WO2010038403A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2010038403A1
WO2010038403A1 PCT/JP2009/004910 JP2009004910W WO2010038403A1 WO 2010038403 A1 WO2010038403 A1 WO 2010038403A1 JP 2009004910 W JP2009004910 W JP 2009004910W WO 2010038403 A1 WO2010038403 A1 WO 2010038403A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tube
refrigerant
air conditioner
carbon dioxide
Prior art date
Application number
PCT/JP2009/004910
Other languages
French (fr)
Japanese (ja)
Inventor
吉岡俊
織谷好男
金鉉永
笠井一成
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2010038403A1 publication Critical patent/WO2010038403A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to an air conditioner including a refrigerant circuit that performs a supercritical refrigeration cycle by circulating carbon dioxide.
  • an air conditioner including a refrigerant circuit for performing a vapor compression refrigeration cycle is known.
  • an internally grooved tube is used in the heat source side heat exchanger and the use side heat exchanger of the refrigerant circuit.
  • the inner grooved tube of Patent Document 1 is used in an air conditioner, and a large number of continuous spiral grooves are formed on the inner peripheral surface thereof. It is said that the refrigerant flowing in the pipe is well stirred by this spiral groove, and high heat transfer performance can be obtained.
  • one of the causes that the cooling capacity of the air conditioner is significantly lower than the conventional one is that a refrigerating machine oil (for example, PAG (polyalkylene) sealed in a refrigerant circuit in order to lubricate each sliding portion of the compressor. Glycol))).
  • a refrigerating machine oil for example, PAG (polyalkylene) sealed in a refrigerant circuit in order to lubricate each sliding portion of the compressor. Glycol
  • the refrigerating machine oil that could not be returned from the discharge side of the compressor to the suction side by the oil return circuit provided in the refrigerant circuit is combined with the carbon dioxide. Flows to the side heat exchanger.
  • the above refrigerating machine oil shows good lubricity with respect to each sliding portion of the compressor, the compatibility with carbon dioxide is low. From this, among the carbon dioxide and the refrigeration oil that flowed to the heat source side heat exchanger, the refrigeration oil that could not be dissolved in the carbon dioxide seems to travel along the inner peripheral surface of the inner grooved tube in the heat source side heat exchanger. Flowing into. As a result, the refrigerating machine oil is likely to be captured by a large number of grooves formed on the inner peripheral surface of the inner grooved tube, and the oil film formed on the inner peripheral surface is likely to be thick. When this oil film becomes thick, the thermal resistance between the carbon dioxide and the inner peripheral surface of the inner grooved tube increases, and it becomes difficult for the carbon dioxide to dissipate heat.
  • the present invention has been made in view of such a point, and in an air conditioner using carbon dioxide as a refrigerant, the cooling capacity is significantly lower than that of a conventional air conditioner using an HFC refrigerant as a refrigerant. There is to suppress.
  • the compression mechanism (11), the heat source side heat exchanger (15), the expansion mechanism (14), and the use side heat exchanger (13) having refrigerating machine oil are sequentially arranged. It is premised on an air conditioner that includes a refrigerant circuit (10) that is connected to perform a supercritical refrigeration cycle and that performs at least a cooling operation.
  • a smooth tube (1) is used for the heat source side heat exchanger (15) of the air conditioner, and an inner grooved tube (6) is used for the use side heat exchanger (13). It is characterized by.
  • the usage side heat exchanger (13) is used instead of using the inner grooved pipe (6) for both the heat source side heat exchanger (15) and the usage side heat exchanger (13).
  • the usage side heat exchanger (13) is used only the inner grooved tube (6) is used, and the heat source side heat exchanger (15) uses a smooth tube (1) instead of the inner grooved tube (6).
  • the refrigerating machine oil is less likely to be captured than when the inner grooved tube (6) is used.
  • the refrigerating machine oil flows smoothly in the pipe. Since the refrigeration oil flows smoothly through the pipe of the smooth pipe (1), the oil film in the pipe can be made thinner than when the inner grooved pipe (6) is used for the heat source side heat exchanger (15). . As the oil film becomes thinner, the thermal resistance between the carbon dioxide and the inner peripheral surface of the smooth tube (1) becomes smaller, and the carbon dioxide tends to dissipate heat. Thereby, the thermal radiation amount of the said heat source side heat exchanger (15) can be increased.
  • the ratio of the mass flow rate of the refrigerating machine oil to the total mass flow rate of the carbon dioxide and the refrigerating machine oil of the carbon dioxide and the refrigerating machine oil flowing through the smooth pipe (1) is 0.3. It is characterized by being at least mass%.
  • the mass of the refrigerating machine oil relative to the total mass flow rate of the carbon dioxide plus the refrigerating machine oil is regulated to 0.3% by mass or more.
  • FIG. 3 is a graph comparing the effect of the amount of oil circulation of the refrigerating machine oil on the evaporative heat exchange capacity ratio between the smooth tube (1) and the internally grooved tube (6).
  • FIG. 4 is a graph comparing the effect of the amount of oil circulation of the refrigerating machine oil on the heat dissipation capacity ratio between the smooth tube (1) and the internally grooved tube (6).
  • 3 and 4 both show the capacity ratio based on the heat exchange capacity of the internally grooved pipe (6) when the oil circulation amount of the refrigerating machine oil is zero, that is, when only carbon dioxide is flowing. .
  • ⁇ marks are measured values of the smooth tube, and ⁇ marks indicate measured values of the internally grooved tube.
  • the inner grooved tube (6) always has a larger evaporative heat exchange capacity ratio than the smooth tube (1), regardless of the amount of refrigeration oil circulating.
  • the heat source side heat exchanger (15) using the smooth tube (1) when the oil circulation amount of the refrigerating machine oil is regulated to 0.3% by mass or more, the heat source using the inner grooved tube (6) Compared with the side heat exchanger (15), the heat radiation heat exchange capability of the heat source side heat exchanger (15) during the cooling operation can be effectively increased.
  • the refrigerant circuit (10) is provided with a switching valve (12) for reversing the circulation direction of carbon dioxide flowing through the refrigerant circuit (10). It is characterized by having.
  • an air conditioner capable of air conditioning operation can be configured by providing the switching valve (12) in the refrigerant circuit (10). And about the air conditioner which can perform such an air conditioning operation, even if it uses a smooth pipe (1) for the said heat source side heat exchanger (15), like this invention, this heat source side heat exchanger ( 15) Compared with the use of an internally grooved tube (6), the oil film in the heat transfer tube can be made thinner, and the deterioration of the heat transfer performance of the heat source side heat exchanger (15) can be suppressed. it can.
  • a smooth tube (1) is used for the heat source side heat exchanger (15), and an internally grooved tube is used for the use side heat exchanger (13). (6) is used.
  • the oil film in the smooth tube (1) in the heat source side heat exchanger (15) can be made thinner than in the case where there is a groove on the inner peripheral surface. Thereby, it becomes easy to radiate carbon dioxide, and the heat radiation amount of the heat source side heat exchanger (15) can be increased.
  • the use of the smooth tube (1) for the heat source side heat exchanger (15) significantly increases the conventional air conditioner using the HFC refrigerant as the refrigerant. It can suppress that the cooling capacity falls.
  • the heat source side heat exchanger (15) using the smooth tube (1) when the amount of oil circulation is specified to be 0.3% by mass or more, an internally grooved tube ( Compared with the heat source side heat exchanger (15) using 6), the heat radiation heat exchange capacity of the heat source side heat exchanger (15) during cooling operation can be effectively increased.
  • an air conditioner using carbon dioxide as a refrigerant it is possible to effectively suppress the cooling capacity from being significantly reduced as compared with an air conditioner using an HFC refrigerant as a refrigerant.
  • an air conditioner capable of air-conditioning operation can be configured by providing a switching valve (12) in the refrigerant circuit (10). And also in the air conditioning apparatus in which this air conditioning operation is possible, the effect similar to the 1st and 2nd invention can be acquired at the time of air_conditionaing
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a heat exchanger of the air-conditioning apparatus according to the embodiment of the present invention.
  • FIG. 3 is a graph showing the influence of the oil circulation amount on the evaporative heat exchange capacity ratio.
  • FIG. 4 is a graph showing the effect of the amount of oil circulation on the ratio of heat radiation heat exchange capacity.
  • FIG. 5 is a cross-sectional view of an internally grooved tube according to an embodiment of the present invention. 6 is an enlarged view of a portion A in FIG.
  • FIG. 7 is a longitudinal sectional view of the internally grooved tube according to the embodiment of the present invention.
  • FIG. 1 shows a refrigerant circuit diagram of the air conditioner of this embodiment.
  • the air conditioner performs indoor air conditioning, and includes an outdoor unit (3) disposed outdoors and the indoor unit (2) disposed indoors.
  • the outdoor unit (3) is provided with an outdoor circuit (8).
  • the indoor unit (2) is provided with an indoor circuit (7).
  • This connecting pipe (4,5) consists of a gas side connecting pipe (4) and a liquid side connecting pipe (5).
  • the gas side connecting pipe (4) is the gas end of both circuits (7,8).
  • the liquid side connecting pipe (5) connects the liquid ends of both the circuits (7, 8).
  • the refrigerant circuit (10) is configured to perform a supercritical refrigeration cycle by enclosing carbon dioxide (hereinafter referred to as refrigerant) and circulating the refrigerant.
  • the outdoor circuit (8) of the outdoor unit (3) includes a compressor (compression mechanism) (11), a four-way switching valve (switching valve) (12), an expansion valve (expansion mechanism) (14), and an outdoor heat exchanger. (Heat source side heat exchanger) (15).
  • the compressor (11) is composed of, for example, a scroll type compressor.
  • An inverter (not shown) is connected to the compressor (11).
  • the inverter is configured to supply a current to the compressor (11) and to change the frequency of the current. That is, the capacity of the compressor (11) can be freely changed within a certain range by the inverter.
  • the compressor (11) accommodates polyalkylene glycol (PAG) (hereinafter referred to as refrigeration oil) for lubricating the sliding portion of the compressor (11).
  • PAG polyalkylene glycol
  • the four-way switching valve (12) has four ports (12a, 12b, 12c, 12d) from the first to the fourth.
  • a pipe extending from the first port (12a) is connected to the discharge side of the compressor (11).
  • a pipe extending from the second port (12b) is connected to the suction side of the compressor (11).
  • the pipe extending from the third port (12c) is connected to the gas end of the outdoor circuit (8).
  • a pipe extending from the fourth port (12d) is connected to one end of the outdoor heat exchanger (15).
  • the four-way selector valve (12) is in a first state in which the first port (12a) and the fourth port (12d) communicate with each other and the second port (12b) and the third port (12c) communicate with each other. (A state shown by a solid line in FIG. 1) and a second state in which the first port (12a) and the third port (12c) communicate with each other and the second port (12b) and the fourth port (12d) communicate with each other ( The state can be switched to the state shown by the broken line in FIG.
  • the expansion valve (14) is an electronic expansion valve whose opening degree can be adjusted. One end of the expansion valve (14) is connected to the liquid end of the outdoor circuit (8), and the other end is connected to the other end of the outdoor heat exchanger (15).
  • the outdoor heat exchanger (15) is a cross fin type fin-and-tube heat exchanger.
  • FIG. 2 shows a part of the outdoor heat exchanger (15).
  • the outdoor heat exchanger (15) includes a heat transfer fin group (22) including a plurality of heat transfer fins (21), a plurality of heat transfer tubes (1), and a U-shaped tube (23). And a heat transfer tube group (28).
  • Each heat transfer fin (21) is formed in a rectangular flat plate shape.
  • Each heat transfer tube (1) passes through each heat transfer fin (21), and ends of the heat transfer tubes (1) are connected to each other by a U-shaped tube (23). Thereby, one refrigerant flow path is formed from the inlet side end (27) to the outlet side end (28).
  • the outdoor heat exchanger (15) is a so-called multi-pass heat exchanger having a plurality of refrigerant flow paths as a whole. A plurality of refrigerant inlet side ends (27) and outlet side ends (28) are provided.
  • an outdoor fan (not shown) is provided in the vicinity of the outdoor heat exchanger (15). Then, the refrigerant flows through the refrigerant flow paths, and the air from the outdoor fan flows between the heat transfer fins (21) so as to be orthogonal to the flow of the refrigerant, whereby heat exchange between the refrigerant and the air is performed. Done.
  • a smooth tube (1) is used as the heat transfer tube (1) of the outdoor heat exchanger (15).
  • the smooth tube (1) has an outer diameter of 7.0 mm and a wall thickness of 0.9 mm.
  • the indoor circuit (7) of the indoor unit (2) has an indoor heat exchanger (use side heat exchanger) (13). One end of the indoor heat exchanger (13) is connected to the gas end of the indoor circuit (7), and the other end is connected to the liquid end of the indoor circuit (7).
  • the indoor heat exchanger (13) is composed of a cross-fin type fin-and-tube heat exchanger, like the outdoor heat exchanger (15) described above.
  • an internally grooved tube (6) having an outer diameter of 7.0 mm and a bottom wall thickness of 0.6 mm is used for the heat transfer tube of the indoor heat exchanger (13). Since the other configuration is the same as that of the outdoor heat exchanger (15), description thereof is omitted.
  • a plurality of grooves (16) and adjacent fins (17) are provided between the grooves (16) on the inner peripheral surface of the inner grooved tube (6).
  • the groove (16) and the fin (17) are formed in an inverted trapezoidal cross section, and the fin (17) is formed in a tapered mountain shape.
  • the number (strip number) of the grooves (16) is 60.
  • a bottom flat portion (16a) is formed at the bottom of the groove (16), and bottom corners (16b) are formed at both ends of the bottom flat portion (16a).
  • the tip (17a) of the fin (17) is formed in an arc shape, and linear inclined portions (17b) continuous to the tip (17a) are formed on both sides thereof.
  • the bottom corner (16b) and the inclined portion (17b) are continuous such that the fin (17) is disposed adjacent to the groove (16) and the groove (16).
  • the angle (fin apex angle) formed by the inclined portion (17b) and the inclined portion (17b) on both sides of the fin (17) is 60 degrees.
  • the bottom width ⁇ between the groove (16) and the groove (16) is indicated by the distance connecting the intersection of the extended line of the inclined part (17b) and the extended line of the bottom flat part (16a).
  • the fin height h is a length between the bottom flat portion (16a) and the taper of the fin (17), and this length is 0.15 mm.
  • the extending direction of the grooves (16) and the fins (17) has a predetermined angle with respect to the tube axis direction. This angle is 12 deg.
  • the air conditioner can perform indoor air conditioning by reversing the circulation direction of the refrigerant flowing through the refrigerant circuit (10) by the switching operation of the four-way switching valve (12). .
  • the four-way selector valve (12) is set to the first state as described above. In this state, the refrigerant compressed to the critical pressure or higher by the compressor (11) is discharged from the compressor (11).
  • the compressor (11) discharges refrigeration oil used for lubricating each sliding portion of the compressor (11) together with the supercritical pressure refrigerant.
  • the discharged refrigerant and refrigerating machine oil flow into the outdoor heat exchanger (15) after passing through the four-way switching valve (12).
  • the refrigerant that has flowed into the outdoor heat exchanger (15) passes through the smooth tube (1), which is a heat transfer tube, while radiating heat to the air blown from the outdoor fan. During this passage, the refrigerant and the blown air exchange heat through the smooth tube (1).
  • the refrigerating machine oil that has flown into the smooth pipe (1) is separated from the refrigerant and smoothed. It flows along the inner peripheral surface of the pipe (1).
  • the heat transfer tube of the outdoor heat exchanger (15) is composed of an internally grooved tube (6)
  • the refrigerating machine oil is easily captured in the spiral groove formed on the inner surface of the internally grooved tube (6). Become.
  • the oil film formed on the inner side of the pipe becomes thick, and the heat transfer performance of the outdoor heat exchanger (15) is reduced.
  • the smooth tube (1) is used as the heat transfer tube of the outdoor heat exchanger (15), the refrigerating machine oil is not captured unlike the internally grooved tube (6). Flows smoothly. As a result, compared to the inner grooved tube (6), the oil film in the heat transfer tube can be made thinner, and the deterioration of the heat transfer performance of the outdoor heat exchanger (15) can be suppressed. In addition, the oil circulation amount of this refrigerating machine oil is set to 0.3 mass% or more.
  • the refrigerant that has flowed out of the outdoor heat exchanger (15) flows into the expansion valve (14) while radiating heat to the blown air from the outdoor fan in the outdoor heat exchanger (15).
  • the refrigerant flowing into the expansion valve (14) is depressurized to a predetermined pressure and becomes a low-pressure refrigerant.
  • the low-pressure refrigerant flows into the indoor heat exchanger (13), evaporates by absorbing heat from indoor air sent from an indoor fan (not shown). As a result, the room air is cooled.
  • the indoor heat exchanger (13) uses the internally grooved tube (6) as described above. As shown in FIG. 3, the heat exchange amount of the indoor heat exchanger (13) is as follows. Larger than when using a smooth tube (1).
  • the refrigerant evaporated in the indoor heat exchanger (13) is sucked into the compressor (11) and compressed to a critical pressure or higher. Then, the supercritical pressure refrigerant is discharged again. In this way, the refrigerant circulates through the refrigerant circuit (10), thereby cooling the room.
  • the smooth tube (1) is used for the outdoor heat exchanger (15), and the internally grooved tube (6) is used for the indoor heat exchanger (13).
  • the oil film in the smooth tube (1) in the outdoor heat exchanger (15) can be made thinner than in the case where there is a groove on the inner peripheral surface. Thereby, it becomes easy to radiate carbon dioxide, and the heat radiation amount of the outdoor heat exchanger (15) can be increased.
  • the use of the smooth tube (1) for the outdoor heat exchanger (15) significantly cools the air conditioner compared to the conventional air conditioner using the HFC refrigerant as the refrigerant. It is possible to suppress a decrease in ability.
  • the amount of oil circulation is regulated to 0.3% by mass or more.
  • FIG. 3 shows the effect of the amount of circulating oil in the refrigerating machine oil on the evaporative heat exchange capacity ratio in the smooth pipe (1) used in the outdoor heat exchanger (15) and the indoor heat exchanger (13). It is the graph compared with the inner surface grooved pipe (6).
  • FIG. 4 is a graph comparing the influence of the amount of oil circulation of the refrigerating machine oil on the heat dissipation capacity ratio between the smooth tube (1) and the inner grooved tube (6).
  • 3 and 4 both show the capacity ratio based on the heat exchange capacity of the internally grooved pipe (6) when the oil circulation amount of the refrigerating machine oil is zero, that is, when only carbon dioxide is flowing. .
  • ⁇ marks are measured values of the smooth tube, and ⁇ marks indicate measured values of the internally grooved tube.
  • the inner grooved tube (6) always has a larger evaporative heat exchange capacity ratio than the smooth tube (1), regardless of the amount of refrigeration oil circulating.
  • the internally grooved pipe (6) has a larger heat dissipation heat exchange capacity ratio than the smooth pipe (1). This is because there is no oil film of refrigerating machine oil and the effect of promoting heat transfer by the spiral groove is sufficiently exhibited.
  • the heat radiating heat exchange capacity ratio of the inner grooved pipe (6) decreases.
  • the air conditioner is configured as an air conditioner capable of cooling and heating operation, but may be an air conditioner dedicated to cooling, and is not limited to an air conditioner, and is applied to various air conditioners such as a refrigerator. can do.
  • the present invention is useful for an air conditioner including a refrigerant circuit that performs a supercritical refrigeration cycle by circulating carbon dioxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

A smooth pipe (1) is used for an outdoor heat exchanger (15) of an air conditioning device, and a pipe (6) with a grooved inner surface is used for an indoor heat exchanger (13) of the air conditioning device.

Description

空気調和装置Air conditioner
 本発明は、二酸化炭素が循環して超臨界冷凍サイクルを行う冷媒回路を備えた空気調和装置に関するものである。 The present invention relates to an air conditioner including a refrigerant circuit that performs a supercritical refrigeration cycle by circulating carbon dioxide.
 従来より、蒸気圧縮式の冷凍サイクルを行う冷媒回路を備えた空気調和装置が知られている。そして、この空気調和装置の高性能化を目的として、上記冷媒回路の熱源側熱交換器及び利用側熱交換器には内面溝付き管が用いられている。 Conventionally, an air conditioner including a refrigerant circuit for performing a vapor compression refrigeration cycle is known. For the purpose of improving the performance of the air conditioner, an internally grooved tube is used in the heat source side heat exchanger and the use side heat exchanger of the refrigerant circuit.
 特許文献1の内面溝付き管は、空気調和装置に用いられるものであり、その内周面に多数の連続的な螺旋溝が形成されている。この螺旋溝により、管内を流れる冷媒がよく攪拌され、高い伝熱性能を得ることができるとしている。 The inner grooved tube of Patent Document 1 is used in an air conditioner, and a large number of continuous spiral grooves are formed on the inner peripheral surface thereof. It is said that the refrigerant flowing in the pipe is well stirred by this spiral groove, and high heat transfer performance can be obtained.
特開2003-166794号公報JP 2003-166794 A
 しかしながら、本願発明者らは、このような内面溝付き管を熱交換器に用いた空気調和装置において、冷媒として現行のHFC系冷媒の代わりに二酸化炭素を用いた場合、その空気調和装置の冷房能力がHFC系冷媒に比べて予想以上に大幅に低下することを性能評価試験により確認している。 However, the inventors of the present invention, in an air conditioner using such an internally grooved tube as a heat exchanger, when carbon dioxide is used as a refrigerant instead of the current HFC refrigerant, cooling the air conditioner It has been confirmed by performance evaluation tests that the capacity is significantly lower than expected compared to HFC refrigerants.
 このように上記空気調和装置の冷房能力が従来よりも大幅に低下する原因のひとつは、圧縮機の各摺動部を潤滑するために冷媒回路に封入される冷凍機油(例えば、PAG(ポリアルキレングリコール))にあると考えている。 As described above, one of the causes that the cooling capacity of the air conditioner is significantly lower than the conventional one is that a refrigerating machine oil (for example, PAG (polyalkylene) sealed in a refrigerant circuit in order to lubricate each sliding portion of the compressor. Glycol))).
 つまり、上記圧縮機から二酸化炭素とともに吐出された冷凍機油のうち、上記冷媒回路に設けられた油戻し回路で上記圧縮機の吐出側から吸入側へ戻せなかった冷凍機油は、二酸化炭素とともに上記熱源側熱交換器に流れる。 That is, among the refrigerating machine oil discharged together with carbon dioxide from the compressor, the refrigerating machine oil that could not be returned from the discharge side of the compressor to the suction side by the oil return circuit provided in the refrigerant circuit is combined with the carbon dioxide. Flows to the side heat exchanger.
 ここで、上記冷凍機油は、圧縮機の各摺動部に対しては良好な潤滑性を示すものの、二酸化炭素に対する相溶性が低い。このことから、上記熱源側熱交換器に流れた二酸化炭素および冷凍機油のうち、二酸化炭素に溶けきれなかった冷凍機油は、上記熱源側熱交換器における内面溝付き管の内周面を伝うように流れる。その結果、この冷凍機油が、上記内面溝付き管の内周面に形成された多数の溝に捕捉されやすくなり、上記内周面に形成される油膜は厚くなりやすい。この油膜が厚くなると、二酸化炭素と内面溝付き管の内周面との間の熱抵抗が大きくなり、二酸化炭素が放熱しにくくなる。 Here, although the above refrigerating machine oil shows good lubricity with respect to each sliding portion of the compressor, the compatibility with carbon dioxide is low. From this, among the carbon dioxide and the refrigeration oil that flowed to the heat source side heat exchanger, the refrigeration oil that could not be dissolved in the carbon dioxide seems to travel along the inner peripheral surface of the inner grooved tube in the heat source side heat exchanger. Flowing into. As a result, the refrigerating machine oil is likely to be captured by a large number of grooves formed on the inner peripheral surface of the inner grooved tube, and the oil film formed on the inner peripheral surface is likely to be thick. When this oil film becomes thick, the thermal resistance between the carbon dioxide and the inner peripheral surface of the inner grooved tube increases, and it becomes difficult for the carbon dioxide to dissipate heat.
 これにより、上記熱源側熱交換器の放熱量が減少して、二酸化炭素を冷媒とする空気調和装置の冷房能力が大幅に低下すると考えられる。 Thus, it is considered that the heat radiation amount of the heat source side heat exchanger is reduced, and the cooling capacity of the air conditioner using carbon dioxide as a refrigerant is greatly reduced.
 本発明は、斯かる点に鑑みてなされたものであり、二酸化炭素を冷媒とする空気調和装置において、HFC系冷媒を冷媒とする従来の空気調和装置よりも大幅に冷房能力が低下するのを抑えることにある。 The present invention has been made in view of such a point, and in an air conditioner using carbon dioxide as a refrigerant, the cooling capacity is significantly lower than that of a conventional air conditioner using an HFC refrigerant as a refrigerant. There is to suppress.
 第1の発明は、二酸化炭素が封入されるとともに、冷凍機油を有する圧縮機構(11)と熱源側熱交換器(15)と膨張機構(14)と利用側熱交換器(13)とが順に接続されて超臨界冷凍サイクルを行う冷媒回路(10)を備え、少なくとも冷房運転を行う空気調和装置を前提としている。 In the first invention, carbon dioxide is enclosed, and the compression mechanism (11), the heat source side heat exchanger (15), the expansion mechanism (14), and the use side heat exchanger (13) having refrigerating machine oil are sequentially arranged. It is premised on an air conditioner that includes a refrigerant circuit (10) that is connected to perform a supercritical refrigeration cycle and that performs at least a cooling operation.
 そして、上記空気調和装置の熱源側熱交換器(15)には平滑管(1)が用いられ、上記利用側熱交換器(13)には内面溝付き管(6)が用いられていることを特徴としている。 A smooth tube (1) is used for the heat source side heat exchanger (15) of the air conditioner, and an inner grooved tube (6) is used for the use side heat exchanger (13). It is characterized by.
 第1の発明では、上記熱源側熱交換器(15)及び上記利用側熱交換器(13)の両方に内面溝付き管(6)を用いるのではなく、上記利用側熱交換器(13)のみに内面溝付き管(6)を用い、上記熱源側熱交換器(15)には内面溝付き管(6)の代わりに平滑管(1)を用いている。 In the first invention, instead of using the inner grooved pipe (6) for both the heat source side heat exchanger (15) and the usage side heat exchanger (13), the usage side heat exchanger (13) is used. Only the inner grooved tube (6) is used, and the heat source side heat exchanger (15) uses a smooth tube (1) instead of the inner grooved tube (6).
 上記熱源側熱交換器(15)に対して内周面に溝がない平滑管(1)を用いると、内面溝付き管(6)を用いた場合に比べて、上記冷凍機油が捕捉されにくくなり、該冷凍機油が滑らかに管内を流れる。冷凍機油が滑らかに平滑管(1)の管内を流れるので、上記熱源側熱交換器(15)に内面溝付き管(6)を用いた場合に比べて、管内の油膜を薄くすることができる。油膜が薄くなると、二酸化炭素と平滑管(1)の内周面との間の熱抵抗が小さくなり、二酸化炭素が放熱しやすくなる。これにより、上記熱源側熱交換器(15)の放熱量を増加させることができる。 If the smooth tube (1) with no groove on the inner peripheral surface is used for the heat source side heat exchanger (15), the refrigerating machine oil is less likely to be captured than when the inner grooved tube (6) is used. The refrigerating machine oil flows smoothly in the pipe. Since the refrigeration oil flows smoothly through the pipe of the smooth pipe (1), the oil film in the pipe can be made thinner than when the inner grooved pipe (6) is used for the heat source side heat exchanger (15). . As the oil film becomes thinner, the thermal resistance between the carbon dioxide and the inner peripheral surface of the smooth tube (1) becomes smaller, and the carbon dioxide tends to dissipate heat. Thereby, the thermal radiation amount of the said heat source side heat exchanger (15) can be increased.
 第2の発明は、第1の発明において、上記平滑管(1)を流れる二酸化炭素及び冷凍機油は、その二酸化炭素及び冷凍機油の全体の質量流量に対する冷凍機油の質量流量の割合が0.3質量%以上であることを特徴としている。 According to a second invention, in the first invention, the ratio of the mass flow rate of the refrigerating machine oil to the total mass flow rate of the carbon dioxide and the refrigerating machine oil of the carbon dioxide and the refrigerating machine oil flowing through the smooth pipe (1) is 0.3. It is characterized by being at least mass%.
 第2の発明では、上記熱源側熱交換器(15)に用いられる平滑管(1)を流れる二酸化炭素及び冷凍機油において、その二酸化炭素に冷凍機油を加えた全体の質量流量に対する冷凍機油の質量流量の割合(以下、油循環量という。)を0.3質量%以上に規定している。 In the second invention, in the carbon dioxide and the refrigerating machine oil flowing through the smooth tube (1) used in the heat source side heat exchanger (15), the mass of the refrigerating machine oil relative to the total mass flow rate of the carbon dioxide plus the refrigerating machine oil The ratio of the flow rate (hereinafter referred to as the oil circulation amount) is regulated to 0.3% by mass or more.
 図3は、上記冷凍機油の油循環量が蒸発熱交換能力比に及ぼす影響を、平滑管(1)と内面溝付き管(6)とで比較したグラフである。図4は、上記冷凍機油の油循環量が放熱熱交換能力比に及ぼす影響を、平滑管(1)と内面溝付き管(6)とで比較したグラフである。 FIG. 3 is a graph comparing the effect of the amount of oil circulation of the refrigerating machine oil on the evaporative heat exchange capacity ratio between the smooth tube (1) and the internally grooved tube (6). FIG. 4 is a graph comparing the effect of the amount of oil circulation of the refrigerating machine oil on the heat dissipation capacity ratio between the smooth tube (1) and the internally grooved tube (6).
 尚、図3及び図4は、共に冷凍機油の油循環量がゼロ、つまり二酸化炭素のみが流れているときの内面溝付き管(6)の熱交換能力を基準とした能力比を示している。図中の△印が平滑管の実測値であり、◆印が内面溝付き管の実測値を示している。 3 and 4 both show the capacity ratio based on the heat exchange capacity of the internally grooved pipe (6) when the oil circulation amount of the refrigerating machine oil is zero, that is, when only carbon dioxide is flowing. . In the figure, Δ marks are measured values of the smooth tube, and ♦ marks indicate measured values of the internally grooved tube.
 図3では、冷凍機油の油循環量によらず、常に平滑管(1)よりも内面溝付き管(6)の方が蒸発熱交換能力比が大きい。 In Fig. 3, the inner grooved tube (6) always has a larger evaporative heat exchange capacity ratio than the smooth tube (1), regardless of the amount of refrigeration oil circulating.
 一方、図4では、冷凍機油の油循環量がゼロ場合は、平滑管(1)よりも内面溝付き管(6)の方が放熱熱交換能力比が大きい。これは、冷凍機油の油膜がなく、螺旋溝による伝熱促進効果が十分に発揮されているからである。しかし、冷凍機油の油循環量が増加するに従って、上記内面溝付き管(6)の方の放熱熱交換能力比が小さくなる。これは、冷凍機油の油循環量が増えるにつれて油膜が次第に厚くなり、螺旋溝による伝熱促進効果が小さくなっているからである。そして、冷凍機油の油循環量が0.3質量%付近を超えると、内面溝付き管(6)の放熱熱交換能力比が平滑管(1)よりも小さくなる。 On the other hand, in FIG. 4, when the oil circulation amount of the refrigeration oil is zero, the inner grooved pipe (6) has a larger ratio of heat radiation heat exchange capacity than the smooth pipe (1). This is because there is no oil film of refrigerating machine oil and the effect of promoting heat transfer by the spiral groove is sufficiently exhibited. However, as the oil circulation amount of the refrigeration oil increases, the heat radiating heat exchange capacity ratio of the inner grooved pipe (6) decreases. This is because the oil film gradually becomes thicker as the oil circulation amount of the refrigerating machine oil increases, and the heat transfer promotion effect by the spiral groove is reduced. And if the oil circulation amount of refrigerating machine oil exceeds 0.3 mass% vicinity, the heat radiation heat exchange capability ratio of an internally grooved pipe | tube (6) will become smaller than a smooth pipe (1).
 以上より、上記平滑管(1)を用いた熱源側熱交換器(15)において、冷凍機油の油循環量を0.3質量%以上に規定すると、内面溝付き管(6)を用いた熱源側熱交換器(15)に比べて、冷房運転時における熱源側熱交換器(15)の放熱熱交換能力を効果的に増加させることができる。 From the above, in the heat source side heat exchanger (15) using the smooth tube (1), when the oil circulation amount of the refrigerating machine oil is regulated to 0.3% by mass or more, the heat source using the inner grooved tube (6) Compared with the side heat exchanger (15), the heat radiation heat exchange capability of the heat source side heat exchanger (15) during the cooling operation can be effectively increased.
 第3の発明は、第1又は第2の発明おいて、上記冷媒回路(10)には、該冷媒回路(10)を流れる二酸化炭素の循環方向を可逆にする切換弁(12)が設けられていることを特徴としている。 According to a third invention, in the first or second invention, the refrigerant circuit (10) is provided with a switching valve (12) for reversing the circulation direction of carbon dioxide flowing through the refrigerant circuit (10). It is characterized by having.
 第3の発明では、上記冷媒回路(10)に切換弁(12)を設けることで冷暖房運転が可能な空気調和装置を構成することができる。そして、このような冷暖房運転が可能な空気調和装置に関して、上記熱源側熱交換器(15)に平滑管(1)を用いても、第1の発明と同様に、該熱源側熱交換器(15)に内面溝付き管(6)を用いた場合に比べて、伝熱管内の油膜を薄くすることができ、上記熱源側熱交換器(15)の伝熱性能の低下を抑制することができる。 In the third aspect of the invention, an air conditioner capable of air conditioning operation can be configured by providing the switching valve (12) in the refrigerant circuit (10). And about the air conditioner which can perform such an air conditioning operation, even if it uses a smooth pipe (1) for the said heat source side heat exchanger (15), like this invention, this heat source side heat exchanger ( 15) Compared with the use of an internally grooved tube (6), the oil film in the heat transfer tube can be made thinner, and the deterioration of the heat transfer performance of the heat source side heat exchanger (15) can be suppressed. it can.
 本発明によれば、二酸化炭素を冷媒として用いた空気調和装置において、上記熱源側熱交換器(15)に平滑管(1)を用い、上記利用側熱交換器(13)に内面溝付き管(6)を用いるようにしている。 According to the present invention, in an air conditioner using carbon dioxide as a refrigerant, a smooth tube (1) is used for the heat source side heat exchanger (15), and an internally grooved tube is used for the use side heat exchanger (13). (6) is used.
 こうすると、この空気調和装置の冷房運転時に、上記熱源側熱交換器(15)における平滑管(1)の管内の油膜を、内周面に溝がある場合に比べて薄くすることができる。これにより、二酸化炭素が放熱しやすくなり、上記熱源側熱交換器(15)の放熱量を増加させることができる。 Thus, during the cooling operation of the air conditioner, the oil film in the smooth tube (1) in the heat source side heat exchanger (15) can be made thinner than in the case where there is a groove on the inner peripheral surface. Thereby, it becomes easy to radiate carbon dioxide, and the heat radiation amount of the heat source side heat exchanger (15) can be increased.
 以上より、二酸化炭素を冷媒とする空気調和装置において、上記熱源側熱交換器(15)に平滑管(1)を用いることにより、HFC系冷媒を冷媒とする従来の空気調和装置よりも大幅に冷房能力が低下するのを抑えることができる。 As described above, in the air conditioner using carbon dioxide as the refrigerant, the use of the smooth tube (1) for the heat source side heat exchanger (15) significantly increases the conventional air conditioner using the HFC refrigerant as the refrigerant. It can suppress that the cooling capacity falls.
 又、上記第2の発明によれば、上記平滑管(1)を用いた熱源側熱交換器(15)において、上記油循環量を0.3質量%以上に規定すると、内面溝付き管(6)を用いた熱源側熱交換器(15)に比べて、冷房運転時における熱源側熱交換器(15)の放熱熱交換能力を効果的に増加させることができる。これにより、二酸化炭素を冷媒とする空気調和装置において、HFC系冷媒を冷媒とする空気調和装置よりも大幅に冷房能力が低下するのを効果的に抑えることができる。 Further, according to the second invention, in the heat source side heat exchanger (15) using the smooth tube (1), when the amount of oil circulation is specified to be 0.3% by mass or more, an internally grooved tube ( Compared with the heat source side heat exchanger (15) using 6), the heat radiation heat exchange capacity of the heat source side heat exchanger (15) during cooling operation can be effectively increased. Thereby, in an air conditioner using carbon dioxide as a refrigerant, it is possible to effectively suppress the cooling capacity from being significantly reduced as compared with an air conditioner using an HFC refrigerant as a refrigerant.
 又、上記第3の発明によれば、上記冷媒回路(10)に切換弁(12)を設けることで冷暖房運転が可能な空気調和装置を構成することができる。そして、この冷暖房運転が可能な空気調和装置においても、冷房運転時に第1及び第2の発明と同様の効果を得ることができる。 In addition, according to the third aspect of the present invention, an air conditioner capable of air-conditioning operation can be configured by providing a switching valve (12) in the refrigerant circuit (10). And also in the air conditioning apparatus in which this air conditioning operation is possible, the effect similar to the 1st and 2nd invention can be acquired at the time of air_conditionaing | cooling operation.
図1は、本発明の実施形態に係る空気調和装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention. 図2は、本発明の実施形態に係る空気調和装置の熱交換器の概略図である。FIG. 2 is a schematic view of a heat exchanger of the air-conditioning apparatus according to the embodiment of the present invention. 図3は、油循環量が蒸発熱交換能力比に及ぼす影響を示すグラフである。FIG. 3 is a graph showing the influence of the oil circulation amount on the evaporative heat exchange capacity ratio. 図4は、油循環量が放熱熱交換能力比に及ぼす影響を示すグラフである。FIG. 4 is a graph showing the effect of the amount of oil circulation on the ratio of heat radiation heat exchange capacity. 図5は、本発明の実施形態に係る内面溝付き管の横断面図である。FIG. 5 is a cross-sectional view of an internally grooved tube according to an embodiment of the present invention. 図6は、図5のA部の拡大図である。6 is an enlarged view of a portion A in FIG. 図7は、本発明の実施形態に係る内面溝付き管の縦断面図である。FIG. 7 is a longitudinal sectional view of the internally grooved tube according to the embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本実施形態の空気調和装置の冷媒回路図を図1に示す。上記空気調和装置は、室内の空気調和を行うものであり、室外に配置された室外機(3)と室内に配置された上記室内機(2)とを備えている。上記室外機(3)には室外回路(8)が設けられている。上記室内機(2)には室内回路(7)が設けられている。 FIG. 1 shows a refrigerant circuit diagram of the air conditioner of this embodiment. The air conditioner performs indoor air conditioning, and includes an outdoor unit (3) disposed outdoors and the indoor unit (2) disposed indoors. The outdoor unit (3) is provided with an outdoor circuit (8). The indoor unit (2) is provided with an indoor circuit (7).
 この空気調和装置では、上記室外回路(8)と上記室内回路(7)とが連絡配管(4,5)で接続されて冷媒回路(10)を構成する。この連絡配管(4,5)は、ガス側連絡配管(4)と液側連絡配管(5)とからなり、上記ガス側連絡配管(4)は上記両方の回路(7,8)のガス端同士を接続し、上記液側連絡配管(5)は上記両方の回路(7,8)の液端同士を接続している。 In this air conditioner, the outdoor circuit (8) and the indoor circuit (7) are connected by a communication pipe (4, 5) to constitute a refrigerant circuit (10). This connecting pipe (4,5) consists of a gas side connecting pipe (4) and a liquid side connecting pipe (5). The gas side connecting pipe (4) is the gas end of both circuits (7,8). The liquid side connecting pipe (5) connects the liquid ends of both the circuits (7, 8).
 又、上記冷媒回路(10)は、二酸化炭素(以下、冷媒という。)が封入され、この冷媒が循環することにより、超臨界冷凍サイクルを行うように構成されている。 The refrigerant circuit (10) is configured to perform a supercritical refrigeration cycle by enclosing carbon dioxide (hereinafter referred to as refrigerant) and circulating the refrigerant.
  〈室外機〉
 上記室外機(3)の室外回路(8)は、圧縮機(圧縮機構)(11)と四路切換弁(切換弁)(12)と膨張弁(膨張機構)(14)と室外熱交換器(熱源側熱交換器)(15)とを有している。
<Outdoor unit>
The outdoor circuit (8) of the outdoor unit (3) includes a compressor (compression mechanism) (11), a four-way switching valve (switching valve) (12), an expansion valve (expansion mechanism) (14), and an outdoor heat exchanger. (Heat source side heat exchanger) (15).
 上記圧縮機(11)は、例えばスクロール型の圧縮機で構成されている。この圧縮機(11)には図示しないインバータが接続されている。上記インバータは、上記圧縮機(11)に電流を供給するとともに、その電流の周波数を変化することが可能に構成されている。つまり、上記圧縮機(11)の容量は、上記インバータにより、ある範囲内で自在に変更することが可能となっている。また、上記圧縮機(11)には、該圧縮機(11)の摺動部を潤滑するためのポリアルキレングリコール(PAG)(以下、冷凍機油という。)が収容されている。 The compressor (11) is composed of, for example, a scroll type compressor. An inverter (not shown) is connected to the compressor (11). The inverter is configured to supply a current to the compressor (11) and to change the frequency of the current. That is, the capacity of the compressor (11) can be freely changed within a certain range by the inverter. The compressor (11) accommodates polyalkylene glycol (PAG) (hereinafter referred to as refrigeration oil) for lubricating the sliding portion of the compressor (11).
 上記四路切換弁(12)は、第1から第4までの4つのポート(12a,12b,12c,12d)を備えている。上記第1ポート(12a)から延びる配管は、上記圧縮機(11)の吐出側に接続されている。上記第2ポート(12b)から延びる配管は、上記圧縮機(11)の吸入側に接続されている。上記第3ポート(12c)から延びる配管は、上記室外回路(8)のガス端に接続されている。上記第4ポート(12d)から延びる配管は、上記室外熱交換器(15)の一端側に接続されている。 The four-way switching valve (12) has four ports (12a, 12b, 12c, 12d) from the first to the fourth. A pipe extending from the first port (12a) is connected to the discharge side of the compressor (11). A pipe extending from the second port (12b) is connected to the suction side of the compressor (11). The pipe extending from the third port (12c) is connected to the gas end of the outdoor circuit (8). A pipe extending from the fourth port (12d) is connected to one end of the outdoor heat exchanger (15).
 そして、上記四路切換弁(12)は、第1ポート(12a)および第4ポート(12d)が互いに連通し且つ第2ポート(12b)および第3ポート(12c)が互いに連通する第1状態(図1に実線で示す状態)と、第1ポート(12a)および第3ポート(12c)が互いに連通し且つ第2ポート(12b)および第4ポート(12d)が互いに連通する第2状態(図1に破線で示す状態)とにそれぞれ切換可能となっている。 The four-way selector valve (12) is in a first state in which the first port (12a) and the fourth port (12d) communicate with each other and the second port (12b) and the third port (12c) communicate with each other. (A state shown by a solid line in FIG. 1) and a second state in which the first port (12a) and the third port (12c) communicate with each other and the second port (12b) and the fourth port (12d) communicate with each other ( The state can be switched to the state shown by the broken line in FIG.
 上記膨張弁(14)は、開度が調節可能な電子膨張弁で構成されている。この膨張弁(14)の一端は上記室外回路(8)の液端に接続され、他端は上記室外熱交換器(15)の他端側に接続されている。 The expansion valve (14) is an electronic expansion valve whose opening degree can be adjusted. One end of the expansion valve (14) is connected to the liquid end of the outdoor circuit (8), and the other end is connected to the other end of the outdoor heat exchanger (15).
 上記室外熱交換器(15)は、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成されている。図2に、その室外熱交換器(15)の一部を示す。 The outdoor heat exchanger (15) is a cross fin type fin-and-tube heat exchanger. FIG. 2 shows a part of the outdoor heat exchanger (15).
 図2に示すように、上記室外熱交換器(15)は、複数の伝熱フィン(21)からなる伝熱フィン群(22)と、複数の伝熱管(1)およびU字管(23)からなる伝熱管群(28)とを備えている。各伝熱フィン(21)は、長方形の平板状に形成されている。各伝熱管(1)は、各伝熱フィン(21)を貫通し、その各伝熱管(1)の端部同士がU字管(23)によって接続されている。これにより、入口側端部(27)から出口側端部(28)まで1つの冷媒流路が形成される。尚、上記室外熱交換器(15)は、全体として複数の冷媒流路を有する、いわゆる複数パスの熱交換器である。冷媒の入口側端部(27)および出口側端部(28)が複数設けられている。 As shown in FIG. 2, the outdoor heat exchanger (15) includes a heat transfer fin group (22) including a plurality of heat transfer fins (21), a plurality of heat transfer tubes (1), and a U-shaped tube (23). And a heat transfer tube group (28). Each heat transfer fin (21) is formed in a rectangular flat plate shape. Each heat transfer tube (1) passes through each heat transfer fin (21), and ends of the heat transfer tubes (1) are connected to each other by a U-shaped tube (23). Thereby, one refrigerant flow path is formed from the inlet side end (27) to the outlet side end (28). The outdoor heat exchanger (15) is a so-called multi-pass heat exchanger having a plurality of refrigerant flow paths as a whole. A plurality of refrigerant inlet side ends (27) and outlet side ends (28) are provided.
 又、この室外熱交換器(15)の近傍には室外ファン(図示なし)が設けられている。そして、上記各冷媒流路を冷媒が流れ、この冷媒の流れと直交するように各伝熱フィン(21)の間を上記室外ファンからの空気が流れることにより、冷媒と空気との熱交換が行われる。 In addition, an outdoor fan (not shown) is provided in the vicinity of the outdoor heat exchanger (15). Then, the refrigerant flows through the refrigerant flow paths, and the air from the outdoor fan flows between the heat transfer fins (21) so as to be orthogonal to the flow of the refrigerant, whereby heat exchange between the refrigerant and the air is performed. Done.
 ここで、本発明の特徴として、上記室外熱交換器(15)の伝熱管(1)には平滑管(1)が用いられている。この平滑管(1)の外径は7.0mm、肉厚は0.9mmである。 Here, as a feature of the present invention, a smooth tube (1) is used as the heat transfer tube (1) of the outdoor heat exchanger (15). The smooth tube (1) has an outer diameter of 7.0 mm and a wall thickness of 0.9 mm.
  〈室内機〉
 上記室内機(2)の室内回路(7)は、室内熱交換器(利用側熱交換器)(13)を有している。上記室内熱交換器(13)の一端は上記室内回路(7)のガス端に接続され、他端は上記室内回路(7)の液端にそれぞれ接続されている。
<Indoor unit>
The indoor circuit (7) of the indoor unit (2) has an indoor heat exchanger (use side heat exchanger) (13). One end of the indoor heat exchanger (13) is connected to the gas end of the indoor circuit (7), and the other end is connected to the liquid end of the indoor circuit (7).
 上記室内熱交換器(13)は、上述した室外熱交換器(15)と同様に、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成されている。尚、この室内熱交換器(13)の伝熱管には平滑管(1)の代わりに外径7.0mm、底肉厚0.6mmの内面溝付き管(6)が用いられている。これ以外の構成は、上記室外熱交換器(15)と同様のため、説明は省略する。 The indoor heat exchanger (13) is composed of a cross-fin type fin-and-tube heat exchanger, like the outdoor heat exchanger (15) described above. In addition, instead of the smooth tube (1), an internally grooved tube (6) having an outer diameter of 7.0 mm and a bottom wall thickness of 0.6 mm is used for the heat transfer tube of the indoor heat exchanger (13). Since the other configuration is the same as that of the outdoor heat exchanger (15), description thereof is omitted.
 上記内面溝付き管(6)の内周面には、図5に示すように複数の溝(16)と、各溝(16)の間に隣接するフィン(17)とが設けられている。この溝(16)及びフィン(17)は、図6に示すように、上記溝(16)の断面が逆台形状に形成され、上記フィン(17)の断面が先細の山形に形成されている。尚、この溝(16)の数(条数)は60である。 As shown in FIG. 5, a plurality of grooves (16) and adjacent fins (17) are provided between the grooves (16) on the inner peripheral surface of the inner grooved tube (6). As shown in FIG. 6, the groove (16) and the fin (17) are formed in an inverted trapezoidal cross section, and the fin (17) is formed in a tapered mountain shape. . In addition, the number (strip number) of the grooves (16) is 60.
 具体的には、上記溝(16)の底部には底部平坦部(16a)が形成され、該底部平坦部(16a)の両端には底部角部(16b)が形成されている。一方、上記フィン(17)は、先端部(17a)が円弧状に形成され、その両側には該先端部(17a)に連続する直線状の傾斜部(17b)がそれぞれ形成されている。そして、上記溝(16)と溝(16)との間にフィン(17)が隣接して配置されるように、上記底部角部(16b)と傾斜部(17b)とが連続している。尚、このフィン(17)の両側にある傾斜部(17b)と傾斜部(17b)とのなす角(フィン頂角)は60degである。 Specifically, a bottom flat portion (16a) is formed at the bottom of the groove (16), and bottom corners (16b) are formed at both ends of the bottom flat portion (16a). On the other hand, the tip (17a) of the fin (17) is formed in an arc shape, and linear inclined portions (17b) continuous to the tip (17a) are formed on both sides thereof. The bottom corner (16b) and the inclined portion (17b) are continuous such that the fin (17) is disposed adjacent to the groove (16) and the groove (16). The angle (fin apex angle) formed by the inclined portion (17b) and the inclined portion (17b) on both sides of the fin (17) is 60 degrees.
 また、上記溝(16)と溝(16)との間の底部幅δは、傾斜部(17b)の延長線と底部平坦部(16a)の延長線との交点を結んだ距離で示される。フィン高さhは、底部平坦部(16a)とフィン(17)の先細との間の長さであり、この長さは0.15mmである。また、図7に示すように、これら溝(16)及びフィン(17)の延びる方向は、管軸方向に対して所定の角度を有する。この角度は12degである。 Also, the bottom width δ between the groove (16) and the groove (16) is indicated by the distance connecting the intersection of the extended line of the inclined part (17b) and the extended line of the bottom flat part (16a). The fin height h is a length between the bottom flat portion (16a) and the taper of the fin (17), and this length is 0.15 mm. Further, as shown in FIG. 7, the extending direction of the grooves (16) and the fins (17) has a predetermined angle with respect to the tube axis direction. This angle is 12 deg.
   -運転動作-
 次に、本実施形態に係る空気調和装置の運転動作について説明する。この空気調和装置は、上述したように、上記四路切換弁(12)の切換動作で上記冷媒回路(10)を流れる冷媒の循環方向を可逆にすることにより、室内の冷暖房を行うことができる。
-Driving operation-
Next, the operation of the air conditioner according to this embodiment will be described. As described above, the air conditioner can perform indoor air conditioning by reversing the circulation direction of the refrigerant flowing through the refrigerant circuit (10) by the switching operation of the four-way switching valve (12). .
 具体的に、上記四路切換弁(12)を第1状態に設定すると室内を冷房する冷房運転を行うことができ、上記四路切換弁(12)を第2状態にすると室内を暖房する暖房運転を行うことができる。ここでは、冷房運転のみについて説明する。 Specifically, when the four-way switching valve (12) is set to the first state, a cooling operation for cooling the room can be performed, and when the four-way switching valve (12) is set to the second state, the room is heated. You can drive. Here, only the cooling operation will be described.
 上記空気調和装置の冷房運転では、上述したように上記四路切換弁(12)が第1状態に設定される。この状態で、上記圧縮機(11)で臨界圧力以上まで圧縮された冷媒が該圧縮機(11)から吐出される。なお、上記圧縮機(11)からは、該圧縮機(11)の各摺動部の潤滑に利用された冷凍機油が、この超臨界圧の冷媒とともに吐出される。そして、この吐出された冷媒及び冷凍機油は、上記四路切換弁(12)を通過した後で上記室外熱交換器(15)に流入する。 In the cooling operation of the air conditioner, the four-way selector valve (12) is set to the first state as described above. In this state, the refrigerant compressed to the critical pressure or higher by the compressor (11) is discharged from the compressor (11). The compressor (11) discharges refrigeration oil used for lubricating each sliding portion of the compressor (11) together with the supercritical pressure refrigerant. The discharged refrigerant and refrigerating machine oil flow into the outdoor heat exchanger (15) after passing through the four-way switching valve (12).
 上記室外熱交換器(15)に流入した冷媒は、室外ファンからの送風空気に放熱しながら伝熱管である平滑管(1)を通過する。この通過の際に冷媒と送風空気とが平滑管(1)を介して熱交換する。 The refrigerant that has flowed into the outdoor heat exchanger (15) passes through the smooth tube (1), which is a heat transfer tube, while radiating heat to the air blown from the outdoor fan. During this passage, the refrigerant and the blown air exchange heat through the smooth tube (1).
 ここで、上記平滑管(1)に流入する冷媒と冷凍機油とは相溶性が低いため、該平滑管(1)に流入した冷凍機油のうち冷媒に溶けきれないものが冷媒と分離して平滑管(1)の内周面を伝うように流れる。仮に上記室外熱交換器(15)の伝熱管を内面溝付き管(6)で構成したとすると、該内面溝付き管(6)の内面に形成された螺旋溝に上記冷凍機油が捕捉されやすくなる。その結果、管内側に形成される油膜が厚くなり、上記室外熱交換器(15)の伝熱性能を低下させてしまう。 Here, since the refrigerant flowing into the smooth pipe (1) and the refrigerating machine oil have low compatibility, the refrigerating machine oil that has flown into the smooth pipe (1) is separated from the refrigerant and smoothed. It flows along the inner peripheral surface of the pipe (1). Assuming that the heat transfer tube of the outdoor heat exchanger (15) is composed of an internally grooved tube (6), the refrigerating machine oil is easily captured in the spiral groove formed on the inner surface of the internally grooved tube (6). Become. As a result, the oil film formed on the inner side of the pipe becomes thick, and the heat transfer performance of the outdoor heat exchanger (15) is reduced.
 しかしながら、本実施形態では、上記室外熱交換器(15)の伝熱管に平滑管(1)を用いているので、上記内面溝付き管(6)とは違い、上記冷凍機油が捕捉されずに滑らかに流れる。この結果、内面溝付き管(6)に比べて、伝熱管内の油膜を薄くすることができ、上記室外熱交換器(15)の伝熱性能の低下を抑制することができる。尚、この冷凍機油の油循環量は0.3質量%以上に設定されている。 However, in this embodiment, since the smooth tube (1) is used as the heat transfer tube of the outdoor heat exchanger (15), the refrigerating machine oil is not captured unlike the internally grooved tube (6). Flows smoothly. As a result, compared to the inner grooved tube (6), the oil film in the heat transfer tube can be made thinner, and the deterioration of the heat transfer performance of the outdoor heat exchanger (15) can be suppressed. In addition, the oil circulation amount of this refrigerating machine oil is set to 0.3 mass% or more.
 上記室外熱交換器(15)で室外ファンからの送風空気に放熱しながら、該室外熱交換器(15)を流出した冷媒は、上記膨張弁(14)に流入する。膨張弁(14)に流入した冷媒は、所定の圧力に減圧されて、低圧の冷媒となる。そして、低圧の冷媒は室内熱交換器(13)に流入し、室内ファン(図示無し)から送られる室内空気から吸熱して蒸発する。その結果、室内空気は冷却される。 The refrigerant that has flowed out of the outdoor heat exchanger (15) flows into the expansion valve (14) while radiating heat to the blown air from the outdoor fan in the outdoor heat exchanger (15). The refrigerant flowing into the expansion valve (14) is depressurized to a predetermined pressure and becomes a low-pressure refrigerant. The low-pressure refrigerant flows into the indoor heat exchanger (13), evaporates by absorbing heat from indoor air sent from an indoor fan (not shown). As a result, the room air is cooled.
 尚、この室内熱交換器(13)には上述したように内面溝付き管(6)が用いられており、図3に示すように、該室内熱交換器(13)の熱交換量は、平滑管(1)を用いた場合に比べて大きい。 The indoor heat exchanger (13) uses the internally grooved tube (6) as described above. As shown in FIG. 3, the heat exchange amount of the indoor heat exchanger (13) is as follows. Larger than when using a smooth tube (1).
 上記室内熱交換器(13)で蒸発した冷媒は、圧縮機(11)に吸入され、臨界圧力以上まで圧縮される。そして、超臨界圧の冷媒は、再び吐出される。このように冷媒が冷媒回路(10)を循環することにより、室内が冷却される。 The refrigerant evaporated in the indoor heat exchanger (13) is sucked into the compressor (11) and compressed to a critical pressure or higher. Then, the supercritical pressure refrigerant is discharged again. In this way, the refrigerant circulates through the refrigerant circuit (10), thereby cooling the room.
   -実施形態の効果-
 本実施形態によれば、上記室外熱交換器(15)に平滑管(1)を用い、上記室内熱交換器(13)に内面溝付き管(6)を用いるようにしている。こうすると、この空気調和装置の冷房運転時に、上記室外熱交換器(15)における平滑管(1)の管内の油膜を、内周面に溝がある場合に比べて薄くすることができる。これにより、二酸化炭素が放熱しやすくなり、上記室外熱交換器(15)の放熱量を増加させることができる。
-Effects of the embodiment-
According to this embodiment, the smooth tube (1) is used for the outdoor heat exchanger (15), and the internally grooved tube (6) is used for the indoor heat exchanger (13). In this way, during the cooling operation of the air conditioner, the oil film in the smooth tube (1) in the outdoor heat exchanger (15) can be made thinner than in the case where there is a groove on the inner peripheral surface. Thereby, it becomes easy to radiate carbon dioxide, and the heat radiation amount of the outdoor heat exchanger (15) can be increased.
 以上より、二酸化炭素を冷媒とする空気調和装置において、上記室外熱交換器(15)に平滑管(1)を用いることにより、HFC系冷媒を冷媒とする従来の空気調和装置よりも大幅に冷房能力が低下するのを抑えることができる。 As described above, in the air conditioner using carbon dioxide as the refrigerant, the use of the smooth tube (1) for the outdoor heat exchanger (15) significantly cools the air conditioner compared to the conventional air conditioner using the HFC refrigerant as the refrigerant. It is possible to suppress a decrease in ability.
 又、本実施形態によれば、上記平滑管(1)を用いた室外熱交換器(15)において、上記油循環量を0.3質量%以上に規定している。 Moreover, according to this embodiment, in the outdoor heat exchanger (15) using the smooth tube (1), the amount of oil circulation is regulated to 0.3% by mass or more.
 図3は、上記冷凍機油の油循環量が蒸発熱交換能力比に及ぼす影響を、上記室外熱交換器(15)に用いている平滑管(1)と上記室内熱交換器(13)に用いている内面溝付き管(6)とで比較したグラフである。図4は、上記冷凍機油の油循環量が放熱熱交換能力比に及ぼす影響を、上記平滑管(1)と上記内面溝付き管(6)とで比較したグラフである。 Fig. 3 shows the effect of the amount of circulating oil in the refrigerating machine oil on the evaporative heat exchange capacity ratio in the smooth pipe (1) used in the outdoor heat exchanger (15) and the indoor heat exchanger (13). It is the graph compared with the inner surface grooved pipe (6). FIG. 4 is a graph comparing the influence of the amount of oil circulation of the refrigerating machine oil on the heat dissipation capacity ratio between the smooth tube (1) and the inner grooved tube (6).
 尚、図3及び図4は、共に冷凍機油の油循環量がゼロ、つまり二酸化炭素のみが流れているときの内面溝付き管(6)の熱交換能力を基準とした能力比を示している。図中の△印が平滑管の実測値であり、◆印が内面溝付き管の実測値を示している。 3 and 4 both show the capacity ratio based on the heat exchange capacity of the internally grooved pipe (6) when the oil circulation amount of the refrigerating machine oil is zero, that is, when only carbon dioxide is flowing. . In the figure, Δ marks are measured values of the smooth tube, and ♦ marks indicate measured values of the internally grooved tube.
 図3では、冷凍機油の油循環量によらず、常に平滑管(1)よりも内面溝付き管(6)の方が蒸発熱交換能力比が大きい。一方、図4では、冷凍機油の油循環量がゼロ場合は、平滑管(1)よりも内面溝付き管(6)の方が放熱熱交換能力比が大きい。これは、冷凍機油の油膜がなく、螺旋溝による伝熱促進効果が十分に発揮されているからである。しかし、冷凍機油の油循環量が増加するに従って、上記内面溝付き管(6)の方の放熱熱交換能力比が小さくなる。これは、冷凍機油の油循環量が増えるにつれて油膜が次第に厚くなり、螺旋溝による伝熱促進効果が小さくなっているからである。そして、冷凍機油の油循環量が0.3質量%付近を超えると、内面溝付き管(6)の放熱熱交換能力比が平滑管(1)よりも小さくなる。 In Fig. 3, the inner grooved tube (6) always has a larger evaporative heat exchange capacity ratio than the smooth tube (1), regardless of the amount of refrigeration oil circulating. On the other hand, in FIG. 4, when the amount of refrigerating machine oil circulation is zero, the internally grooved pipe (6) has a larger heat dissipation heat exchange capacity ratio than the smooth pipe (1). This is because there is no oil film of refrigerating machine oil and the effect of promoting heat transfer by the spiral groove is sufficiently exhibited. However, as the oil circulation amount of the refrigeration oil increases, the heat radiating heat exchange capacity ratio of the inner grooved pipe (6) decreases. This is because the oil film gradually becomes thicker as the oil circulation amount of the refrigerating machine oil increases, and the heat transfer promotion effect by the spiral groove is reduced. And if the oil circulation amount of refrigerating machine oil exceeds 0.3 mass% vicinity, the heat radiation heat exchange capability ratio of an internally grooved pipe | tube (6) will become smaller than a smooth pipe (1).
 以上より、上記室外熱交換器(15)に平滑管(1)を用いると、室外熱交換器(15)の放熱熱交換能力を効果的に増加させることができる。これにより、二酸化炭素を冷媒とする空気調和装置において、HFC系冷媒を冷媒とする空気調和装置よりも大幅に冷房能力が低下するのを効果的に抑えることができる。 From the above, when the smooth tube (1) is used for the outdoor heat exchanger (15), the heat radiation heat exchange capability of the outdoor heat exchanger (15) can be effectively increased. Thereby, in an air conditioner using carbon dioxide as a refrigerant, it is possible to effectively suppress the cooling capacity from being significantly reduced as compared with an air conditioner using an HFC refrigerant as a refrigerant.
  〈その他の実施形態〉
 上記実施形態については、以下のような構成としてもよい。
<Other embodiments>
About the said embodiment, it is good also as the following structures.
 上記空気調和装置は、冷暖房運転が可能な空気調和装置に構成したが、冷房専用の空気調和装置であってもよく、また、空気調和装置に限られず、冷蔵庫などの各種の空気調和装置に適用することができる。 The air conditioner is configured as an air conditioner capable of cooling and heating operation, but may be an air conditioner dedicated to cooling, and is not limited to an air conditioner, and is applied to various air conditioners such as a refrigerator. can do.
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
 以上説明したように、本発明は、二酸化炭素が循環して超臨界冷凍サイクルを行う冷媒回路を備えた空気調和装置について有用である。 As described above, the present invention is useful for an air conditioner including a refrigerant circuit that performs a supercritical refrigeration cycle by circulating carbon dioxide.
   1 平滑管
   6 内面溝付き管
  10 冷媒回路
  11 圧縮機(圧縮機構)
  12 四路切換弁(切換弁)
  13 室内熱交換器(利用側熱交換器)
  14 膨張弁(膨張機構)
  15 室外熱交換器(熱源側熱交換器)
1 Smooth tube 6 Internal grooved tube 10 Refrigerant circuit 11 Compressor (compression mechanism)
12 Four-way switching valve (switching valve)
13 Indoor heat exchanger (use side heat exchanger)
14 Expansion valve (expansion mechanism)
15 Outdoor heat exchanger (heat source side heat exchanger)

Claims (3)

  1.  二酸化炭素が封入されるとともに、冷凍機油を有する圧縮機構(11)と熱源側熱交換器(15)と膨張機構(14)と利用側熱交換器(13)とが順に接続されて超臨界冷凍サイクルを行う冷媒回路(10)を備え、少なくとも冷房運転を行う空気調和装置であって、
     上記熱源側熱交換器(15)には平滑管(1)が用いられ、上記利用側熱交換器(13)には内面溝付き管(6)が用いられていることを特徴とする空気調和装置。
    Supercritical refrigeration with carbon dioxide enclosed, and compression mechanism (11), heat source side heat exchanger (15), expansion mechanism (14), and use side heat exchanger (13) with refrigerator oil An air conditioner including a refrigerant circuit (10) for performing a cycle and performing at least a cooling operation,
    An air conditioner characterized in that a smooth tube (1) is used for the heat source side heat exchanger (15), and an internally grooved tube (6) is used for the use side heat exchanger (13). apparatus.
  2.  請求項1において、
     上記平滑管(1)を流れる二酸化炭素及び冷凍機油は、その二酸化炭素及び冷凍機油の全体の質量流量に対する冷凍機油の質量流量の割合が0.3質量%以上であることを特徴とする空気調和装置。
    In claim 1,
    Carbon dioxide and refrigerating machine oil flowing through the smooth tube (1) are characterized in that the ratio of the mass flow rate of the refrigerating machine oil to the total mass flow of the carbon dioxide and refrigerating machine oil is 0.3% by mass or more. apparatus.
  3.  請求項1又は2おいて、
     上記冷媒回路(10)には、該冷媒回路(10)を流れる二酸化炭素の循環方向を可逆にする切換弁(12)が設けられていることを特徴とする空気調和装置。
    In claim 1 or 2,
    The air conditioner characterized in that the refrigerant circuit (10) is provided with a switching valve (12) for reversing the circulation direction of carbon dioxide flowing through the refrigerant circuit (10).
PCT/JP2009/004910 2008-09-30 2009-09-28 Air conditioning device WO2010038403A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-255057 2008-09-30
JP2008255057A JP4813534B2 (en) 2008-09-30 2008-09-30 Air conditioner

Publications (1)

Publication Number Publication Date
WO2010038403A1 true WO2010038403A1 (en) 2010-04-08

Family

ID=42073185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004910 WO2010038403A1 (en) 2008-09-30 2009-09-28 Air conditioning device

Country Status (2)

Country Link
JP (1) JP4813534B2 (en)
WO (1) WO2010038403A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605821A (en) * 2016-01-25 2016-05-25 铁道第三勘察设计院集团有限公司 Carbon dioxide direct extension air conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044431A (en) * 2015-08-28 2017-03-02 日立アプライアンス株式会社 Heat pump type water heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336496A (en) * 1989-06-30 1991-02-18 Toshiba Corp Refrigerant pipe of heat pump type air conditioner heat exchanger
JP2006064311A (en) * 2004-08-27 2006-03-09 Kobelco & Materials Copper Tube Inc Inner helically-grooved heat transfer pipe for evaporator
JP2007322069A (en) * 2006-06-01 2007-12-13 Hitachi Cable Ltd Coolant heat transfer tube for heat pump type heat exchanger, and gas cooler using it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3811116B2 (en) * 2001-10-19 2006-08-16 松下電器産業株式会社 Refrigeration cycle equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336496A (en) * 1989-06-30 1991-02-18 Toshiba Corp Refrigerant pipe of heat pump type air conditioner heat exchanger
JP2006064311A (en) * 2004-08-27 2006-03-09 Kobelco & Materials Copper Tube Inc Inner helically-grooved heat transfer pipe for evaporator
JP2007322069A (en) * 2006-06-01 2007-12-13 Hitachi Cable Ltd Coolant heat transfer tube for heat pump type heat exchanger, and gas cooler using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605821A (en) * 2016-01-25 2016-05-25 铁道第三勘察设计院集团有限公司 Carbon dioxide direct extension air conditioning device

Also Published As

Publication number Publication date
JP4813534B2 (en) 2011-11-09
JP2010085029A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP3982545B2 (en) Air conditioner
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
JPWO2008041656A1 (en) Air conditioner indoor unit
JP6400257B1 (en) Heat exchanger and air conditioner
WO2016071955A1 (en) Air conditioning apparatus
WO2021065913A1 (en) Evaporator and refrigeration cycle device equipped with same
JP2002054888A (en) Air conditioner
US10480869B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
JPWO2018225252A1 (en) Heat exchanger and refrigeration cycle device
JP2006234264A (en) Fin and tube-type heat exchanger
JP4813534B2 (en) Air conditioner
JP5646257B2 (en) Refrigeration cycle equipment
WO2000052397A1 (en) Refrigerating device
WO2021095567A1 (en) Heat transfer pipe and heat exchanger
JP7118247B2 (en) air conditioner
JP7460550B2 (en) Refrigeration cycle equipment
JP7386613B2 (en) Heat exchanger and air conditioner equipped with it
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2013076485A (en) Air conditioner
WO2021131038A1 (en) Heat exchanger and refrigeration cycle device
WO2020235030A1 (en) Heat exchanger and refrigeration cycle device using same
EP3770535A1 (en) Heat exchanger, refrigeration cycle device, and air conditioning device
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
JP2012167912A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817446

Country of ref document: EP

Kind code of ref document: A1