JP6469489B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6469489B2
JP6469489B2 JP2015056960A JP2015056960A JP6469489B2 JP 6469489 B2 JP6469489 B2 JP 6469489B2 JP 2015056960 A JP2015056960 A JP 2015056960A JP 2015056960 A JP2015056960 A JP 2015056960A JP 6469489 B2 JP6469489 B2 JP 6469489B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigeration cycle
plate
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015056960A
Other languages
Japanese (ja)
Other versions
JP2016176639A (en
Inventor
尚宣 日野
尚宣 日野
英樹 丹野
英樹 丹野
信裕 吉田
信裕 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2015056960A priority Critical patent/JP6469489B2/en
Priority to CN201620207665.4U priority patent/CN205641696U/en
Publication of JP2016176639A publication Critical patent/JP2016176639A/en
Application granted granted Critical
Publication of JP6469489B2 publication Critical patent/JP6469489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷凍サイクル装置に係り、特に水・ブラインなどの利用側熱媒体を加熱・冷却することで、利用側に冷温熱を供給する冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus that supplies cold / hot heat to a user side by heating / cooling a user side heat medium such as water / brine.

冷温熱を供給する冷凍サイクル装置には、利用側熱交換器と熱源側熱交換器にプレート式熱交換器を備えたものがある。利用側熱交換器では、利用側機器で利用する冷水または温水と冷凍サイクルの冷媒とが熱交換し、熱源側熱交換では、地下水や工場排水等の熱源水と冷凍サイクルの冷媒とが熱交換する。   Some refrigeration cycle apparatuses that supply cold / hot heat include plate-type heat exchangers on the use side heat exchanger and the heat source side heat exchanger. In the use-side heat exchanger, cold water or hot water used in the use-side equipment exchanges heat with the refrigerant in the refrigeration cycle. In heat-source-side heat exchange, heat source water such as groundwater or factory wastewater exchanges heat with the refrigerant in the refrigeration cycle. To do.

特開2014−178110号公報JP 2014-178110 A

上述の冷凍サイクル装置は、利用側機器において冷水と温水を利用できるように四方弁を設け、加熱運転と冷却運転とを切換えるものである。 しかし、冷却運転と加熱運転を切換える冷凍サイクル装置の場合、冷却運転と加熱運転とで必要とする冷媒量が異なるため、加熱運転時に余剰冷媒が発生する。一般的に、余剰冷媒は、冷凍サイクル中に設けられたアキュムレータやレシーバタンク等に溜められるが、アキュムレータやレシーバタンクを設けるスペースを確保するために冷凍サイクル装置が大きくなり、コストも高くなる。   The above-described refrigeration cycle apparatus is provided with a four-way valve so that cold water and hot water can be used in the use side device, and switches between heating operation and cooling operation. However, in the case of the refrigeration cycle apparatus that switches between the cooling operation and the heating operation, the amount of refrigerant required differs between the cooling operation and the heating operation, so that excess refrigerant is generated during the heating operation. In general, surplus refrigerant is stored in an accumulator, a receiver tank, or the like provided in the refrigeration cycle. However, the refrigeration cycle apparatus becomes large and costs increase in order to secure a space for providing the accumulator or receiver tank.

本発明が解決しようと課題は、冷凍サイクル装置を大型化することなく、また、コストの上昇を抑えることができる冷凍サイクル装置を提供することにある。   The problem to be solved by the present invention is to provide a refrigeration cycle apparatus capable of suppressing an increase in cost without increasing the size of the refrigeration cycle apparatus.

実施形態の冷凍サイクル装置は、圧縮機と、冷媒と熱源側熱媒体とが熱交換する第1プレート式熱交換器と、四方弁と、膨張装置と、冷媒と利用側熱媒体とが熱交換する第2プレート式熱交換器と、を冷媒管により配管接続して構成される冷凍サイクル装置であって、第2プレート式熱交換器と膨張装置との間の冷媒管の容積を第1プレート式熱交換器と膨張装置との間の冷媒管の容積よりも大きくするとともに、第2プレート式熱交換器と膨張装置との間の冷媒管は、第1プレート式熱交換器と膨張装置との間の冷媒管よりも内径が大きな第1大径部と、この第1大径部よりも内径が大きな第2大径部とで構成し、前記第1大径部を前記第2プレート式熱交換器と前記膨張装置との間の冷媒管の曲げ部分に用い、前記第2大径部を前記第2プレート式熱交換器と前記膨張装置との間の冷媒管の直管部に用いる。 In the refrigeration cycle apparatus of the embodiment, the compressor, the first plate heat exchanger that exchanges heat between the refrigerant and the heat source side heat medium, the four-way valve, the expansion device, the refrigerant and the use side heat medium exchange heat. A refrigeration cycle apparatus configured by connecting a second plate type heat exchanger to the first plate with a refrigerant pipe connected to the first plate by the volume of the refrigerant pipe between the second plate type heat exchanger and the expansion device The refrigerant pipe between the second plate heat exchanger and the expansion device is larger than the volume of the refrigerant pipe between the first heat exchanger and the expansion device. And a second large diameter portion having an inner diameter larger than the first large diameter portion, and the first large diameter portion is the second plate type. Used in the bent portion of the refrigerant pipe between the heat exchanger and the expansion device, the second large diameter portion is the second Ru used straight tube portion of the refrigerant pipe between the rate type heat exchanger and the expansion device.

実施形態の冷凍サイクル装置の内部構造を示す斜視図。The perspective view which shows the internal structure of the refrigerating-cycle apparatus of embodiment. 実施形態の冷凍サイクル装置の冷凍サイクル構成図。The refrigeration cycle block diagram of the refrigeration cycle apparatus of embodiment.

以下、実施形態の冷凍サイクル装置を、図面を参照して説明する。
図1は、本実施形態の冷凍サイクル装置の内部構造を示す斜視図である。図2は、本実施形態に係る冷凍サイクル構成を示し、図2(a)は、冷却運転時の冷媒及び熱媒体の流れを示す冷凍サイクル構成図であり、図2(b)は、加熱運転時の冷媒及び熱媒体の流れを示す冷凍サイクル構成図である。
Hereinafter, the refrigeration cycle apparatus of the embodiment will be described with reference to the drawings.
FIG. 1 is a perspective view showing the internal structure of the refrigeration cycle apparatus of the present embodiment. FIG. 2 shows a refrigeration cycle configuration according to this embodiment, FIG. 2 (a) is a refrigeration cycle configuration diagram showing the flow of refrigerant and heat medium during cooling operation, and FIG. 2 (b) is a heating operation. It is a refrigeration cycle block diagram which shows the flow of the refrigerant | coolant and heat medium at the time.

図1及び図2に示すように、冷凍サイクル装置100は、3台の圧縮機1が並列に接続される。各圧縮機1の吐出口が吐出集合管11に配管接続され、吐出集合管11の他端は四方弁2を介して第1プレート式熱交換器3の冷媒流路3Aの一端に配管接続される。冷媒流路3Aの他端は並列に設けられた2つの膨張弁(膨張装置)4を介して第2プレート式熱交換器5の冷媒流路5Aの一端に配管接続される。冷媒流路5Aの他端は四方弁2を介して吸込み集合管12の一端に配管接続される。吸込み集合管12の他端は分岐して各圧縮機1の吸込口に配管接続される。これら配管接続によりヒートポンプ式冷凍サイクルが構成される。このヒートポンプ式冷凍サイクルには、R410AやR32等の冷媒が充填される。   As shown in FIGS. 1 and 2, the refrigeration cycle apparatus 100 includes three compressors 1 connected in parallel. The discharge port of each compressor 1 is connected to a discharge collecting pipe 11, and the other end of the discharge collecting pipe 11 is connected to one end of a refrigerant flow path 3 </ b> A of the first plate heat exchanger 3 via a four-way valve 2. The The other end of the refrigerant flow path 3A is connected to one end of the refrigerant flow path 5A of the second plate heat exchanger 5 via two expansion valves (expansion devices) 4 provided in parallel. The other end of the refrigerant flow path 5 </ b> A is connected to one end of the suction collecting pipe 12 via the four-way valve 2. The other end of the suction collecting pipe 12 is branched and connected to the suction port of each compressor 1 by piping. These pipe connections constitute a heat pump refrigeration cycle. This heat pump refrigeration cycle is filled with a refrigerant such as R410A or R32.

図2に示すように、第1プレート式熱交換器3は、冷媒流路3Aを流れる冷媒と熱交換する熱源側熱媒体が流れる熱媒体流路3Bが形成される。この熱媒体流路3Bには、熱源側熱媒体として工場排水や地下水等の熱源水が流れる。
第2プレート式熱交換器5は、冷媒流路5Aを流れる冷媒と熱交換する利用側熱媒体が流れる熱媒体流路5Bが形成される。この熱媒体流路5Bには、利用側熱媒体として水やブラインが流れる。
なお、本実施形態では、第1プレート式熱交換器3と第2プレート式熱交換器は、同一のプレート式熱交換器で構成される。
As shown in FIG. 2, the first plate heat exchanger 3 is formed with a heat medium flow path 3 </ b> B through which a heat source side heat medium that exchanges heat with the refrigerant flowing through the refrigerant flow path 3 </ b> A flows. Heat source water such as factory effluent and groundwater flows through the heat medium flow path 3B as a heat source side heat medium.
The second plate heat exchanger 5 is formed with a heat medium flow path 5B through which a use side heat medium that exchanges heat with the refrigerant flowing through the refrigerant flow path 5A flows. In the heat medium flow path 5B, water or brine flows as a use side heat medium.
In the present embodiment, the first plate heat exchanger 3 and the second plate heat exchanger are composed of the same plate heat exchanger.

本実施形態において、3台の圧縮機1は、それぞれ、一定速のスクロール圧縮機で構成される。なお、圧縮機1は、インバータ(図示しない)により回転数を制御するDCブラシレスモーターを搭載したロータリー圧縮機で構成されてもよい。また、圧縮機1の台数は1台または2台でもよい。
膨張弁4は、それぞれ、入力される駆動パルス信号のパルス数に応じて開度が連続的に変化するいわゆるパルスモータバルブで構成され、並列に設けられる。なお、膨張弁4の数は、1つでもよい。
In the present embodiment, the three compressors 1 are each composed of a constant speed scroll compressor. In addition, the compressor 1 may be comprised with the rotary compressor carrying DC brushless motor which controls rotation speed by an inverter (not shown). The number of compressors 1 may be one or two.
Each of the expansion valves 4 is a so-called pulse motor valve whose opening degree changes continuously according to the number of pulses of the input drive pulse signal, and is provided in parallel. The number of expansion valves 4 may be one.

図1に示すように、膨張弁4と第2プレート式熱交換器5との間に設けられる冷媒管7は、膨張弁4と第1プレート式熱交換器3との間に設けられる冷媒管6よりも容積が大きく設けられる。
詳述すると、冷媒管6は、内径約19mm、管長約700mm、容積約0.2Lの1本の銅管で構成される。一方、冷媒管7は、内径約30mm、管長約300mm、容積約0.2Lの銅管2本と、内径約47mm、管長約400mm、容積約0.7Lの銅管1本とが接続されて構成される。以下、内径約30mmの銅管を第1大径部7a、内径約47mmの銅管を第2大径部7bという。つまり、冷媒管7の内径を全体的に冷媒管6よりも大きくすることで容積を大きくしている。
As shown in FIG. 1, the refrigerant pipe 7 provided between the expansion valve 4 and the second plate heat exchanger 5 is a refrigerant pipe provided between the expansion valve 4 and the first plate heat exchanger 3. A volume larger than 6 is provided.
More specifically, the refrigerant pipe 6 is composed of one copper pipe having an inner diameter of about 19 mm, a pipe length of about 700 mm, and a volume of about 0.2 L. On the other hand, the refrigerant pipe 7 is connected to two copper pipes having an inner diameter of about 30 mm, a pipe length of about 300 mm, and a volume of about 0.2 L, and a copper pipe having an inner diameter of about 47 mm, a pipe length of about 400 mm, and a volume of about 0.7 L. Composed. Hereinafter, a copper tube having an inner diameter of about 30 mm is referred to as a first large diameter portion 7a, and a copper tube having an inner diameter of about 47 mm is referred to as a second large diameter portion 7b. That is, the volume is increased by making the inner diameter of the refrigerant pipe 7 larger than that of the refrigerant pipe 6 as a whole.

また、比較的曲げ加工が容易な内径約30mmの第1大径部7aを冷媒管7の曲げ部分に用い、曲げ加工が困難な内径約47mmの第2大径部7bを冷媒管7の直管部に用いることで冷媒管7の製造が容易となる。冷媒管7の第1大径部7a、第2大径部7bに用いる銅管を上述の内径に近い規格品を用いることにより低コストで製造できる。
以上のように冷媒管7を構成したことにより、冷媒管7の容積は、冷媒管6の容積よりも約1L大きくなり、冷媒管7に余剰冷媒を溜めることができる。
Further, the first large diameter portion 7a having an inner diameter of about 30 mm, which is relatively easy to bend, is used as a bent portion of the refrigerant pipe 7, and the second large diameter portion 7b having an inner diameter of about 47 mm, which is difficult to be bent, is directly connected to the refrigerant pipe 7. The use of the pipe portion facilitates the manufacture of the refrigerant pipe 7. The copper pipe used for the 1st large diameter part 7a and the 2nd large diameter part 7b of the refrigerant | coolant pipe | tube 7 can be manufactured at low cost by using the standard goods near the above-mentioned internal diameter.
By configuring the refrigerant pipe 7 as described above, the volume of the refrigerant pipe 7 becomes approximately 1 L larger than the volume of the refrigerant pipe 6, and surplus refrigerant can be stored in the refrigerant pipe 7.

次に、この冷凍サイクル装置100での運転動作について図2を用いて説明する。
まず、図2(a)を用いて利用側熱交換器である第2プレート熱交換器5に流入する利用側熱媒体を冷却する冷却運転(冷房運転)について説明する。
圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2を介して凝縮器として機能する第1プレート式熱交換器3に流入し、熱源側熱媒体である熱源水へ放熱することで凝縮、液化する。第1プレート式熱交換器3を流出した高圧の液冷媒は膨張弁4で減圧され低圧二相冷媒となり、冷媒管6を介して蒸発器として機能する第2プレート式熱交換器5に流入する。第2プレート式熱交換器5では、利用側熱媒体である冷水から吸熱することで蒸発、ガス化し、水を冷却し冷水を生成する。第2プレート式熱交換器5を流出した低圧ガス冷媒は圧縮機1へ吸い込まれる。
Next, the operation | movement operation | movement in this refrigeration cycle apparatus 100 is demonstrated using FIG.
First, the cooling operation (cooling operation) for cooling the utilization side heat medium flowing into the second plate heat exchanger 5 that is the utilization side heat exchanger will be described with reference to FIG.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the first plate heat exchanger 3 that functions as a condenser via the four-way valve 2 and dissipates heat to the heat source water that is the heat source side heat medium. Condensed and liquefied. The high-pressure liquid refrigerant that has flowed out of the first plate heat exchanger 3 is reduced in pressure by the expansion valve 4 to become a low-pressure two-phase refrigerant, and flows into the second plate heat exchanger 5 that functions as an evaporator via the refrigerant pipe 6. . In the 2nd plate type heat exchanger 5, it absorbs heat from the cold water which is a utilization side heat medium, is evaporated and gasified, water is cooled, and cold water is produced | generated. The low-pressure gas refrigerant that has flowed out of the second plate heat exchanger 5 is sucked into the compressor 1.

ここで、熱源側熱交換器である第1プレート式熱交換器3においては、例えば25℃の熱源水が熱媒体流路3Bに流入し、冷媒流路3Aを流れる冷媒により加熱されて温度上昇し、例えば30℃となって流出する。
一方、利用側熱交換器である第2プレート式熱交換器5においては、例えば12℃の冷水が熱媒体流路5Bに流入し、冷媒流路5Aを流れる冷媒により冷却されて温度低下し、例えば7℃となって流出する。冷凍サイクル装置1から流出した冷水は、利用側機器であるファンコイル(図示しない)などに流入し、例えば、被空調室の空気を冷やすことで冷水そのものの温度は上昇し、例えば12℃まで上昇した後で、再び冷凍サイクル装置1に流入する。
このとき、第1プレート式熱交換器3と第2プレート式熱交換器5は共に、冷媒流路3A、5Aを流れる冷媒と、熱媒体流路3B、5Bを流れる熱媒体とが対向流となる。これにより、熱交換性能が向上し、効率の良い運転が可能となる。
Here, in the first plate heat exchanger 3 that is the heat source side heat exchanger, for example, heat source water at 25 ° C. flows into the heat medium flow path 3B and is heated by the refrigerant flowing through the refrigerant flow path 3A to increase the temperature. For example, it flows out at 30 ° C.
On the other hand, in the second plate type heat exchanger 5 that is a use side heat exchanger, for example, 12 ° C. cold water flows into the heat medium flow path 5B, and is cooled by the refrigerant flowing through the refrigerant flow path 5A to decrease the temperature. For example, it flows out at 7 ° C. The cold water that has flowed out of the refrigeration cycle apparatus 1 flows into a fan coil (not shown), which is a use side device, and the temperature of the cold water itself rises, for example, to 12 ° C. by cooling the air in the air-conditioned room. After that, it flows into the refrigeration cycle apparatus 1 again.
At this time, in both the first plate heat exchanger 3 and the second plate heat exchanger 5, the refrigerant flowing through the refrigerant flow paths 3A and 5A and the heat medium flowing through the heat medium flow paths 3B and 5B are opposed to each other. Become. As a result, heat exchange performance is improved, and efficient operation is possible.

次に、図2(b)を用いて、利用側熱交換器である第2プレート熱交換器5に流入する利用側熱媒体を加熱する加熱運転運転(暖房運転)について説明する。
圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2を介して凝縮器として機能する第2プレート式熱交換器5に流入し、利用側熱媒体である温水を加熱することで放熱し、凝縮、液化する。第2プレート式熱交換器5を流出した高圧の液冷媒は膨張弁4で減圧され低圧二相冷媒となり、蒸発器として機能する第1プレート式熱交換器3に流入する。第1プレート式熱交換器3では、熱源側熱媒体である熱源水から吸熱することで蒸発、ガス化し、熱源水を冷却する。第1プレート式熱交換器3を流出した低圧ガス冷媒は圧縮機1へ吸い込まれる。
Next, a heating operation (heating operation) for heating the utilization side heat medium flowing into the second plate heat exchanger 5 that is the utilization side heat exchanger will be described with reference to FIG.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the second plate heat exchanger 5 functioning as a condenser via the four-way valve 2 and dissipates heat by heating the hot water that is the use-side heat medium. Then condensed and liquefied. The high-pressure liquid refrigerant that has flowed out of the second plate heat exchanger 5 is decompressed by the expansion valve 4 to become a low-pressure two-phase refrigerant, and flows into the first plate heat exchanger 3 that functions as an evaporator. The first plate heat exchanger 3 evaporates and gasifies by absorbing heat from the heat source water that is the heat source side heat medium, and cools the heat source water. The low-pressure gas refrigerant that has flowed out of the first plate heat exchanger 3 is sucked into the compressor 1.

ここで、利用側熱交換器である第2プレート式熱交換器5においては、例えば40℃の温水が熱媒体流路5Bに流入し、冷媒流路5Aを流れる冷媒により加熱されて温度上昇し、例えば45℃となって流出する。
冷凍サイクル装置1から流出した温水は、利用側機器であるファンコイルなどに流入し、例えば、被空調室の空気を暖めることで温水そのものの温度は低下し、例えば40℃まで低下した後で、再び冷凍サイクル装置1に流入する。
一方、熱源側熱交換器である第1プレート式熱交換器3においては、例えば12℃の熱源水が熱媒体流路3Bに流入し、冷媒流路3Aを流れる冷媒により冷却されて温度低下し、例えば7℃となって流出する。
このとき、第1プレート式熱交換器3と第2プレート式熱交換器5は共に、冷媒流路3A、5Aを流れる冷媒と、熱媒体流路3B、5Bを流れる熱媒体とが並行流となる。冷房運転時の対向流に比べて暖房運転時の並行流では、プレート式熱交換器の熱交換性能が低下するため、冷凍サイクル装置1の冷媒循環量が低下し、余剰冷媒の量が多くなる。余剰冷媒は、液冷媒として凝縮器である第2プレート式熱交換器5の冷媒流路5Aに溜るため、さらに熱交換性能が悪化することになる。
Here, in the 2nd plate type heat exchanger 5 which is a utilization side heat exchanger, 40 degreeC warm water flows in into the heat-medium flow path 5B, for example, is heated with the refrigerant | coolant which flows through the refrigerant flow path 5A, and temperature rises. For example, it flows out at 45 ° C.
The warm water that has flowed out of the refrigeration cycle apparatus 1 flows into a fan coil that is a use side device, for example, the temperature of the warm water itself is lowered by heating the air in the air-conditioned room, for example, after being lowered to 40 ° C., It flows into the refrigeration cycle apparatus 1 again.
On the other hand, in the first plate heat exchanger 3 that is the heat source side heat exchanger, for example, heat source water at 12 ° C. flows into the heat medium flow path 3B, and is cooled by the refrigerant flowing through the refrigerant flow path 3A to lower the temperature. For example, it flows out at 7 ° C.
At this time, in both the first plate heat exchanger 3 and the second plate heat exchanger 5, the refrigerant flowing through the refrigerant flow paths 3A and 5A and the heat medium flowing through the heat medium flow paths 3B and 5B are in parallel flow. Become. In the parallel flow during the heating operation as compared with the counter flow during the cooling operation, the heat exchange performance of the plate heat exchanger is reduced, so that the refrigerant circulation amount of the refrigeration cycle apparatus 1 is reduced and the amount of surplus refrigerant is increased. . The surplus refrigerant accumulates in the refrigerant flow path 5A of the second plate heat exchanger 5 which is a condenser as a liquid refrigerant, so that the heat exchange performance is further deteriorated.

そこで本実施形態においては、四方弁2と第2プレート式熱交換器5との間の冷媒管7の容積を四方弁2と第1プレート式熱交換器3との間の冷媒管6の容積よりも大きくして、冷媒管7に液冷媒を溜めるようにした。
これにより、凝縮器として機能する第2プレート式熱交換器5に液冷媒が溜ることが防止できるので、並行流による熱交換性能悪化をさらに悪化させることなく暖房運転を行うことができる。
Therefore, in this embodiment, the volume of the refrigerant pipe 7 between the four-way valve 2 and the second plate heat exchanger 5 is set to the volume of the refrigerant pipe 6 between the four-way valve 2 and the first plate heat exchanger 3. The liquid refrigerant is accumulated in the refrigerant pipe 7 so as to be larger than the above.
Thereby, since it can prevent that a liquid refrigerant accumulates in the 2nd plate type heat exchanger 5 which functions as a condenser, heating operation can be performed, without further worsening the heat exchange performance deterioration by parallel flow.

また、余剰冷媒を冷媒管7に溜めることができるので、アキュムレータやレシーバタンクを設けるスペースが不要となり、冷凍サイクル装置を大型化することなく、また、コストの上昇を抑えることができる冷凍サイクル装置を提供することができる。   Further, since the surplus refrigerant can be stored in the refrigerant pipe 7, a space for providing an accumulator and a receiver tank becomes unnecessary, and the refrigeration cycle apparatus that can suppress an increase in cost without increasing the size of the refrigeration cycle apparatus. Can be provided.

なお、上述の実施形態では、冷媒管6よりも冷媒管7の容積を大きくしたが、利用側機器で利用する冷温水の温度帯や熱源水の温度帯によっては、冷媒管7よりも冷媒管6の容積を大きくしてもよいし、余剰冷媒が発生しない場合は、冷媒管6と冷媒管7を同一の容積としてもよい。   In the above-described embodiment, the volume of the refrigerant pipe 7 is larger than that of the refrigerant pipe 6. However, depending on the temperature zone of the cold / hot water used in the usage-side equipment and the temperature zone of the heat source water, the refrigerant pipe is more than the refrigerant pipe 7. The capacity of the refrigerant pipe 6 and the refrigerant pipe 7 may be set to the same volume when the volume of 6 may be increased, or when excess refrigerant is not generated.

以上、本発明の実施形態を説明したが、上述の実施形態は、例として提示したものであり、実施形態の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although embodiment of this invention was described, the above-mentioned embodiment is shown as an example and is not intending limiting the range of embodiment. The novel embodiment can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…圧縮機、2…四方弁、3…第1プレート式熱交換器(熱源側熱交換器)、4…膨張弁(膨張装置)、5…第2プレート式熱交換器(利用側熱交換器)、6,7…冷媒管、7a…第1大径部、7b…第2大径部、100…冷凍サイクル装置 DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... 1st plate type heat exchanger (heat source side heat exchanger), 4 ... Expansion valve (expansion apparatus), 5 ... 2nd plate type heat exchanger (use side heat exchange) ), 6, 7 ... refrigerant pipe, 7a ... first large diameter portion, 7b ... second large diameter portion, 100 ... refrigeration cycle apparatus

Claims (2)

圧縮機と、冷媒と熱源側熱媒体とが熱交換する第1プレート式熱交換器と、四方弁と、膨張装置と、冷媒と利用側熱媒体とが熱交換する第2プレート式熱交換器と、を冷媒管により配管接続して構成される冷凍サイクル装置であって、
前記第2プレート式熱交換器と前記膨張装置との間の冷媒管の容積を前記第1プレート式熱交換器と前記膨張装置との間の冷媒管の容積よりも大きくするとともに、
前記第2プレート式熱交換器と前記膨張装置との間の冷媒管は、前記第1プレート式熱交換器と前記膨張装置との間の冷媒管よりも内径が大きな第1大径部と、前記第1大径部よりも内径が大きな第2大径部とで構成し
前記第1大径部を前記第2プレート式熱交換器と前記膨張装置との間の冷媒管の曲げ部分に用い、前記第2大径部を前記第2プレート式熱交換器と前記膨張装置との間の冷媒管の直管部に用いることを特徴とする冷凍サイクル装置。
The compressor, the first plate heat exchanger that exchanges heat between the refrigerant and the heat source side heat medium, the four-way valve, the expansion device, and the second plate type heat exchanger that exchanges heat between the refrigerant and the use side heat medium. And a refrigeration cycle apparatus configured by connecting pipes with refrigerant pipes,
The volume of the refrigerant pipe between the second plate heat exchanger and the expansion device is larger than the volume of the refrigerant pipe between the first plate heat exchanger and the expansion device;
The refrigerant pipe between the second plate heat exchanger and the expansion device has a first large diameter portion having an inner diameter larger than that of the refrigerant pipe between the first plate heat exchanger and the expansion device, The second large diameter portion having a larger inner diameter than the first large diameter portion ,
The first large diameter portion is used for a bent portion of a refrigerant pipe between the second plate heat exchanger and the expansion device, and the second large diameter portion is used for the second plate heat exchanger and the expansion device. A refrigeration cycle apparatus characterized by being used in a straight pipe portion of a refrigerant pipe between the two .
前記冷凍サイクル装置は、前記第1プレート式熱交換器と第2プレート熱交換器の両方が、前記利用側熱媒体を冷却する冷却運転時に、前記冷媒と前記熱媒体とが対向流となり、前記利用側熱媒体を加熱する加熱運転時に、前記冷媒と前記熱媒体とが並行流となることを特徴とする請求項1に記載の冷凍サイクル装置。   In the refrigeration cycle apparatus, during the cooling operation in which both the first plate heat exchanger and the second plate heat exchanger cool the usage-side heat medium, the refrigerant and the heat medium are counterflowed, The refrigeration cycle apparatus according to claim 1, wherein the refrigerant and the heat medium are in parallel flow during a heating operation for heating the use-side heat medium.
JP2015056960A 2015-03-19 2015-03-19 Refrigeration cycle equipment Active JP6469489B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015056960A JP6469489B2 (en) 2015-03-19 2015-03-19 Refrigeration cycle equipment
CN201620207665.4U CN205641696U (en) 2015-03-19 2016-03-17 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015056960A JP6469489B2 (en) 2015-03-19 2015-03-19 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2016176639A JP2016176639A (en) 2016-10-06
JP6469489B2 true JP6469489B2 (en) 2019-02-13

Family

ID=57069868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056960A Active JP6469489B2 (en) 2015-03-19 2015-03-19 Refrigeration cycle equipment

Country Status (2)

Country Link
JP (1) JP6469489B2 (en)
CN (1) CN205641696U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398089A (en) * 2019-08-19 2019-11-01 豫新汽车热管理科技有限公司 A kind of cold-hot integrated formula plate heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201107A (en) * 2000-01-21 2001-07-27 Matsushita Electric Ind Co Ltd Heat pump device
JP4422570B2 (en) * 2004-07-23 2010-02-24 中部電力株式会社 Air conditioner
JP2007051796A (en) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd Cooling and heating system

Also Published As

Publication number Publication date
CN205641696U (en) 2016-10-12
JP2016176639A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP5632973B2 (en) Combined dual refrigeration cycle equipment
JP5847366B1 (en) Air conditioner
JP6042026B2 (en) Refrigeration cycle equipment
JP5936785B1 (en) Air conditioner
EP2770278A1 (en) Water heater
JP2014102030A (en) Heat-pump hot water supply device
EP2578966A1 (en) Refrigeration device and cooling and heating device
JP6368205B2 (en) Heat pump system
JP6469489B2 (en) Refrigeration cycle equipment
JP6643627B2 (en) Heat generation unit
JP4608303B2 (en) Vapor compression heat pump
JP6242289B2 (en) Refrigeration cycle equipment
JP2012237518A (en) Air conditioner
JP6675083B2 (en) Binary heat pump device
JP2012057849A (en) Heat transfer tube, heat exchanger, and refrigerating cycle device
JPWO2019198175A1 (en) Refrigeration cycle equipment
JP2017161164A (en) Air-conditioning hot water supply system
WO2020144764A1 (en) Refrigeration cycle device
JP6695033B2 (en) Heat pump device
JP2018194200A (en) Refrigeration cycle device and liquid circulation device provided with the same
KR102136749B1 (en) An air conditioner
JP2010255981A (en) Refrigerating cycle device
WO2017138052A1 (en) Refrigeration cycle device
JPWO2016185689A1 (en) Air conditioning and hot water supply system
JP4591829B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190116

R150 Certificate of patent or registration of utility model

Ref document number: 6469489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150