JP7460550B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP7460550B2
JP7460550B2 JP2020565068A JP2020565068A JP7460550B2 JP 7460550 B2 JP7460550 B2 JP 7460550B2 JP 2020565068 A JP2020565068 A JP 2020565068A JP 2020565068 A JP2020565068 A JP 2020565068A JP 7460550 B2 JP7460550 B2 JP 7460550B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
internal heat
evaporator
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020565068A
Other languages
Japanese (ja)
Other versions
JPWO2020144764A1 (en
Inventor
健太 村田
大輔 伊東
拓未 西山
幹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020144764A1 publication Critical patent/JPWO2020144764A1/en
Application granted granted Critical
Publication of JP7460550B2 publication Critical patent/JP7460550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Description

本発明は冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle device.

従来、冷凍サイクル装置の冷媒として、R32冷媒、R410A冷媒が用いられている。地球温暖化への影響を小さくするために、地球温暖化係数(GWP:Global Warming Potential)がR32冷媒、R410A冷媒よりも小さいR290(プロパン)冷媒を冷媒回路に用いた冷凍サイクル装置が知られている。また、冷房能力を向上させるための内部熱交換器を備えた冷凍サイクル装置が知られている。 Conventionally, R32 refrigerant and R410A refrigerant have been used as refrigerants for refrigeration cycle devices. In order to reduce the impact on global warming, refrigeration cycle devices are known that use R290 (propane) refrigerant in the refrigerant circuit, which has a smaller global warming potential (GWP) than R32 refrigerant and R410A refrigerant. There is. Furthermore, refrigeration cycle devices equipped with internal heat exchangers for improving cooling capacity are known.

たとえば、特開2008-164245号公報(特許文献1)には、冷媒としてプロパンを冷媒回路に用い、かつ内部熱交換器を備えた冷凍サイクル装置が記載されている。この公報に記載された冷凍サイクル装置は、圧縮機と、凝縮器と、熱交換器と、蒸発器とを備えている。この熱交換器は内部熱交換器に相当する。この内部熱交換器は、内管と、内管が挿入された外管とを有している。圧縮機から凝縮器を通って内部熱交換器に送られた冷媒は、熱交換器内の内管を通って蒸発器に送られる。蒸発器に送られた冷媒は、内部熱交換器内の外管を通って圧縮機に戻る。内部熱交換器内において内管を流れる冷媒と外管を流れる冷媒との間で熱交換が行われる。For example, Japanese Patent Application Laid-Open No. 2008-164245 (Patent Document 1) describes a refrigeration cycle device that uses propane as a refrigerant in the refrigerant circuit and is equipped with an internal heat exchanger. The refrigeration cycle device described in this publication includes a compressor, a condenser, a heat exchanger, and an evaporator. This heat exchanger corresponds to the internal heat exchanger. This internal heat exchanger has an inner tube and an outer tube into which the inner tube is inserted. The refrigerant sent from the compressor through the condenser to the internal heat exchanger is sent to the evaporator through the inner tube in the heat exchanger. The refrigerant sent to the evaporator returns to the compressor through the outer tube in the internal heat exchanger. In the internal heat exchanger, heat exchange occurs between the refrigerant flowing through the inner tube and the refrigerant flowing through the outer tube.

特開2008-164245号公報JP 2008-164245 A

上記公報に記載された冷凍サイクル装置では、内部熱交換器の外管内において内管外を流れる冷媒が全てガス冷媒であることは記載されていない。内部熱交換器の外管内において内管外を流れる冷媒が液冷媒を含んでいる場合には、圧縮機入口における冷媒の過熱度を大きくすることは困難であるため、冷凍サイクル装置の能力に対する消費電力の比率である成績係数(COP:Coefficient Of Performance)を向上させることは困難である。また、内部熱交換器の外管内において内管外を流れる冷媒が液冷媒を含んでいる場合には、内部熱交換器の冷媒量を削減することは困難である。 In the refrigeration cycle device described in the above-mentioned publication, there is no mention that the refrigerant flowing outside the inner tube in the outer tube of the internal heat exchanger is entirely gas refrigerant. If the refrigerant flowing outside the inner tube in the outer tube of the internal heat exchanger contains liquid refrigerant, it is difficult to increase the degree of superheating of the refrigerant at the compressor inlet. It is difficult to improve the coefficient of performance (COP), which is the ratio of electric power. Furthermore, if the refrigerant flowing outside the inner tube in the outer tube of the internal heat exchanger contains liquid refrigerant, it is difficult to reduce the amount of refrigerant in the internal heat exchanger.

本発明は、上記課題に鑑みてなされたものであり、その目的は、地球温暖化係数が小さい冷媒を用いて、冷凍サイクル装置の成績係数を向上させることができるとともに内部熱交換器の冷媒量を削減することができる冷凍サイクル装置を提供することである。 The present invention has been made in view of the above problems, and its purpose is to improve the coefficient of performance of a refrigeration cycle device by using a refrigerant with a small global warming potential, and to reduce the amount of refrigerant in an internal heat exchanger. An object of the present invention is to provide a refrigeration cycle device that can reduce

本発明の冷凍サイクル装置は、冷媒回路と、冷媒とを備えている。冷媒回路は、圧縮機、凝縮器、膨張弁、蒸発器および内部熱交換器を有する。冷媒は、冷媒回路を、圧縮機、凝縮器、内部熱交換器、膨張弁、蒸発器、内部熱交換器の順に流れる。冷媒は、炭化水素冷媒である。内部熱交換器は、凝縮器と膨張弁とに接続された内管と、内管が挿入され、かつ蒸発器と圧縮機とに接続された外管とを有している。内部熱交換器は、凝縮器から膨張弁に向けて内管内を流れる冷媒と、蒸発器から圧縮機に向けて外管内において内管外を流れる冷媒とを熱交換させるように構成されている。外管内において内管外を流れる冷媒は、全て気体である。外管の内面に溝が設けられている。内部熱交換器の内管の内面および外面には溝が設けられていない。内管を流れる冷媒は、高圧側の冷媒であり、かつ液状の冷媒である。外管を流れる冷媒は、低圧側の冷媒であり、かつガス状の冷媒である。外管の内面に設けられた溝は、冷凍機油が析出するように構成されている。炭化水素冷媒は、プロパンである。内部熱交換器の低圧側の入口での冷媒の過熱度はゼロである。 The refrigeration cycle device of the present invention includes a refrigerant circuit and a refrigerant. The refrigerant circuit includes a compressor, a condenser, an expansion valve, an evaporator, and an internal heat exchanger. The refrigerant flows through the refrigerant circuit in the order of the compressor, the condenser, the internal heat exchanger, the expansion valve, the evaporator, and the internal heat exchanger. The refrigerant is a hydrocarbon refrigerant. The internal heat exchanger includes an inner tube connected to the condenser and the expansion valve, and an outer tube into which the inner tube is inserted and which is connected to the evaporator and the compressor. The internal heat exchanger is configured to exchange heat between the refrigerant flowing through the inner tube from the condenser to the expansion valve and the refrigerant flowing outside the inner tube in the outer tube from the evaporator to the compressor. All of the refrigerants flowing outside the inner tube in the outer tube are gaseous. A groove is provided on the inner surface of the outer tube. No groove is provided on the inner surface and outer surface of the inner tube of the internal heat exchanger. The refrigerant flowing through the inner tube is a high-pressure side refrigerant and is a liquid refrigerant. The refrigerant flowing through the outer tube is a low-pressure side refrigerant and is a gaseous refrigerant. The grooves on the inner surface of the outer tube are configured to allow refrigeration oil to precipitate. The hydrocarbon refrigerant is propane. The refrigerant has zero superheat at the inlet on the low pressure side of the internal heat exchanger.

本発明の冷凍サイクル装置によれば、冷媒は炭化水素冷媒であり、内部熱交換器の外管内において内管外を流れる冷媒は全て気体である。このため、地球温暖化係数の小さい冷媒を用いることができる。また、冷凍サイクル装置の成績係数を向上させることができる。さらに、内部熱交換器の冷媒量を削減することができる。 According to the refrigeration cycle device of the present invention, the refrigerant is a hydrocarbon refrigerant, and all of the refrigerant flowing outside the inner tube in the outer tube of the internal heat exchanger is gas. Therefore, a refrigerant with a small global warming potential can be used. Moreover, the coefficient of performance of the refrigeration cycle device can be improved. Furthermore, the amount of refrigerant in the internal heat exchanger can be reduced.

本発明の実施の形態1に係る冷凍サイクル装置を示す構成図である。1 is a configuration diagram showing a refrigeration cycle device according to a first embodiment of the present invention; 本発明の実施の形態1に係る冷凍サイクル装置の内部熱交換器の構成を概略的に示す斜視図である。1 is a perspective view schematically showing the configuration of an internal heat exchanger of a refrigeration cycle device according to Embodiment 1 of the present invention. 図2のIII-III線に沿う断面図である。3 is a cross-sectional view taken along line III-III in FIG. 2. R290冷媒およびR32冷媒の吸入SHと理論COPとの関係を示すグラフである。It is a graph showing the relationship between the intake SH and the theoretical COP of R290 refrigerant and R32 refrigerant. 比較例1の内部熱交換器における冷媒の流動状態を概略的に示す断面図である。3 is a cross-sectional view schematically showing the flow state of refrigerant in the internal heat exchanger of Comparative Example 1. FIG. 比較例2の内部熱交換器における冷媒の流動状態を概略的に示す断面図である。3 is a cross-sectional view schematically showing the flow state of refrigerant in an internal heat exchanger of Comparative Example 2. FIG. 本発明の実施の形態1に係る冷凍サイクル装置の内部熱交換器における冷媒の流動状態を概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the flow state of refrigerant in the internal heat exchanger of the refrigeration cycle device according to Embodiment 1 of the present invention. 図7のVIII-VIII線に沿う部分断面図である。8 is a partial cross-sectional view taken along line VIII-VIII in FIG. 7. 本発明の実施の形態2に係る冷凍サイクル装置の内部熱交換器における冷媒の流動状態を概略的に示す断面図である。6 is a cross-sectional view illustrating a flow state of a refrigerant in an internal heat exchanger of a refrigeration cycle device according to a second embodiment of the present invention. FIG. 図9のX-X線に沿う部分断面図である。10 is a partial cross-sectional view taken along line XX in FIG. 9. FIG.

以下、本発明の実施の形態について図面を参照して説明する。なお、以下において、同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Embodiments of the present invention will be described below with reference to the drawings. In addition, in the following, the same reference numerals are given to the same or equivalent parts, and the description thereof will not be repeated in principle.

実施の形態1.
図1を参照して、本発明の実施の形態1に係る冷凍サイクル装置1の構成について説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置を示す構成図である。本発明の実施の形態1に係る冷凍サイクル装置は、たとえば、空気調和機である。図1に示されるように、本発明の実施の形態1に係る冷凍サイクル装置1は、冷媒回路2と、制御装置3と、凝縮器ファン10と、蒸発器ファン11と、冷媒とを備えている。
Embodiment 1.
The configuration of a refrigeration cycle apparatus 1 according to a first embodiment of the present invention will be described with reference to Fig. 1. Fig. 1 is a configuration diagram showing a refrigeration cycle apparatus according to a first embodiment of the present invention. The refrigeration cycle apparatus according to the first embodiment of the present invention is, for example, an air conditioner. As shown in Fig. 1, the refrigeration cycle apparatus 1 according to the first embodiment of the present invention includes a refrigerant circuit 2, a control device 3, a condenser fan 10, an evaporator fan 11, and a refrigerant.

冷媒回路2は、圧縮機4、凝縮器5、膨張弁6、蒸発器7および内部熱交換器8を有している。圧縮機4、凝縮器5、膨張弁6、蒸発器7および内部熱交換器8は、配管9によって接続されている。このようにして、冷媒回路2が構成されている。冷媒回路2は、冷媒を循環可能に構成されている。冷媒回路2は、圧縮機4、凝縮器5、内部熱交換器8、膨張弁6、蒸発器7、内部熱交換器8の順に冷媒が相変化しながら循環する冷凍サイクルが行われるように構成されている。The refrigerant circuit 2 has a compressor 4, a condenser 5, an expansion valve 6, an evaporator 7, and an internal heat exchanger 8. The compressor 4, the condenser 5, the expansion valve 6, the evaporator 7, and the internal heat exchanger 8 are connected by piping 9. In this manner, the refrigerant circuit 2 is configured. The refrigerant circuit 2 is configured to be capable of circulating the refrigerant. The refrigerant circuit 2 is configured to perform a refrigeration cycle in which the refrigerant circulates while undergoing a phase change in the order of the compressor 4, the condenser 5, the internal heat exchanger 8, the expansion valve 6, the evaporator 7, and the internal heat exchanger 8.

冷媒は、冷媒回路2を、圧縮機4、凝縮器5、内部熱交換器8、膨張弁6、蒸発器7、内部熱交換器8の順に流れる。冷媒は、圧縮機4の吸入過熱度(吸入SH)が大きくなると成績係数が大きくなるものである。冷媒は、たとえば、炭化水素冷媒(HC冷媒)である。具体的には、冷媒は、たとえば、プロパン(R290)、イソブタン(R600a)、ペンタン(R601)、ブタン(R600)、エタン(R170)、プロピレン(R1270)である。 The refrigerant flows through the refrigerant circuit 2 in the order of compressor 4, condenser 5, internal heat exchanger 8, expansion valve 6, evaporator 7, and internal heat exchanger 8. The refrigerant has a coefficient of performance that increases as the suction superheat (suction SH) of the compressor 4 increases. The refrigerant is, for example, a hydrocarbon refrigerant (HC refrigerant). Specifically, the refrigerant is, for example, propane (R290), isobutane (R600a), pentane (R601), butane (R600), ethane (R170), or propylene (R1270).

制御装置3は、冷媒回路2を制御するように構成されている。制御装置3は、演算、指示等を行って冷凍サイクル装置1の各手段、機器等を制御するように構成されている。制御装置3は、圧縮機4、膨張弁6、凝縮器ファン10、蒸発器ファン11などに電気的に接続されており、これらの動作を制御するように構成されている。The control device 3 is configured to control the refrigerant circuit 2. The control device 3 is configured to perform calculations, instructions, etc. to control each means, device, etc. of the refrigeration cycle device 1. The control device 3 is electrically connected to the compressor 4, expansion valve 6, condenser fan 10, evaporator fan 11, etc., and is configured to control the operation of these.

圧縮機4は、吸入したガス状の冷媒を圧縮して吐出するように構成されている。圧縮機4は、容量可変に構成されている。圧縮機4は、制御装置3からの指示に基づいて周波数が変更されることで回転数が調整されることにより容量が変化するように構成されている。圧縮機4では、冷凍機油(潤滑油)が用いられている。冷凍機油は、たとえば、エーテル結合を有するポリアルキレングリコール(PAG)系の油、エステル結合を有するポリオールエステル(POE)系の油等である。 The compressor 4 is configured to compress and discharge the sucked gaseous refrigerant. The compressor 4 is configured to have a variable capacity. The compressor 4 is configured so that the frequency is changed based on an instruction from the control device 3 to adjust the rotation speed, thereby changing the capacity. The compressor 4 uses refrigerating machine oil (lubricating oil). Refrigerating machine oils include, for example, polyalkylene glycol (PAG)-based oils having ether bonds, polyol ester (POE)-based oils having ester bonds, and the like.

凝縮器5は、圧縮機4により圧縮された冷媒を凝縮するように構成されている。凝縮器5は、圧縮機4と、内部熱交換器8とに接続されている。凝縮器5は、冷媒が流れる伝熱管を有している。凝縮器5は、たとえば、複数のフィンと、複数のフィンを貫通する円管または扁平管の伝熱管とを有するフィンアンドチューブ型熱交換器である。 The condenser 5 is configured to condense the refrigerant compressed by the compressor 4. Condenser 5 is connected to compressor 4 and internal heat exchanger 8 . The condenser 5 has heat transfer tubes through which a refrigerant flows. The condenser 5 is, for example, a fin-and-tube heat exchanger having a plurality of fins and a circular or flat heat exchanger tube passing through the plurality of fins.

膨張弁6は、凝縮器5により凝縮された液状の冷媒を膨張させて減圧するように構成されている。凝縮器5により凝縮された液状の冷媒を膨張弁6で膨張させて減圧することにより、膨張弁6の出口では、冷媒の状態は気液二相状態になる。膨張弁6は、凝縮器5と、蒸発器7とに接続されている。膨張弁6は、たとえば、制御装置3からの指示に基づいて冷媒の流量を調整可能な電動膨張弁である。膨張弁6を通る冷媒の量は、膨張弁6の開度の調整により調整される。 The expansion valve 6 is configured to expand and reduce the pressure of the liquid refrigerant condensed by the condenser 5. The liquid refrigerant condensed by the condenser 5 is expanded and depressurized by the expansion valve 6, so that at the outlet of the expansion valve 6, the state of the refrigerant becomes a gas-liquid two-phase state. The expansion valve 6 is connected to the condenser 5 and the evaporator 7. The expansion valve 6 is, for example, an electric expansion valve that can adjust the flow rate of the refrigerant based on instructions from the control device 3. The amount of refrigerant passing through the expansion valve 6 is adjusted by adjusting the opening degree of the expansion valve 6.

蒸発器7は、膨張弁6により減圧された冷媒を蒸発させるように構成されている。蒸発器7は、膨張弁6と、内部熱交換器8とに接続されている。蒸発器7は、冷媒が流れる伝熱管を有している。蒸発器7は、たとえば、複数のフィンと、複数のフィンを貫通する円管または扁平管の伝熱管とを有するフィンアンドチューブ型熱交換器である。The evaporator 7 is configured to evaporate the refrigerant decompressed by the expansion valve 6. The evaporator 7 is connected to the expansion valve 6 and the internal heat exchanger 8. The evaporator 7 has a heat transfer tube through which the refrigerant flows. The evaporator 7 is, for example, a fin-and-tube type heat exchanger having a plurality of fins and a circular or flat heat transfer tube that passes through the plurality of fins.

内部熱交換器8は、凝縮器5の出口側の冷媒と、蒸発器7の出口側の冷媒とを熱交換させるように構成されている。内部熱交換器8では、凝縮器5で凝縮した冷媒と、蒸発器7で蒸発した冷媒との間で熱交換が行われる。The internal heat exchanger 8 is configured to exchange heat between the refrigerant on the outlet side of the condenser 5 and the refrigerant on the outlet side of the evaporator 7. In the internal heat exchanger 8, heat exchange takes place between the refrigerant condensed in the condenser 5 and the refrigerant evaporated in the evaporator 7.

配管9は、圧縮機4、凝縮器5、膨張弁6、蒸発器7および内部熱交換器8を接続している。配管9は、ガス側冷媒路および液側冷媒路を構成している。配管9は、第1配管部9a、第2配管部9b、第3配管部9c、第4配管部9dを含んでいる。第1配管部9aは、凝縮器5と、内部熱交換器8とに接続されている。第2配管部9bは、内部熱交換器8と、膨張弁6とに接続されている。第3配管部9cは、蒸発器7と、内部熱交換器8とに接続されている。第4配管部9dは、内部熱交換器8と、圧縮機4とに接続されている。 Piping 9 connects compressor 4 , condenser 5 , expansion valve 6 , evaporator 7 and internal heat exchanger 8 . The piping 9 constitutes a gas side refrigerant path and a liquid side refrigerant path. The piping 9 includes a first piping section 9a, a second piping section 9b, a third piping section 9c, and a fourth piping section 9d. The first piping section 9a is connected to the condenser 5 and the internal heat exchanger 8. The second piping section 9b is connected to the internal heat exchanger 8 and the expansion valve 6. The third piping section 9c is connected to the evaporator 7 and the internal heat exchanger 8. The fourth piping section 9d is connected to the internal heat exchanger 8 and the compressor 4.

冷房では、凝縮器ファン10は、図示しない室外機に設けられている。凝縮器ファン10は、凝縮器5に室外の空気を強制的に送るように構成されている。凝縮器ファン10は、凝縮器5に付設されており、凝縮器5に対して熱交換流体としての空気を供給するように構成されている。凝縮器ファン10は、制御装置3からの指示に基づいて凝縮器ファン10の回転数が調整されることにより凝縮器5の周囲を流れる空気の量を調整することで空気と冷媒との間の熱交換量を調整するように構成されている。 For cooling, the condenser fan 10 is provided in an outdoor unit (not shown). The condenser fan 10 is configured to forcefully send outdoor air to the condenser 5. The condenser fan 10 is attached to the condenser 5 and is configured to supply air as a heat exchange fluid to the condenser 5. The condenser fan 10 adjusts the amount of air flowing around the condenser 5 by adjusting the rotation speed of the condenser fan 10 based on an instruction from the control device 3, thereby increasing the amount of air between the air and the refrigerant. It is configured to adjust the amount of heat exchange.

蒸発器ファン11は、図示しない室内機に設けられている。蒸発器ファン11は、蒸発器7に室内の空気を強制的に送るように構成されている。蒸発器ファン11は、蒸発器7に付設されており、蒸発器7に対して熱交換流体としての空気を供給するように構成されている。蒸発器ファン11は、制御装置3からの指示に基づいて蒸発器ファン11の回転数が調整されることにより蒸発器7の周囲を流れる空気の量を調整することで空気と冷媒との間の熱交換量を調整するように構成されている。 The evaporator fan 11 is provided in an indoor unit (not shown). The evaporator fan 11 is configured to forcefully send indoor air to the evaporator 7. The evaporator fan 11 is attached to the evaporator 7 and is configured to supply air as a heat exchange fluid to the evaporator 7. The evaporator fan 11 adjusts the amount of air flowing around the evaporator 7 by adjusting the rotation speed of the evaporator fan 11 based on instructions from the control device 3, thereby increasing the amount of air between the air and the refrigerant. It is configured to adjust the amount of heat exchange.

図1~図3を参照して、内部熱交換器8の構成について詳しく説明する。
図2および図3に示されるように、内部熱交換器8は、2重管式熱交換器である。内部熱交換器8は、内管8aと、外管8bとを有している。内管8aは管形状を有している。外管8bは管形状を有している。外管8bには、内管8aが挿入されている。つまり、内管8aは、外管8bの内部に配置されている。内管8aの外周面と、外管8bの内周面との間には隙間GPが設けられている。この隙間GPは、内管8aの外周方向に全周に亘って均等の寸法を有していてもよい。
The configuration of the internal heat exchanger 8 will be described in detail with reference to FIGS.
As shown in Figures 2 and 3, the internal heat exchanger 8 is a double-pipe heat exchanger. The internal heat exchanger 8 has an inner pipe 8a and an outer pipe 8b. The inner pipe 8a has a tubular shape. The outer pipe 8b has a tubular shape. The inner pipe 8a is inserted into the outer pipe 8b. That is, the inner pipe 8a is disposed inside the outer pipe 8b. A gap GP is provided between the outer peripheral surface of the inner pipe 8a and the inner peripheral surface of the outer pipe 8b. This gap GP may have a uniform dimension around the entire circumference in the outer peripheral direction of the inner pipe 8a.

図1~図3に示されるように、内管8aは、凝縮器5と膨張弁6とに接続されている。内管8aは、第1配管部9aを介して凝縮器5に接続されており、第2配管部9bを介して膨張弁6に接続されている。内管8aは、高圧側の冷媒が流れるように構成されている。外管8bは、蒸発器7と圧縮機4とに接続されている。外管8bは、第3配管部9cを介して蒸発器7に接続されており、第4配管部9dを介して圧縮機4に接続されている。外管8bは、低圧側の冷媒が流れるように構成されている。 As shown in Figures 1 to 3, the inner pipe 8a is connected to the condenser 5 and the expansion valve 6. The inner pipe 8a is connected to the condenser 5 via the first piping section 9a, and to the expansion valve 6 via the second piping section 9b. The inner pipe 8a is configured to allow a high-pressure side refrigerant to flow through it. The outer pipe 8b is connected to the evaporator 7 and the compressor 4. The outer pipe 8b is connected to the evaporator 7 via the third piping section 9c, and to the compressor 4 via the fourth piping section 9d. The outer pipe 8b is configured to allow a low-pressure side refrigerant to flow through it.

内部熱交換器8は、凝縮器5から膨張弁6に向けて内管8a内を流れる冷媒と、蒸発器7から圧縮機4に向けて外管8b内において内管8a外を流れる冷媒とを熱交換させるように構成されている。内部熱交換器8は、内管8aを流れる冷媒と外管8b内において内管8a外を流れる冷媒とが内管8aの壁面を介して熱交換するように構成されている。内部熱交換器8は、内管8aを流れる冷媒と、隙間GPを流れる冷媒とが、内管8aの壁面を介して熱交換するように構成されている。 The internal heat exchanger 8 exchanges refrigerant flowing in an inner tube 8a from the condenser 5 toward the expansion valve 6, and refrigerant flowing outside the inner tube 8a in an outer tube 8b from the evaporator 7 toward the compressor 4. It is configured to exchange heat. The internal heat exchanger 8 is configured so that the refrigerant flowing through the inner tube 8a and the refrigerant flowing outside the inner tube 8a in the outer tube 8b exchange heat via the wall surface of the inner tube 8a. The internal heat exchanger 8 is configured so that the refrigerant flowing through the inner tube 8a and the refrigerant flowing through the gap GP exchange heat via the wall surface of the inner tube 8a.

内部熱交換器8では、外管8b内において内管8a外を流れる冷媒は、全て気体である。隙間GPを流れる冷媒は、全て気体である。外管8b内において内管8a外を流れる冷媒は、全て渇き状態である。 In the internal heat exchanger 8, all of the refrigerant flowing outside the inner tube 8a within the outer tube 8b is gas. All of the refrigerant flowing through the gap GP is gas. All of the refrigerant flowing outside the inner tube 8a within the outer tube 8b is in a dry state.

次に、図1~図3を参照して、冷凍サイクル装置1の運転について説明する。冷凍サイクル運転時では、圧縮機4で圧縮されたガス状の冷媒は、圧縮機4から吐出され、ガス側冷媒路としての配管9を通って凝縮器5へ送られる。凝縮器5では、伝熱管を流れる冷媒から空気へ熱が放出されることにより冷媒が凝縮される。この後、冷媒は、液側冷媒路としての第1配管部9aを通って内部熱交換器8に送られる。第1配管部9aを通って内部熱交換器8に送られた冷媒は、内部熱交換器8の内管8aを流れてから第2配管部9bを通って膨張弁6へ送られる。 Next, the operation of the refrigeration cycle device 1 will be explained with reference to FIGS. 1 to 3. During refrigeration cycle operation, the gaseous refrigerant compressed by the compressor 4 is discharged from the compressor 4 and sent to the condenser 5 through a pipe 9 serving as a gas-side refrigerant path. In the condenser 5, heat is released from the refrigerant flowing through the heat transfer tubes to the air, thereby condensing the refrigerant. Thereafter, the refrigerant is sent to the internal heat exchanger 8 through the first piping section 9a as a liquid side refrigerant path. The refrigerant sent to the internal heat exchanger 8 through the first piping section 9a flows through the inner tube 8a of the internal heat exchanger 8, and then is sent to the expansion valve 6 through the second piping section 9b.

膨張弁6では、液状の冷媒が減圧されて気液二相状態の冷媒となる。膨張弁6で減圧された冷媒は、液側冷媒路としての配管9を通って蒸発器7へ送られる。この後、冷媒は、蒸発器7で空気から熱を取り込んで蒸発した後、ガス側冷媒路としての第3配管部9cを通って内部熱交換器8に送られる。第3配管部9cを通って内部熱交換器8に送られた冷媒は、内部熱交換器8の外管8bを流れてから第4配管部9dを通って圧縮機4へ戻る。In the expansion valve 6, the liquid refrigerant is decompressed to become a gas-liquid two-phase refrigerant. The refrigerant decompressed in the expansion valve 6 is sent to the evaporator 7 through the pipe 9 as a liquid refrigerant path. After this, the refrigerant absorbs heat from the air in the evaporator 7 and evaporates, and is sent to the internal heat exchanger 8 through the third pipe section 9c as a gas refrigerant path. The refrigerant sent to the internal heat exchanger 8 through the third pipe section 9c flows through the outer pipe 8b of the internal heat exchanger 8 and then returns to the compressor 4 through the fourth pipe section 9d.

内部熱交換器8では、内管8aを流れる凝縮器5の出口側の冷媒(高圧側冷媒)と、外管8bを流れる蒸発器7の出口側の冷媒(低圧側冷媒)との間で熱交換が行われる。内部熱交換器8により、蒸発器7の出口での冷媒の乾き度を小さくすることができるため、蒸発器7の伝熱性能が改善する。これにより、冷凍サイクル装置1の成績係数(COP)が改善する。 In the internal heat exchanger 8, heat is transferred between the refrigerant on the outlet side of the condenser 5 (high pressure side refrigerant) flowing through the inner tube 8a and the refrigerant on the outlet side of the evaporator 7 (low pressure side refrigerant) flowing through the outer tube 8b. An exchange takes place. The internal heat exchanger 8 can reduce the dryness of the refrigerant at the outlet of the evaporator 7, thereby improving the heat transfer performance of the evaporator 7. This improves the coefficient of performance (COP) of the refrigeration cycle device 1.

次に、本発明の実施の形態1に係る冷凍サイクル装置1の作用効果を比較例1および比較例2と対比して説明する。Next, the operational effect of the refrigeration cycle device 1 relating to embodiment 1 of the present invention will be explained in comparison with comparative example 1 and comparative example 2.

ここでは、本発明の実施の形態1に係る冷凍サイクル装置1には、冷媒の一例としてR290冷媒が用いられている。比較例1は、冷媒がR32である点で本発明の実施の形態1に係る冷凍サイクル装置1と異なっている。なお、R32冷媒は、R290冷媒よりも地球温暖化係数(GWP)が大きい。また、比較例1は、内部熱交換器8において内管8aに低圧側の冷媒が流れ、外管8bに高圧側の冷媒が流れる点で本発明の実施の形態1に係る冷凍サイクル装置と異なっている。つまり、比較例1では、内部熱交換器8において内管8aは蒸発器7および圧縮機4に接続されており、外管8bは凝縮器5および膨張弁6に接続されている。 Here, R290 refrigerant is used as an example of a refrigerant in the refrigeration cycle device 1 according to Embodiment 1 of the present invention. Comparative Example 1 differs from refrigeration cycle device 1 according to Embodiment 1 of the present invention in that the refrigerant is R32. Note that R32 refrigerant has a higher global warming potential (GWP) than R290 refrigerant. Furthermore, Comparative Example 1 differs from the refrigeration cycle device according to Embodiment 1 of the present invention in that in the internal heat exchanger 8, the low-pressure refrigerant flows through the inner tube 8a, and the high-pressure refrigerant flows through the outer tube 8b. ing. That is, in Comparative Example 1, in the internal heat exchanger 8, the inner pipe 8a is connected to the evaporator 7 and the compressor 4, and the outer pipe 8b is connected to the condenser 5 and the expansion valve 6.

図4は、冷媒回路2の冷媒として、R290冷媒およびR32冷媒のそれぞれを用いた場合の理論上の成績係数(以下、「理論COP」という)と、圧縮機4の吸入過熱度(吸入SH)との関係を示すグラフである。なお、成績係数(COP)は、冷凍サイクル装置1の能力に対する消費電力の比率である。 Figure 4 is a graph showing the relationship between the theoretical coefficient of performance (hereinafter referred to as "theoretical COP") and the suction superheat (suction SH) of the compressor 4 when R290 refrigerant and R32 refrigerant are used as the refrigerant in the refrigerant circuit 2. The coefficient of performance (COP) is the ratio of power consumption to the capacity of the refrigeration cycle device 1.

図4を参照して、R32冷媒の理論COPは、圧縮機4の吸入過熱度(吸入SH)の増大に応じて低下する。これに対して、R290冷媒の理論COPは、圧縮機4の吸入過熱度(SH)の増大に応じて向上する。これは、R290冷媒とR32冷媒とは特性が異なるためである。すなわち、R290冷媒の成績係数は、R32冷媒と比較して、圧縮機4の吸入過熱度(吸入SH)を増大させた方が優位となる。 Referring to FIG. 4, the theoretical COP of the R32 refrigerant decreases as the suction superheat degree (suction SH) of the compressor 4 increases. On the other hand, the theoretical COP of R290 refrigerant improves as the suction superheat degree (SH) of the compressor 4 increases. This is because the R290 refrigerant and the R32 refrigerant have different characteristics. That is, the coefficient of performance of the R290 refrigerant is superior to that of the R32 refrigerant when the suction superheat degree (suction SH) of the compressor 4 is increased.

R32冷媒では、冷媒の特性上、圧縮機4の吸入過熱度(吸入SH)がゼロ(0)の方が圧縮機4の吸入過熱度(吸入SH)がゼロ(0)よりも大きいときよりも成績係数が向上する。したがって、成績係数を向上させるために、圧縮機4の吸入過熱度(吸入SH)がゼロ(0)よりも大きくならないように、内部熱交換器8では低圧側の冷媒は湿り状態にされる。 With R32 refrigerant, due to the characteristics of the refrigerant, when the suction superheat degree (suction SH) of the compressor 4 is zero (0), it is higher than when the suction superheat degree (suction SH) of the compressor 4 is greater than zero (0). The coefficient of performance improves. Therefore, in order to improve the coefficient of performance, the refrigerant on the low pressure side of the internal heat exchanger 8 is made wet so that the suction superheat degree (suction SH) of the compressor 4 does not become greater than zero (0).

図5は、比較例1における内部熱交換器8の内部での冷媒の流動状態を示す断面図である。図5を参照して、比較例1における内部熱交換器8では、内管8aを流れる冷媒R1は低圧側の冷媒であり、外管8bを流れる冷媒R2は高圧側の冷媒である。内管8aを流れる低圧側の冷媒R1は、気液二相状態である。そして、この内管8aを流れる低圧側の冷媒R1は、環状流となる。つまり、この内管8aを流れる低圧側の冷媒では、内管8aの中心部にガス冷媒Raが流れ、内管8aの壁面に沿う外側部に液冷媒Rbが流れる。伝熱面となる内管8aの壁面に液冷媒Rbが接触するため、伝熱性能が高くなる。しかしながら、比較例1の冷媒はR32冷媒であるため、地球温暖化係数がR290冷媒よりも大きくなる。したがって、比較例1では、冷媒の地球温暖化係数を低下させることはできない。 Figure 5 is a cross-sectional view showing the flow state of the refrigerant inside the internal heat exchanger 8 in Comparative Example 1. Referring to Figure 5, in the internal heat exchanger 8 in Comparative Example 1, the refrigerant R1 flowing through the inner tube 8a is a low-pressure refrigerant, and the refrigerant R2 flowing through the outer tube 8b is a high-pressure refrigerant. The low-pressure refrigerant R1 flowing through the inner tube 8a is in a gas-liquid two-phase state. The low-pressure refrigerant R1 flowing through this inner tube 8a becomes an annular flow. That is, in the low-pressure refrigerant flowing through this inner tube 8a, gas refrigerant Ra flows in the center of the inner tube 8a, and liquid refrigerant Rb flows in the outer part along the wall surface of the inner tube 8a. Since the liquid refrigerant Rb contacts the wall surface of the inner tube 8a, which is the heat transfer surface, the heat transfer performance is improved. However, since the refrigerant in Comparative Example 1 is an R32 refrigerant, the global warming potential is larger than that of the R290 refrigerant. Therefore, in Comparative Example 1, the global warming potential of the refrigerant cannot be reduced.

図6は、比較例2における内部熱交換器8の内部での冷媒の流動状態を示す断面図である。図6を参照して、比較例2における内部熱交換器8では、内管8aを流れる冷媒R1は低圧側の冷媒であり、外管8bを流れる冷媒R2は高圧側の冷媒である点で本発明の実施の形態1に係る冷凍サイクル装置1と異なっている。比較例2の冷媒はプロパン(R290)である。 FIG. 6 is a cross-sectional view showing the flow state of the refrigerant inside the internal heat exchanger 8 in Comparative Example 2. Referring to FIG. 6, in the internal heat exchanger 8 in Comparative Example 2, the refrigerant R1 flowing through the inner tube 8a is a low-pressure side refrigerant, and the refrigerant R2 flowing through the outer tube 8b is a high-pressure side refrigerant. This is different from the refrigeration cycle device 1 according to the first embodiment of the invention. The refrigerant in Comparative Example 2 is propane (R290).

蒸発器7の出口での冷媒の過熱度がゼロ(SH=0)の場合に、理論上、蒸発器7の性能が良くなる。一方、プロパン(R290)冷媒の特性上、圧縮機4の吸入過熱度(吸入SH)が大きい程、成績係数は優位となる。そのため、蒸発器7の出口での冷媒の過熱度をゼロ(SH=0)にしつつ圧縮機4の吸入過熱度(吸入SH)を増大させるためには、内部熱交換器8の低圧側の入口での冷媒の過熱度がゼロになると良い。In theory, the performance of the evaporator 7 improves when the degree of superheat of the refrigerant at the outlet of the evaporator 7 is zero (SH = 0). On the other hand, due to the characteristics of propane (R290) refrigerant, the greater the degree of suction superheat (suction SH) of the compressor 4, the better the coefficient of performance. Therefore, in order to increase the degree of superheat of the refrigerant at the outlet of the evaporator 7 (SH = 0) while keeping the degree of superheat of the refrigerant at the outlet of the evaporator 7 at zero (SH = 0) and increasing the degree of suction superheat (suction SH) of the compressor 4, it is preferable that the degree of superheat of the refrigerant at the inlet of the low-pressure side of the internal heat exchanger 8 be zero.

冷媒としてプロパン(R290)を用いた冷凍サイクル装置1の成績係数が良くなるように運転すると、蒸発器7の出口での冷媒の過熱度はゼロ付近となる。この場合、内部熱交換器8の低圧側での出口、つまり圧縮機4の入口の過熱度は、ゼロ以上となる。また、内部熱交換器8の低圧側での入口の冷媒は気体となる。この場合、内部熱交換器8の内管8aを流れる冷媒R1には、液冷媒が存在しないため、冷凍機油20が内管8aの壁面の内面に析出しやすい。冷凍機油20が内部熱交換器8の内管8aの壁面に析出すると、内部熱交換器8の内管8aの壁面に析出した冷凍機油20が熱抵抗となるため、内部熱交換器8の伝熱性能が低下する。When the refrigeration cycle device 1 using propane (R290) as the refrigerant is operated to improve the coefficient of performance, the degree of superheat of the refrigerant at the outlet of the evaporator 7 is close to zero. In this case, the degree of superheat at the outlet on the low pressure side of the internal heat exchanger 8, i.e., the inlet of the compressor 4, is zero or more. Also, the refrigerant at the inlet on the low pressure side of the internal heat exchanger 8 becomes gas. In this case, since there is no liquid refrigerant in the refrigerant R1 flowing through the inner tube 8a of the internal heat exchanger 8, the refrigeration oil 20 is likely to precipitate on the inner surface of the wall surface of the inner tube 8a. When the refrigeration oil 20 precipitates on the wall surface of the inner tube 8a of the internal heat exchanger 8, the refrigeration oil 20 precipitated on the wall surface of the inner tube 8a of the internal heat exchanger 8 becomes a thermal resistance, and the heat transfer performance of the internal heat exchanger 8 decreases.

図7および図8は、本発明の実施の形態1に係る冷凍サイクル装置1の内部熱交換器8の内部での冷媒の流動状態を示す断面図である。図7および図8を参照して、本発明の実施の形態1に係る冷凍サイクル装置1の内部熱交換器8では、内管8aを流れる冷媒R1は高圧側の冷媒であり、外管8bを流れる冷媒R2は低圧側の冷媒である。 7 and 8 are cross-sectional views showing the flow state of the refrigerant inside the internal heat exchanger 8 of the refrigeration cycle device 1 according to Embodiment 1 of the present invention. Referring to FIGS. 7 and 8, in the internal heat exchanger 8 of the refrigeration cycle device 1 according to the first embodiment of the present invention, the refrigerant R1 flowing through the inner tube 8a is a high-pressure side refrigerant, and the outer tube 8b is The flowing refrigerant R2 is a low-pressure refrigerant.

内部熱交換器8の内部において内管8aを流れる高圧側の冷媒R1と、外管8bを流れる低圧側の冷媒R2とが熱交換される伝熱面は、内管8aの壁面となる。外管8bを流れる低圧側の冷媒には、内管8aを流れる高圧側の冷媒と熱交換する伝熱面としての内管8aの壁面以外に、外管8bの外側の空気と熱交換する伝熱面としての外管8bの壁面が存在する。そのため、本発明の実施の形態1に係る冷凍サイクル装置1では、比較例2に比べて、冷凍機油20が析出する壁面の面積が増大する。このため、伝熱面としての内管8aの壁面に析出される冷凍機油の油量が低下する。このため、内管8aの壁面に析出した冷凍機油が熱抵抗になることにより、内部熱交換器8の伝熱性能が低下することを抑制することができる。Inside the internal heat exchanger 8, the heat transfer surface where the high-pressure side refrigerant R1 flowing through the inner tube 8a and the low-pressure side refrigerant R2 flowing through the outer tube 8b exchange heat is the wall surface of the inner tube 8a. In addition to the wall surface of the inner tube 8a as a heat transfer surface that exchanges heat with the high-pressure side refrigerant flowing through the inner tube 8a, the low-pressure side refrigerant flowing through the outer tube 8b has the wall surface of the outer tube 8b as a heat transfer surface that exchanges heat with the air outside the outer tube 8b. Therefore, in the refrigeration cycle device 1 according to embodiment 1 of the present invention, the area of the wall surface on which the refrigerating machine oil 20 precipitates is increased compared to comparative example 2. Therefore, the amount of refrigerating machine oil precipitated on the wall surface of the inner tube 8a as a heat transfer surface is reduced. Therefore, the refrigerating machine oil precipitated on the wall surface of the inner tube 8a becomes a thermal resistance, and the heat transfer performance of the internal heat exchanger 8 can be suppressed from being reduced.

すなわち、本発明の実施の形態1に係る冷凍サイクル装置1においては、プロパン(R290)冷媒が用いられ、内部熱交換器8の内管8aに高圧側の冷媒が流され、外管8bに低圧側の冷媒が流される。さらに、内部熱交換器8の低圧側の入口での冷媒が乾き状態となる。つまり、内部熱交換器8の低圧側の入口での冷媒の過熱度がゼロになる。これにより、内部熱交換器8において冷凍機油の析出による伝熱性能の低下が抑制される。このため、冷凍サイクル装置1において成績係数の良い運転を実現することができる。 That is, in the refrigeration cycle device 1 according to the first embodiment of the present invention, propane (R290) refrigerant is used, and high-pressure refrigerant is flowed through the inner tube 8a of the internal heat exchanger 8, and low-pressure refrigerant is flowed through the outer tube 8b. The refrigerant on the side is flushed away. Furthermore, the refrigerant at the low-pressure side inlet of the internal heat exchanger 8 becomes dry. In other words, the degree of superheating of the refrigerant at the low-pressure side inlet of the internal heat exchanger 8 becomes zero. This suppresses a decrease in heat transfer performance due to precipitation of refrigerating machine oil in the internal heat exchanger 8. Therefore, operation with a good coefficient of performance can be realized in the refrigeration cycle apparatus 1.

本発明の実施の形態1に係る冷凍サイクル装置1によれば、冷媒は炭化水素冷媒(HC冷媒)であるため、地球温暖化係数(GWP)の小さい冷媒を用いることができる。また、内部熱交換器8の外管8b内において内管8a外を流れる冷媒は全て気体である。このため、内部熱交換器8の外管8b内において内管8a外を流れる冷媒が液冷媒を含んでいる場合と比較して、圧縮機4入口における冷媒の過熱度を大きくすることができる。したがって、冷凍サイクル装置1の成績係数(COP)を向上させることができる。さらに、内部熱交換器8の外管8b内において内管8a外を流れる冷媒が液冷媒を含んでいる場合と比較して、内部熱交換器8の外管8b出口における冷媒の過熱度を大きくすることができる。したがって、内部熱交換器8の冷媒量を削減することができる。 According to the refrigeration cycle device 1 according to the first embodiment of the present invention, since the refrigerant is a hydrocarbon refrigerant (HC refrigerant), a refrigerant with a small global warming potential (GWP) can be used. Furthermore, all of the refrigerant flowing outside the inner tube 8a within the outer tube 8b of the internal heat exchanger 8 is gas. Therefore, the degree of superheating of the refrigerant at the inlet of the compressor 4 can be increased compared to the case where the refrigerant flowing outside the inner tube 8a in the outer tube 8b of the internal heat exchanger 8 contains liquid refrigerant. Therefore, the coefficient of performance (COP) of the refrigeration cycle device 1 can be improved. Furthermore, the degree of superheating of the refrigerant at the outlet of the outer tube 8b of the internal heat exchanger 8 is increased compared to the case where the refrigerant flowing outside the inner tube 8a in the outer tube 8b of the internal heat exchanger 8 contains liquid refrigerant. can do. Therefore, the amount of refrigerant in the internal heat exchanger 8 can be reduced.

本発明の実施の形態1に係る冷凍サイクル装置1によれば、冷媒はHC冷媒である。このため、冷媒の地球温暖化係数(GWP)を小さくすることができる。According to the refrigeration cycle device 1 of the first embodiment of the present invention, the refrigerant is an HC refrigerant. Therefore, the global warming potential (GWP) of the refrigerant can be reduced.

本発明の実施の形態1に係る冷凍サイクル装置1によれば、膨張弁6は、冷媒の流量を調整可能な電動膨張弁である。このため、電動膨張弁によって冷媒の流量を調整することが可能となる。According to the refrigeration cycle device 1 of the first embodiment of the present invention, the expansion valve 6 is an electric expansion valve capable of adjusting the flow rate of the refrigerant. Therefore, it is possible to adjust the flow rate of the refrigerant by the electric expansion valve.

実施の形態2.
本発明の実施の形態2に係る冷凍サイクル装置1は、特に説明しない限り、上記の本発明の実施の形態1に係る冷凍サイクル装置1と同一の構成、動作および効果を有している。
Embodiment 2.
The refrigeration cycle device 1 according to the second embodiment of the present invention has the same configuration, operation, and effect as the refrigeration cycle device 1 according to the first embodiment of the present invention described above, unless otherwise described.

図9および図10を参照して、本発明の実施の形態2に係る冷凍サイクル装置1は、内部熱交換器8の外管8bの構成が本発明の実施の形態1に係る冷凍サイクル装置1と異なっている。 Referring to FIGS. 9 and 10, the refrigeration cycle device 1 according to the second embodiment of the present invention has a configuration of the outer tube 8b of the internal heat exchanger 8 according to the first embodiment of the present invention. It is different from

本発明の実施の形態2に係る冷凍サイクル装置1では、内部熱交換器8の外管8bの内面に溝30が設けられている。溝30は、内部熱交換器8の外管8bの内面の全周に亘って設けられていてもよい。溝30は、鋸歯状に構成されていてもよい。内部熱交換器8の内管8aには溝30が設けられていない。つまり、内部熱交換器8の内管8aの内面および外面には溝が設けられていない。In the refrigeration cycle device 1 according to the second embodiment of the present invention, a groove 30 is provided on the inner surface of the outer tube 8b of the internal heat exchanger 8. The groove 30 may be provided around the entire circumference of the inner surface of the outer tube 8b of the internal heat exchanger 8. The groove 30 may be configured in a sawtooth shape. The groove 30 is not provided on the inner tube 8a of the internal heat exchanger 8. In other words, no groove is provided on the inner and outer surfaces of the inner tube 8a of the internal heat exchanger 8.

内部熱交換器8の外管8bのみに溝30が設けられているため、内部熱交換器8において内管8aを流れる冷媒と外管8bを流れる冷媒との間の伝熱に寄与しない部分である溝30に冷凍機油20が析出しやすくなる。これにより、内管8aの壁面に析出した冷凍機油による伝熱性能の低下を実施の形態1よりも抑制することができる。 Since the groove 30 is provided only in the outer tube 8b of the internal heat exchanger 8, it is a portion that does not contribute to heat transfer between the refrigerant flowing through the inner tube 8a and the refrigerant flowing through the outer tube 8b in the internal heat exchanger 8. Refrigerating machine oil 20 tends to precipitate in certain grooves 30. This makes it possible to suppress a decrease in heat transfer performance due to refrigerating machine oil deposited on the wall surface of the inner tube 8a more than in the first embodiment.

本実施の形態に係る冷凍サイクル装置1によれば、内部熱交換器8の外管8bの内面に溝30が設けられている。この溝30により外管8bの伝熱面積が増えるため、溝30に冷凍機油20が析出しやすくなる。このため、内管8aの壁面に析出する冷凍機油による伝熱性能の低下を抑制することができる。 According to the refrigeration cycle device 1 according to the present embodiment, the groove 30 is provided on the inner surface of the outer tube 8b of the internal heat exchanger 8. Since the heat transfer area of the outer tube 8b is increased by the grooves 30, the refrigerating machine oil 20 is likely to be deposited in the grooves 30. Therefore, it is possible to suppress a decrease in heat transfer performance due to refrigerating machine oil deposited on the wall surface of the inner tube 8a.

本実施の形態に係る冷凍サイクル装置1によれば、溝30は鋸歯状に構成されている。このため、鋸歯状の底に冷凍機油が析出しやすくなる。According to the refrigeration cycle device 1 of this embodiment, the grooves 30 are configured in a sawtooth shape. This makes it easier for refrigeration oil to precipitate at the bottom of the sawtooth shape.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present invention is indicated by the claims, not by the above description, and is intended to include all modifications within the meaning and scope of the claims.

1 冷凍サイクル装置、2 冷媒回路、3 制御装置、4 圧縮機、5 凝縮器、6 膨張弁、7 蒸発器、8 内部熱交換器、8a 内管、8b 外管、9 配管、10 凝縮器ファン、11 蒸発器ファン、20 冷凍機油、30 溝。 1 Refrigeration cycle device, 2 Refrigerant circuit, 3 Control device, 4 Compressor, 5 Condenser, 6 Expansion valve, 7 Evaporator, 8 Internal heat exchanger, 8a Inner tube, 8b Outer tube, 9 Piping, 10 Condenser fan , 11 evaporator fan, 20 refrigeration oil, 30 groove.

Claims (3)

圧縮機、凝縮器、膨張弁、蒸発器および内部熱交換器を有する冷媒回路と、
前記冷媒回路を、前記圧縮機、前記凝縮器、前記内部熱交換器、前記膨張弁、前記蒸発器、前記内部熱交換器の順に流れる冷媒とを備え、
前記冷媒は、炭化水素冷媒であり、
前記内部熱交換器は、前記凝縮器と前記膨張弁とに接続された内管と、前記内管が挿入され、かつ前記蒸発器と前記圧縮機とに接続された外管とを有し、
前記内部熱交換器は、前記凝縮器から前記膨張弁に向けて前記内管内を流れる前記冷媒と、前記蒸発器から前記圧縮機に向けて前記外管内において前記内管外を流れる前記冷媒とを熱交換させるように構成されており、
前記外管内において前記内管外を流れる前記冷媒は、全て気体であり、
前記外管の内面に溝が設けられており、
前記内部熱交換器の前記内管の内面および外面には溝が設けられておらず、
前記内管を流れる前記冷媒は、高圧側の冷媒であり、かつ液状の冷媒であり、
前記外管を流れる冷媒は、低圧側の冷媒であり、かつガス状の冷媒であり、
前記外管の前記内面に設けられた前記溝は、冷凍機油が析出するように構成されており、
前記炭化水素冷媒は、プロパンであり、
前記内部熱交換器の低圧側の入口での前記冷媒の過熱度はゼロである、冷凍サイクル装置。
a refrigerant circuit having a compressor, a condenser, an expansion valve, an evaporator and an internal heat exchanger;
the refrigerant circuit includes a refrigerant that flows through the compressor, the condenser, the internal heat exchanger, the expansion valve, the evaporator, and the internal heat exchanger in this order;
The refrigerant is a hydrocarbon refrigerant,
the internal heat exchanger has an inner pipe connected to the condenser and the expansion valve, and an outer pipe into which the inner pipe is inserted and which is connected to the evaporator and the compressor;
the internal heat exchanger is configured to exchange heat between the refrigerant flowing inside the inner tube from the condenser toward the expansion valve and the refrigerant flowing outside the inner tube in the outer tube from the evaporator toward the compressor,
The refrigerant flowing in the outer tube and outside the inner tube is entirely gas,
A groove is provided on the inner surface of the outer tube,
The inner and outer surfaces of the inner tube of the internal heat exchanger are not provided with grooves,
The refrigerant flowing through the inner tube is a high-pressure side refrigerant and is a liquid refrigerant,
The refrigerant flowing through the outer tube is a low-pressure refrigerant and is a gaseous refrigerant,
The groove provided on the inner surface of the outer pipe is configured to allow refrigeration oil to precipitate ,
the hydrocarbon refrigerant is propane;
A refrigeration cycle device , wherein a degree of superheat of the refrigerant at an inlet on a low pressure side of the internal heat exchanger is zero .
前記溝は鋸歯状に構成されている、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 1, wherein the grooves are configured in a sawtooth shape. 前記膨張弁は、前記冷媒の流量を調整可能な電動膨張弁である、請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 1 or 2 , wherein the expansion valve is an electric expansion valve that can adjust the flow rate of the refrigerant.
JP2020565068A 2019-01-09 2019-01-09 Refrigeration cycle equipment Active JP7460550B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000356 WO2020144764A1 (en) 2019-01-09 2019-01-09 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2020144764A1 JPWO2020144764A1 (en) 2021-09-30
JP7460550B2 true JP7460550B2 (en) 2024-04-02

Family

ID=71521528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020565068A Active JP7460550B2 (en) 2019-01-09 2019-01-09 Refrigeration cycle equipment

Country Status (4)

Country Link
EP (1) EP3910262A4 (en)
JP (1) JP7460550B2 (en)
CN (1) CN113227672A (en)
WO (1) WO2020144764A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139758A1 (en) * 2022-01-21 2023-07-27 三菱電機株式会社 Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179959A (en) 1998-12-09 2000-06-30 Denso Corp Pressure reducer integrated heat exchanger
JP2001280864A (en) 2000-03-30 2001-10-10 Hitachi Ltd Heat exchanger and manufacturing method therefor
JP2008164245A (en) 2006-12-28 2008-07-17 Kobelco & Materials Copper Tube Inc Heat exchanger
JP2009162388A (en) 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944951B4 (en) * 1999-09-20 2010-06-10 Behr Gmbh & Co. Kg Air conditioning with internal heat exchanger
JP2003314927A (en) * 2002-04-18 2003-11-06 Matsushita Electric Ind Co Ltd Heat exchanger and refrigerating cycle device using the same
JP2005009833A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Double pipe type heat exchanger
JP2004012127A (en) * 2003-10-02 2004-01-15 Mitsubishi Electric Corp Refrigerator using inflammable refrigerant
KR200420568Y1 (en) * 2006-04-20 2006-07-04 주식회사 두원공조 outlet structure of low prssure of internal heat exchanger
CN101363697A (en) * 2008-09-28 2009-02-11 湖南晟通科技集团有限公司 High-efficiency heat exchange tube with minuteness passage
JP2010127498A (en) * 2008-11-26 2010-06-10 Nippon Soken Inc Refrigerating cycle device
JP2010261680A (en) * 2009-05-11 2010-11-18 Sanden Corp Double-pipe heat exchanger
JP5504050B2 (en) * 2009-06-30 2014-05-28 株式会社ケーヒン・サーマル・テクノロジー Double tube heat exchanger and method for manufacturing the same
DE102013201313A1 (en) * 2012-02-23 2013-08-29 Ford Global Technologies, Llc Internal heat exchanger for air conditioner of motor vehicle, has high pressure side and low pressure side, where heat exchanger is formed in spatial-bodily manner so that pulsations of passed through refrigerants are predominantly damped
JP2014105890A (en) * 2012-11-26 2014-06-09 Panasonic Corp Refrigeration cycle device and hot-water generating device including the same
JP5717903B2 (en) * 2014-05-28 2015-05-13 三菱電機株式会社 Refrigeration air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179959A (en) 1998-12-09 2000-06-30 Denso Corp Pressure reducer integrated heat exchanger
JP2001280864A (en) 2000-03-30 2001-10-10 Hitachi Ltd Heat exchanger and manufacturing method therefor
JP2008164245A (en) 2006-12-28 2008-07-17 Kobelco & Materials Copper Tube Inc Heat exchanger
JP2009162388A (en) 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device

Also Published As

Publication number Publication date
EP3910262A4 (en) 2021-12-29
JPWO2020144764A1 (en) 2021-09-30
CN113227672A (en) 2021-08-06
EP3910262A1 (en) 2021-11-17
WO2020144764A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP5241872B2 (en) Refrigeration cycle equipment
JP6847299B2 (en) Refrigeration cycle equipment
JP4832355B2 (en) Refrigeration air conditioner
JP2008530498A (en) HVAC system with powered supercooler
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP3763120B2 (en) Air conditioner
JP5936785B1 (en) Air conditioner
JP6257809B2 (en) Refrigeration cycle equipment
JPWO2013046482A1 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JPWO2018138770A1 (en) Heat source side unit and refrigeration cycle apparatus
JP7460550B2 (en) Refrigeration cycle equipment
JP6758506B2 (en) Air conditioner
JP6298992B2 (en) Air conditioner
US20200408445A1 (en) Refrigeration cycle apparatus
JP2012237518A (en) Air conditioner
JP2010255906A (en) Refrigerating cycle
JP7118247B2 (en) air conditioner
JP6925508B2 (en) Heat exchanger, refrigeration cycle device and air conditioner
JP4813534B2 (en) Air conditioner
JP2022019458A (en) Heat exchanger
JP6469489B2 (en) Refrigeration cycle equipment
JP4279511B2 (en) Apparatus using refrigeration cycle and air conditioner
JP2002195700A (en) Refrigeration cycle device
KR20110080481A (en) Cooling system of air conditioner for vehicle
JP2011058771A (en) Heat exchanger, and refrigerator and air conditioner including the heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230317

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230322

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240321

R150 Certificate of patent or registration of utility model

Ref document number: 7460550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150