されてしまうためと考えられる。図9から、管内熱伝達率平滑管比1.5以上を得るためには、少なくともH/ID≧0.1が必要であると判る。 The result of FIG. 9 shows that when the compressor lubricating oil in the refrigerant is relatively large (for example, 0.5% by mass), the heat transfer tube H f / ID and the tube heat transfer coefficient smooth tube ratio have a strong correlation. Represents. In Comparative Examples 4 to 6 (inner grooved tube), the heat transfer coefficient smooth tube ratio in the tube was small. The fins on the inner surface of the heat transfer tube (grooves on the inner surface of the heat transfer tube) were buried with the lubricating oil of the compressor mixed in the refrigerant. This is considered to be because the contribution of the heat transfer area increase (refrigerant contact area expansion ratio = approximately 1.8 times) is offset. From FIG. 9, it can be seen that at least H f /ID≧0.1 is necessary to obtain the in-tube heat transfer coefficient smooth tube ratio of 1.5 or more.

従来の転造加工による内面溝付管では、その加工方法による制約からH/IDは最大でも0.07〜0.08程度と考えられている。これに対し、本発明に係る伝熱管は、H/ID≧0.1、さらには冷媒接触面積拡大率1.5倍以上という特徴を有することから、平滑管比で1.5倍以上の管内熱伝達率を得ることができる。 In the internally grooved tube by the conventional rolling process, H f / ID is considered to be about 0.07 to 0.08 at the maximum due to the restriction by the processing method. On the other hand, the heat transfer tube according to the present invention has the characteristics that H f /ID≧0.1 and further the refrigerant contact area enlargement ratio is 1.5 times or more. An in-tube heat transfer coefficient can be obtained.

図10は、実施例1及び比較例1(内面溝付管)の性能について、冷媒中のPAG油濃度と管内熱伝達率平滑管比(参考例1との比)の関係を示した図である。図から判るように、PAG油濃度が比較的高い領域(例えば、0.2質量%程度以上)で、本発明に係る伝熱管は従来の内面溝付管よりも明らかに高い伝熱性能を有している。   FIG. 10 is a diagram showing the relationship between the PAG oil concentration in the refrigerant and the in-tube heat transfer coefficient smooth tube ratio (ratio with Reference Example 1) for the performance of Example 1 and Comparative Example 1 (inner grooved tube). is there. As can be seen from the figure, in the region where the PAG oil concentration is relatively high (for example, about 0.2% by mass or more), the heat transfer tube according to the present invention has clearly higher heat transfer performance than the conventional inner surface grooved tube. is doing.

本発明の一実施の形態におけるヒートポンプ式給湯機の概略構成図である。It is a schematic block diagram of the heat pump type water heater in one embodiment of this invention. 板材をフィン材とした第1の実施の形態に係る冷媒用伝熱管の断面図である。It is sectional drawing of the heat exchanger tube for refrigerant | coolants which concerns on 1st Embodiment which used the board | plate material as the fin material. 成形部材をフィン材とした第2の実施の形態に係る冷媒用伝熱管の断面図である。It is sectional drawing of the heat exchanger tube for refrigerant | coolants which concerns on 2nd Embodiment which used the shaping | molding member as the fin material. 小径管をフィン材とした第3の実施の形態に係る冷媒用伝熱管の断面図である。It is sectional drawing of the heat exchanger tube for refrigerant | coolants which concerns on 3rd Embodiment which used the small diameter tube as the fin material. 伝熱性能を評価するための二重管式熱交換器の模式図である。It is a schematic diagram of the double-pipe heat exchanger for evaluating heat transfer performance. 実施例1、比較例1(内面溝付管)及び参考例1(平滑管)について平均冷媒温度と管内熱伝達率の関係を示した評価結果である。It is the evaluation result which showed the relationship between average refrigerant | coolant temperature and a heat transfer coefficient in a pipe | tube about Example 1, the comparative example 1 (inner surface grooved pipe), and the reference example 1 (smooth pipe). 比較例2(内面溝付管)及び参考例2(平滑管)について平均冷媒温度と管内熱伝達率の関係を示した評価結果である。It is the evaluation result which showed the relationship between average refrigerant | coolant temperature and the heat transfer coefficient in a pipe | tube about the comparative example 2 (inner surface grooved pipe) and the reference example 2 (smooth pipe). 比較例3(内面溝付管)及び参考例3(平滑管)について平均冷媒温度と管内熱伝達率の関係を示した評価結果である。It is the evaluation result which showed the relationship between average refrigerant | coolant temperature and the heat transfer coefficient in a pipe | tube about the comparative example 3 (inner surface grooved pipe | tube) and the reference example 3 (smooth pipe | tube). 実施例1および比較例4〜6(内面溝付管)の性能について、冷媒接触面積拡大率を1.8倍で統一してH/IDで整理した図である。It is the figure which unified the refrigerant | coolant contact area expansion rate by 1.8 time, and arranged by Hf / ID about the performance of Example 1 and Comparative Examples 4-6 (inner surface grooved pipe). 実施例1および比較例1(内面溝付管)の性能について、PAG油濃度と管内熱伝達率平滑管比の関係を示した図である。It is the figure which showed the relationship between the PAG oil density | concentration and the heat transfer coefficient smooth tube ratio in a pipe | tube about the performance of Example 1 and Comparative Example 1 (inner surface grooved pipe). ヒートポンプ式熱交換機器と、そこで使用される冷媒との相関関係を例示した図である。It is the figure which illustrated the correlation with a heat pump type heat exchange apparatus and the refrigerant | coolant used there.

符号の説明Explanation of symbols

1:外管
2:板材によるフィン材
3:成形部材によるフィン材
4:小径管
5:外管と小径管により形成される第1の空間
6:小径管同士により形成される第2の空間
10:ヒートポンプ式給湯機
11:圧縮機
12:ガスクーラ(水熱交換器)
13:減圧器
14:吸熱器(蒸発器)
15:配管
20,30,40:冷媒用伝熱管
50:二重管式熱交換器
51:冷媒用伝熱管
52:水管
1: outer tube 2: fin material made of plate material 3: fin material made of molded member 4: small diameter tube 5: first space formed by outer tube and small diameter tube 6: second space 10 formed by small diameter tubes : Heat pump type water heater 11: Compressor 12: Gas cooler (water heat exchanger)
13: Pressure reducer 14: Heat absorber (evaporator)
15: Piping 20, 30, 40: Refrigerant heat transfer tube 50: Double tube heat exchanger 51: Refrigerant heat transfer tube 52: Water tube

Claims (15)

冷媒として二酸化炭素を用いたヒートポンプ式熱交換機器のガスクーラに使用される冷媒用伝熱管であって、前記冷媒用伝熱管は、外管と、該外管の内面に固定設置されたフィンとを備え、前記外管の内径をIDおよび前記フィンの高さをHとすると、H/IDが0.1以上0.5以下であることを特徴とする冷媒用伝熱管。 A refrigerant heat transfer tube used in a gas cooler of a heat pump heat exchange device using carbon dioxide as a refrigerant, wherein the refrigerant heat transfer tube includes an outer tube and a fin fixedly installed on the inner surface of the outer tube. The refrigerant heat transfer tube is characterized in that H f / ID is 0.1 or more and 0.5 or less, where ID is the inner diameter of the outer tube and H f is the height of the fin. 前記フィンは、板材により構成されていることを特徴とする請求項1に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to claim 1, wherein the fin is made of a plate material. 前記フィンは、成形部材により構成されていることを特徴とする請求項1に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to claim 1, wherein the fin is formed of a molded member. 前記フィンは、複数の小径管により構成されている中空フィンであることを特徴とする請求項1に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to claim 1, wherein the fin is a hollow fin configured by a plurality of small-diameter tubes. 前記フィンは、前記外管の肉厚以下の厚さを有することを特徴とする請求項1乃至請求項4のいずれか1項に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to any one of claims 1 to 4, wherein the fin has a thickness equal to or less than a thickness of the outer tube. 前記フィンは、嵌合により前記外管の内面に固定設置されていることを特徴とする請求項1乃至請求項5のいずれか1項に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to any one of claims 1 to 5, wherein the fin is fixedly installed on an inner surface of the outer tube by fitting. 前記フィンを備えたことによる冷媒接触面積拡大率が1.5倍以上であることを特徴とする請求項1乃至請求項6のいずれか1項に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to any one of claims 1 to 6, wherein an expansion ratio of the refrigerant contact area due to the provision of the fins is 1.5 times or more. 冷媒として二酸化炭素を用いたヒートポンプ式熱交換機器のガスクーラに使用される冷媒用伝熱管であって、外管と、該外管の内面に外周の一部が固定設置された複数の小径管とを備えることを特徴とする冷媒用伝熱管。   A refrigerant heat transfer tube used in a gas cooler of a heat pump heat exchange device using carbon dioxide as a refrigerant, an outer tube, and a plurality of small-diameter tubes whose outer periphery is fixedly installed on the inner surface of the outer tube; A refrigerant heat transfer tube. 前記小径管は、その高さをHおよび前記外管の内径をIDとすると、H/IDが0.1以上であることを特徴とする請求項8記載の冷媒用伝熱管。 The refrigerant heat transfer tube according to claim 8, wherein the small diameter tube has a height Hf and an inner diameter of the outer tube ID, and Hf / ID is 0.1 or more. 前記小径管は、前記外管の肉厚以下の厚さを有することを特徴とする請求項8又は請求項9に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to claim 8 or 9, wherein the small-diameter tube has a thickness equal to or less than a thickness of the outer tube. 前記小径管を備えたことによる冷媒接触面積拡大率が1.5倍以上であることを特徴とする請求項8乃至請求項10のいずれか1項に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to any one of claims 8 to 10, wherein an expansion ratio of the refrigerant contact area due to the provision of the small-diameter tube is 1.5 times or more. 前記ガスクーラは、冷凍サイクルの圧縮機の潤滑油としてポリアルキレングリコール油を用いたヒートポンプ式熱交換機器に用いられるものであることを特徴とする請求項1乃至請求項11のいずれか1項に記載の冷媒用伝熱管。   The said gas cooler is used for the heat pump type heat exchange apparatus which used polyalkylene glycol oil as lubricating oil of the compressor of a refrigerating cycle, The any one of Claims 1 thru | or 11 characterized by the above-mentioned. Heat transfer tube for refrigerant. 前記冷媒としての二酸化炭素中には、前記ヒートポンプ式熱交換機器における冷凍サイクルを構成する圧縮機の潤滑油が0.2質量%以上混入していることを特徴とする請求項1乃至請求項12のいずれか1項に記載の冷媒用伝熱管。   The carbon dioxide as the refrigerant contains 0.2% by mass or more of lubricating oil of a compressor constituting a refrigeration cycle in the heat pump heat exchange device. The heat exchanger tube for refrigerant | coolants of any one of these. 前記ガスクーラがヒートポンプ式熱交換機器の放熱器であることを特徴とする請求項1乃至請求項13のいずれか1項に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to any one of claims 1 to 13, wherein the gas cooler is a radiator of a heat pump heat exchange device. 請求項1乃至請求項14のいずれか1項に記載の冷媒用伝熱管を備えたことを特徴とするガスクーラ。   A gas cooler comprising the refrigerant heat transfer tube according to any one of claims 1 to 14.
JP2006153177A 2006-06-01 2006-06-01 Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same Expired - Fee Related JP4826343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153177A JP4826343B2 (en) 2006-06-01 2006-06-01 Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153177A JP4826343B2 (en) 2006-06-01 2006-06-01 Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same

Publications (2)

Publication Number Publication Date
JP2007322069A true JP2007322069A (en) 2007-12-13
JP4826343B2 JP4826343B2 (en) 2011-11-30

Family

ID=38855045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153177A Expired - Fee Related JP4826343B2 (en) 2006-06-01 2006-06-01 Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same

Country Status (1)

Country Link
JP (1) JP4826343B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038403A1 (en) * 2008-09-30 2010-04-08 ダイキン工業株式会社 Air conditioning device
JP2010096372A (en) * 2008-10-15 2010-04-30 Hitachi Cable Ltd Internal heat exchanger for carbon dioxide refrigerant
JP2011069523A (en) * 2009-09-24 2011-04-07 Hitachi Cable Ltd Heat transfer pipe for refrigerant, and gas cooler
JP2011191049A (en) * 2010-02-19 2011-09-29 Tanico Corp Heat exchanger, and heating device using heat exchanger

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119067U (en) * 1982-02-04 1983-08-13 三菱重工業株式会社 Heat exchanger tube for requilerator
JPS60205192A (en) * 1984-03-28 1985-10-16 Nippon Denso Co Ltd Heat exchanger
JPS63223496A (en) * 1987-03-11 1988-09-16 Akutoronikusu Kk Flow passage for thermal medium fluid
JPH04313692A (en) * 1991-04-12 1992-11-05 Hitachi Ltd High thermal load heat receiving equipment
JPH0650618A (en) * 1992-07-31 1994-02-25 Daikin Ind Ltd Cryogenic freezer
JP2003130560A (en) * 2001-10-29 2003-05-08 Sanyo Electric Co Ltd Heat exchanger and heat pump hot type water supply machine
JP2004191035A (en) * 2002-11-29 2004-07-08 Usui Kokusai Sangyo Kaisha Ltd Heat transfer pipe internally provided with resin pipe
JP2005054063A (en) * 2003-08-05 2005-03-03 Nippon Oil Corp Refrigerating machine oil composition
JP2005257160A (en) * 2004-03-11 2005-09-22 Furukawa Electric Co Ltd:The Heat transfer pipe with grooved inner surface and heat exchanger using the heat transfer tube with grooved inner surface
JP2006038277A (en) * 2004-07-23 2006-02-09 Sanyo Electric Co Ltd Solar power generation system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119067U (en) * 1982-02-04 1983-08-13 三菱重工業株式会社 Heat exchanger tube for requilerator
JPS60205192A (en) * 1984-03-28 1985-10-16 Nippon Denso Co Ltd Heat exchanger
JPS63223496A (en) * 1987-03-11 1988-09-16 Akutoronikusu Kk Flow passage for thermal medium fluid
JPH04313692A (en) * 1991-04-12 1992-11-05 Hitachi Ltd High thermal load heat receiving equipment
JPH0650618A (en) * 1992-07-31 1994-02-25 Daikin Ind Ltd Cryogenic freezer
JP2003130560A (en) * 2001-10-29 2003-05-08 Sanyo Electric Co Ltd Heat exchanger and heat pump hot type water supply machine
JP2004191035A (en) * 2002-11-29 2004-07-08 Usui Kokusai Sangyo Kaisha Ltd Heat transfer pipe internally provided with resin pipe
JP2005054063A (en) * 2003-08-05 2005-03-03 Nippon Oil Corp Refrigerating machine oil composition
JP2005257160A (en) * 2004-03-11 2005-09-22 Furukawa Electric Co Ltd:The Heat transfer pipe with grooved inner surface and heat exchanger using the heat transfer tube with grooved inner surface
JP2006038277A (en) * 2004-07-23 2006-02-09 Sanyo Electric Co Ltd Solar power generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038403A1 (en) * 2008-09-30 2010-04-08 ダイキン工業株式会社 Air conditioning device
JP2010085029A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Air conditioner
JP2010096372A (en) * 2008-10-15 2010-04-30 Hitachi Cable Ltd Internal heat exchanger for carbon dioxide refrigerant
JP2011069523A (en) * 2009-09-24 2011-04-07 Hitachi Cable Ltd Heat transfer pipe for refrigerant, and gas cooler
JP2011191049A (en) * 2010-02-19 2011-09-29 Tanico Corp Heat exchanger, and heating device using heat exchanger

Also Published As

Publication number Publication date
JP4826343B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
Pettersen et al. Development of compact heat exchangers for CO2 air-conditioning systems
JP4738401B2 (en) Air conditioner
Cheng et al. Flow boiling heat transfer and two-phase flow phenomena of CO2 in macro-and micro-channel evaporators: Fundamentals, applications and engineering design
JP2011144989A (en) Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle device and air conditioner
JP2006322661A (en) Heat transfer tube for heat dissipation, and radiator
JP2011106770A (en) Heat exchanger and refrigerating cycle device
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
JP2007271122A (en) Heat exchanger
KR101200597B1 (en) A complex pipe for transferring heat, heat exchanging system and heat exchanger using the same
JP2014163567A (en) Water heater
JP2005257160A (en) Heat transfer pipe with grooved inner surface and heat exchanger using the heat transfer tube with grooved inner surface
JP5435460B2 (en) Heat transfer tube
JP2007255785A (en) Heat exchanger with fin and air conditioner
Romahadi et al. Condensor design analysis with Kays and London surface dimensions
JP2010096372A (en) Internal heat exchanger for carbon dioxide refrigerant
JPWO2013014899A1 (en) Heat exchanger and heat pump using the same
JP2007271220A (en) Heat transfer tube with inner groove for gas cooler
JP2011252662A (en) Heat transfer tube for refrigerant, and heat exchanger
JP2009186130A (en) Heat transfer tube for radiator with inner face fin
WO2013094084A1 (en) Air conditioner
JP2009174832A (en) Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same
US20210278137A1 (en) System and Method for Manufacturing and Operating a Coaxial Tube Heat Exchanger
JP2006064311A (en) Inner helically-grooved heat transfer pipe for evaporator
JP4897968B2 (en) Heat transfer tube and method of manufacturing heat transfer tube
JP2009243722A (en) Internally grooved pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees