JP2017161164A - Air-conditioning hot water supply system - Google Patents

Air-conditioning hot water supply system Download PDF

Info

Publication number
JP2017161164A
JP2017161164A JP2016046253A JP2016046253A JP2017161164A JP 2017161164 A JP2017161164 A JP 2017161164A JP 2016046253 A JP2016046253 A JP 2016046253A JP 2016046253 A JP2016046253 A JP 2016046253A JP 2017161164 A JP2017161164 A JP 2017161164A
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
water supply
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016046253A
Other languages
Japanese (ja)
Inventor
誠之 飯高
Masayuki Iidaka
誠之 飯高
明広 重田
Akihiro Shigeta
明広 重田
松井 大
Masaru Matsui
大 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016046253A priority Critical patent/JP2017161164A/en
Priority to EP16186102.6A priority patent/EP3217117A1/en
Priority to CN201610751095.XA priority patent/CN107178823A/en
Publication of JP2017161164A publication Critical patent/JP2017161164A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-conditioning hot water supply system capable of preventing degradation of a heat transfer rate of a carbon dioxide refrigerant in a cascade heat exchanger and a refrigerant for air-conditioning, even at boiling-up termination in which a temperature of incoming water rises, and improving refrigeration cycle performance of a hot water supply system.SOLUTION: A liquid-phase refrigerant as a heat adsorption source is adhered and concentrated on an inner surface of an inner tube even when a flowing form of a high stage-side refrigerant is dominantly circular flow, in a so-called boiling-up termination operation in which a double tube-type heat exchanger composed of an outer tube 420 and an inner tube 410 is used as a cascade heat exchanger 340, and a water inflow temperature is increased by circulating a refrigerant for hot water supply to the inner tube 410, and an oil film as thermal resistance is adhered and concentrated on an inner surface of the outer tube 420, even when a superheated gas state is kept dominantly as a state of a low stage-side refrigerant in the boiling-up termination operation, thus a superheated gas refrigerant as a heat medium can be easily brought into contact with an outer surface of the inner tube 410 as a heat transfer face.SELECTED DRAWING: Figure 1

Description

本発明は、冷房、暖房、給湯に必要な温冷熱を同時に供給できる空調給湯システムにおいて、給湯用の温水を生成する冷凍サイクルを搭載し、カスケード熱交換器を介して空調冷媒と給湯冷媒との間で熱交換する空調給湯システムに関するものである。   The present invention is an air conditioning hot water supply system capable of simultaneously supplying hot and cold heat necessary for cooling, heating, and hot water supply, is equipped with a refrigeration cycle that generates hot water for hot water supply, and is provided with air conditioning refrigerant and hot water supply refrigerant via a cascade heat exchanger. The present invention relates to an air conditioning hot water supply system that exchanges heat between the two.

従来から、温水を生成し貯湯タンクに蓄えて給湯に用いる給湯装置として、冷媒が循環する冷媒回路と水が循環する水回路とを備え、冷媒回路は、圧縮機と温水生成用熱交換器と膨張弁と熱源側熱交換器とが接続された単段のヒートポンプサイクルであり、冷媒として二酸化炭素冷媒を用いているものが存在する。さらに、給湯装置の運転効率を改善するため空調用サイクルと熱的に接続された二元サイクル給湯機が提案されている(特許文献1参照)。   Conventionally, as a hot water supply device that generates hot water and stores it in a hot water storage tank and uses it for hot water supply, it has a refrigerant circuit through which refrigerant circulates and a water circuit through which water circulates, and the refrigerant circuit includes a compressor, a heat exchanger for generating hot water, There is a single-stage heat pump cycle in which an expansion valve and a heat source side heat exchanger are connected, and a carbon dioxide refrigerant is used as a refrigerant. Furthermore, in order to improve the operation efficiency of the hot water supply apparatus, a dual cycle hot water supply apparatus that is thermally connected to the air conditioning cycle has been proposed (see Patent Document 1).

特許文献1に記載の二元サイクル給湯機の構成を図9に示す。
給湯用圧縮機310と給湯用熱交換器320と給湯用冷媒流量調整弁330とカスケード熱交換器340とが順に接続されるとともに二酸化炭素冷媒が充填された給湯用冷媒回路300を備えた給湯装置であって、給湯用熱交換器320は、給湯用温水回路の水と二酸化炭素冷媒とが熱交換可能に構成され、カスケード熱交換器340は、空調用冷媒回路の冷媒と二酸化炭素冷媒とが熱交換可能に構成されている。
The configuration of the dual cycle water heater described in Patent Document 1 is shown in FIG.
A hot water supply apparatus including a hot water supply compressor 310, a hot water supply heat exchanger 320, a hot water supply refrigerant flow rate adjustment valve 330, and a cascade heat exchanger 340, which are sequentially connected, and a hot water supply refrigerant circuit 300 filled with carbon dioxide refrigerant. The hot water supply heat exchanger 320 is configured to exchange heat between water in the hot water supply hot water circuit and the carbon dioxide refrigerant, and the cascade heat exchanger 340 includes the refrigerant in the air conditioning refrigerant circuit and the carbon dioxide refrigerant. It is configured to allow heat exchange.

これにより、外気温度が低く、単段のヒートポンプサイクル給湯機では圧力比が大きくなり過ぎることで冷凍サイクルの効率が低下するような場合においても、室外空気からの熱の取り出しを空調用サイクルで行い、給湯用サイクルは昇温された空調用冷媒から熱を取り出して高温の湯を生成することができる。
したがって、空調用サイクルと給湯用サイクルのいずれの圧力比も適切に抑えられ、システム全体としての冷凍サイクルを効率化し、貯湯効率を高めることが可能である。
また、冷凍用システムにおいても給湯用システムと同様に二元冷凍サイクルが提案されており、カスケード熱交換器340の構成として、例えば特許文献2に記載されているように、二重管式熱交換器を用い、二酸化炭素冷媒を外管に流すものが提案されている。
As a result, even when the outdoor air temperature is low and the efficiency of the refrigeration cycle decreases due to the pressure ratio becoming too high in a single-stage heat pump cycle water heater, heat is extracted from the outdoor air in the air conditioning cycle. The hot water supply cycle can take out heat from the air-conditioning refrigerant that has been heated to generate hot water.
Therefore, both pressure ratios of the air conditioning cycle and the hot water supply cycle can be appropriately suppressed, the refrigeration cycle of the entire system can be made efficient, and hot water storage efficiency can be increased.
Also, in the refrigeration system, a dual refrigeration cycle has been proposed in the same manner as the hot water supply system, and as a configuration of the cascade heat exchanger 340, for example, as described in Patent Document 2, a double-pipe heat exchange is performed. There has been proposed a device in which a carbon dioxide refrigerant is allowed to flow through an outer tube.

また、特許文献2に記載の冷凍用システムは、低段側冷媒として二酸化炭素冷媒、高段側冷媒として二酸化炭素よりも圧力が低い冷媒を利用し、低段側冷凍回路と高段側冷凍回路とがカスケード熱交換器で熱接続されている二元冷凍サイクルで構成されている。
この場合に、カスケード熱交換器として、内管と外管の中間に外界と連通する空洞部を備える二重管式熱交換器を用いることで、内管と外管とを隔てる管壁に損傷が発生した場合において、内管と外管が連通する前に強度の低い内管と空洞部、または外管と空洞部が連通することで、低段側二酸化炭素冷媒が高段側回路内に流入し、高段側冷凍回路の構成機器が破損するのを防ぐことができる。
また、図10に示すように、高段側より温度の高い低段側二酸化炭素冷媒を外管に流すことで、二重管式熱交換器表面への着霜や結露を抑制できる。
The refrigeration system described in Patent Document 2 uses a carbon dioxide refrigerant as a low-stage side refrigerant and a refrigerant having a pressure lower than that of carbon dioxide as a high-stage side refrigerant, and a low-stage side refrigeration circuit and a high-stage side refrigeration circuit. And a two-stage refrigeration cycle that is thermally connected by a cascade heat exchanger.
In this case, as a cascade heat exchanger, the use of a double-tube heat exchanger having a cavity communicating with the outside in the middle between the inner tube and the outer tube damages the tube wall separating the inner tube and the outer tube. In this case, the low-stage carbon dioxide refrigerant is placed in the high-stage circuit by connecting the low-strength inner pipe and the cavity or the outer pipe and the cavity before the inner pipe and the outer pipe communicate with each other. It is possible to prevent the components of the high-stage refrigeration circuit from being damaged.
Moreover, as shown in FIG. 10, frost formation and dew condensation on the surface of the double-pipe heat exchanger can be suppressed by flowing the low-stage carbon dioxide refrigerant having a higher temperature than the high-stage side through the outer pipe.

特開2004−132647号公報(特許第3925383号)JP 2004-132647 A (Patent No. 3925383) 特開2007−218459号公報JP 2007-218459 A

しかしながら、特許文献1のように、低段側サイクルを空調用途で用い、高段側サイクルを給湯用途で用いる、いわゆる空調給湯システムにおいて、給湯用冷媒に二酸化炭素冷媒を用い、かつ、カスケード熱交換器340として二重管式熱交換器を用いる場合、特許文献2のように二重管式熱交換器の外管に二酸化炭素冷媒を流すと、内管を流れる空調用冷媒と外管を流れる二酸化炭素冷媒との熱交換において、給湯用冷媒の流動様式および空調用冷媒の流動様式に起因する給湯用冷媒および空調用冷媒の熱伝達率の低下が生じることがある。   However, as in Patent Document 1, in a so-called air-conditioning hot-water supply system in which a low-stage cycle is used for air-conditioning and a high-stage cycle is used for hot-water supply, carbon dioxide refrigerant is used as the hot-water supply refrigerant, and cascade heat exchange is performed. When a double pipe heat exchanger is used as the vessel 340, if a carbon dioxide refrigerant is passed through the outer pipe of the double pipe heat exchanger as in Patent Document 2, the air conditioning refrigerant and the outer pipe that flow through the inner pipe flow. In the heat exchange with the carbon dioxide refrigerant, the heat transfer coefficient of the hot water supply refrigerant and the air conditioning refrigerant may decrease due to the flow pattern of the hot water supply refrigerant and the flow pattern of the air conditioning refrigerant.

まず、給湯用冷媒の流動様式に起因する熱伝達率の低下について説明する。
特許文献2のように、二重管式熱交換器の外管に二酸化炭素冷媒を流す場合、二重管式熱交換器内で蒸発する気液二相冷媒の流動様式は、冷媒の乾き度が大きいところでは環状流となり、図6に示すように、熱容量の大きい液相冷媒が伝熱面から離れた外管内表面に集中して流れるため、内管外表面との熱交換における二酸化炭素冷媒の熱伝達率が低下する。
給湯用冷媒は、カスケード熱交換器340で空調用冷媒より熱を得て、給湯用熱交換器320において60〜90℃の高温の湯を生成する。高温に加熱された湯を貯湯タンク内に貯める給湯システムにおいては、貯湯タンク内の湯のたまり具合によって、貯湯タンクから給湯用熱交換器320に供給される水の温度、すなわち入水温度が変化する。例えば、貯湯タンク内の湯が満タンに近づく沸き終い条件においては入水温度が40〜60℃まで高くなる。
First, the reduction in heat transfer coefficient due to the flow pattern of the hot water supply refrigerant will be described.
When carbon dioxide refrigerant is allowed to flow through the outer pipe of a double-pipe heat exchanger as in Patent Document 2, the flow pattern of the gas-liquid two-phase refrigerant that evaporates in the double-pipe heat exchanger is determined by the degree of dryness of the refrigerant. As shown in FIG. 6, the liquid phase refrigerant having a large heat capacity flows in a concentrated manner on the inner surface of the outer pipe away from the heat transfer surface, so that the carbon dioxide refrigerant in the heat exchange with the outer surface of the inner pipe. The heat transfer coefficient decreases.
The hot water supply refrigerant obtains heat from the air conditioning refrigerant in the cascade heat exchanger 340 and generates hot hot water of 60 to 90 ° C. in the hot water supply heat exchanger 320. In a hot water supply system in which hot water heated to a high temperature is stored in a hot water storage tank, the temperature of the water supplied from the hot water storage tank to the hot water supply heat exchanger 320, that is, the incoming water temperature changes depending on the amount of hot water in the hot water storage tank. . For example, the incoming water temperature is increased to 40 to 60 ° C. under the condition that the hot water in the hot water storage tank is near the full tank.

図5に給湯サイクルのモリエール線図を示す。301は入水温度5℃の場合の給湯サイクルであり、302は沸き終い条件の入水温度が60℃の場合の給湯サイクルである。
図5に示すように、二酸化炭素冷媒は給湯用熱交換器320において水側へ放熱し、給湯用熱交換器320の出口における二酸化炭素冷媒の温度と入水温度との温度差は5Kとなる。
FIG. 5 shows a Mollier chart of the hot water supply cycle. 301 is a hot water supply cycle when the incoming water temperature is 5 ° C., and 302 is a hot water supply cycle when the incoming water temperature at the end of boiling is 60 ° C.
As shown in FIG. 5, the carbon dioxide refrigerant radiates heat to the water side in the hot water supply heat exchanger 320, and the temperature difference between the temperature of the carbon dioxide refrigerant at the outlet of the hot water supply heat exchanger 320 and the incoming water temperature is 5K.

したがって、入水温度5℃のときは給湯用熱交換器320の出口における二酸化炭素冷媒の温度は10℃となり、沸き終い条件の入水温度60℃のときは給湯用熱交換器320の出口における二酸化炭素冷媒の温度は65℃となる。すなわち、入水温度5℃のときよりも入水温度60℃のときのほうが、給湯用熱交換器320の出口における二酸化炭素冷媒の比エンタルピーは高くなる。   Therefore, when the incoming water temperature is 5 ° C., the temperature of the carbon dioxide refrigerant at the outlet of the hot water supply heat exchanger 320 is 10 ° C., and when the incoming water temperature is 60 ° C. at the end of boiling, the dioxide dioxide at the outlet of the hot water supply heat exchanger 320 is The temperature of the carbon refrigerant is 65 ° C. That is, the specific enthalpy of the carbon dioxide refrigerant at the outlet of the hot water supply heat exchanger 320 is higher when the incoming water temperature is 60 ° C. than when the incoming water temperature is 5 ° C.

その結果、給湯用熱交換器320から流出し膨張弁330で等エンタルピー膨張した後、カスケード熱交換器340に流入する二酸化炭素冷媒の乾き度は、入水温度5℃のときよりも入水温度60℃のときのほうが高くなり、入水温度60℃のときは乾き度0.8のガスリッチな気液二相状態となる。   As a result, the dryness of the carbon dioxide refrigerant that flows out of the hot water supply heat exchanger 320 and isenentically expanded by the expansion valve 330 and then flows into the cascade heat exchanger 340 is 60 ° C. higher than that of the incoming water temperature of 5 ° C. When the water temperature is 60 ° C., a gas-rich gas-liquid two-phase state with a dryness of 0.8 is obtained.

カスケード熱交換器340に乾き度0.8で流入した二酸化炭素冷媒はカスケード熱交換器340において空調用冷媒と熱交換することで蒸発し過熱ガス状態となって流出する。
このとき、カスケード熱交換器340内の二酸化炭素冷媒の流動様式は環状流が支配的となり、熱容量の大きい液相冷媒が伝熱面から離れた外管内表面に集中して流れる。したがって、内管外表面との熱交換における二酸化炭素冷媒の熱伝達率が低下する。
The carbon dioxide refrigerant that has flowed into the cascade heat exchanger 340 at a dryness of 0.8 evaporates by exchanging heat with the air-conditioning refrigerant in the cascade heat exchanger 340 and flows out into a superheated gas state.
At this time, the flow mode of the carbon dioxide refrigerant in the cascade heat exchanger 340 is dominated by the annular flow, and the liquid phase refrigerant having a large heat capacity flows concentrated on the inner surface of the outer pipe away from the heat transfer surface. Therefore, the heat transfer coefficient of the carbon dioxide refrigerant in heat exchange with the outer surface of the inner tube is reduced.

次に、空調用冷媒の流動様式に起因する熱交換効率の低下について説明する。図5に示すように、入水温度が高くなる沸き終い条件においては、カスケード熱交換器340における二酸化炭素冷媒の入口と出口の比エンタルピー差が小さくなるため、交換熱量が低下する。そのため、カスケード熱交換器340に過熱ガス状態で流入する空調用冷媒は凝縮が十分に行われない。   Next, a description will be given of a decrease in heat exchange efficiency due to the flow mode of the air conditioning refrigerant. As shown in FIG. 5, under the boiling end condition where the incoming water temperature becomes higher, the specific enthalpy difference between the inlet and outlet of the carbon dioxide refrigerant in the cascade heat exchanger 340 becomes smaller, so the amount of exchange heat decreases. Therefore, the air-conditioning refrigerant that flows into the cascade heat exchanger 340 in a superheated gas state is not sufficiently condensed.

図7に空調サイクルのモリエール線図を示す。101は入水温度5℃の場合の空調サイクルであり、102は沸き終い条件の入水温度が60℃の場合の空調サイクルである。
図7に示すように、沸き終い条件においては、空調用冷媒の凝縮は十分に行われないため、過熱ガス状態でカスケード熱交換器340に流入した空調用冷媒は、乾き度の高い気液二相状態で流出する。そのため、カスケード熱交換器340内を流れる空調用冷媒の大半は過熱ガス状態となる。
FIG. 7 shows a Mollier chart of the air conditioning cycle. 101 is an air conditioning cycle when the incoming water temperature is 5 ° C., and 102 is an air conditioning cycle when the incoming water temperature at the end of boiling is 60 ° C.
As shown in FIG. 7, since the air-conditioning refrigerant is not sufficiently condensed in the boiling end condition, the air-conditioning refrigerant that has flowed into the cascade heat exchanger 340 in a superheated gas state is a gas-liquid with a high degree of dryness. It flows out in a two-phase state. Therefore, most of the air-conditioning refrigerant flowing in the cascade heat exchanger 340 is in a superheated gas state.

冷凍機油と冷媒の混合流体が過熱ガス状態で管内を流れる場合、図8に示すように冷凍機油が管内表面に付着し油膜を形成する。油膜は熱抵抗となり、冷媒の熱伝達を妨げる。
したがって、特許文献2のように二重管式熱交換器の内管に空調用冷媒を流す場合、入水温度が高くなる沸き終い条件において、熱抵抗となる油膜が内管内表面に密着集中し、外管内表面との熱交換における空調用冷媒の熱伝達率が低下する。
When the mixed fluid of the refrigerating machine oil and the refrigerant flows through the pipe in the superheated gas state, the refrigerating machine oil adheres to the inner surface of the pipe and forms an oil film as shown in FIG. The oil film becomes a thermal resistance and hinders the heat transfer of the refrigerant.
Therefore, when the air-conditioning refrigerant is allowed to flow through the inner pipe of the double-pipe heat exchanger as in Patent Document 2, an oil film that becomes a thermal resistance is closely concentrated on the inner pipe inner surface under the condition that the boiling water temperature becomes high. The heat transfer coefficient of the air-conditioning refrigerant in heat exchange with the inner surface of the outer pipe is reduced.

以上、給湯用冷媒の流動様式および空調用冷媒の流動様式それぞれに起因するカスケード熱交換器340における給湯用冷媒および空調用冷媒の熱伝達率の低下により、沸き終い条件における給湯システムの冷凍サイクル性能が低下するという課題があった。
本発明は、前記課題を解決するものであり、入水温度が高くなる沸き終いにおいても、カスケード熱交換器における二酸化炭素冷媒および空調用冷媒の熱伝達率が低下することを防ぎ、給湯システムの冷凍サイクル性能を向上させることができる空調給湯システムを提供することを目的とする。
As described above, the refrigeration cycle of the hot water supply system in the boiling end condition due to the decrease in the heat transfer coefficient of the hot water supply refrigerant and the air conditioning refrigerant in the cascade heat exchanger 340 due to the flow patterns of the hot water supply refrigerant and the air conditioning refrigerant. There was a problem that the performance deteriorated.
The present invention solves the above-mentioned problem, and prevents the heat transfer rate of the carbon dioxide refrigerant and the air-conditioning refrigerant in the cascade heat exchanger from decreasing even at the end of boiling when the incoming water temperature becomes high, and It aims at providing the air-conditioning hot-water supply system which can improve refrigeration cycle performance.

前記課題を解決するために、本発明の空調給湯システムは、給湯用冷媒を圧縮する給湯用圧縮機と、給湯用冷媒と給湯用熱媒体とが熱交換する給湯用熱交換器と、給湯用冷媒の流量を制御する給湯用冷媒流量調整弁と、給湯用冷媒と空調用冷媒とが熱交換するカスケード熱交換器とを環状に接続した第1冷凍サイクルと、前記カスケード熱交換器と、前記カスケード熱交換器に供給する前記空調用冷媒の流量を制御する熱生成ユニット冷媒流量調整弁とを直列に接続した第1回路と、前記空調用冷媒と室内空気とが熱交換する室内熱交換器と、室内熱交換器に供給する前記空調用冷媒の流量を制御する室内機冷媒流量調整弁とを直列に接続した少なくとも1つの第2回路と、前記第1回路と前記第2回路とを並列に接続した熱負荷回路を、前記空調用冷媒を圧縮する空調用圧縮機と、室外熱交換器とに接続した第2冷凍サイクルと、を備えた空調給湯システムにおいて、前記カスケード熱交換器として外管と内管とからなる二重管式熱交換器を用い、給湯用冷媒を前記内管に流通させることを特徴とする。   In order to solve the above problems, an air-conditioning hot water supply system of the present invention includes a hot water supply compressor that compresses a hot water supply refrigerant, a hot water supply heat exchanger that exchanges heat between the hot water supply refrigerant and the hot water supply heat medium, and a hot water supply A first refrigeration cycle in which a flow rate control valve for hot water supply for controlling the flow rate of the refrigerant, a cascade heat exchanger for exchanging heat between the hot water supply refrigerant and the air conditioning refrigerant, and the cascade heat exchanger, The 1st circuit which connected the heat generation unit refrigerant | coolant flow rate adjustment valve which controls the flow volume of the said air-conditioning refrigerant | coolant supplied to a cascade heat exchanger in series, and the indoor heat exchanger with which the said air-conditioning refrigerant | coolant and room air exchange heat And at least one second circuit in which an indoor unit refrigerant flow rate adjustment valve for controlling the flow rate of the air conditioning refrigerant supplied to the indoor heat exchanger is connected in series, and the first circuit and the second circuit are connected in parallel. The thermal load circuit connected to In an air conditioning hot water supply system comprising an air conditioning compressor for compressing an air conditioning refrigerant and a second refrigeration cycle connected to an outdoor heat exchanger, the cascade heat exchanger includes a double pipe composed of an outer pipe and an inner pipe. A hot water supply refrigerant is circulated through the inner pipe using a pipe heat exchanger.

本発明の空調給湯システムでは、沸き終いで入水温度が高くなると、給湯用熱交換器内で二酸化炭素冷媒の入口と出口の比エンタルピー差が小さくなるため、カスケード熱交換器内に流入する二酸化炭素冷媒が乾き度0.8のガスリッチな気液二相状態となる。
この場合、二重管式熱交換器内を流れる二酸化炭素冷媒の流動形式は環状流が支配的になるが、二酸化炭素冷媒を内管に流通させていることで、熱容量の大きい液相冷媒が伝熱面である内管の内表面に密着集中して流れるため、内管内表面との熱交換における二酸化炭素冷媒の熱伝達率が高くなる。
In the air-conditioning hot water supply system of the present invention, when the incoming water temperature becomes high after boiling, the specific enthalpy difference between the inlet and outlet of the carbon dioxide refrigerant in the hot water heat exchanger decreases, so carbon dioxide flowing into the cascade heat exchanger The refrigerant enters a gas-rich gas-liquid two-phase state with a dryness of 0.8.
In this case, the flow form of the carbon dioxide refrigerant flowing in the double-pipe heat exchanger is dominated by the annular flow, but by flowing the carbon dioxide refrigerant through the inner pipe, the liquid phase refrigerant having a large heat capacity can be obtained. Since it flows in close contact with the inner surface of the inner tube, which is the heat transfer surface, the heat transfer coefficient of the carbon dioxide refrigerant in heat exchange with the inner surface of the inner tube is increased.

また、沸き終いで入水温度が高くなり、カスケード熱交換器における二酸化炭素冷媒の入口と出口の比エンタルピー差が小さくなる場合、二重管式熱交換器内での交換熱量が低下し、カスケード熱交換器に過熱ガス状態で流入する空調用冷媒の凝縮が十分に行われず、乾き度の高い気液二相状態でカスケード熱交換器から流出する。
この場合、二重管式熱交換器内を流れる空調用冷媒は大半が過熱ガス状態となるが、二重管式熱交換器の外管に低段側空調用冷媒を流通させていることで、熱抵抗となる油膜が外管の内表面に密着集中し、熱媒体である過熱ガス冷媒が伝熱面である内管外表面と接触して流れるため、内管外表面との熱交換における空調用冷媒の熱伝達率が高くなる。
In addition, when the water temperature rises after boiling and the specific enthalpy difference between the inlet and outlet of the carbon dioxide refrigerant in the cascade heat exchanger decreases, the amount of exchange heat in the double-tube heat exchanger decreases, and the cascade heat The air-conditioning refrigerant flowing into the exchanger in the superheated gas state is not sufficiently condensed, and flows out of the cascade heat exchanger in a gas-liquid two-phase state with a high degree of dryness.
In this case, most of the air-conditioning refrigerant flowing in the double-pipe heat exchanger is in a superheated gas state, but the low-stage air-conditioning refrigerant is circulated in the outer pipe of the double-pipe heat exchanger. , Because the oil film that becomes the heat resistance concentrates closely on the inner surface of the outer tube, and the superheated gas refrigerant that is the heat medium flows in contact with the outer surface of the inner tube that is the heat transfer surface, The heat transfer coefficient of the air conditioning refrigerant is increased.

本発明の空調給湯システムでは、二重管式熱交換器の内管に高段側二酸化炭素冷媒を流通させていることで、入水温度が高くなる沸き終いにおいてカスケード熱交換器における給湯用冷媒および空調用冷媒の熱伝達率を高くすることができ、給湯システムの冷凍サイクル性能を向上させることができる。   In the air conditioning and hot water supply system of the present invention, the high-stage carbon dioxide refrigerant is circulated through the inner pipe of the double-pipe heat exchanger, so that the hot water supply refrigerant in the cascade heat exchanger at the end of boiling when the incoming water temperature rises. In addition, the heat transfer coefficient of the air conditioning refrigerant can be increased, and the refrigeration cycle performance of the hot water supply system can be improved.

本発明の実施の形態1における空調給湯システムの冷凍サイクル構成図Refrigeration cycle block diagram of the air conditioning and hot water supply system in Embodiment 1 of the present invention 本実施形態の熱生成ユニットの内部構造を示す平面図The top view which shows the internal structure of the heat generation unit of this embodiment 本実施形態の熱生成ユニットの内部構造を示す正面図The front view which shows the internal structure of the heat generation unit of this embodiment 本発明のカスケード熱交換器と冷媒配管との接続部の断面図Sectional drawing of the connection part of the cascade heat exchanger and refrigerant | coolant piping of this invention 給湯サイクルのモリエール線図Mollier chart of hot water supply cycle カスケード熱交換器における環状流の流れ方を示した図Diagram showing how annular flow flows in a cascade heat exchanger 空調サイクルのモリエール線図Moliere diagram of air conditioning cycle カスケード熱交換器における過熱ガスおよび冷凍機油の流れ方を示した図Diagram showing how superheated gas and refrigeration oil flow in cascade heat exchangers 特許文献1における空調給湯システムの冷凍サイクル構成図Refrigeration cycle configuration diagram of air-conditioning hot water supply system in Patent Document 1 特許文献2におけるカスケード熱交換器の断面図と低段側二酸化炭素冷媒流路を示した図The figure which showed the cross-sectional view and low-stage side carbon dioxide refrigerant flow path of the cascade heat exchanger in patent document 2

第1の発明は、給湯用冷媒を圧縮する給湯用圧縮機と、給湯用冷媒と給湯用熱媒体とが熱交換する給湯用熱交換器と、給湯用冷媒の流量を制御する給湯用冷媒流量調整弁と、給湯用冷媒と空調用冷媒とが熱交換するカスケード熱交換器とを環状に接続した第1冷凍サイクルと、前記カスケード熱交換器と、前記カスケード熱交換器に供給する前記空調用冷媒の流量を制御する熱生成ユニット冷媒流量調整弁とを直列に接続した第1回路と、前記空調用冷媒と室内空気とが熱交換する室内熱交換器と、室内熱交換器に供給する前記空調用冷媒の流量を制御する室内機冷媒流量調整弁とを直列に接続した少なくとも1つの第2回路と、前記第1回路と前記第2回路とを並列に接続した熱負荷回路を、前記空調用冷媒を圧縮する空調用圧縮機と、室外熱交換器とに接続した第2冷凍サイクルと、を備えた空調給湯システムにおいて、前記カスケード熱交換器として外管と内管とからなる二重管式熱交換器を用い、給湯用冷媒を前記内管に流通させることを特徴とする空調給湯システムである。   A first aspect of the invention is a hot water supply compressor that compresses a hot water supply refrigerant, a hot water supply heat exchanger that exchanges heat between the hot water supply refrigerant and a hot water supply heat medium, and a hot water supply refrigerant flow rate that controls the flow rate of the hot water supply refrigerant. A first refrigeration cycle in which a regulating valve, a cascade heat exchanger for exchanging heat between the hot water supply refrigerant and the air conditioning refrigerant are connected in an annular shape, the cascade heat exchanger, and the air conditioning supply to the cascade heat exchanger A first circuit in which a heat generation unit refrigerant flow rate regulating valve for controlling the flow rate of the refrigerant is connected in series, an indoor heat exchanger in which the air-conditioning refrigerant and room air exchange heat, and the supply to the indoor heat exchanger An air conditioner comprising: at least one second circuit connected in series with an indoor unit refrigerant flow control valve for controlling the flow rate of the refrigerant for air conditioning; and a heat load circuit connected in parallel with the first circuit and the second circuit. An air conditioning compressor that compresses the refrigerant for the room, and a chamber And a second refrigeration cycle connected to a heat exchanger, wherein the cascade heat exchanger uses a double-tube heat exchanger composed of an outer pipe and an inner pipe, An air-conditioning hot-water supply system that is circulated in an inner pipe.

これにより、二重管式熱交換器の内管に給湯用冷媒を流通させることで、沸き終いで入水温度が高くなり、二重管式熱交換器内を流れる給湯用冷媒の流動形式として環状流が支配的になる場合において、熱容量の大きい液相冷媒が伝熱面である内管の内表面に密着集中して流れるため、内管内表面との熱交換における給湯用冷媒の熱伝達率が高くなる。   As a result, by circulating the hot water supply refrigerant through the inner pipe of the double-pipe heat exchanger, the temperature of the incoming water becomes high at the end of boiling. When the flow becomes dominant, the liquid phase refrigerant having a large heat capacity flows in a concentrated manner on the inner surface of the inner pipe, which is the heat transfer surface, so that the heat transfer coefficient of the hot water supply refrigerant in the heat exchange with the inner surface of the inner pipe is high. Get higher.

また、沸き終いで入水温度が高くなり、二重管式熱交換器内での交換熱量が低下し、二重管式熱交換器内を流れる空調用冷媒が乾き度の高い状態でカスケード熱交換器から流出することで、カスケード熱交換器内の空調用冷媒の大半が過熱ガス状態となる場合において、熱抵抗となる油膜は外管の内表面に密着集中し、熱媒体である過熱ガス冷媒が伝熱面である内管外表面と接触して流れるため、内管外表面との熱交換における空調用冷媒の熱伝達率が高くなる。
よって、沸き終いで入水温度が高くなる場合においてもカスケード熱交換器における給湯用冷媒および空調用冷媒の熱伝達率を高くすることができ、給湯システムの冷凍サイクル性能を向上させることができる。
In addition, the water temperature rises at the end of boiling, the amount of heat exchanged in the double-pipe heat exchanger decreases, and the air-conditioning refrigerant flowing in the double-pipe heat exchanger is cascaded with high dryness. When most of the air-conditioning refrigerant in the cascade heat exchanger is in a superheated gas state by flowing out of the heat exchanger, the oil film that becomes the heat resistance is closely concentrated on the inner surface of the outer pipe, and the superheated gas refrigerant that is the heat medium Since it flows in contact with the outer surface of the inner pipe which is the heat transfer surface, the heat transfer coefficient of the air-conditioning refrigerant in heat exchange with the outer surface of the inner pipe is increased.
Therefore, even when the incoming water temperature becomes high after boiling, the heat transfer rates of the hot water supply refrigerant and the air conditioning refrigerant in the cascade heat exchanger can be increased, and the refrigeration cycle performance of the hot water supply system can be improved.

第2の発明は、第1の発明の空調給湯システムにおいて、前記カスケード熱交換器の前記内管と前記外管とがそれぞれ給湯用冷媒配管と空調用冷媒配管とに接続する分岐部において、前記外管と空調用冷媒配管とを、前記カスケード熱交換器内の前記分岐部近傍を流れる空調用冷媒の流れ方向に対して略垂直方向に接続され、前記内管と給湯用冷媒配管とを、前記カスケード熱交換器内の前記分岐部近傍を流れる給湯用冷媒の流れ方向に対して略水平方向に接続されていることを特徴とする空調給湯システムである。   A second aspect of the present invention is the air conditioning and hot water supply system according to the first aspect, wherein the inner pipe and the outer pipe of the cascade heat exchanger are respectively connected to a hot water supply refrigerant pipe and an air conditioning refrigerant pipe. The outer pipe and the air conditioning refrigerant pipe are connected in a direction substantially perpendicular to the flow direction of the air conditioning refrigerant flowing in the vicinity of the branch portion in the cascade heat exchanger, and the inner pipe and the hot water supply refrigerant pipe are The air conditioning and hot water supply system is connected in a substantially horizontal direction with respect to a flow direction of the hot water supply refrigerant flowing in the vicinity of the branch portion in the cascade heat exchanger.

これにより、空調負荷が大きくなり第1回路を流れる空調用冷媒の凝縮温度が低下し、カスケード熱交換器内で空調用冷媒と熱交換する給湯用冷媒の蒸発温度が低下し、第1冷凍サイクルに封入された冷凍機油の粘度が高くなるような場合においても、カスケード熱交換器の内管と給湯用冷媒配管とが接続する分岐部において滞留するのを防ぎ、カスケード熱交換器内における給湯用冷媒の過度な圧力損失が生じないため第1冷凍サイクルの効率が低下しない。   As a result, the air conditioning load increases, the condensation temperature of the air conditioning refrigerant flowing through the first circuit decreases, the evaporation temperature of the hot water supply refrigerant that exchanges heat with the air conditioning refrigerant in the cascade heat exchanger decreases, and the first refrigeration cycle. Even when the viscosity of the refrigerating machine oil enclosed in the pipe becomes high, it prevents the stagnation at the branch part where the inner pipe of the cascade heat exchanger and the refrigerant pipe for hot water supply are connected, and for hot water supply in the cascade heat exchanger. Since the excessive pressure loss of the refrigerant does not occur, the efficiency of the first refrigeration cycle does not decrease.

よって、本発明では、第1の発明に加え、空調負荷が大きくなり第1回路を流れる空調用冷媒の凝縮温度が低下するような場合においても、第1冷凍サイクルの効率低下の要因となるカスケード熱交換器の内管と給湯用冷媒配管とが接続する分岐部で給湯用冷媒の圧力損失を抑えることができるため、第1冷凍サイクルの効率を高くすることができる。   Therefore, in the present invention, in addition to the first invention, even when the air conditioning load becomes large and the condensation temperature of the air conditioning refrigerant flowing through the first circuit decreases, the cascade that causes the efficiency of the first refrigeration cycle decreases. Since the pressure loss of the hot water supply refrigerant can be suppressed at the branch portion where the inner pipe of the heat exchanger and the hot water supply refrigerant pipe are connected, the efficiency of the first refrigeration cycle can be increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施形態によって、本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の実施形態に係る空調給湯システムのサイクル構成図である。
図1の空調給湯システムは、室外ユニット100と、室内機200と、熱生成ユニット300とを備えている。本実施形態においては、室外ユニット1台に対し、室内機が2台、熱生成ユニットが1台接続した構成となっている。なお、冷凍サイクル構成に関しては、図1に示したものに限定されない。例えば、室外ユニットは2台以上、室内機も1台もしくは3台以上、熱生成ユニットも2台以上、並列に接続可能である。
(Embodiment 1)
FIG. 1 is a cycle configuration diagram of an air conditioning and hot water supply system according to an embodiment of the present invention.
The air conditioning and hot water supply system of FIG. 1 includes an outdoor unit 100, an indoor unit 200, and a heat generation unit 300. In the present embodiment, two indoor units and one heat generating unit are connected to one outdoor unit. The refrigeration cycle configuration is not limited to that shown in FIG. For example, two or more outdoor units, one or three indoor units, and two or more heat generation units can be connected in parallel.

室外ユニット100と室内機200、熱生成ユニット300とは、空調用冷媒が流通する配管で連結されている。室外ユニット100と室内機200とは、高温高圧のガス化した空調用冷媒が流れるガス管150と、低圧の空調用冷媒が流れる吸入管160と、高圧の液化した空調用冷媒が流れる液管170とで接続されている。室内機200が、図1に示すように2台存在するときは、室内機200は3本の配管に対し並列に接続される。一方、室外ユニット100と熱生成ユニット300とは、室内機200と同じく配管に対し並列に接続されるが、ガス管150と液管170とのみ連通している。   The outdoor unit 100, the indoor unit 200, and the heat generation unit 300 are connected by a pipe through which air-conditioning refrigerant flows. The outdoor unit 100 and the indoor unit 200 are a gas pipe 150 through which high-temperature and high-pressure gasified air-conditioning refrigerant flows, a suction pipe 160 through which low-pressure air-conditioning refrigerant flows, and a liquid pipe 170 through which high-pressure liquefied air-conditioning refrigerant flows. And connected with. When there are two indoor units 200 as shown in FIG. 1, the indoor units 200 are connected in parallel to three pipes. On the other hand, the outdoor unit 100 and the heat generation unit 300 are connected in parallel to the piping as in the indoor unit 200, but only the gas pipe 150 and the liquid pipe 170 communicate with each other.

室外ユニット100は、空調用冷媒を圧縮する空調用圧縮機110を備えている。空調用圧縮機110の吸入側には、空調用圧縮機110にガス冷媒を供給するアキュムレータ111が接続されている。空調用圧縮機110の吐出側には、吐出するガス状態の空調用冷媒に含まれる冷凍機油を分離する油分離器112が接続されている。油分離器112で分離された冷凍機油は、油戻し管113aにより空調用圧縮機110に戻される。油戻し管113aの連通は、油戻し管開閉弁113bの開閉により制御される。   The outdoor unit 100 includes an air conditioning compressor 110 that compresses the air conditioning refrigerant. An accumulator 111 that supplies a gas refrigerant to the air conditioning compressor 110 is connected to the suction side of the air conditioning compressor 110. An oil separator 112 that separates the refrigerating machine oil contained in the discharged air-conditioning refrigerant is connected to the discharge side of the air-conditioning compressor 110. The refrigerating machine oil separated by the oil separator 112 is returned to the air conditioning compressor 110 through the oil return pipe 113a. The communication of the oil return pipe 113a is controlled by opening and closing the oil return pipe on / off valve 113b.

また、室外ユニット100は、室外熱交換器115を備えており、室外熱交換器115の近傍には、室外熱交換器115に室外ユニット100の周囲の空気を供給する室外送風ファン116が設けられている。そして、室外空気熱交換器115は、室外送風ファン116で送られる空気と、空調用冷媒とが熱交換するよう構成されており、一般的には、フィン・チューブ型やマイクロチューブ型の熱交換器が利用される。
室外ユニット100は、室外熱交換器115に供給する空調用冷媒の流量を調整する室外冷媒流量調整弁120と、ガス管150における空調用冷媒の流量を制御する室外ガス管開閉弁121と、吸入管26における空調用冷媒の流量を制御する室外吸入管開閉弁122とをそれぞれ備えている。
Further, the outdoor unit 100 includes an outdoor heat exchanger 115, and an outdoor fan 116 that supplies air around the outdoor unit 100 to the outdoor heat exchanger 115 is provided in the vicinity of the outdoor heat exchanger 115. ing. The outdoor air heat exchanger 115 is configured to exchange heat between the air sent by the outdoor blower fan 116 and the air-conditioning refrigerant. Generally, fin-tube type or microtube type heat exchange is performed. A vessel is used.
The outdoor unit 100 includes an outdoor refrigerant flow rate adjustment valve 120 that adjusts the flow rate of the air-conditioning refrigerant supplied to the outdoor heat exchanger 115, an outdoor gas pipe opening / closing valve 121 that controls the flow rate of the air-conditioning refrigerant in the gas pipe 150, An outdoor suction pipe opening / closing valve 122 for controlling the flow rate of the air conditioning refrigerant in the pipe 26 is provided.

室内機200は、室内熱交換器215と、室内熱交換器215に室内機200の周囲の空気を供給する室内送風ファン216と、室内熱交換器215に供給する空調用冷媒の流量を調整する室内冷媒流量調整弁220とを備えている。室内熱交換器215は、室内送風ファン216で送られる空気と、空調用冷媒とが熱交換するよう構成されており、一般的には、フィン・チューブ型やマイクロチューブ型の熱交換器が利用される。
また、室内機200は、ガス管150との空調用冷媒の流通の有無を制御する室内ガス管開閉弁221と、吸入管160との空調用冷媒の流通の有無を制御する室内吸入管開閉弁222とを備えている。
The indoor unit 200 adjusts the flow rate of the indoor heat exchanger 215, the indoor blower fan 216 that supplies air around the indoor unit 200 to the indoor heat exchanger 215, and the air conditioning refrigerant that is supplied to the indoor heat exchanger 215. And an indoor refrigerant flow rate adjustment valve 220. The indoor heat exchanger 215 is configured to exchange heat between the air sent by the indoor fan 216 and the air-conditioning refrigerant. Generally, a fin-tube or microtube heat exchanger is used. Is done.
In addition, the indoor unit 200 includes an indoor gas pipe opening / closing valve 221 that controls the flow of air-conditioning refrigerant with the gas pipe 150 and an indoor suction pipe opening / closing valve that controls the flow of the air-conditioning refrigerant with the suction pipe 160. 222.

熱生成ユニット300は、給湯用冷媒を圧縮する給湯用圧縮機310と、給湯用冷媒と水を主成分とする熱媒体と熱交換する給湯用熱交換器320と、給湯用冷媒の流量を調整する給湯用冷媒流量調整弁330とを備えている。
また、熱生成ユニット300は、ガス管150から供給される空調用冷媒と給湯用冷媒とが熱交換するカスケード熱交換器340と、カスケード熱交換器340に供給する空調用冷媒の流量を調整する熱生成ユニット冷媒流量調整弁350と、給湯用熱交換器320に熱媒体を供給する熱媒体ポンプ360とを備えている。
The heat generating unit 300 adjusts the flow rate of the hot water supply refrigerant, the hot water supply compressor 310 that compresses the hot water supply refrigerant, the hot water supply heat exchanger 320 that exchanges heat with the heat medium mainly composed of the hot water supply refrigerant and water, and the hot water supply refrigerant. The hot water supply refrigerant flow rate adjustment valve 330 is provided.
The heat generation unit 300 also adjusts the flow rate of the cascade heat exchanger 340 that exchanges heat between the air-conditioning refrigerant supplied from the gas pipe 150 and the hot water supply refrigerant, and the air-conditioning refrigerant supplied to the cascade heat exchanger 340. A heat generation unit refrigerant flow rate adjustment valve 350 and a heat medium pump 360 that supplies a heat medium to the hot water supply heat exchanger 320 are provided.

ここで、これら給湯用圧縮機310と、給湯用熱交換器320と、給湯用冷媒流量調整弁330と、カスケード熱交換器340とを環状に接続して第1冷凍サイクル500が構成される。
また、カスケード熱交換器340と、熱生成ユニット冷媒流量調整弁350とを直列に接続した第1回路501と、室内熱交換器215と、室内熱交換器215に供給する室内冷媒流量調整弁220とを直列に接続した少なくとも1つの第2回路502と、第1回路501と第2回路502とを並列に接続した熱負荷回路を、空調用圧縮機110と、室外熱交換器115とに接続して第2冷凍サイクル510が構成される。
Here, the hot water supply compressor 310, the hot water supply heat exchanger 320, the hot water supply refrigerant flow rate adjustment valve 330, and the cascade heat exchanger 340 are connected in an annular shape to constitute the first refrigeration cycle 500.
Further, the first circuit 501 in which the cascade heat exchanger 340 and the heat generation unit refrigerant flow rate adjustment valve 350 are connected in series, the indoor heat exchanger 215, and the indoor refrigerant flow rate adjustment valve 220 supplied to the indoor heat exchanger 215. At least one second circuit 502 connected in series, and a heat load circuit in which the first circuit 501 and the second circuit 502 are connected in parallel to the air conditioning compressor 110 and the outdoor heat exchanger 115 Thus, the second refrigeration cycle 510 is configured.

なお、給湯用冷媒としてはフロン系冷媒や二酸化炭素冷媒を用い、熱媒体としては水や不凍液を用いる。以下、給湯用冷媒として二酸化炭素冷媒を用い、熱媒体として水を用いる場合について説明する。
また、空調用冷媒には、一般的に家庭用空調機やビル用空調機に使われる冷媒であるR410A、R32、R407Cなどを用いる。
Note that a chlorofluorocarbon refrigerant or a carbon dioxide refrigerant is used as the hot water supply refrigerant, and water or antifreeze is used as the heat medium. Hereinafter, a case where carbon dioxide refrigerant is used as the hot water supply refrigerant and water is used as the heat medium will be described.
Moreover, R410A, R32, R407C etc. which are refrigerants generally used for home air conditioners and building air conditioners are used as air conditioning refrigerants.

また、二酸化炭素の物性値については、National Institute of Standards and Technology(以降NISTと略記)が発行しているReference Fluid Thermodynamic and Transport Properties Ver.9.0(以降Refprop Ver.9.0と略記)で導出した値を用いる。   Regarding the physical properties of carbon dioxide, Reference Fluid Thermodynamic and Transport Properties Ver. Published by the National Institute of Standards and Technology (hereinafter abbreviated as NIST). The value derived from 9.0 (hereinafter abbreviated as Refprop Ver. 9.0) is used.

次に、本実施形態における熱生成ユニット300の内部構造について説明する。
図2は、本実施形態における熱生成ユニット300の内部構造を示す平面図、図3は、熱生成ユニット300の内部構造を示す正面図である。
熱生成ユニット300には、給湯用圧縮機310と給湯用熱交換器320と給湯用冷媒流量調整弁330とカスケード熱交換器340とで形成される冷凍サイクルと、熱生成ユニット冷媒流量調整弁350と熱媒体ポンプ360とがケーシング401に格納されている。
Next, the internal structure of the heat generation unit 300 in this embodiment will be described.
FIG. 2 is a plan view showing the internal structure of the heat generation unit 300 in the present embodiment, and FIG. 3 is a front view showing the internal structure of the heat generation unit 300.
The heat generation unit 300 includes a hot water supply compressor 310, a hot water supply heat exchanger 320, a hot water supply refrigerant flow rate adjustment valve 330, and a cascade heat exchanger 340, and a heat generation unit refrigerant flow rate adjustment valve 350. And the heat medium pump 360 are stored in the casing 401.

本実施の形態では、給湯用熱交換器320には、例えば、二重管式熱交換器が用いられている。二重管式熱交換器は、略円形断面の管(外管)の中に、1本以上の管(内管)が挿入されて形成した熱交換器である。内管が複数本ある場合は、内管同士をらせん状によじって外管に挿入される。給湯用冷媒に二酸化炭素冷媒を用いる場合は、給湯用熱交換器320の内管に二酸化炭素冷媒、外管と内管の間に水を流す。   In the present embodiment, for example, a double pipe heat exchanger is used as the hot water supply heat exchanger 320. The double tube heat exchanger is a heat exchanger formed by inserting one or more tubes (inner tubes) into a tube (outer tube) having a substantially circular cross section. When there are a plurality of inner tubes, the inner tubes are inserted into the outer tube by spiraling. When carbon dioxide refrigerant is used as the hot water supply refrigerant, carbon dioxide refrigerant is passed through the inner pipe of the hot water supply heat exchanger 320 and water is allowed to flow between the outer pipe and the inner pipe.

なお、給湯用熱交換器320として二重管式熱交換器を用いる場合、二重管式熱交換器の材料には、熱伝導性能の高い銅管を用いることが多い。
また、給湯用熱交換器320には、プレート式熱交換器、シェルアンドチューブ式熱交換器などを用いてもよい。
In addition, when using a double pipe type heat exchanger as the heat exchanger 320 for hot water supply, a copper pipe with high heat conductivity is often used as the material of the double pipe type heat exchanger.
The hot water supply heat exchanger 320 may be a plate heat exchanger, a shell and tube heat exchanger, or the like.

二重管式熱交換器の熱交換能力は、二重管の長さに比例する。したがって、二重管式熱交換器は、限られた設置容積の中で最大限の熱交換能力を確保するために、二重管を巻いて成型されている。二重管式熱交換器を設置するときは、二重管内の熱媒体が通る部分に空気が滞留し、熱交換性能が著しく低下することを防ぐために、二重管ができるだけ水平になるようにする。   The heat exchange capacity of the double pipe heat exchanger is proportional to the length of the double pipe. Therefore, the double-pipe heat exchanger is formed by winding a double pipe in order to secure the maximum heat exchange capability within a limited installation volume. When installing a double-pipe heat exchanger, make sure that the double pipe is as horizontal as possible in order to prevent air from accumulating in the part where the heat medium passes through the double pipe and causing a significant decline in heat exchange performance. To do.

また、カスケード熱交換器340には、二重管式熱交換器を用いる。二重管式熱交換器は、略円形断面の管(外管)の中に、1本以上の管(内管)が挿入されて形成した熱交換器である。内管が複数本ある場合は、内管同士をらせん状によじって外管に挿入される。給湯用冷媒に二酸化炭素冷媒を用いる場合は、カスケード熱交換器340の内管に二酸化炭素冷媒、外管と内管の間に空調用冷媒を流す。   The cascade heat exchanger 340 is a double pipe heat exchanger. The double tube heat exchanger is a heat exchanger formed by inserting one or more tubes (inner tubes) into a tube (outer tube) having a substantially circular cross section. When there are a plurality of inner tubes, the inner tubes are inserted into the outer tube by spiraling. When a carbon dioxide refrigerant is used as the hot water supply refrigerant, the carbon dioxide refrigerant is passed through the inner pipe of the cascade heat exchanger 340 and the air conditioning refrigerant is passed between the outer pipe and the inner pipe.

図4は、カスケード熱交換器340と冷媒配管との接続部の断面図である。図4に示すように、カスケード熱交換器340の内管410は、給湯用冷媒配管に接続され、外管420は、空調用冷媒配管に接続されている。
内管410と外管420とは、それぞれ給湯用冷媒配管と空調用冷媒配管と接続する分岐部において、外管420と空調用冷媒配管とは、カスケード熱交換器340内の分岐部近傍を流れる空調用冷媒の流れ方向に対して略垂直方向となるように接続されている。また、内管410と給湯用冷媒配管とは、カスケード熱交換器340内の分岐部近傍を流れる給湯用冷媒の流れ方向に対して略水平方向となるように接続されている。
FIG. 4 is a cross-sectional view of a connection portion between the cascade heat exchanger 340 and the refrigerant pipe. As shown in FIG. 4, the inner pipe 410 of the cascade heat exchanger 340 is connected to the hot water supply refrigerant pipe, and the outer pipe 420 is connected to the air conditioning refrigerant pipe.
The inner pipe 410 and the outer pipe 420 are branch sections connected to the hot water supply refrigerant pipe and the air conditioning refrigerant pipe, respectively. The outer pipe 420 and the air conditioning refrigerant pipe flow in the vicinity of the branch section in the cascade heat exchanger 340. They are connected so as to be substantially perpendicular to the flow direction of the air conditioning refrigerant. Further, the inner pipe 410 and the hot water supply refrigerant pipe are connected so as to be substantially horizontal with respect to the flow direction of the hot water supply refrigerant flowing in the vicinity of the branch portion in the cascade heat exchanger 340.

図2および図3に示すように、給湯用圧縮機310は、ゴムなどの防振部材311を挟み込んだ上で、固定部材312により底板部材370に固定されている。
また、給湯用熱交換器320も底板部材370上に固定されており、カスケード熱交換器340は、給湯用熱交換器320の上部に設置されている。
また、熱媒体ポンプ360の下端面は、カスケード熱交換器340の下端面より低い位置となるように設置されている。
As shown in FIGS. 2 and 3, the hot water supply compressor 310 is fixed to the bottom plate member 370 by a fixing member 312 with a vibration isolating member 311 such as rubber interposed therebetween.
Further, the hot water supply heat exchanger 320 is also fixed on the bottom plate member 370, and the cascade heat exchanger 340 is installed above the hot water supply heat exchanger 320.
Moreover, the lower end surface of the heat medium pump 360 is installed at a position lower than the lower end surface of the cascade heat exchanger 340.

図2および図3に示す給湯用熱交換器320とカスケード熱交換器340は、ともに発泡スチロールや厚手のフェルトなどの断熱材と、さらにこの断熱材を囲う構成部材を含む。特に、給湯用熱交換器320については、上部に設置されるカスケード熱交換器340の重量による断熱材の変形が想定されるため、強度の高い鉄板で囲い、断熱材表面を保護している。   Each of the hot water supply heat exchanger 320 and the cascade heat exchanger 340 shown in FIGS. 2 and 3 includes a heat insulating material such as foamed polystyrene or thick felt, and further includes a component surrounding the heat insulating material. In particular, since the heat exchanger 320 for hot water supply is assumed to be deformed by heat due to the weight of the cascade heat exchanger 340 installed at the top, it is surrounded by a high-strength iron plate to protect the surface of the heat insulator.

なお、カスケード熱交換器340は、必ずしも給湯用熱交換器320を囲う構成部材と接する必要はない。この場合、カスケード熱交換器340とその周りの断熱材は、それらの重量を支えるだけの十分な強度を持つ構成部材で囲った上で、熱生成ユニット300の側面部材400と底板部材370の少なくとも一方に接続された構成部材によって固定される。   The cascade heat exchanger 340 is not necessarily in contact with the components surrounding the hot water supply heat exchanger 320. In this case, the cascade heat exchanger 340 and the heat insulating material around the cascade heat exchanger 340 are surrounded by components having sufficient strength to support their weight, and at least the side member 400 and the bottom plate member 370 of the heat generating unit 300 are used. It is fixed by a component connected to one side.

さらに、図2および図3に示すように、底板部材370には、鉛直上から見て給湯用熱交換器320と熱媒体ポンプ360とが底板部材370に投影する領域内に、排水口390が設けられている。底板部材370の上面には、水が速やかに排水口390から熱生成ユニット300の外部に排出できるように、排水口390に向けて適切な傾斜がつけられている。   Further, as shown in FIGS. 2 and 3, the bottom plate member 370 has a drain port 390 in a region projected by the hot water heat exchanger 320 and the heat medium pump 360 onto the bottom plate member 370 when viewed from above. Is provided. The upper surface of the bottom plate member 370 is provided with an appropriate slope toward the drain port 390 so that water can be quickly discharged from the drain port 390 to the outside of the heat generation unit 300.

熱媒体配管380a、380b、380c内の熱媒体の流れは、熱媒体ポンプ360の駆動により生じる。熱生成ユニット300内に流入した熱媒体は、熱媒体配管380aを経由して熱媒体ポンプ360に流入し、熱媒体配管380bに送出される。さらに、熱媒体は、給湯用熱交換器320に入って、給湯用冷媒により加熱されて70〜90℃の高温となった後、熱媒体配管380cを経由して、熱生成ユニット300外に送出される。   The flow of the heat medium in the heat medium pipes 380a, 380b, and 380c is generated by driving the heat medium pump 360. The heat medium that has flowed into the heat generating unit 300 flows into the heat medium pump 360 via the heat medium pipe 380a and is sent to the heat medium pipe 380b. Furthermore, the heat medium enters the heat exchanger for hot water supply 320, is heated by the hot water supply refrigerant and reaches a high temperature of 70 to 90 ° C., and then is sent out of the heat generation unit 300 via the heat medium pipe 380c. Is done.

次に、カスケード熱交換器340を流れる流体の流動様式について説明する。
まず、給湯用熱交換器320に流入する熱媒体の温度は外気温度の影響と貯湯タンク内の熱媒体温度の影響を受け、5℃〜60℃で変化する。
また、給湯用熱交換器320において、給湯用冷媒から吸熱して高温になった熱媒体が給湯用熱交換器320から流出するときの温度は、65〜90℃で変化する。また、給湯用熱交換器320において、対数平均温度差が大きくなるように水と二酸化炭素冷媒との流れ方向を対向流で利用する。
Next, the flow mode of the fluid flowing through the cascade heat exchanger 340 will be described.
First, the temperature of the heat medium flowing into the hot water supply heat exchanger 320 varies between 5 ° C. and 60 ° C. under the influence of the outside air temperature and the heat medium temperature in the hot water storage tank.
In hot water supply heat exchanger 320, the temperature at which the heat medium that has become hot due to heat absorption from the hot water supply refrigerant flows out of hot water supply heat exchanger 320 varies between 65 and 90 ° C. Moreover, in the hot water supply heat exchanger 320, the flow direction of water and the carbon dioxide refrigerant is used in a counterflow so that the logarithm average temperature difference is increased.

ここで、入水温度が5℃、出湯温度が90℃のとき、給湯用熱交換器320の二酸化炭素冷媒の出口側において二酸化炭素冷媒と入水温度との温度差は、5Kとするのが一般的であるため、給湯用熱交換器320出口における二酸化炭素冷媒の温度は10℃となる。
一方、給湯用熱交換器320の二酸化炭素冷媒の入口側の冷媒温度は、給湯用圧縮機310の吐出冷媒温度と等しく110℃となる。給湯用熱交換器320において、水と二酸化炭素冷媒とのピンチ温度は5Kとするのが一般的である。入水温度が5℃、出湯温度は90℃、二酸化炭素入口側の冷媒温度は110℃、出口側の冷媒温度は10℃であるから、水と二酸化炭素冷媒とのピンチ温度が5Kとなる給湯用サイクル10における高圧圧力は12.4MPaである。
Here, when the incoming water temperature is 5 ° C. and the outgoing hot water temperature is 90 ° C., the temperature difference between the carbon dioxide refrigerant and the incoming water temperature is generally 5K on the outlet side of the carbon dioxide refrigerant of the hot water supply heat exchanger 320. Therefore, the temperature of the carbon dioxide refrigerant at the outlet of the hot water supply heat exchanger 320 is 10 ° C.
On the other hand, the refrigerant temperature on the inlet side of the carbon dioxide refrigerant in the hot water supply heat exchanger 320 is 110 ° C., which is equal to the discharge refrigerant temperature of the hot water supply compressor 310. In the hot water supply heat exchanger 320, the pinch temperature between water and carbon dioxide refrigerant is generally 5K. Since the incoming water temperature is 5 ° C., the hot water temperature is 90 ° C., the refrigerant temperature on the carbon dioxide inlet side is 110 ° C., and the refrigerant temperature on the outlet side is 10 ° C., the hot water supply temperature is 5K. The high pressure in cycle 10 is 12.4 MPa.

次に、圧力12.4MPa、温度10℃の状態で給湯用熱交換器320を出た二酸化炭素冷媒は、給湯用冷媒流量調整弁330で等エンタルピー膨張してカスケード熱交換器340に流入する。カスケード熱交換器340では、二酸化炭素冷媒は空調用冷媒から吸熱、蒸発し、過熱ガスの状態でカスケード熱交換器340から流出する。
カスケード熱交換器に流入する空調用冷媒の凝縮温度は45〜55℃であり、空調用冷媒と二酸化炭素冷媒との温度差は10Kとするのが一般的であるが、この場合、二酸化炭素は35〜45℃となり超臨界状態となる。
Next, the carbon dioxide refrigerant that has exited the hot water supply heat exchanger 320 in a state where the pressure is 12.4 MPa and the temperature is 10 ° C. is isenthalpy-expanded by the hot water supply refrigerant flow rate adjustment valve 330 and flows into the cascade heat exchanger 340. In the cascade heat exchanger 340, the carbon dioxide refrigerant absorbs heat and evaporates from the air conditioning refrigerant, and flows out of the cascade heat exchanger 340 in a superheated gas state.
The condensation temperature of the air conditioning refrigerant flowing into the cascade heat exchanger is 45 to 55 ° C., and the temperature difference between the air conditioning refrigerant and the carbon dioxide refrigerant is generally 10 K. In this case, the carbon dioxide is It becomes 35-45 degreeC and will be in a supercritical state.

給湯用圧縮機310に流入する二酸化炭素冷媒が超臨界状態だと圧縮機内の冷凍機油の粘度を著しく低下させ、潤滑油としての効果が低減し、摺動部の焼き付きといった不具合が生じる可能性がある。   If the carbon dioxide refrigerant flowing into the hot water supply compressor 310 is in a supercritical state, the viscosity of the refrigerating machine oil in the compressor is significantly reduced, the effect as a lubricating oil is reduced, and a problem such as seizure of the sliding portion may occur. is there.

そのため、二酸化炭素冷媒の蒸発温度は、冷凍サイクルの効率が高く、かつ、給湯用圧縮機310の信頼性が高くなるように、臨界温度31.1℃に対して11K低い20℃とするのが良い。
したがって、圧力12.4MPa、温度10℃の状態で給湯用熱交換器320を出た二酸化炭素冷媒は、給湯用冷媒流量調整弁330で等エンタルピー膨張して蒸発温度20℃相当となる圧力5.7MPaでカスケード熱交換器340に流入し、このときの二酸化炭素冷媒の状態は過冷却状態である。
蒸発過程において、乾き度0.8以上の気液二相状態の冷媒は一般的に環状流となって流動するが、カスケード熱交換器340に過冷却状態で流入し、過熱ガスとなって流出する場合、環状流が占める割合は20%以下である。
For this reason, the evaporation temperature of the carbon dioxide refrigerant is set to 20 ° C., which is 11K lower than the critical temperature of 31.1 ° C., so that the efficiency of the refrigeration cycle is high and the reliability of the hot water supply compressor 310 is increased. good.
Accordingly, the carbon dioxide refrigerant that has exited the hot water supply heat exchanger 320 in a state where the pressure is 12.4 MPa and the temperature of 10 ° C. is isenthalpy-expanded by the hot water supply refrigerant flow rate adjustment valve 330 to a pressure corresponding to an evaporation temperature of 20 ° C. It flows into the cascade heat exchanger 340 at 7 MPa, and the state of the carbon dioxide refrigerant at this time is a supercooled state.
In the evaporation process, a gas-liquid two-phase refrigerant having a dryness of 0.8 or more generally flows in an annular flow, but flows into the cascade heat exchanger 340 in a supercooled state and flows out as a superheated gas. In this case, the proportion of the annular flow is 20% or less.

一方、入水温度が60℃、出湯温度 90℃のときは、前述の通り給湯用熱交換器320の二酸化炭素冷媒の出口側において、二酸化炭素冷媒と入水温度との温度差は5Kとするのが一般的であるため、給湯用熱交換器320出口における二酸化炭素冷媒の温度は65℃となる。
一方、給湯用熱交換器320の二酸化炭素冷媒の入口側の冷媒温度は、給湯用圧縮機310の吐出冷媒温度と等しく110℃となる。給湯用熱交換器320において、水と二酸化炭素冷媒とのピンチ温度は5Kとするのが一般的であり、入水温度が60℃、出湯温度は90℃、二酸化炭素入口側の冷媒温度は110℃、出口側の冷媒温度は65℃であるから、水と二酸化炭素冷媒とのピンチ温度が5Kとなる給湯用サイクル10における高圧圧力は14.2MPaである。
On the other hand, when the incoming water temperature is 60 ° C. and the outgoing hot water temperature is 90 ° C., the temperature difference between the carbon dioxide refrigerant and the incoming water temperature is 5K on the outlet side of the carbon dioxide refrigerant in the hot water supply heat exchanger 320 as described above. Since it is general, the temperature of the carbon dioxide refrigerant at the outlet of the hot water supply heat exchanger 320 is 65 ° C.
On the other hand, the refrigerant temperature on the inlet side of the carbon dioxide refrigerant in the hot water supply heat exchanger 320 is 110 ° C., which is equal to the discharge refrigerant temperature of the hot water supply compressor 310. In the hot water supply heat exchanger 320, the pinch temperature between water and carbon dioxide refrigerant is generally 5K, the incoming water temperature is 60 ° C., the outgoing hot water temperature is 90 ° C., and the refrigerant temperature on the carbon dioxide inlet side is 110 ° C. Since the refrigerant temperature on the outlet side is 65 ° C., the high pressure in the hot water supply cycle 10 where the pinch temperature between water and the carbon dioxide refrigerant is 5K is 14.2 MPa.

次に、圧力14.2MPa、温度65℃の状態で給湯用熱交換器320を出た二酸化炭素冷媒は、給湯用冷媒流量調整弁330で等エンタルピー膨張してカスケード熱交換器340に流入する。カスケード熱交換器340では、二酸化炭素冷媒は、空調用冷媒から吸熱、蒸発し、過熱ガスの状態でカスケード熱交換器340から流出する。前述の通り二酸化炭素冷媒の蒸発温度は20℃とするのが良いから、圧力14.2MPa、温度65℃の状態で給湯用熱交換器320を出た二酸化炭素冷媒は、給湯用冷媒流量調整弁330で等エンタルピー膨張して蒸発温度20℃相当となる圧力5.7MPaでカスケード熱交換器340に流入し、このときの二酸化炭素冷媒の状態は乾き度0.8である。   Next, the carbon dioxide refrigerant that has exited the hot water supply heat exchanger 320 in a state where the pressure is 14.2 MPa and the temperature is 65 ° C. is isoenthalpy-expanded by the hot water supply refrigerant flow rate adjustment valve 330 and flows into the cascade heat exchanger 340. In the cascade heat exchanger 340, the carbon dioxide refrigerant absorbs heat and evaporates from the air conditioning refrigerant, and flows out of the cascade heat exchanger 340 in a superheated gas state. Since the evaporation temperature of the carbon dioxide refrigerant is preferably 20 ° C. as described above, the carbon dioxide refrigerant that has exited the hot water supply heat exchanger 320 in a state where the pressure is 14.2 MPa and the temperature is 65 ° C. is the refrigerant flow rate adjustment valve for hot water supply. The carbon dioxide refrigerant at this time flows into the cascade heat exchanger 340 at a pressure of 5.7 MPa which is expanded by an enthalpy expansion at 330 and corresponds to an evaporation temperature of 20 ° C., and the carbon dioxide refrigerant at this time has a dryness of 0.8.

また、カスケード熱交換器340において二酸化炭素冷媒は、空調用冷媒から吸熱、蒸発し、過熱ガスとなってカスケード熱交換器340から流出する。カスケード熱交換器340から流出した過熱ガスは、給湯用圧縮機310に吸入され等エントロピー圧縮過程を経て高温高圧の過熱ガスとなって吐出される。前述の通り、給湯用圧縮機310から吐出される高温高圧の過熱ガスは圧力14.3MPa、温度110℃であるから、給湯用圧縮機310に吸入される冷媒は圧力5.7MPa、温度40℃である。   Further, in the cascade heat exchanger 340, the carbon dioxide refrigerant absorbs heat and evaporates from the air conditioning refrigerant and flows out of the cascade heat exchanger 340 as superheated gas. The superheated gas flowing out from the cascade heat exchanger 340 is sucked into the hot water supply compressor 310 and is discharged as high-temperature and high-pressure superheated gas through an isentropic compression process. As described above, since the high-temperature and high-pressure superheated gas discharged from the hot water supply compressor 310 has a pressure of 14.3 MPa and a temperature of 110 ° C., the refrigerant sucked into the hot water supply compressor 310 has a pressure of 5.7 MPa and a temperature of 40 ° C. It is.

すなわち、カスケード熱交換器340において、二酸化炭素冷媒は、圧力5.7MPa、温度20℃、乾き度0.8の気液二相状態で流入し、空調用冷媒から吸熱することで蒸発し、圧力5.7MPa、温度40℃の過熱ガス状態で流出する。
したがって、入水温度60℃、出湯温度90℃のときのカスケード熱交換器340における二酸化炭素冷媒の流動様式は環状流が大半を占めることになる。
That is, in the cascade heat exchanger 340, the carbon dioxide refrigerant flows in a gas-liquid two-phase state with a pressure of 5.7 MPa, a temperature of 20 ° C., and a dryness of 0.8, and evaporates by absorbing heat from the air conditioning refrigerant. It flows out in a superheated gas state at 5.7 MPa and a temperature of 40 ° C.
Therefore, the flow mode of the carbon dioxide refrigerant in the cascade heat exchanger 340 when the incoming water temperature is 60 ° C. and the outgoing hot water temperature is 90 ° C. is mostly an annular flow.

ここで、環状流における気液二相の冷媒の流れは、熱容量の大きい液相冷媒が管壁に密着集中して流れる。本実施形態においては、カスケード熱交換器340を流れる二酸化炭素冷媒の流路を内管410に配置しているため、乾き度0.8の気液二相状態で流入する二酸化炭素冷媒は、環状流を形成し、熱容量の大きい液相冷媒が伝熱面である内管410の内表面に密着集中する。そのため、カスケード熱交換器340の外管420を流れる空調用冷媒から効率良く吸熱することが可能となる。   Here, the flow of the gas-liquid two-phase refrigerant in the annular flow is such that the liquid-phase refrigerant having a large heat capacity is concentrated on the tube wall. In this embodiment, since the flow path of the carbon dioxide refrigerant flowing through the cascade heat exchanger 340 is disposed in the inner pipe 410, the carbon dioxide refrigerant flowing in the gas-liquid two-phase state with a dryness of 0.8 is annular. A liquid phase refrigerant having a large heat capacity is formed in close contact with the inner surface of the inner tube 410 serving as a heat transfer surface. Therefore, it is possible to efficiently absorb heat from the air-conditioning refrigerant flowing through the outer tube 420 of the cascade heat exchanger 340.

また、入水温度60℃、出湯温度90℃のとき、給湯用圧縮機310の吸込冷媒の状態は、前述のとおり圧力5.7MPa、温度35℃であるから、密度は146kg/m3である。
また、給湯用熱交換器320の入口冷媒の状態は、圧力14.2MPa、温度110℃であるから、比エンタルピーは488kJ/kgである。また、給湯用熱交換器320の出口冷媒の状態は圧力14.2MPa、温度65℃であるから、比エンタルピーは373kJ/kgである。
したがって、給湯用圧縮機310の吸込冷媒の体積あたりの加熱能力は、給湯用熱交換器320の入口と出口における冷媒の比エンタルピーの差115kJ/kgに、給湯用圧縮機310の吸込冷媒の密度146kg/m3を乗じることで求まり、16790kJ/m3である。
Further, when the incoming water temperature is 60 ° C. and the outgoing hot water temperature is 90 ° C., the state of the suction refrigerant of the hot water supply compressor 310 is 5.7 MPa and the temperature is 35 ° C. as described above, so the density is 146 kg / m 3.
Moreover, since the state of the inlet refrigerant of the hot water supply heat exchanger 320 is a pressure of 14.2 MPa and a temperature of 110 ° C., the specific enthalpy is 488 kJ / kg. Moreover, since the state of the outlet refrigerant of the hot water supply heat exchanger 320 is a pressure of 14.2 MPa and a temperature of 65 ° C., the specific enthalpy is 373 kJ / kg.
Therefore, the heating capacity per volume of the suction refrigerant of the hot water supply compressor 310 is such that the difference in the specific enthalpy of the refrigerant at the inlet and outlet of the hot water heat exchanger 320 is 115 kJ / kg, and the density of the suction refrigerant of the hot water compressor 310 is It is obtained by multiplying by 146 kg / m3 and is 16790 kJ / m3.

入水温度5℃、出湯温度90℃のとき、給湯用圧縮機310の吸込冷媒の体積あたりの加熱能力を同様にして求めると、36170kJ/m3である。
したがって、入水温度が60℃に上昇する沸き終いにおいては給湯用圧縮機310の周波数を同一で運転する場合の加熱能力は、入水温度が5℃のときと比較して46%となる。
When the inlet water temperature is 5 ° C. and the hot water temperature is 90 ° C., the heating capacity per volume of the suction refrigerant of the hot water supply compressor 310 is 36170 kJ / m 3 in the same manner.
Therefore, at the end of boiling when the incoming water temperature rises to 60 ° C., the heating capacity when operating at the same frequency of the hot water supply compressor 310 is 46% compared to when the incoming water temperature is 5 ° C.

また、カスケード熱交換器340の入口冷媒の状態は、圧力5.7MPa、温度65℃であり、給湯用熱交換器320から流出した冷媒が給湯用冷媒流量調整弁330で等エンタルピー膨張してカスケード熱交換器340に流入するため、比エンタルピーは373kJ/kgである。また、カスケード熱交換器340の出口冷媒の状態は、圧力5.7MPa、温度35℃であるから、比エンタルピーは448kJ/kgである。
したがって、給湯用圧縮機310の吸込冷媒の体積あたりのカスケード熱交換器340で蒸発する冷媒の熱交換量は、カスケード熱交換器340の入口と出口における冷媒の比エンタルピーの差75kJ/kgに給湯用圧縮機310の吸込冷媒の密度146kg/m3を乗じることで求まり、10950kJ/m3である。
In addition, the state of the refrigerant at the inlet of the cascade heat exchanger 340 is a pressure of 5.7 MPa and a temperature of 65 ° C., and the refrigerant flowing out of the hot water supply heat exchanger 320 is expanded by equal enthalpy in the hot water supply refrigerant flow rate adjustment valve 330 to cascade. Since it flows into the heat exchanger 340, the specific enthalpy is 373 kJ / kg. Moreover, since the state of the outlet refrigerant of the cascade heat exchanger 340 is a pressure of 5.7 MPa and a temperature of 35 ° C., the specific enthalpy is 448 kJ / kg.
Therefore, the heat exchange amount of the refrigerant evaporated in the cascade heat exchanger 340 per volume of the refrigerant sucked in the hot water supply compressor 310 is equal to the difference in specific enthalpy of the refrigerant at the inlet and outlet of the cascade heat exchanger 340 to 75 kJ / kg. It is 10950 kJ / m3, which is obtained by multiplying the density of the suction refrigerant of the compressor 310 for the engine 146 kg / m3.

入水温度5℃、出湯温度90℃のとき、給湯用圧縮機310の吸込冷媒の体積当たりのカスケード熱交換器340で蒸発する冷媒の熱交換量を同様にして求めると、32500kJ/m3である。
したがって、入水温度が60℃に上昇する沸き終いにおいては、給湯用圧縮機310の周波数を同一で運転する場合のカスケード熱交換器340で蒸発する冷媒の熱交換量は、入水温度が5℃のときと比較して34%となる。
The heat exchange amount of the refrigerant evaporated in the cascade heat exchanger 340 per volume of the refrigerant sucked in the hot water supply compressor 310 when the incoming water temperature is 5 ° C. and the outgoing hot water temperature 90 ° C. is 32500 kJ / m 3.
Therefore, at the end of boiling when the incoming water temperature rises to 60 ° C., the heat exchange amount of the refrigerant evaporated in the cascade heat exchanger 340 when operating at the same frequency of the hot water supply compressor 310 is 5 ° C. Compared to the time of 34%.

カスケード熱交換器340の外管を流れる空調用冷媒は、入水温度5℃、出湯温度90℃のときには、カスケード熱交換器340において、過熱ガス状態で流入し、二酸化炭素冷媒に放熱することで凝縮し、過冷却状態となって流出する。
しかしながら、入水温度60℃、出湯温度90℃のときには、二酸化炭素冷媒のカスケード熱交換器340で蒸発する冷媒の熱量は入水温度5℃、出湯温度90℃のときと比べて34%に低下するため、乾き度0.8の気液二相状態でカスケード熱交換器340から流出する。したがって、入水温度60℃においては、カスケード熱交換器340を流れる空調用冷媒は過熱ガス状態が大半(60〜70%)占めることになる。
When the inlet water temperature is 5 ° C. and the tapping temperature is 90 ° C., the air-conditioning refrigerant flowing through the outer pipe of the cascade heat exchanger 340 is condensed in the cascade heat exchanger 340 by flowing into the superheated gas state and dissipating heat to the carbon dioxide refrigerant. However, it flows out in a supercooled state.
However, when the incoming water temperature is 60 ° C. and the outgoing hot water temperature is 90 ° C., the amount of heat of the refrigerant evaporated in the carbon dioxide refrigerant cascade heat exchanger 340 is reduced to 34% as compared with the incoming water temperature of 5 ° C. and the outgoing hot water temperature of 90 ° C. Then, it flows out of the cascade heat exchanger 340 in a gas-liquid two-phase state with a dryness of 0.8. Therefore, at the incoming water temperature of 60 ° C., the superheated gas state occupies most (60 to 70%) of the air conditioning refrigerant flowing through the cascade heat exchanger 340.

ところで、冷凍機油と冷媒の混合流体において、過熱ガス状態で管内を流れる場合、冷凍機油が管内表面に付着し油膜を形成する。油膜は熱抵抗となり、冷媒の熱伝達を妨げる。
本実施形態においては、カスケード熱交換器340を流れる空調用冷媒の流路を外管420に配置しているため、過熱ガスで流入する空調用冷媒と冷凍機油の混合流体において、熱抵抗となる油膜は外管420の内表面に密着集中し、熱媒体である過熱ガス冷媒が伝熱面である内管410の外表面と接触することになる。そのため、カスケード熱交換器340の内管410を流れる二酸化炭素冷媒に効率良く放熱することが可能となる。
By the way, in the mixed fluid of refrigeration oil and refrigerant, when flowing in the pipe in a superheated gas state, the refrigeration oil adheres to the inner surface of the pipe and forms an oil film. The oil film becomes a thermal resistance and hinders the heat transfer of the refrigerant.
In this embodiment, since the flow path of the air-conditioning refrigerant flowing through the cascade heat exchanger 340 is arranged in the outer pipe 420, the heat resistance is generated in the mixed fluid of the air-conditioning refrigerant and the refrigerating machine oil flowing in with the superheated gas. The oil film concentrates closely on the inner surface of the outer tube 420, and the superheated gas refrigerant as the heat medium comes into contact with the outer surface of the inner tube 410 as the heat transfer surface. Therefore, it is possible to efficiently dissipate heat to the carbon dioxide refrigerant flowing through the inner pipe 410 of the cascade heat exchanger 340.

次に、カスケード熱交換器340の内管410と給湯用冷媒配管とを接続する分岐部における冷凍機油の流れを説明する。
カスケード熱交換器340で空調用冷媒と熱交換する給湯用冷媒の蒸発温度は、空調用冷媒の凝縮温度の影響を受け、例えば、空調負荷が大きくなり第1回路501を流れる空調用冷媒の凝縮温度が低下するような場合、カスケード熱交換器340内で空調用冷媒と熱交換する給湯用冷媒の蒸発温度が低下する。
Next, the flow of the refrigerating machine oil at the branch portion connecting the inner pipe 410 of the cascade heat exchanger 340 and the hot water supply refrigerant pipe will be described.
The evaporation temperature of the hot water supply refrigerant that exchanges heat with the air conditioning refrigerant in the cascade heat exchanger 340 is affected by the condensation temperature of the air conditioning refrigerant. For example, the condensation of the air conditioning refrigerant flowing through the first circuit 501 due to an increased air conditioning load. When the temperature decreases, the evaporation temperature of the hot water supply refrigerant that exchanges heat with the air conditioning refrigerant in the cascade heat exchanger 340 decreases.

給湯用冷媒の蒸発温度が低下すると、カスケード熱交換器340を流れる第1冷凍サイクルに封入された冷凍機油の粘度が高くなる。冷凍機油の粘度が高くなると配管の曲がり部において滞留し、給湯用冷媒の流れを阻害し、圧力損失が生じる。
本実施形態においては、カスケード熱交換器340の外管420と空調用冷媒配管とを、カスケード熱交換器340内の分岐部近傍を流れる空調用冷媒の流れ方向に対して略垂直方向となるように接続し、かつ、カスケード熱交換器340の内管410と給湯用冷媒配管とを、カスケード熱交換器340内の分岐部近傍を流れる給湯用冷媒の流れ方向に対して略水平方向となるように接続しているため、カスケード熱交換器340の内管410と給湯用冷媒配管とが接続する分岐部において冷凍機油が滞留するのを防ぎ、カスケード熱交換器340内における給湯用冷媒の圧力損失を抑えることができる。
When the evaporation temperature of the hot water supply refrigerant decreases, the viscosity of the refrigerating machine oil enclosed in the first refrigeration cycle flowing through the cascade heat exchanger 340 increases. When the viscosity of the refrigerating machine oil increases, it stays at the bent portion of the pipe, obstructs the flow of the hot water supply refrigerant, and causes pressure loss.
In the present embodiment, the outer pipe 420 of the cascade heat exchanger 340 and the air conditioning refrigerant pipe are substantially perpendicular to the flow direction of the air conditioning refrigerant flowing in the vicinity of the branch portion in the cascade heat exchanger 340. And the inner pipe 410 of the cascade heat exchanger 340 and the hot water supply refrigerant pipe are substantially horizontal to the flow direction of the hot water supply refrigerant flowing in the vicinity of the branch portion in the cascade heat exchanger 340. Therefore, refrigerating machine oil is prevented from staying at the branch portion where the inner pipe 410 of the cascade heat exchanger 340 and the hot water supply refrigerant pipe are connected, and the pressure loss of the hot water supply refrigerant in the cascade heat exchanger 340 Can be suppressed.

次に、室外ユニット100、室内機200、熱生成ユニット300の動作について、図1の冷凍サイクル図を参照しながら説明する。
冷房単独運転時は、室外ユニット100において、室外ガス管開閉弁121を開、室外吸入管開閉弁122を閉に設定し、室内機200において、室内ガス管開閉弁221を閉、室内吸入管開閉弁222を開に設定し、熱生成ユニット300において、熱生成ユニット冷媒流量調整弁350を全閉に設定する。
Next, operations of the outdoor unit 100, the indoor unit 200, and the heat generation unit 300 will be described with reference to the refrigeration cycle diagram of FIG.
During cooling only operation, in the outdoor unit 100, the outdoor gas pipe opening / closing valve 121 is opened and the outdoor suction pipe opening / closing valve 122 is closed, and in the indoor unit 200, the indoor gas pipe opening / closing valve 221 is closed and the indoor suction pipe opening / closing is opened. The valve 222 is set to open, and in the heat generation unit 300, the heat generation unit refrigerant flow rate adjustment valve 350 is set to fully closed.

空調用圧縮機110で圧縮された高温高圧の空調用冷媒は、室外ガス管開閉弁121を経由して室外空気熱交換器115に入り、室外ユニット100周囲の空気により冷却され液状態になる。液状態の空調用冷媒は、全開状態の室外冷媒流量調整弁120を経由して液管170に流入し、室内機200に到達する。   The high-temperature and high-pressure air-conditioning refrigerant compressed by the air-conditioning compressor 110 enters the outdoor air heat exchanger 115 via the outdoor gas pipe on-off valve 121 and is cooled by the air around the outdoor unit 100 to be in a liquid state. The liquid-state air-conditioning refrigerant flows into the liquid pipe 170 via the fully opened outdoor refrigerant flow rate adjustment valve 120 and reaches the indoor unit 200.

室内機200に到達した空調用冷媒は、室内冷媒流量調整弁220で減圧されて低温低圧の気液二相状態になった後、室内熱交換器215に流入して、室内空気から熱を奪って冷房を行う。この過程で空調用冷媒は蒸発し、室内吸入管開閉弁222を経由して吸入管160に入り、室外ユニット100に戻る。室外ユニット100に戻った空調用冷媒はアキュムレータ111を経由して、空調用圧縮機110に戻る。   The air-conditioning refrigerant that has reached the indoor unit 200 is depressurized by the indoor refrigerant flow rate adjustment valve 220 to be in a low-temperature low-pressure gas-liquid two-phase state, and then flows into the indoor heat exchanger 215 to take heat away from the indoor air. To cool. In this process, the air-conditioning refrigerant evaporates, enters the suction pipe 160 via the indoor suction pipe opening / closing valve 222, and returns to the outdoor unit 100. The air conditioning refrigerant that has returned to the outdoor unit 100 returns to the air conditioning compressor 110 via the accumulator 111.

暖房単独運転時は、室外ユニット100において、室外ガス管開閉弁121を閉、室外吸入管開閉弁122を開に設定し、室内機200において、室内ガス管開閉弁221を開、室内吸入管開閉弁222を閉に設定し、熱生成ユニット300において、熱生成ユニット冷媒流量調整弁350を全閉に設定する。   During the single heating operation, in the outdoor unit 100, the outdoor gas pipe on / off valve 121 is closed and the outdoor suction pipe on / off valve 122 is set to open. In the indoor unit 200, the indoor gas pipe on / off valve 221 is opened and the indoor suction pipe on / off is opened. The valve 222 is set to be closed, and in the heat generation unit 300, the heat generation unit refrigerant flow rate adjustment valve 350 is set to be fully closed.

空調用圧縮機110で圧縮された高温高圧の空調用冷媒はガス管150に流入し、室内機200に到達する。室内機200に到達した空調用冷媒は、室内ガス管開閉弁221を経由して、室内熱交換器215に流入して、室内空気に放熱し暖房を行う。この過程で空調用冷媒は凝縮して液化し、全開状態の室内冷媒流量調整弁220を経由して液管170に流入し、室外ユニット100に戻る。   The high-temperature and high-pressure air-conditioning refrigerant compressed by the air-conditioning compressor 110 flows into the gas pipe 150 and reaches the indoor unit 200. The air-conditioning refrigerant that has reached the indoor unit 200 flows into the indoor heat exchanger 215 via the indoor gas pipe opening / closing valve 221 and radiates heat to the indoor air to perform heating. In this process, the air-conditioning refrigerant is condensed and liquefied, flows into the liquid pipe 170 via the fully opened indoor refrigerant flow rate adjustment valve 220, and returns to the outdoor unit 100.

室外ユニット100に戻った空調用冷媒は、室外冷媒流量調整弁120で減圧されて低温低圧の気液二相状態になった後、室外空気熱交換器115に入り、室外ユニット100周囲の空気により加熱されて蒸発する。蒸発し気化した空調用冷媒は、室外吸入管開閉弁122、アキュムレータ111を経由して空調用圧縮機110に戻る。   The air-conditioning refrigerant that has returned to the outdoor unit 100 is decompressed by the outdoor refrigerant flow control valve 120 to be in a low-temperature and low-pressure gas-liquid two-phase state, and then enters the outdoor air heat exchanger 115, and the air around the outdoor unit 100 Evaporates when heated. The evaporated and vaporized refrigerant for air conditioning returns to the air conditioning compressor 110 via the outdoor suction pipe on-off valve 122 and the accumulator 111.

給湯単独運転時は、室外ユニット100において、室外ガス管開閉弁121を閉、室外吸入管開閉弁122を開に設定し、室内機200において、室内ガス管開閉弁221と室内吸入管開閉弁222をともに閉に設定し、熱生成ユニット300において、熱生成ユニット冷媒流量調整弁350を開く。   During the hot water supply independent operation, in the outdoor unit 100, the outdoor gas pipe on / off valve 121 is closed and the outdoor suction pipe on / off valve 122 is set to open. In the indoor unit 200, the indoor gas pipe on / off valve 221 and the indoor suction pipe on / off valve 222 are set. Are both closed, and in the heat generation unit 300, the heat generation unit refrigerant flow rate adjustment valve 350 is opened.

空調用圧縮機110で圧縮された高温高圧の空調用冷媒はガス管150に流入し、熱生成ユニット300に到達する。一方で、熱生成ユニット300内では、給湯用圧縮機310が稼動し、給湯用冷媒が、給湯用圧縮機310、給湯用熱交換器320、給湯用冷媒流量調整弁330、カスケード熱交換器340の順で循環する。   The high-temperature and high-pressure air-conditioning refrigerant compressed by the air-conditioning compressor 110 flows into the gas pipe 150 and reaches the heat generation unit 300. On the other hand, in the heat generating unit 300, the hot water supply compressor 310 is operated, and the hot water supply refrigerant is the hot water supply compressor 310, the hot water supply heat exchanger 320, the hot water supply refrigerant flow rate adjustment valve 330, and the cascade heat exchanger 340. It circulates in the order.

熱生成ユニット300に到達した空調用冷媒は、カスケード熱交換器340にて給湯用冷媒を加熱し、自身は冷却されて液化した後、熱生成ユニット冷媒流量調整弁350を経由して、液管170に流入し、室外ユニット100に戻る。
室外ユニット100に戻った空調用冷媒は、室外冷媒流量調整弁120で減圧されて低温低圧の気液二相状態になった後、室外空気熱交換器115に入り、室外ユニット100周囲の空気により加熱されて蒸発する。蒸発し気化した空調用冷媒は、室外吸入管開閉弁122、アキュムレータ111を経由して空調用圧縮機110に戻る。
The air-conditioning refrigerant that has reached the heat generating unit 300 heats the hot water supply refrigerant in the cascade heat exchanger 340 and cools and liquefies itself, and then passes through the heat generating unit refrigerant flow rate adjustment valve 350 to the liquid pipe. It flows into 170 and returns to the outdoor unit 100.
The air-conditioning refrigerant that has returned to the outdoor unit 100 is decompressed by the outdoor refrigerant flow control valve 120 to be in a low-temperature and low-pressure gas-liquid two-phase state, and then enters the outdoor air heat exchanger 115, and the air around the outdoor unit 100 Evaporates when heated. The evaporated and vaporized refrigerant for air conditioning returns to the air conditioning compressor 110 via the outdoor suction pipe on-off valve 122 and the accumulator 111.

一方、カスケード熱交換器340で空調用冷媒により加熱された給湯用冷媒は気化し、給湯用圧縮機310に入る。給湯用圧縮機310で高温高圧に圧縮された給湯用冷媒は、給湯用熱交換器320に入り、熱媒体を70〜90℃にまで加熱する。この過程で給湯用冷媒は冷却されて液化し、給湯用冷媒流量調整弁330で減圧された後、再びカスケード熱交換器340に戻る。   On the other hand, the hot water supply refrigerant heated by the air conditioning refrigerant in the cascade heat exchanger 340 is vaporized and enters the hot water supply compressor 310. The hot water supply refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 310 enters the hot water supply heat exchanger 320 and heats the heat medium to 70 to 90 ° C. In this process, the hot water supply refrigerant is cooled and liquefied, decompressed by the hot water supply refrigerant flow rate adjustment valve 330, and then returned to the cascade heat exchanger 340 again.

冷房と暖房の同時運転時において、冷房負荷と暖房負荷がほぼ等しい場合は、室外ユニット100において、室外ガス管開閉弁121と室外吸入管開閉弁122はともに閉に設定する。
冷房を行う室内機200では、室内ガス管開閉弁221を閉、室内吸入管開閉弁222を開に設定し、暖房を行う室内機200では、室内ガス管開閉弁221を開、室内吸入管開閉弁222を閉に設定する。また、熱生成ユニット300において、熱生成ユニット冷媒流量調整弁350を全閉に設定する。
If the cooling load and the heating load are substantially equal during the simultaneous cooling and heating operation, both the outdoor gas pipe opening / closing valve 121 and the outdoor intake pipe opening / closing valve 122 are set to be closed in the outdoor unit 100.
In the indoor unit 200 that performs cooling, the indoor gas pipe open / close valve 221 is closed and the indoor intake pipe open / close valve 222 is set to open. In the indoor unit 200 that performs heating, the indoor gas pipe open / close valve 221 is opened and the indoor intake pipe open / close is opened. Valve 222 is set to closed. Further, in the heat generation unit 300, the heat generation unit refrigerant flow rate adjustment valve 350 is set to be fully closed.

空調用圧縮機110で圧縮された高温高圧の空調用冷媒はガス管150に流入し、暖房を行う室内機200に到達する。暖房を行う室内機200に到達した空調用冷媒は、室内ガス管開閉弁221を経由して、室内熱交換器215に流入して、室内空気に放熱し暖房を行う。この過程で空調用冷媒は凝縮して液化し、全開状態の室内冷媒流量調整弁220を経由して液管170に流入する。   The high-temperature and high-pressure air-conditioning refrigerant compressed by the air-conditioning compressor 110 flows into the gas pipe 150 and reaches the indoor unit 200 that performs heating. The air-conditioning refrigerant that has reached the indoor unit 200 that performs heating flows into the indoor heat exchanger 215 via the indoor gas pipe opening / closing valve 221, dissipates heat to the indoor air, and performs heating. In this process, the air-conditioning refrigerant is condensed and liquefied, and flows into the liquid pipe 170 through the fully opened indoor refrigerant flow rate adjustment valve 220.

液管170に流入した液状態の空調用冷媒は、冷房を行う室内機200に到達する。冷房を行う室内機200に到達した空調用冷媒は、室内冷媒流量調整弁220で減圧されて低温低圧の気液二相状態になった後、室内熱交換器215に流入して、室内空気から熱を奪って冷房を行う。この過程で空調用冷媒は蒸発し、室内吸入管開閉弁222を経由して吸入管160に入り、室外ユニット100に戻る。室外ユニット100に戻った空調用冷媒はアキュムレータ111を経由して、空調用圧縮機110に戻る。   The liquid-state air-conditioning refrigerant that has flowed into the liquid pipe 170 reaches the indoor unit 200 that performs cooling. The air-conditioning refrigerant that has reached the indoor unit 200 for cooling is decompressed by the indoor refrigerant flow rate adjustment valve 220 to be in a low-temperature and low-pressure gas-liquid two-phase state, and then flows into the indoor heat exchanger 215 from the indoor air. Take away heat and cool. In this process, the air-conditioning refrigerant evaporates, enters the suction pipe 160 via the indoor suction pipe opening / closing valve 222, and returns to the outdoor unit 100. The air conditioning refrigerant that has returned to the outdoor unit 100 returns to the air conditioning compressor 110 via the accumulator 111.

なお、冷房負荷の方が暖房負荷より大きい場合は、暖房を行う室内機200から、冷房を行う室内機200に供給する液冷媒が足りないため、その一部を室外ユニット100の室外空気熱交換器115で生成する。
すなわち、室外吸入管開閉弁122を閉としたままで室外ガス管開閉弁121を開として、空調用圧縮機110が吐出した冷媒の一部を、室外空気熱交換器115に供給して液化し、室外冷媒流量調整弁120と液管170を経由して、冷房を行う室内機200に供給する。
When the cooling load is larger than the heating load, since there is not enough liquid refrigerant to be supplied from the indoor unit 200 that performs heating to the indoor unit 200 that performs cooling, a part of the outdoor unit 100 performs outdoor air heat exchange. It is generated by the device 115.
That is, the outdoor gas pipe on / off valve 121 is opened while the outdoor suction pipe on / off valve 122 is closed, and a part of the refrigerant discharged from the air conditioning compressor 110 is supplied to the outdoor air heat exchanger 115 to be liquefied. Then, the refrigerant is supplied to the indoor unit 200 that performs cooling via the outdoor refrigerant flow rate adjustment valve 120 and the liquid pipe 170.

逆に、暖房負荷の方が冷房負荷より大きい場合は、暖房を行う室内機200から供給される液冷媒を、冷房を行う室内機200では全て蒸発させることができないため、液冷媒の一部を室外ユニット100の室外空気熱交換器115で蒸発させる。
すなわち、室外ガス管開閉弁121を閉としたままで室外吸入管開閉弁122を開として、暖房を行う室内機200から流出した液冷媒を、液管170経由で室外ユニット100に戻す。室外ユニット100に戻った液冷媒は、室外冷媒流量調整弁120で減圧した後、室外空気熱交換器115にて蒸発する。気化した空調用冷媒は室外吸入管開閉弁122を経由して、アキュムレータ111、空調用圧縮機110に戻る。
On the contrary, when the heating load is larger than the cooling load, the liquid refrigerant supplied from the indoor unit 200 that performs heating cannot be completely evaporated in the indoor unit 200 that performs cooling. Evaporation is performed by the outdoor air heat exchanger 115 of the outdoor unit 100.
That is, the outdoor suction pipe on / off valve 122 is opened while the outdoor gas pipe on / off valve 121 is closed, and the liquid refrigerant flowing out from the indoor unit 200 for heating is returned to the outdoor unit 100 via the liquid pipe 170. The liquid refrigerant that has returned to the outdoor unit 100 is depressurized by the outdoor refrigerant flow control valve 120 and then evaporated by the outdoor air heat exchanger 115. The vaporized air-conditioning refrigerant returns to the accumulator 111 and the air-conditioning compressor 110 via the outdoor suction pipe opening / closing valve 122.

冷房と給湯の同時運転時において、冷房負荷と給湯負荷がほぼ等しい場合は、室外ユニット100において、室外ガス管開閉弁121と室外吸入管開閉弁122はともに閉に設定する。
冷房を行う室内機200では、室内ガス管開閉弁221を閉、室内吸入管開閉弁222を開に設定し、熱生成ユニット300において、熱生成ユニット冷媒流量調整弁350を開く。
If the cooling load and the hot water supply load are substantially equal during the simultaneous operation of cooling and hot water supply, in the outdoor unit 100, both the outdoor gas pipe open / close valve 121 and the outdoor intake pipe open / close valve 122 are set to be closed.
In the indoor unit 200 that performs cooling, the indoor gas pipe opening / closing valve 221 is closed, the indoor intake pipe opening / closing valve 222 is set to open, and the heat generation unit refrigerant flow rate adjustment valve 350 is opened in the heat generation unit 300.

空調用圧縮機110で圧縮された高温高圧の空調用冷媒は、ガス管150に流入し、熱生成ユニット300に到達する。一方で、熱生成ユニット300内では、給湯用圧縮機310が稼動し、給湯用冷媒が、給湯用圧縮機310、給湯用熱交換器320、給湯用冷媒流量調整弁330、カスケード熱交換器340の順で循環する。   The high-temperature and high-pressure air-conditioning refrigerant compressed by the air-conditioning compressor 110 flows into the gas pipe 150 and reaches the heat generation unit 300. On the other hand, in the heat generating unit 300, the hot water supply compressor 310 is operated, and the hot water supply refrigerant is the hot water supply compressor 310, the hot water supply heat exchanger 320, the hot water supply refrigerant flow rate adjustment valve 330, and the cascade heat exchanger 340. It circulates in the order.

熱生成ユニット300に到達した空調用冷媒は、カスケード熱交換器340にて給湯用冷媒を加熱し、自身は冷却されて液化した後、熱生成ユニット冷媒流量調整弁350を経由して、液管170に流入する。   The air-conditioning refrigerant that has reached the heat generating unit 300 heats the hot water supply refrigerant in the cascade heat exchanger 340 and cools and liquefies itself, and then passes through the heat generating unit refrigerant flow rate adjustment valve 350 to the liquid pipe. Flows into 170.

液管170に流入した液状態の空調用冷媒は、冷房を行う室内機200に到達する。冷房を行う室内機200に到達した空調用冷媒は、室内冷媒流量調整弁220で減圧されて低温低圧の気液二相状態になった後、室内熱交換器215に流入して、室内空気から熱を奪って冷房を行う。
この過程で、空調用冷媒は蒸発し、室内吸入管開閉弁222を経由して吸入管160に入り、室外ユニット100に戻る。室外ユニット100に戻った空調用冷媒はアキュムレータ111を経由して、空調用圧縮機110に戻る。
The liquid-state air-conditioning refrigerant that has flowed into the liquid pipe 170 reaches the indoor unit 200 that performs cooling. The air-conditioning refrigerant that has reached the indoor unit 200 for cooling is decompressed by the indoor refrigerant flow rate adjustment valve 220 to be in a low-temperature and low-pressure gas-liquid two-phase state, and then flows into the indoor heat exchanger 215 from the indoor air. Take away heat and cool.
In this process, the air-conditioning refrigerant evaporates, enters the suction pipe 160 via the indoor suction pipe opening / closing valve 222, and returns to the outdoor unit 100. The air conditioning refrigerant that has returned to the outdoor unit 100 returns to the air conditioning compressor 110 via the accumulator 111.

一方、カスケード熱交換器340で空調用冷媒により加熱された給湯用冷媒は気化し、給湯用圧縮機310に入る。給湯用圧縮機310で高温高圧に圧縮された給湯用冷媒は、給湯用熱交換器320に入り、熱媒体を70〜90℃にまで加熱する。
この過程で、給湯用冷媒は冷却されて液化し、給湯用冷媒流量調整弁330で減圧された後、再びカスケード熱交換器340に戻る。
On the other hand, the hot water supply refrigerant heated by the air conditioning refrigerant in the cascade heat exchanger 340 is vaporized and enters the hot water supply compressor 310. The hot water supply refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 310 enters the hot water supply heat exchanger 320 and heats the heat medium to 70 to 90 ° C.
In this process, the hot water supply refrigerant is cooled and liquefied, and is depressurized by the hot water supply refrigerant flow rate adjustment valve 330, and then returns to the cascade heat exchanger 340 again.

なお、冷房負荷が給湯負荷よりも大きい場合は、熱生成ユニット300から冷房を行う室内機200に供給する液冷媒が足りないため、その一部を室外ユニット100の室外空気熱交換器115で生成する。
すなわち、室外吸入管開閉弁122を閉としたままで、室外ガス管開閉弁121を開として、空調用圧縮機110が吐出した冷媒の一部を、室外空気熱交換器115に供給して液化し、室外冷媒流量調整弁120と液管170を経由して、冷房を行う室内機200に供給する。
When the cooling load is larger than the hot water supply load, since there is not enough liquid refrigerant to be supplied from the heat generation unit 300 to the indoor unit 200 that performs cooling, a part of the refrigerant is generated by the outdoor air heat exchanger 115 of the outdoor unit 100. To do.
That is, with the outdoor suction pipe on / off valve 122 closed, the outdoor gas pipe on / off valve 121 is opened, and a part of the refrigerant discharged from the air conditioning compressor 110 is supplied to the outdoor air heat exchanger 115 to be liquefied. Then, the refrigerant is supplied to the indoor unit 200 that performs cooling via the outdoor refrigerant flow rate adjustment valve 120 and the liquid pipe 170.

一方、給湯負荷の方が冷房負荷より大きい場合は、熱生成ユニット300から供給される液冷媒を、冷房を行う室内機200では全て蒸発させることができないため、液冷媒の一部を室外ユニット100の室外空気熱交換器115で蒸発させる。
すなわち、室外ガス管開閉弁121を閉としたままで室外吸入管開閉弁122を開として、暖房を行う室内機200から流出した液冷媒の一部を、液管170経由で室外ユニット100に戻す。
On the other hand, when the hot water supply load is larger than the cooling load, the liquid refrigerant supplied from the heat generation unit 300 cannot be completely evaporated in the indoor unit 200 that performs cooling. The outdoor air heat exchanger 115 evaporates.
That is, the outdoor suction pipe on / off valve 122 is opened while the outdoor gas pipe on / off valve 121 is closed, and a part of the liquid refrigerant flowing out from the indoor unit 200 that performs heating is returned to the outdoor unit 100 via the liquid pipe 170. .

室外ユニット100に戻った液冷媒は、室外冷媒流量調整弁120で減圧した後、室外空気熱交換器115にて蒸発する。気化した空調用冷媒は室外吸入管開閉弁122を経由して、アキュムレータ111、空調用圧縮機110に戻る。   The liquid refrigerant that has returned to the outdoor unit 100 is depressurized by the outdoor refrigerant flow control valve 120 and then evaporated by the outdoor air heat exchanger 115. The vaporized air-conditioning refrigerant returns to the accumulator 111 and the air-conditioning compressor 110 via the outdoor suction pipe opening / closing valve 122.

暖房と給湯の同時運転時は、室外ユニット100において、室外ガス管開閉弁121を閉、室外吸入管開閉弁122を開に設定し、室内機200において、室内ガス管開閉弁221を開、室内吸入管開閉弁222を閉に設定し、熱生成ユニット300において、熱生成ユニット冷媒流量調整弁350を開く。   During simultaneous operation of heating and hot water supply, in the outdoor unit 100, the outdoor gas pipe on / off valve 121 is closed and the outdoor suction pipe on / off valve 122 is set to open. In the indoor unit 200, the indoor gas pipe on / off valve 221 is opened, The suction pipe opening / closing valve 222 is set to be closed, and the heat generation unit refrigerant flow rate adjustment valve 350 is opened in the heat generation unit 300.

空調用圧縮機110で圧縮された高温高圧の空調用冷媒はガス管150に流入し、室内機200と熱生成ユニット300に到達する。室内機200に到達した空調用冷媒は、室内ガス管開閉弁221を経由して、室内熱交換器215に流入して、室内空気に放熱し暖房を行う。この過程で空調用冷媒は凝縮して液化し、全開状態の室内冷媒流量調整弁220を経由して液管170に流入する。   The high-temperature and high-pressure air-conditioning refrigerant compressed by the air-conditioning compressor 110 flows into the gas pipe 150 and reaches the indoor unit 200 and the heat generation unit 300. The air-conditioning refrigerant that has reached the indoor unit 200 flows into the indoor heat exchanger 215 via the indoor gas pipe opening / closing valve 221 and radiates heat to the indoor air to perform heating. In this process, the air-conditioning refrigerant is condensed and liquefied, and flows into the liquid pipe 170 through the fully opened indoor refrigerant flow rate adjustment valve 220.

熱生成ユニット300に到達した空調用冷媒は、カスケード熱交換器340にて給湯用冷媒を加熱し、自身は冷却されて液化した後、熱生成ユニット冷媒流量調整弁350を経由して、液管170に流入する。
この液冷媒は、暖房を行う室内機200から流出した液冷媒と合流し、室外ユニット100に戻る。室外ユニットに戻った液冷媒は、室外冷媒流量調整弁120で減圧した後、室外空気熱交換器115にて蒸発させる。気化した空調用冷媒は室外吸入管開閉弁122を経由して、アキュムレータ111、空調用圧縮機110に戻る。
The air-conditioning refrigerant that has reached the heat generating unit 300 heats the hot water supply refrigerant in the cascade heat exchanger 340 and cools and liquefies itself, and then passes through the heat generating unit refrigerant flow rate adjustment valve 350 to the liquid pipe. Flows into 170.
This liquid refrigerant merges with the liquid refrigerant that has flowed out of the indoor unit 200 that performs heating, and returns to the outdoor unit 100. The liquid refrigerant returned to the outdoor unit is depressurized by the outdoor refrigerant flow control valve 120 and then evaporated by the outdoor air heat exchanger 115. The vaporized air-conditioning refrigerant returns to the accumulator 111 and the air-conditioning compressor 110 via the outdoor suction pipe opening / closing valve 122.

一方、カスケード熱交換器340で空調用冷媒により加熱された給湯用冷媒は気化し、給湯用圧縮機310に入る。給湯用圧縮機310で高温高圧に圧縮された給湯用冷媒は、給湯用熱交換器320に入り、熱媒体を70〜90℃にまで加熱する。
この過程で給湯用冷媒は冷却されて液化し、給湯用冷媒流量調整弁330で減圧された後、再びカスケード熱交換器340に戻る。
On the other hand, the hot water supply refrigerant heated by the air conditioning refrigerant in the cascade heat exchanger 340 is vaporized and enters the hot water supply compressor 310. The hot water supply refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 310 enters the hot water supply heat exchanger 320 and heats the heat medium to 70 to 90 ° C.
In this process, the hot water supply refrigerant is cooled and liquefied, decompressed by the hot water supply refrigerant flow rate adjustment valve 330, and then returned to the cascade heat exchanger 340 again.

冷房と暖房と給湯の同時運転時は、冷房負荷と、暖房負荷と給湯負荷との和がほぼ等しい場合は、室外ユニット100において、室外ガス管開閉弁121と室外吸入管開閉弁122はともに閉に設定する。
冷房を行う室内機200では、室内ガス管開閉弁221を閉、室内吸入管開閉弁222を開に設定し、暖房を行う室内機200では、室内ガス管開閉弁221を開、室内吸入管開閉弁222を閉に設定する。また、熱生成ユニット300において、熱生成ユニット冷媒流量調整弁350を開く。
During simultaneous operation of cooling, heating and hot water supply, if the sum of the cooling load and the heating load and hot water supply load is substantially equal, in the outdoor unit 100, both the outdoor gas pipe open / close valve 121 and the outdoor intake pipe open / close valve 122 are closed. Set to.
In the indoor unit 200 that performs cooling, the indoor gas pipe open / close valve 221 is closed and the indoor intake pipe open / close valve 222 is set to open. In the indoor unit 200 that performs heating, the indoor gas pipe open / close valve 221 is opened and the indoor intake pipe open / close is opened. Valve 222 is set to closed. In the heat generation unit 300, the heat generation unit refrigerant flow rate adjustment valve 350 is opened.

空調用圧縮機110で圧縮された高温高圧の空調用冷媒は、ガス管150に流入し、暖房を行う室内機200と熱生成ユニット300に到達する。一方で、熱生成ユニット300内では、給湯用圧縮機310が稼動し、給湯用冷媒が、給湯用圧縮機310、給湯用熱交換器320、給湯用冷媒流量調整弁330、カスケード熱交換器340の順で循環する。
暖房を行う室内機200に到達した空調用冷媒は、室内ガス管開閉弁221を経由して、室内熱交換器215に流入して、室内空気に放熱し暖房を行う。この過程で空調用冷媒は凝縮して液化し、全開状態の室内冷媒流量調整弁220を経由して液管170に流入する。
The high-temperature and high-pressure air-conditioning refrigerant compressed by the air-conditioning compressor 110 flows into the gas pipe 150 and reaches the indoor unit 200 and the heat generation unit 300 that perform heating. On the other hand, in the heat generating unit 300, the hot water supply compressor 310 is operated, and the hot water supply refrigerant is the hot water supply compressor 310, the hot water supply heat exchanger 320, the hot water supply refrigerant flow rate adjustment valve 330, and the cascade heat exchanger 340. It circulates in the order.
The air-conditioning refrigerant that has reached the indoor unit 200 that performs heating flows into the indoor heat exchanger 215 via the indoor gas pipe opening / closing valve 221, dissipates heat to the indoor air, and performs heating. In this process, the air-conditioning refrigerant is condensed and liquefied, and flows into the liquid pipe 170 through the fully opened indoor refrigerant flow rate adjustment valve 220.

熱生成ユニット300に到達した空調用冷媒は、カスケード熱交換器340にて給湯用冷媒を加熱し、自身は冷却されて液化した後、熱生成ユニット冷媒流量調整弁350を経由して、液管170に流入する。
暖房を行う室内機200と熱生成ユニット300から液管170に流入した液化した空調用冷媒は合流し、冷房を行う室内機200に到達する。
冷房を行う室内機200に到達した空調用冷媒は、室内冷媒流量調整弁220で減圧されて低温低圧の気液二相状態になった後、室内熱交換器215に流入して、室内空気から熱を奪って冷房を行う。この過程で空調用冷媒は蒸発し、室内吸入管開閉弁222を経由して吸入管160に入り、室外ユニット100に戻る。
室外ユニット100に戻った空調用冷媒はアキュムレータ111を経由して、空調用圧縮機110に戻る。
The air-conditioning refrigerant that has reached the heat generating unit 300 heats the hot water supply refrigerant in the cascade heat exchanger 340 and cools and liquefies itself, and then passes through the heat generating unit refrigerant flow rate adjustment valve 350 to the liquid pipe. Flows into 170.
The indoor unit 200 that performs heating and the liquefied air-conditioning refrigerant that has flowed into the liquid pipe 170 from the heat generation unit 300 merge to reach the indoor unit 200 that performs cooling.
The air-conditioning refrigerant that has reached the indoor unit 200 for cooling is decompressed by the indoor refrigerant flow rate adjustment valve 220 to be in a low-temperature and low-pressure gas-liquid two-phase state, and then flows into the indoor heat exchanger 215 from the indoor air. Take away heat and cool. In this process, the air-conditioning refrigerant evaporates, enters the suction pipe 160 via the indoor suction pipe opening / closing valve 222, and returns to the outdoor unit 100.
The air conditioning refrigerant that has returned to the outdoor unit 100 returns to the air conditioning compressor 110 via the accumulator 111.

一方、カスケード熱交換器340で空調用冷媒により加熱された給湯用冷媒は気化し、給湯用圧縮機310に入る。給湯用圧縮機310で高温高圧に圧縮された給湯用冷媒は、給湯用熱交換器320に入り、熱媒体を70〜90℃にまで加熱する。
この過程で給湯用冷媒は冷却されて液化し、給湯用冷媒流量調整弁330で減圧された後、再びカスケード熱交換器340に戻る。
On the other hand, the hot water supply refrigerant heated by the air conditioning refrigerant in the cascade heat exchanger 340 is vaporized and enters the hot water supply compressor 310. The hot water supply refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 310 enters the hot water supply heat exchanger 320 and heats the heat medium to 70 to 90 ° C.
In this process, the hot water supply refrigerant is cooled and liquefied, decompressed by the hot water supply refrigerant flow rate adjustment valve 330, and then returned to the cascade heat exchanger 340 again.

なお、冷房負荷が、暖房負荷と給湯負荷の和よりも大きい場合は、暖房を行う室内機200と熱生成ユニット300から冷房を行う室内機200に供給する液冷媒が足りないため、その一部を室外ユニット100の室外空気熱交換器115で生成する。
すなわち、室外吸入管開閉弁122を閉としたままで室外ガス管開閉弁121を開として、空調用圧縮機110が吐出した冷媒の一部を、室外空気熱交換器115に供給して液化し、室外冷媒流量調整弁120と液管170を経由して、冷房を行う室内機200に供給する。
Note that when the cooling load is larger than the sum of the heating load and the hot water supply load, there is not enough liquid refrigerant to be supplied from the indoor unit 200 that performs heating and the indoor unit 200 that performs cooling from the heat generation unit 300. Is generated by the outdoor air heat exchanger 115 of the outdoor unit 100.
That is, the outdoor gas pipe on / off valve 121 is opened while the outdoor suction pipe on / off valve 122 is closed, and a part of the refrigerant discharged from the air conditioning compressor 110 is supplied to the outdoor air heat exchanger 115 to be liquefied. Then, the refrigerant is supplied to the indoor unit 200 that performs cooling via the outdoor refrigerant flow rate adjustment valve 120 and the liquid pipe 170.

一方、暖房負荷と給湯負荷の和が冷房負荷より大きい場合は、暖房を行う室内機200と熱生成ユニット300から供給される液冷媒を、冷房を行う室内機200では全て蒸発させることができないため、液冷媒の一部を室外ユニット100の室外空気熱交換器115で蒸発させる。
すなわち、室外ガス管開閉弁121を閉としたままで室外吸入管開閉弁122を開として、暖房を行う室内機200と熱生成ユニット300から流出した液冷媒の一部を、液管170経由で室外ユニット100に戻す。
On the other hand, when the sum of the heating load and the hot water supply load is larger than the cooling load, the liquid refrigerant supplied from the indoor unit 200 that performs heating and the heat generation unit 300 cannot be completely evaporated in the indoor unit 200 that performs cooling. A part of the liquid refrigerant is evaporated by the outdoor air heat exchanger 115 of the outdoor unit 100.
That is, the outdoor suction pipe on / off valve 122 is opened while the outdoor gas pipe on / off valve 121 is closed, and a part of the liquid refrigerant flowing out from the indoor unit 200 for heating and the heat generating unit 300 is passed through the liquid pipe 170. Return to the outdoor unit 100.

室外ユニット100に戻った液冷媒は、室外冷媒流量調整弁120で減圧した後、室外空気熱交換器115にて蒸発する。気化した空調用冷媒は室外吸入管開閉弁122を経由して、アキュムレータ111、空調用圧縮機110に戻る。   The liquid refrigerant that has returned to the outdoor unit 100 is depressurized by the outdoor refrigerant flow control valve 120 and then evaporated by the outdoor air heat exchanger 115. The vaporized air-conditioning refrigerant returns to the accumulator 111 and the air-conditioning compressor 110 via the outdoor suction pipe opening / closing valve 122.

次に、熱生成ユニット300における熱媒体の動作について、図2および図3を参照しながら説明する。
給湯単独運転時、冷房と給湯の同時運転時、暖房と給湯の同時運転時、冷房と暖房と給湯の同時運転時に、給湯用圧縮機310と熱媒体ポンプ360は稼動する。
熱媒体ポンプ360が稼働中、熱媒体は、上水道などの熱生成ユニット300外から熱生成ユニット300内に流入し、熱媒体配管380aを通って熱媒体ポンプ360に入る。
Next, the operation of the heat medium in the heat generation unit 300 will be described with reference to FIGS.
The hot water supply compressor 310 and the heat medium pump 360 operate during a single hot water supply operation, a simultaneous operation of cooling and hot water supply, a simultaneous operation of heating and hot water supply, and a simultaneous operation of cooling, heating and hot water supply.
While the heat medium pump 360 is in operation, the heat medium flows into the heat generation unit 300 from outside the heat generation unit 300 such as a water supply, and enters the heat medium pump 360 through the heat medium pipe 380a.

熱媒体ポンプ360に流入した熱媒体は、吐出口から熱媒体配管380bに流入し、給湯用熱交換器320に入る。熱媒体は、二重管式熱交換器である給湯用熱交換器320にて、給湯用圧縮機310が吐出した高温の給湯用冷媒と熱交換し、70〜90℃まで加熱された後、熱媒体配管380cを経由して、熱生成ユニット300外に送出される。
なお、空調給湯システムにおいては、貯湯タンクに湯を蓄える時に、貯湯タンクの下部の比較的温度の低い水を熱生成ユニット300に供給するが、貯湯タンク内の湯が溜まってくると熱生成ユニット300に供給される水の温度は除序に上昇する、いわゆる沸き終い運転となる。
The heat medium flowing into the heat medium pump 360 flows into the heat medium pipe 380b from the discharge port and enters the heat exchanger 320 for hot water supply. The heat medium exchanges heat with the hot water supply refrigerant discharged from the hot water supply compressor 310 in the hot water supply heat exchanger 320 which is a double-pipe heat exchanger, and is heated to 70 to 90 ° C. It is sent out of the heat generation unit 300 via the heat medium pipe 380c.
In the air conditioning and hot water supply system, when hot water is stored in the hot water storage tank, water having a relatively low temperature below the hot water storage tank is supplied to the heat generating unit 300. However, when hot water in the hot water storage tank has accumulated, the heat generating unit The temperature of the water supplied to 300 rises gradually, so-called boiling end operation.

以上の記述から明らかのように、本実施の形態では、カスケード熱交換器340として外管420と内管410とからなる二重管式熱交換器を用い、給湯用冷媒を内管410に流通させることで、入水温度が高くなるいわゆる沸き終い運転において、高段側冷媒の流動形式が環状流が支配的になるときにおいても、吸熱源である液相冷媒が内管内表面に密着集中し、かつ、沸き終い運転において低段側冷媒の状態として過熱ガス状態が支配的となるときにおいても、熱抵抗となる油膜が外管420の内表面に密着集中し、熱媒体である過熱ガス冷媒が伝熱面である内管410の外表面と接触しやすくなる。   As is clear from the above description, in the present embodiment, a double-pipe heat exchanger composed of an outer tube 420 and an inner tube 410 is used as the cascade heat exchanger 340, and hot water supply refrigerant is circulated to the inner tube 410. Therefore, in the so-called end-of-boiling operation where the incoming water temperature rises, even when the flow form of the high-stage refrigerant is dominated by the annular flow, the liquid-phase refrigerant as the heat absorption source is closely concentrated on the inner pipe inner surface. In addition, even when the superheated gas state is dominant as the state of the low-stage refrigerant in the operation at the end of boiling, the oil film that becomes the thermal resistance is closely concentrated on the inner surface of the outer tube 420, and the superheated gas that is the heat medium It becomes easy for the refrigerant to come into contact with the outer surface of the inner tube 410 that is the heat transfer surface.

よって、沸き終い運転において熱生成ユニット300に供給される入水温度が高くなるときにおいても、カスケード熱交換器340において高段側冷媒と低段側冷媒との間で効率よく熱交換され、給湯システムの運転効率を向上させることができる。
また、空調負荷が大きくなり第1回路501を流れる空調用冷媒の凝縮温度が低下するような場合においても、第1冷凍サイクル500の効率低下の要因となるカスケード熱交換器340の内管410と給湯用冷媒配管とが接続する分岐部における冷凍機油が滞留するのを防ぎ、給湯用冷媒の圧力損失を抑えることができるため、第1冷凍サイクル500の効率を高くすることができる。
Therefore, even when the incoming water temperature supplied to the heat generation unit 300 becomes high in the operation after boiling, heat is efficiently exchanged between the high-stage side refrigerant and the low-stage side refrigerant in the cascade heat exchanger 340. The operating efficiency of the system can be improved.
In addition, even when the air conditioning load increases and the condensation temperature of the air conditioning refrigerant flowing through the first circuit 501 decreases, the inner pipe 410 of the cascade heat exchanger 340 that causes the efficiency of the first refrigeration cycle 500 to decrease Since it is possible to prevent the refrigeration oil from staying in the branch portion connected to the hot water supply refrigerant pipe and suppress the pressure loss of the hot water supply refrigerant, the efficiency of the first refrigeration cycle 500 can be increased.

また、本実施形態では、カスケード熱交換器340の内管410と外管420とがそれぞれ給湯用冷媒配管と空調用冷媒配管とに接続する分岐部において、外管420と空調用冷媒配管とを、カスケード熱交換器340内の分岐部近傍を流れる空調用冷媒の流れ方向に対して略垂直方向に接続され、内管410と給湯用冷媒配管とを、カスケード熱交換器340内の分岐部近傍を流れる給湯用冷媒の流れ方向に対して略水平方向に接続されているので、空調負荷が大きくなり第1回路501を流れる空調用冷媒の凝縮温度が低下するような場合においても、第1冷凍サイクル500の効率低下の要因となるカスケード熱交換器340の内管410と給湯用冷媒配管とが接続する分岐部で給湯用冷媒の圧力損失を抑えることができるため、第1冷凍サイクル500の効率を高くすることができる。   Further, in the present embodiment, the outer pipe 420 and the air conditioning refrigerant pipe are connected at a branch portion where the inner pipe 410 and the outer pipe 420 of the cascade heat exchanger 340 are connected to the hot water supply refrigerant pipe and the air conditioning refrigerant pipe, respectively. The inner pipe 410 and the hot water supply refrigerant pipe are connected in the vicinity of the branch portion in the cascade heat exchanger 340. Since the air conditioning load increases and the condensation temperature of the air conditioning refrigerant flowing through the first circuit 501 decreases, the first refrigeration is performed. The pressure loss of the hot water supply refrigerant can be suppressed at the branch portion where the inner pipe 410 of the cascade heat exchanger 340 and the hot water supply refrigerant pipe that cause the efficiency reduction of the cycle 500 are connected. It is possible to increase the efficiency of the freezing cycle 500.

本発明は、冷房、暖房、給湯に必要な温冷熱を同時に供給できる空調給湯システムにおいて、沸き終いで入水温度が高くなるときもカスケード熱交換器340において高段側冷媒および低段側冷媒の熱伝達率が低下することなく、運転効率の高い給湯システムを提供するものとして好適に利用することができる。   The present invention is an air-conditioning hot water supply system capable of simultaneously supplying hot and cold heat necessary for cooling, heating, and hot water supply. Even when the incoming water temperature becomes high after boiling, the heat of the high-stage refrigerant and the low-stage refrigerant in the cascade heat exchanger 340 It can be suitably used as one that provides a hot water supply system with high operating efficiency without lowering the transmission rate.

100 室外ユニット
110 空調用圧縮機
115 室外熱交換器
150 ガス管
160 吸入管
170 液管
200 室内機
215 室内熱交換器
220 室内機冷媒流量調整弁
300 熱生成ユニット
310 給湯用圧縮機
320 給湯用熱交換器
330 給湯用冷媒流量調整弁
340 カスケード熱交換器
350 熱生成ユニット冷媒流量調整弁
360 熱媒体ポンプ
380 熱媒体配管
390 排水口
400 側板部材
410 内管
420 外管
500 第1冷凍サイクル
501 第1回路
502 第2回路
510 第2冷凍サイクル
DESCRIPTION OF SYMBOLS 100 Outdoor unit 110 Air-conditioning compressor 115 Outdoor heat exchanger 150 Gas pipe 160 Intake pipe 170 Liquid pipe 200 Indoor unit 215 Indoor heat exchanger 220 Indoor unit refrigerant flow rate adjustment valve 300 Heat generating unit 310 Hot water supply compressor 320 Hot water supply heat Exchanger 330 Hot water supply refrigerant flow rate adjustment valve 340 Cascade heat exchanger 350 Heat generation unit refrigerant flow rate adjustment valve 360 Heat medium pump 380 Heat medium pipe 390 Drain port 400 Side plate member 410 Inner pipe 420 Outer pipe 500 First refrigeration cycle 501 First Circuit 502 Second circuit 510 Second refrigeration cycle

Claims (2)

給湯用冷媒を圧縮する給湯用圧縮機と、給湯用冷媒と給湯用熱媒体とが熱交換する給湯用熱交換器と、給湯用冷媒の流量を制御する給湯用冷媒流量調整弁と、給湯用冷媒と空調用冷媒とが熱交換するカスケード熱交換器とを環状に接続した第1冷凍サイクルと、
前記カスケード熱交換器と、前記カスケード熱交換器に供給する前記空調用冷媒の流量を制御する熱生成ユニット冷媒流量調整弁とを直列に接続した第1回路と、前記空調用冷媒と室内空気とが熱交換する室内熱交換器と、室内熱交換器に供給する前記空調用冷媒の流量を制御する室内機冷媒流量調整弁とを直列に接続した少なくとも1つの第2回路と、前記第1回路と前記第2回路とを並列に接続した熱負荷回路を、前記空調用冷媒を圧縮する空調用圧縮機と、室外熱交換器とに接続した第2冷凍サイクルと、
を備えた空調給湯システムにおいて、
前記カスケード熱交換器として外管と内管とからなる二重管式熱交換器を用い、給湯用冷媒を前記内管に流通させることを特徴とする空調給湯システム。
A hot water supply compressor that compresses the hot water supply refrigerant, a hot water supply heat exchanger that exchanges heat between the hot water supply refrigerant and the hot water heating medium, a hot water supply refrigerant flow rate adjustment valve that controls the flow rate of the hot water supply refrigerant, and a hot water supply A first refrigeration cycle in which a cascade heat exchanger for exchanging heat between the refrigerant and the air-conditioning refrigerant is annularly connected;
A first circuit in which the cascade heat exchanger and a heat generation unit refrigerant flow rate regulating valve for controlling a flow rate of the air conditioning refrigerant supplied to the cascade heat exchanger are connected in series; the air conditioning refrigerant and room air; At least one second circuit in which an indoor heat exchanger for exchanging heat and an indoor unit refrigerant flow rate adjusting valve for controlling the flow rate of the air-conditioning refrigerant supplied to the indoor heat exchanger are connected in series, and And a second refrigeration cycle connected to an air conditioning compressor that compresses the air conditioning refrigerant and an outdoor heat exchanger.
In the air conditioning and hot water supply system equipped with
An air-conditioning hot water supply system using a double-pipe heat exchanger composed of an outer pipe and an inner pipe as the cascade heat exchanger, and circulating a hot water supply refrigerant through the inner pipe.
前記カスケード熱交換器の前記内管と前記外管とがそれぞれ給湯用冷媒配管と空調用冷媒配管とに接続する分岐部において、前記外管と空調用冷媒配管とを、前記カスケード熱交換器内の前記分岐部近傍を流れる空調用冷媒の流れ方向に対して略垂直方向に接続され、前記内管と給湯用冷媒配管とを、前記カスケード熱交換器内の前記分岐部近傍を流れる給湯用冷媒の流れ方向に対して略水平方向に接続されていることを特徴とする請求項1に記載の空調給湯システム。   In the branch section where the inner pipe and the outer pipe of the cascade heat exchanger are connected to a hot water supply refrigerant pipe and an air conditioning refrigerant pipe, respectively, the outer pipe and the air conditioning refrigerant pipe are connected to the inside of the cascade heat exchanger. The hot water supply refrigerant that is connected in a direction substantially perpendicular to the flow direction of the air conditioning refrigerant that flows in the vicinity of the branch portion and that flows through the inner pipe and the hot water supply refrigerant pipe in the vicinity of the branch portion in the cascade heat exchanger The air-conditioning hot-water supply system according to claim 1, wherein the air-conditioning hot-water supply system is connected in a substantially horizontal direction with respect to the flow direction.
JP2016046253A 2016-03-09 2016-03-09 Air-conditioning hot water supply system Pending JP2017161164A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016046253A JP2017161164A (en) 2016-03-09 2016-03-09 Air-conditioning hot water supply system
EP16186102.6A EP3217117A1 (en) 2016-03-09 2016-08-29 Air-conditioning/hot-water supply system
CN201610751095.XA CN107178823A (en) 2016-03-09 2016-08-29 Air-conditioning and water-heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016046253A JP2017161164A (en) 2016-03-09 2016-03-09 Air-conditioning hot water supply system

Publications (1)

Publication Number Publication Date
JP2017161164A true JP2017161164A (en) 2017-09-14

Family

ID=56802417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016046253A Pending JP2017161164A (en) 2016-03-09 2016-03-09 Air-conditioning hot water supply system

Country Status (3)

Country Link
EP (1) EP3217117A1 (en)
JP (1) JP2017161164A (en)
CN (1) CN107178823A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579191B (en) * 2018-12-25 2021-07-13 荏原冷热系统(中国)有限公司 Double-compressor air conditioning system and control method and control device for refrigerant circulation amount thereof
CN113483385B (en) * 2021-07-02 2022-10-04 青岛海信日立空调系统有限公司 Air source heat pump unit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438633A (en) * 1982-11-12 1984-03-27 Hiser Leland L Method and apparatus for using low grade thermal energy to improve efficiency of air conditioning and refrigeration systems
JP3925383B2 (en) * 2002-10-11 2007-06-06 ダイキン工業株式会社 Hot water supply device, air conditioning hot water supply system, and hot water supply system
TWI324242B (en) * 2004-02-12 2010-05-01 Sanyo Electric Co Refrigerant cycle apparatus
CN1295467C (en) * 2004-02-13 2007-01-17 中国科学院理化技术研究所 Differential pressure control self-adaptive throttle expansion valve
JP2007218459A (en) 2006-02-15 2007-08-30 Matsushita Electric Ind Co Ltd Refrigerating cycle device and cool box
WO2009098751A1 (en) * 2008-02-04 2009-08-13 Mitsubishi Electric Corporation Air-conditioning and water-heating complex system
JP5202726B2 (en) * 2009-03-26 2013-06-05 三菱電機株式会社 Load-side relay unit and combined air conditioning and hot water supply system
JP5042262B2 (en) * 2009-03-31 2012-10-03 三菱電機株式会社 Air conditioning and hot water supply complex system
JP5585003B2 (en) * 2009-05-27 2014-09-10 三洋電機株式会社 Refrigeration equipment
KR101266675B1 (en) * 2009-12-31 2013-05-28 엘지전자 주식회사 Water circulation system associated with refrigerant cycle
US9140459B2 (en) * 2010-12-07 2015-09-22 Mitsubishi Electric Corporation Heat pump device
DE102014214656A1 (en) * 2014-07-25 2016-01-28 Konvekta Ag Compression refrigeration system and method for operating a compression refrigeration system

Also Published As

Publication number Publication date
EP3217117A1 (en) 2017-09-13
CN107178823A (en) 2017-09-19

Similar Documents

Publication Publication Date Title
JP5627713B2 (en) Air conditioner
JP5847366B1 (en) Air conditioner
WO2009150761A1 (en) Refrigeration cycle device and control method therefor
JP2011052884A (en) Refrigerating air conditioner
JPWO2012160597A1 (en) Air conditioner
JP2017161115A (en) Air-conditioning hot water supply system
JP5908183B1 (en) Air conditioner
JP6038382B2 (en) Air conditioner
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
WO2014129361A1 (en) Air conditioner
JP2013204851A (en) Heat pump heating device
CN106403095B (en) Heat generating unit
JP2012117717A (en) Heat pump type heat storage water heater capable of reheating, and chiller
JP2017161164A (en) Air-conditioning hot water supply system
WO2020188756A1 (en) Air conditioner
JP2012237518A (en) Air conditioner
JPWO2019198175A1 (en) Refrigeration cycle equipment
WO2010041453A1 (en) Refrigeration device
KR100613502B1 (en) Heat pump type air conditioner
JP2017172898A (en) Air conditioning hot water system
WO2016189813A1 (en) Heat pump device
WO2016189810A1 (en) Heat pump device
WO2016185689A1 (en) Air conditioning and hot water supplying system
JP2018194200A (en) Refrigeration cycle device and liquid circulation device provided with the same
KR20090010398U (en) . multi compressor system for cooling and heating system