WO2016189813A1 - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
WO2016189813A1
WO2016189813A1 PCT/JP2016/002322 JP2016002322W WO2016189813A1 WO 2016189813 A1 WO2016189813 A1 WO 2016189813A1 JP 2016002322 W JP2016002322 W JP 2016002322W WO 2016189813 A1 WO2016189813 A1 WO 2016189813A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration circuit
refrigerant
compressor
evaporator
pressure
Prior art date
Application number
PCT/JP2016/002322
Other languages
French (fr)
Japanese (ja)
Inventor
明広 重田
松井 大
誠之 飯高
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017520217A priority Critical patent/JP6695034B2/en
Publication of WO2016189813A1 publication Critical patent/WO2016189813A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • This invention relates to the technique which suppresses the raise of the low voltage
  • this type of heat pump apparatus is known to be composed of two refrigeration circuits, an air conditioning refrigeration cycle and a hot water supply refrigeration cycle.
  • Air conditioning compressor, outdoor heat exchanger, outdoor heat exchanger switching means, outdoor heat exchanger throttle means, indoor heat exchanger, indoor heat exchanger switching means, and indoor heat exchanger throttle means Are connected in series.
  • a refrigerant-refrigerant heat exchanger and hot water heat source throttling means are connected in series.
  • the refrigerant-refrigerant heat exchanger and the hot water supply heat source throttle means are connected in parallel to the indoor heat exchanger, the indoor heat exchanger opening / closing means, and the indoor heat exchanger throttle means.
  • the air conditioning refrigeration cycle circulates air conditioning refrigerant.
  • the hot water supply refrigeration cycle includes a hot water supply compressor, a heat medium-refrigerant heat exchanger, a hot water supply throttle means, and a refrigerant-refrigerant heat exchanger connected in series.
  • the hot water supply refrigeration cycle circulates the hot water supply refrigerant.
  • the refrigeration cycle for air conditioning and the refrigeration cycle for hot water supply are refrigerant-refrigerant heat exchangers that are connected to perform heat exchange between the air conditioning refrigerant and the hot water supply refrigerant, thereby cooling or heating the air conditioning refrigeration cycle.
  • the operation and the heating operation of the hot water supply heat medium in the hot water supply refrigeration cycle can be performed simultaneously (for example, see Patent Document 1).
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a heat pump device that can suppress an increase in the low-pressure side pressure of a hot water supply refrigeration cycle.
  • a heat pump device includes a first refrigeration system in which a first compressor, a first condenser, a first throttling means, and a first evaporator are connected in an annular manner to circulate a first refrigerant.
  • the circuit includes a second refrigeration circuit that circulates the second refrigerant and exchanges heat with the first refrigeration circuit by the first evaporator, and a control unit.
  • the control unit has a first refrigeration circuit low-pressure suppression first mode in which the conveyance amount of the first compressor is increased so that the low-pressure side pressure of the first refrigeration circuit becomes a predetermined value or less.
  • the heat pump device includes a first refrigeration circuit that connects the first compressor, the first condenser, the first throttling means, and the first evaporator in an annular shape to circulate the first refrigerant, and the second refrigerant.
  • a second refrigeration circuit for exchanging heat with the first refrigeration circuit in the first evaporator, and a control unit.
  • the control unit increases the transport amount of the first compressor and decreases the opening of the first throttle means so that the low-pressure side pressure of the first refrigeration circuit is a predetermined value or less. It has a second mode.
  • the heat pump device includes a first refrigeration circuit that connects the first compressor, the first condenser, the first throttling means, and the first evaporator in an annular shape to circulate the first refrigerant, and the second refrigerant.
  • a second refrigeration circuit for exchanging heat with the first refrigeration circuit in the first evaporator, and a control unit.
  • the control unit has a first refrigeration circuit low pressure suppression third mode in which the flow rate of the second refrigerant in the second refrigeration circuit is reduced so that the low pressure side pressure of the first refrigeration circuit is equal to or lower than a predetermined value.
  • the low-pressure side pressure of the first refrigeration circuit can be lowered, and the first refrigerant can be sucked into the first compressor below the critical pressure of the first refrigerant.
  • the reliability of a 1st compressor can be improved.
  • FIG. 1 is a refrigeration cycle diagram according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the same operation.
  • FIG. 3 is a diagram for explaining the same operation.
  • FIG. 4 is a diagram for explaining the same operation.
  • FIG. 5 is a diagram for explaining the same operation.
  • FIG. 6 is a diagram showing a control flow.
  • FIG. 7 is a diagram illustrating a control flow of another embodiment.
  • FIG. 8 is a diagram illustrating a control flow of another embodiment.
  • a heat pump device includes a first refrigeration circuit that annularly connects a first compressor, a first condenser, a first throttling means, and a first evaporator, and circulates the first refrigerant, and a second refrigerant. , And a second refrigeration circuit for exchanging heat with the first refrigeration circuit in the first evaporator, and a control unit.
  • the control unit has a first refrigeration circuit low-pressure suppression first mode in which the conveyance amount of the first compressor is increased so that the low-pressure side pressure of the first refrigeration circuit becomes a predetermined value or less.
  • the first refrigeration circuit low pressure suppression first mode for increasing the conveyance amount of the first compressor since the first refrigeration circuit low pressure suppression first mode for increasing the conveyance amount of the first compressor is provided, the first refrigeration circuit low pressure suppression first mode is executed.
  • the low pressure side pressure becomes a predetermined value or less. Thereby, the reliability of the first compressor is improved.
  • a heat pump device includes a first refrigeration circuit that circulates a first refrigerant by connecting a first compressor, a first condenser, a first throttling means, and a first evaporator, and a second refrigerant. , And a second refrigeration circuit for exchanging heat with the first refrigeration circuit in the first evaporator, and a control unit.
  • the control unit increases the transport amount of the first compressor and decreases the opening of the first throttle means so that the low-pressure side pressure of the first refrigeration circuit is a predetermined value or less. It has a second mode.
  • the first refrigeration circuit low pressure suppression second mode for increasing the transport amount of the first compressor and reducing the opening of the first throttle means has the first refrigeration circuit low pressure suppression.
  • the low-pressure side pressure of the first refrigeration circuit becomes a predetermined value or less. Thereby, the reliability of the first compressor is improved.
  • a heat pump device includes a first refrigeration circuit that connects the first compressor, the first condenser, the first throttling means, and the first evaporator in a ring shape and circulates the first refrigerant, and the second refrigerant. , And a second refrigeration circuit for exchanging heat with the first refrigeration circuit in the first evaporator, and a control unit.
  • the control unit has a first refrigeration circuit low pressure suppression third mode in which the flow rate of the second refrigerant in the second refrigeration circuit is reduced so that the low pressure side pressure of the first refrigeration circuit is equal to or lower than a predetermined value.
  • the first refrigeration circuit low pressure suppression third mode is set to reduce the flow rate of the second refrigerant in the second refrigeration circuit
  • the first refrigeration circuit low pressure suppression third mode is executed.
  • the low-pressure side pressure of the refrigeration circuit becomes a predetermined value or less. Thereby, the reliability of the first compressor is improved.
  • the second refrigeration circuit includes a second compressor, an outdoor heat exchanger, an outdoor unit having a second throttle means, an indoor unit having an indoor heat exchanger, and a first evaporator. And a circulation circuit for circulating the second refrigerant.
  • the circulation circuit is provided with a third throttle means for controlling the circulation amount of the second refrigerant, and in the first refrigeration circuit low pressure suppression third mode, the low pressure side pressure of the first refrigeration circuit is equal to or lower than a predetermined value.
  • the opening degree of the third throttle means is reduced.
  • the first refrigeration circuit low pressure suppression third mode is executed by reducing the opening degree of the third throttle means for controlling the circulation amount of the second refrigerant, thereby reducing the low pressure of the first refrigeration circuit.
  • the side pressure becomes a predetermined value or less.
  • the transport amount of the second compressor is reduced so that the low pressure side pressure of the first refrigeration circuit is a predetermined value or less.
  • the low pressure side pressure of the first refrigeration circuit becomes a predetermined value or less by executing the first refrigeration circuit low pressure suppression third mode by reducing the transport amount of the second compressor. Thereby, the reliability of the first compressor is improved.
  • the first evaporator is a heat exchanger that performs heat exchange between the first refrigeration circuit and the second refrigeration circuit.
  • the first evaporator is a heat exchanger
  • the low-pressure side pressure of the first refrigeration circuit can be lowered. Therefore, the reliability of the first compressor is improved.
  • FIG. 1 is a refrigeration cycle diagram showing an embodiment of a heat pump device of the present invention.
  • the heat pump device shown in FIG. 1 includes two refrigeration circuits, a first refrigeration circuit 5 as a hot water supply refrigeration cycle and a second refrigeration circuit 15 as an air conditioning refrigeration cycle.
  • the first refrigeration circuit is a circuit constituting the heat generation unit 40, and a hot water supply refrigerant (first refrigerant) is circulated.
  • the second refrigeration circuit includes an outdoor unit 10, an indoor unit 30, and a circulation circuit 20 that is piped over the first refrigeration circuit 5, and the air conditioning refrigerant (second refrigerant) is circulated.
  • the circulation circuit 20 is a circuit that connects a gas pipe 25 and a liquid pipe 27 to be described later via the evaporator 4 (first evaporator) of the heat generation unit 40.
  • natural refrigerants such as carbon dioxide (CO 2) are used in addition to chlorofluorocarbon refrigerants such as R22, R410A, R407C, R32, and R134a.
  • R407C, R134a and carbon dioxide (CO2) widely used for high temperature applications are desirable as the hot water supply refrigerant.
  • two indoor units 30 and one heat generation unit 40 are connected to one outdoor unit 10, respectively.
  • the refrigeration cycle configuration is not limited to that shown in FIG.
  • two or more outdoor units 10, one or three or more indoor units 30, and two or more heat generation units 40 can be connected in parallel.
  • a control unit 116 is provided as control means for the first refrigeration circuit 5 and the second refrigeration circuit 15.
  • the heat generating unit 40 constituting the first refrigeration circuit includes a hot water supply compressor (first compressor) 1 and a condenser (first condenser) for exchanging heat with a hot water supply refrigerant and a heat medium mainly composed of water. 2, a throttle means (first throttle means) 3, and an evaporator (first evaporator) 4 that exchanges heat between an air conditioning refrigerant and a hot water supply refrigerant supplied from a gas pipe 25 to be described later, through a refrigerant pipe. It is connected in series and circulates hot water supply refrigerant.
  • the evaporator 4 is a plate type heat exchanger.
  • first refrigeration circuit low pressure detection means 6 for detecting the pressure of the hot water supply refrigerant sucked into the hot water supply compressor 1 is disposed.
  • the condenser (first condenser) 2 is connected to a heat medium pipe 2a that exchanges heat with the hot water supply refrigerant, and the pipe 2a is connected to a circulation pump 2b.
  • tap water is generally used as the heat medium, but in a cold region, an antifreeze solution in which ethylene glycol or alcohol is dissolved in a predetermined amount of water may be used.
  • the heat medium boiled up to 70-90 ° C. in the condenser 2 is stored in a hot water storage tank (not shown).
  • a hot water storage tank not shown.
  • the heat medium is drinking water, it is used directly for hot water supply.
  • the heat medium is not drinking water such as antifreeze, it is supplied to a radiator or the like installed indoors and used for heating, or used for hot water supply by transferring heat to drinking water in a hot water storage tank.
  • the second refrigeration circuit will be described.
  • the outdoor unit 10 and the indoor unit 30 include a gas pipe 25 through which high-temperature and high-pressure gasified air-conditioning refrigerant flows, a suction pipe 26 through which low-pressure air-conditioning refrigerant flows, and a liquid pipe 27 through which high-pressure liquefied air-conditioning refrigerant flows. And connected with.
  • the indoor units 30 are connected in parallel to the three pipes.
  • the outdoor unit 10 and the heat generation unit 40 are connected in parallel to the pipe as in the indoor unit 30, but are connected by two pipes of a gas pipe 25 and a liquid pipe 27.
  • the outdoor unit 10 includes an air conditioning compressor (second compressor) 7, an outdoor heat exchanger 11, an outdoor gas pipe opening / closing means 12 b disposed at one inlet of the outdoor heat exchanger 11, and an outdoor suction pipe opening / closing.
  • Means 12a and outdoor heat exchanger throttle means (second throttle means) 13 provided at the other inlet of the outdoor heat exchanger 11 are provided.
  • the air conditioning compressor 7 compresses the air conditioning refrigerant.
  • the outdoor heat exchanger 11 is configured to exchange heat between the air sent by the outdoor blower fan 17 and the air conditioning refrigerant.
  • the outdoor heat exchanger 11 is generally a fin-tube or microtube heat exchanger.
  • the outdoor gas pipe opening / closing means 12b controls the flow rate of the air-conditioning refrigerant in the gas pipe 25.
  • the outdoor suction pipe opening / closing means 12 a controls the flow rate of the air conditioning refrigerant in the suction pipe 26.
  • the outdoor heat exchanger throttling means 13 adjusts the flow rate of the air-conditioning refrigerant supplied to the outdoor heat exchanger 11.
  • An accumulator 12 that supplies a gas refrigerant to the air conditioning compressor 7 is connected to the suction side of the air conditioning compressor 7.
  • An oil separator 16 is connected to the discharge side of the air-conditioning compressor 7 to separate the refrigerating machine oil contained in the discharged air-conditioning refrigerant.
  • the refrigerating machine oil separated by the oil separator 16 is returned to the air conditioning compressor 7 through the oil return pipe 114.
  • the communication of the oil return pipe 114 is controlled by opening and closing the oil return pipe opening / closing valve 115.
  • the indoor unit 30 includes indoor heat exchangers 8a, 8b, indoor gas pipe opening / closing means 9b, 9d and indoor intake pipe opening / closing means 9a, 9c disposed at one inlet of the indoor heat exchangers 8a, 8b, And indoor heat exchanger throttling means 10a, 10b disposed at the other inlets of the heat exchangers 8a, 8b.
  • the indoor heat exchangers 8a and 8b are configured to exchange heat between the air sent by the indoor blower fan 32 and the air-conditioning refrigerant, and are generally fin-tube or microtube heat exchangers. Applies.
  • the indoor gas pipe opening / closing means 9b and 9d control the presence or absence of the circulation of the air-conditioning refrigerant with the gas pipe 25.
  • the indoor suction pipe opening / closing means 9a and 9c control the presence or absence of the circulation of the air-conditioning refrigerant with the suction pipe 26.
  • the indoor heat exchanger throttling means 10a and 10b adjust the flow rate of the air-conditioning refrigerant supplied to the indoor heat exchangers 8a and 8b.
  • the discharge side of the air conditioning compressor 7 is connected to one end of the outdoor heat exchanger 11 via an outdoor gas pipe opening / closing valve 19 by a refrigerant pipe.
  • the liquid pipe 27 connected to the other end of the outdoor heat exchanger 11 branches outside the outdoor unit 10 via the outdoor heat exchanger throttling means 13, and one of the branched liquid pipes 27 is connected in parallel.
  • the indoor heat exchanger 8 is connected to one end of the indoor heat exchangers 8a and 8b through refrigerant pipes via the indoor heat exchanger throttle means 10a and 10b.
  • the other ends of the indoor heat exchangers 8a and 8b are connected by refrigerant piping branched in two directions, one is connected to the gas pipe 25 via the indoor gas pipe opening / closing means 9b and 9d, and the other is opened and closed to the indoor intake pipe. Connected to the suction pipe 26 via means 9a, 9c.
  • the other end of the branched liquid pipe 27 is connected to one end of the evaporator 4 via the evaporator throttle means 14 (third throttle means).
  • a gas pipe 25 is connected to the other end of the evaporator 4.
  • the second refrigeration circuit 15 is heated using the indoor heat exchangers 8a and 8b as condensers and the first refrigeration circuit 5 is also operated will be described.
  • the second refrigerant discharged from the air conditioning compressor 7 flows into the indoor heat exchangers 8a and 8b through the open indoor gas pipe opening / closing means 9b and 9d, and becomes indoor air. Dissipate heat.
  • the first refrigerant discharged from the hot water supply compressor 1 radiates heat in the condenser 2, is squeezed by the throttling means 3, flows into the evaporator 4, and absorbs heat from the second refrigerant. And sucked into the hot water supply compressor 1.
  • the second refrigerant absorbed by the first refrigerant in the evaporator 4 and the second refrigerant flowing out of the indoor heat exchangers 8a and 8b are converted into the evaporator throttle means 14 and the indoor heat exchanger throttle means 10a. After passing through 10b almost without being squeezed, they merge.
  • the joined second refrigerant is throttled by the outdoor heat exchanger throttling means 13 and flows into the outdoor heat exchanger 11.
  • the second refrigerant flowing into the outdoor heat exchanger 11 absorbs heat from the outdoor air and is sucked into the air conditioning compressor 7 through the open outdoor suction pipe opening / closing means 12a.
  • the indoor suction pipe opening / closing means 9a, 9c and the outdoor gas pipe opening / closing means 12b are closed so that the second refrigerant does not flow.
  • the second refrigeration circuit 15 is cooled using the indoor heat exchangers 8a and 8b as evaporators and the first refrigeration circuit 5 is also operated will be described.
  • the second refrigerant discharged from the air conditioning compressor 7 flows into the outdoor heat exchanger 11 through the outdoor gas pipe opening / closing means 12b in the open state, and radiates heat to the outdoor air.
  • the first refrigeration circuit 5 as in the heating operation of the second refrigeration circuit 15, the first refrigerant discharged from the hot water supply compressor 1 dissipates heat in the condenser 2, is squeezed by the throttle means 3, and is squeezed by the evaporator 4. The heat is absorbed from the second refrigerant and sucked into the hot water supply compressor 1.
  • the second refrigerant absorbed by the first refrigerant in the evaporator 4 and the second refrigerant flowing out of the outdoor heat exchanger 11 pass through the evaporator throttle means 14 and the outdoor heat exchanger throttle means 13. Without being throttled, it is throttled by the indoor heat exchanger throttling means 10a, 10b, flows into the indoor heat exchangers 8a, 8b, and absorbs heat from the room air.
  • the second refrigerant having exchanged heat with the indoor heat exchangers 8a and 8b is sucked into the air conditioning compressor 7 through the open indoor intake pipe opening / closing means 9a and 9c.
  • the indoor gas pipe opening / closing means 9b, 9d and the outdoor suction pipe opening / closing means 12a are closed so that the second refrigerant does not flow.
  • the second refrigeration circuit 15 is operated simultaneously with cooling and heating, and the first refrigeration circuit 5 is also operated using the indoor heat exchanger 8a as a condenser and the indoor heat exchanger 8b as an evaporator.
  • the second refrigerant discharged from the air conditioning compressor 7 flows into the indoor heat exchanger 8a through the open indoor gas pipe opening / closing means 9b and radiates heat to the indoor air.
  • the first refrigerant discharged from the hot water supply compressor 1 radiates heat in the condenser 2, is squeezed by the throttling means 3, flows into the evaporator 4, and absorbs heat from the second refrigerant. And sucked into the hot water supply compressor 1.
  • the second refrigerant absorbed by the first refrigerant in the evaporator 4 and the second refrigerant flowing out of the indoor heat exchanger 8a are substantially passed through the evaporator throttle means 14 and the indoor heat exchanger throttle means 10a. Without being throttled, it is throttled by the indoor heat exchanger throttling means 10 b and the outdoor heat exchanger throttling means 13 and flows into the indoor heat exchanger 8 b and the outdoor heat exchanger 11.
  • the second refrigerant that has flowed into the indoor heat exchanger 8b and the outdoor heat exchanger 11 absorbs heat from the indoor air and outdoor air, and the indoor intake pipe opening / closing means 9c and the outdoor intake pipe opening / closing means 12a open. And is sucked into the air conditioning compressor 7.
  • the indoor suction pipe opening / closing means 9a, the indoor gas pipe opening / closing means 9d, and the outdoor gas pipe opening / closing means 12b are closed so that the second refrigerant does not flow.
  • the indoor heat exchanger 8a is used as an evaporator and the indoor heat exchanger 8b is used as a condenser to simultaneously operate the second refrigeration circuit for cooling and heating, and the first refrigeration circuit 5 is also operated.
  • the indoor intake pipe opening / closing means 9a and the indoor gas pipe opening / closing means 9d are opened, the indoor gas pipe opening / closing means 9b and the indoor intake pipe opening / closing means 9c are closed, Operate without changing the switching mechanism.
  • the second refrigeration circuit 15 In the operation state as described above, the second refrigeration circuit 15 is in the heating operation and requires a large amount of heat radiation to the room air (for example, the indoor temperature is 5 ° C. and the set temperature is 30 ° C.) or in the cooling operation.
  • the temperature of the outdoor air is high (for example, 40 ° C.) and the temperature of the second refrigerant flowing into the outdoor heat exchanger 11 must be equal to or higher than the temperature of the outdoor air
  • the high-pressure side pressure of the second refrigeration circuit 15 increases. . Therefore, the pressure of the second refrigerant flowing into the evaporator 4 also increases, so that the condensation temperature increases and the amount of heat exchange from the second refrigerant to the first refrigerant increases. As a result, the low pressure side pressure of the first refrigeration circuit 5 is increased.
  • the first refrigerant is carbon dioxide (CO2)
  • the critical point 31.1 ° C., 7.4 MPa
  • the condensation temperature of the second refrigeration circuit 15 increases as described above
  • the first refrigeration circuit. 5 may be sucked into the hot water supply compressor 1 in a state where the low pressure side is in a supercritical state. And if it becomes a supercritical refrigerant and is sucked into the hot water supply compressor 1, the sealing property of the oil in the hot water supply compressor 1 is lowered, and the reliability of the hot water supply compressor 1 is lowered.
  • the control unit 116 determines whether or not the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is equal to or higher than a first predetermined value ⁇ (for example, 5.5 Mps). Then (S1), it is then determined whether the hot water supply set temperature (or heating set temperature) of the first refrigeration circuit 5 is equal to or higher than a predetermined temperature (S2). If the pressure Ps1 is equal to or higher than the first predetermined value ⁇ and the hot water supply set temperature is 70 ° C. or lower (or the heating set temperature is 25 ° C. or lower, for example), the first refrigeration circuit low pressure suppression first mode is set. In the first refrigeration circuit low pressure suppression first mode, the conveyance amount (frequency) of the hot water supply compressor 1 is increased so that the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is equal to or lower than the first predetermined value ⁇ . (S3).
  • a first predetermined value ⁇ for example, 5.5 Mps.
  • the refrigerant density on the low pressure side decreases as the transport amount from the low pressure side to the high pressure side of the first refrigeration circuit 5 increases. Therefore, the low-pressure side pressure of the first refrigeration circuit 5 decreases regardless of the temperature on the heat absorption side in the evaporator 4. Therefore, regardless of the temperature on the heat absorption side in the evaporator 4, the low pressure side pressure of the first refrigeration circuit 5 can be reduced to a critical pressure or less and sucked into the hot water supply compressor 1. Can be improved.
  • the low-pressure side pressure of the first refrigeration circuit 5 decreases and the refrigerant density of the first refrigerant sucked into the hot water supply compressor 1 decreases, the amount of refrigerant circulation does not decrease because the transport amount increases.
  • the endothermic amount in the evaporator 4 does not decrease, and the heating amount in the condenser 2 does not decrease. Therefore, the fall of the heating capability of the 1st freezing circuit 5 can be controlled, reducing the low-pressure side pressure of the 1st freezing circuit 5.
  • the first refrigeration circuit 5 for example, when high-temperature water or high-temperature air is generated, it is necessary to increase the high-pressure side pressure of the first refrigeration circuit 5.
  • the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is higher than the first predetermined value ⁇ . It is determined whether or not the set second predetermined value ⁇ or more (S4).
  • the high-pressure side pressure of the first refrigeration circuit 5 is set to 13 Mps, for example.
  • the conveyance amount of the hot water supply compressor 1 is increased and throttled so that the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is equal to or lower than the second predetermined value ⁇ .
  • the opening degree of the means 3 is reduced.
  • the refrigerant density on the high pressure side of the first refrigeration circuit 5 increases, the high pressure side pressure increases, the refrigerant density on the low pressure side decreases, and the low pressure side pressure decreases. Therefore, even when high temperature water discharge or high temperature wind is required, an increase in the low pressure side pressure accompanying an increase in the high pressure side pressure is suppressed. As a result, even when high temperature water discharge or high temperature wind is required, the low pressure side pressure can be reduced below the critical pressure and sucked into the hot water supply compressor 1, and the reliability of the hot water supply compressor 1 can be improved.
  • the flow rate of the second refrigerant in the second refrigeration circuit 15 is reduced so that the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is equal to or lower than the second predetermined value ⁇ . Therefore, the opening degree of the evaporator throttle means 14 is reduced.
  • the operation state of the first refrigeration circuit 5 and the second refrigeration circuit 15 is such that the second refrigeration circuit 15 is in a heating operation and requires a large amount of heat released to room air (for example, the indoor temperature is 5 ° C.,
  • the indoor temperature is 5 ° C.
  • the set temperature is 30 ° C., or when the temperature of the outdoor air is high (for example, 40 ° C.) during the cooling operation, and the temperature of the second refrigerant flowing into the outdoor heat exchanger 11 must be equal to or higher than the temperature of the outdoor air
  • the high-pressure side pressure of the second refrigeration circuit 15 is increased.
  • the pressure of the second refrigerant flowing into the evaporator 4 also increases, so that the condensation temperature increases, the amount of heat exchange from the second refrigerant to the first refrigerant increases, and the low pressure side of the first refrigeration circuit 5 Pressure increases.
  • the high pressure side of the first refrigeration circuit 5 for example, at the end of boiling of the hot water heater in which the temperature on the heat radiation side of the condenser 2 is high, the heating overload of the air conditioner, etc., the high pressure side of the first refrigeration circuit 5 The pressure is high and it becomes difficult to convey the first refrigerant on the low pressure side to the high pressure side.
  • the first refrigeration circuit low pressure suppression third mode is set, and the pressure Ps1 detected by the first refrigeration circuit low pressure detecting means 6 is equal to or lower than the second predetermined value ⁇ .
  • heat exchange from the second refrigerant to the first refrigerant in the evaporator 4 is performed. The amount can be reduced.
  • the low pressure side pressure can be reduced even when boiling ends or heating overload occurs. As a result, even when boiling ends or heating overload occurs, the low-pressure side pressure can be reduced below the critical pressure and sucked into the hot water supply compressor 1, and the reliability of the hot water supply compressor 1 can be improved with a simpler configuration. Can be improved.
  • the opening degree of the evaporator throttle means 14 is reduced as a means for reducing the flow rate of the second refrigerant in the second refrigeration circuit 15, but the present invention is not limited to this.
  • the conveyance amount of the air-conditioning compressor 7 is reduced by reducing the conveyance amount of the air-conditioning compressor 7 to reduce the flow rate of the second refrigerant in the second refrigeration circuit 15 and the opening degree of the evaporator throttle means 14. It is also possible to reduce the flow rate of the second refrigerant in the second refrigeration circuit 15 by reducing the value of.
  • the evaporator 4 is configured by a plate heat exchanger.
  • the evaporator 4 a plate-type heat exchanger, the amount of the first refrigerant held on the low pressure side can be reduced, and a rapid increase in the high pressure side pressure accompanying an increase in the conveyance amount to the high pressure side can be suppressed.
  • inhaled by the compressor 1 for hot water supply is high, the superheat degree of the 1st refrigerant
  • the first refrigeration circuit low pressure detection means 6 used as means for detecting the low pressure side pressure of the first refrigeration circuit 5 is disposed between the hot water supply compressor 1 and the evaporator 4. It is also possible to arrange between the means 3 and the evaporator 4.
  • the first refrigeration circuit low pressure detecting means 6 is used as means for detecting the low pressure side pressure of the first refrigeration circuit 5, but as shown in FIG. You may use the evaporator inlet temperature detection means 117 to detect.
  • control flow is as shown in FIG.
  • the control flow of FIG. 7 differs from the determination of (S11) when compared with the control flow of FIG.
  • the other steps are the same as the control flow in FIG.
  • the temperature Tein detected by the evaporator inlet temperature detection means 117 is 20 ° C. or more, for example (S11).
  • control is performed so as to proceed to step S2 in the same manner as in the control flow of FIG.
  • an air conditioning compressor discharge pressure detecting means 118 for detecting the discharge pressure of the air conditioning compressor 7 may be used as another embodiment.
  • control flow is as shown in FIG.
  • the control flow of FIG. 8 differs from the determination of (S12) when compared with the control flow of FIG.
  • the other steps are the same as the control flow in FIG.
  • the pressure detected by the air-conditioning compressor discharge pressure detecting means 118 is, for example, 3.7 Mps or more (S11).
  • control is performed so as to proceed to step S2 in the same manner as in the control flow of FIG.
  • the low-pressure side pressure of the first refrigeration circuit 5 is reduced regardless of the temperature on the heat absorption side in the evaporator 4. Therefore, regardless of the temperature on the heat absorption side in the evaporator 4, the low pressure side pressure of the first refrigeration circuit 5 can be reduced below the critical pressure and sucked into the hot water supply compressor 1, and the compressor can be constructed with a simpler configuration. Reliability can be improved.
  • the heat pump device can suppress an increase in the low-pressure side pressure of the hot water supply refrigeration cycle, and can be applied to a heat pump device having a hot water supply function or a heating function.
  • Hot water supply compressor (first compressor) 2 Condenser (first condenser) 3 Aperture means (first aperture means) 4 Evaporator (first evaporator) 5 Hot water supply refrigeration cycle (first refrigeration circuit) 6 First refrigeration circuit low pressure detection means 7 Air conditioning compressor (second compressor) 10 outdoor unit 11 outdoor heat exchanger 13 throttling means for outdoor heat exchanger (second throttling means) 14 Throttle means for evaporator (third throttle means) 15 Refrigeration cycle for air conditioning (second refrigeration circuit) 116 Control unit 20 Circulating circuit 30 Indoor unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

This heat pump device comprises: a first refrigeration circuit in which a first compressor, a first condenser, a first throttle means, and a first evaporator are connected in a loop and a first refrigerant is circulated; a second refrigeration circuit in which a second refrigerant is circulated and heat is exchanged with the first refrigeration circuit, using the first evaporator; and a control unit. The control unit has a first refrigeration circuit low-pressure minimizing first mode that increasing the amount carried by the first compressor, such that the low-pressure-side pressure of the first refrigeration circuit is no more than a prescribed value. As a result, a heat pump device can be provided that is capable of suppressing increase in the low-pressure-side pressure of a refrigeration cycle for hot water supply.

Description

ヒートポンプ装置Heat pump equipment
 本発明は、ヒートポンプ装置の低圧側圧力の上昇を抑制する技術に関する。 This invention relates to the technique which suppresses the raise of the low voltage | pressure side pressure of a heat pump apparatus.
 従来、この種のヒートポンプ装置は、空調用冷凍サイクルと給湯用冷凍サイクルとの2つの冷凍回路で構成されるものが知られている。 Conventionally, this type of heat pump apparatus is known to be composed of two refrigeration circuits, an air conditioning refrigeration cycle and a hot water supply refrigeration cycle.
 空調用冷凍サイクルは、空調用圧縮機、室外熱交換器、室外熱交換器用開閉手段、室外熱交換器用絞り手段、室内熱交換器、室内熱交換器用開閉手段、及び、室内熱交換器用絞り手段が直列に接続されている。冷媒-冷媒熱交換器、及び、給湯熱源用絞り手段が直列に接続されている。冷媒-冷媒熱交換器、及び、給湯熱源用絞り手段が、室内熱交換器、室内熱交換器用開閉手段、及び、室内熱交換器用絞り手段に並列に接続されている。空調用冷凍サイクルは、空調用冷媒を循環させる。 Air conditioning compressor, outdoor heat exchanger, outdoor heat exchanger switching means, outdoor heat exchanger throttle means, indoor heat exchanger, indoor heat exchanger switching means, and indoor heat exchanger throttle means Are connected in series. A refrigerant-refrigerant heat exchanger and hot water heat source throttling means are connected in series. The refrigerant-refrigerant heat exchanger and the hot water supply heat source throttle means are connected in parallel to the indoor heat exchanger, the indoor heat exchanger opening / closing means, and the indoor heat exchanger throttle means. The air conditioning refrigeration cycle circulates air conditioning refrigerant.
 また、給湯用冷凍サイクルは給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、冷媒-冷媒熱交換器が直列に接続して構成されている。給湯用冷凍サイクルは、給湯用冷媒を循環させる。 In addition, the hot water supply refrigeration cycle includes a hot water supply compressor, a heat medium-refrigerant heat exchanger, a hot water supply throttle means, and a refrigerant-refrigerant heat exchanger connected in series. The hot water supply refrigeration cycle circulates the hot water supply refrigerant.
 空調用冷凍サイクルと給湯用冷凍サイクルとは、冷媒-冷媒熱交換器で、空調用冷媒と給湯用冷媒とが熱交換を行なうように接続されることで、空調用冷凍サイクルでの冷房あるいは暖房運転と、給湯用冷凍サイクルでの給湯用熱媒体の加熱運転とを同時に行うことが可能となる(例えば、特許文献1参照)。 The refrigeration cycle for air conditioning and the refrigeration cycle for hot water supply are refrigerant-refrigerant heat exchangers that are connected to perform heat exchange between the air conditioning refrigerant and the hot water supply refrigerant, thereby cooling or heating the air conditioning refrigeration cycle. The operation and the heating operation of the hot water supply heat medium in the hot water supply refrigeration cycle can be performed simultaneously (for example, see Patent Document 1).
 しかしながら、上記従来の構成では、空調用冷凍サイクルで暖房負荷が高い時や、外気温度が高い条件での冷房運転の場合には、空調用冷凍サイクルの凝縮温度が高くなる。したがって、冷媒-冷媒熱交換器での給湯用冷凍サイクルの蒸発温度も高くなり、低圧側圧力が上昇する。給湯用冷凍サイクルに二酸化炭素冷媒が使用された場合、低圧側圧力が臨界圧力以上となり、超臨界冷媒とる。超臨界冷媒が給湯用圧縮機に吸入されると、給湯用圧縮機内のオイルのシール性が低下して、圧縮機の信頼性が低下するという問題がある。 However, in the above-described conventional configuration, when the heating load is high in the air conditioning refrigeration cycle, or when the cooling operation is performed under a condition where the outside air temperature is high, the condensation temperature of the air conditioning refrigeration cycle is high. Accordingly, the evaporation temperature of the hot water supply refrigeration cycle in the refrigerant-refrigerant heat exchanger also increases, and the low-pressure side pressure increases. When carbon dioxide refrigerant is used in the refrigeration cycle for hot water supply, the low-pressure side pressure exceeds the critical pressure, and supercritical refrigerant is taken. When the supercritical refrigerant is sucked into the hot water supply compressor, there is a problem that the oil sealing performance in the hot water supply compressor is lowered and the reliability of the compressor is lowered.
国際公開2009/098751号International Publication No. 2009/098751
 本発明は、上述した事情に鑑みてなされたものであり、給湯用冷凍サイクルの低圧側圧力の上昇を抑えることのできるヒートポンプ装置を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a heat pump device that can suppress an increase in the low-pressure side pressure of a hot water supply refrigeration cycle.
 上記目的を達成するために、本発明に係るヒートポンプ装置は、第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、第1蒸発器で第1冷凍回路と熱交換を行う第2冷凍回路と、制御部と、を備えている。制御部は、第1冷凍回路の低圧側圧力が所定値以下となるように、第1圧縮機の搬送量を増加する、第1冷凍回路低圧抑制第1モードを有する。 In order to achieve the above object, a heat pump device according to the present invention includes a first refrigeration system in which a first compressor, a first condenser, a first throttling means, and a first evaporator are connected in an annular manner to circulate a first refrigerant. The circuit includes a second refrigeration circuit that circulates the second refrigerant and exchanges heat with the first refrigeration circuit by the first evaporator, and a control unit. The control unit has a first refrigeration circuit low-pressure suppression first mode in which the conveyance amount of the first compressor is increased so that the low-pressure side pressure of the first refrigeration circuit becomes a predetermined value or less.
 また、本発明に係るヒートポンプ装置は、第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、第1蒸発器で第1冷凍回路と熱交換を行う第2冷凍回路と、制御部と、を備えている。制御部は、第1冷凍回路の低圧側圧力が所定値以下となるように、第1圧縮機の搬送量を増加するとともに、第1絞り手段の開度を小さくする、第1冷凍回路低圧抑制第2モードを有する。 Moreover, the heat pump device according to the present invention includes a first refrigeration circuit that connects the first compressor, the first condenser, the first throttling means, and the first evaporator in an annular shape to circulate the first refrigerant, and the second refrigerant. , And a second refrigeration circuit for exchanging heat with the first refrigeration circuit in the first evaporator, and a control unit. The control unit increases the transport amount of the first compressor and decreases the opening of the first throttle means so that the low-pressure side pressure of the first refrigeration circuit is a predetermined value or less. It has a second mode.
 また、本発明に係るヒートポンプ装置は、第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、第1蒸発器で第1冷凍回路と熱交換を行う第2冷凍回路と、制御部と、を備えている。制御部は、第1冷凍回路の低圧側圧力が所定値以下となるように、第2冷凍回路の第2冷媒の流量を小さくする、第1冷凍回路低圧抑制第3モードを有する。 Moreover, the heat pump device according to the present invention includes a first refrigeration circuit that connects the first compressor, the first condenser, the first throttling means, and the first evaporator in an annular shape to circulate the first refrigerant, and the second refrigerant. , And a second refrigeration circuit for exchanging heat with the first refrigeration circuit in the first evaporator, and a control unit. The control unit has a first refrigeration circuit low pressure suppression third mode in which the flow rate of the second refrigerant in the second refrigeration circuit is reduced so that the low pressure side pressure of the first refrigeration circuit is equal to or lower than a predetermined value.
 本発明によれば、第1冷凍回路の低圧側圧力を下げ、第1冷媒の臨界圧力以下で第1冷媒を第1圧縮機に吸入することができる。これにより、第1圧縮機の信頼性を向上できる。 According to the present invention, the low-pressure side pressure of the first refrigeration circuit can be lowered, and the first refrigerant can be sucked into the first compressor below the critical pressure of the first refrigerant. Thereby, the reliability of a 1st compressor can be improved.
図1は、本発明の実施形態に係る冷凍サイクル図である。FIG. 1 is a refrigeration cycle diagram according to an embodiment of the present invention. 図2は、同作用を説明するための図である。FIG. 2 is a diagram for explaining the same operation. 図3は、同作用を説明するための図である。FIG. 3 is a diagram for explaining the same operation. 図4は、同作用を説明するための図である。FIG. 4 is a diagram for explaining the same operation. 図5は、同作用を説明するための図である。FIG. 5 is a diagram for explaining the same operation. 図6は、制御フローを示す図である。FIG. 6 is a diagram showing a control flow. 図7は、別の実施形態の制御フローを示す図である。FIG. 7 is a diagram illustrating a control flow of another embodiment. 図8は、別の実施形態の制御フローを示す図である。FIG. 8 is a diagram illustrating a control flow of another embodiment.
 第1の発明に係るヒートポンプ装置は、第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、第1蒸発器で第1冷凍回路と熱交換を行う第2冷凍回路と、制御部と、を備えている。制御部は、第1冷凍回路の低圧側圧力が所定値以下となるように、第1圧縮機の搬送量を増加する、第1冷凍回路低圧抑制第1モードを有する。 A heat pump device according to a first aspect of the present invention includes a first refrigeration circuit that annularly connects a first compressor, a first condenser, a first throttling means, and a first evaporator, and circulates the first refrigerant, and a second refrigerant. , And a second refrigeration circuit for exchanging heat with the first refrigeration circuit in the first evaporator, and a control unit. The control unit has a first refrigeration circuit low-pressure suppression first mode in which the conveyance amount of the first compressor is increased so that the low-pressure side pressure of the first refrigeration circuit becomes a predetermined value or less.
 第1の発明によれば、第1圧縮機の搬送量を増加する、第1冷凍回路低圧抑制第1モードを有するため、第1冷凍回路低圧抑制第1モードの実行により、第1冷凍回路の低圧側圧力が所定値以下となる。これにより、第1圧縮機の信頼性が向上する。 According to the first aspect of the invention, since the first refrigeration circuit low pressure suppression first mode for increasing the conveyance amount of the first compressor is provided, the first refrigeration circuit low pressure suppression first mode is executed. The low pressure side pressure becomes a predetermined value or less. Thereby, the reliability of the first compressor is improved.
 第2の発明に係るヒートポンプ装置は、第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、第1蒸発器で第1冷凍回路と熱交換を行う第2冷凍回路と、制御部と、を備えている。制御部は、第1冷凍回路の低圧側圧力が所定値以下となるように、第1圧縮機の搬送量を増加するとともに、第1絞り手段の開度を小さくする、第1冷凍回路低圧抑制第2モードを有する。 A heat pump device according to a second aspect of the present invention includes a first refrigeration circuit that circulates a first refrigerant by connecting a first compressor, a first condenser, a first throttling means, and a first evaporator, and a second refrigerant. , And a second refrigeration circuit for exchanging heat with the first refrigeration circuit in the first evaporator, and a control unit. The control unit increases the transport amount of the first compressor and decreases the opening of the first throttle means so that the low-pressure side pressure of the first refrigeration circuit is a predetermined value or less. It has a second mode.
 第2の発明によれば、第1圧縮機の搬送量を増加するとともに、第1絞り手段の開度を小さくする、第1冷凍回路低圧抑制第2モードを有するため、第1冷凍回路低圧抑制第2モードの実行により、第1冷凍回路の低圧側圧力が所定値以下となる。これにより、第1圧縮機の信頼性が向上する。 According to the second aspect of the present invention, the first refrigeration circuit low pressure suppression second mode for increasing the transport amount of the first compressor and reducing the opening of the first throttle means has the first refrigeration circuit low pressure suppression. By executing the second mode, the low-pressure side pressure of the first refrigeration circuit becomes a predetermined value or less. Thereby, the reliability of the first compressor is improved.
 第3の発明に係るヒートポンプ装置は、第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、第1蒸発器で第1冷凍回路と熱交換を行う第2冷凍回路と、制御部と、を備えている。制御部は、第1冷凍回路の低圧側圧力が所定値以下となるように、第2冷凍回路の第2冷媒の流量を小さくする、第1冷凍回路低圧抑制第3モードを有する。 A heat pump device according to a third aspect of the present invention includes a first refrigeration circuit that connects the first compressor, the first condenser, the first throttling means, and the first evaporator in a ring shape and circulates the first refrigerant, and the second refrigerant. , And a second refrigeration circuit for exchanging heat with the first refrigeration circuit in the first evaporator, and a control unit. The control unit has a first refrigeration circuit low pressure suppression third mode in which the flow rate of the second refrigerant in the second refrigeration circuit is reduced so that the low pressure side pressure of the first refrigeration circuit is equal to or lower than a predetermined value.
 第3の発明によれば、第2冷凍回路の第2冷媒の流量を小さくする、第1冷凍回路低圧抑制第3モードを有するため、第1冷凍回路低圧抑制第3モードの実行により、第1冷凍回路の低圧側圧力が所定値以下となる。これにより、第1圧縮機の信頼性が向上する。 According to the third aspect of the invention, since the first refrigeration circuit low pressure suppression third mode is set to reduce the flow rate of the second refrigerant in the second refrigeration circuit, the first refrigeration circuit low pressure suppression third mode is executed. The low-pressure side pressure of the refrigeration circuit becomes a predetermined value or less. Thereby, the reliability of the first compressor is improved.
 第4の発明に係るヒートポンプ装置は、第2冷凍回路は、第2圧縮機、室外熱交換器、第2絞り手段を有する室外ユニットと、室内熱交換器を有する室内ユニットと、第1蒸発器に第2冷媒を循環する循環回路と、を備えている。循環回路には、第2冷媒の循環量を制御する第3絞り手段を備えられ、第1冷凍回路低圧抑制第3モードは、第1冷凍回路の低圧側圧力が所定値以下となるように、第3絞り手段の開度を小さくする。 According to a fourth aspect of the present invention, the second refrigeration circuit includes a second compressor, an outdoor heat exchanger, an outdoor unit having a second throttle means, an indoor unit having an indoor heat exchanger, and a first evaporator. And a circulation circuit for circulating the second refrigerant. The circulation circuit is provided with a third throttle means for controlling the circulation amount of the second refrigerant, and in the first refrigeration circuit low pressure suppression third mode, the low pressure side pressure of the first refrigeration circuit is equal to or lower than a predetermined value. The opening degree of the third throttle means is reduced.
 第4の発明によれば、第2冷媒の循環量を制御する第3絞り手段の開度を小さくして、第1冷凍回路低圧抑制第3モードを実行することにより、第1冷凍回路の低圧側圧力が所定値以下となる。これにより、第1圧縮機の信頼性が向上する。 According to the fourth invention, the first refrigeration circuit low pressure suppression third mode is executed by reducing the opening degree of the third throttle means for controlling the circulation amount of the second refrigerant, thereby reducing the low pressure of the first refrigeration circuit. The side pressure becomes a predetermined value or less. Thereby, the reliability of the first compressor is improved.
 第5の発明に係るヒートポンプ装置は、第1冷凍回路低圧抑制第3モードは、第1冷凍回路の低圧側圧力が所定値以下となるように第2圧縮機の搬送量を小さくする。 In the heat pump device according to the fifth aspect of the present invention, in the first refrigeration circuit low pressure suppression third mode, the transport amount of the second compressor is reduced so that the low pressure side pressure of the first refrigeration circuit is a predetermined value or less.
 第5の発明によれば、第2圧縮機の搬送量を小さくして、第1冷凍回路低圧抑制第3モードを実行することにより、第1冷凍回路の低圧側圧力が所定値以下となる。これにより、第1圧縮機の信頼性が向上する。 According to the fifth aspect of the invention, the low pressure side pressure of the first refrigeration circuit becomes a predetermined value or less by executing the first refrigeration circuit low pressure suppression third mode by reducing the transport amount of the second compressor. Thereby, the reliability of the first compressor is improved.
 第6の発明に係るヒートポンプ装置は、第1蒸発器は、第1冷凍回路と第2冷凍回路とで熱交換を行う熱交換器である。 In the heat pump device according to the sixth aspect of the invention, the first evaporator is a heat exchanger that performs heat exchange between the first refrigeration circuit and the second refrigeration circuit.
 第6の発明によれば、第1蒸発器は熱交換器であるため、第1冷凍回路の低圧側圧力を下げることができる。これにより、第1圧縮機の信頼性が向上する。 According to the sixth invention, since the first evaporator is a heat exchanger, the low-pressure side pressure of the first refrigeration circuit can be lowered. Thereby, the reliability of the first compressor is improved.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、この実施形態によって、本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.
 図1は、本発明のヒートポンプ装置の実施形態を示す冷凍サイクル図である。 FIG. 1 is a refrigeration cycle diagram showing an embodiment of a heat pump device of the present invention.
 図1に示すヒートポンプ装置は、給湯用冷凍サイクルとしての第1冷凍回路5と、空調用冷凍サイクルとしての第2冷凍回路15との2つの冷凍回路から構成される。 The heat pump device shown in FIG. 1 includes two refrigeration circuits, a first refrigeration circuit 5 as a hot water supply refrigeration cycle and a second refrigeration circuit 15 as an air conditioning refrigeration cycle.
 第1冷凍回路は、熱生成ユニット40を構成する回路であり、給湯用冷媒(第1冷媒)が循環される。第2冷凍回路は、室外ユニット10と、室内ユニット30と、第1冷凍回路5に跨って配管される循環回路20とで構成され、空調用冷媒(第2冷媒)が循環される。循環回路20は、後述するガス管25と液管27とを熱生成ユニット40の蒸発器4(第1蒸発器)を介してつなぐ回路である。 The first refrigeration circuit is a circuit constituting the heat generation unit 40, and a hot water supply refrigerant (first refrigerant) is circulated. The second refrigeration circuit includes an outdoor unit 10, an indoor unit 30, and a circulation circuit 20 that is piped over the first refrigeration circuit 5, and the air conditioning refrigerant (second refrigerant) is circulated. The circulation circuit 20 is a circuit that connects a gas pipe 25 and a liquid pipe 27 to be described later via the evaporator 4 (first evaporator) of the heat generation unit 40.
 給湯用冷媒および空調用冷媒としては、R22、R410A、R407C、R32、R134aなどのフロン系冷媒のほかに、二酸化炭素(CO2)などの自然冷媒が用いられる。特に、給湯用冷媒としては高温用途に広く用いられるR407C,R134aや二酸化炭素(CO2)が望ましい。 As the hot water supply refrigerant and the air conditioning refrigerant, natural refrigerants such as carbon dioxide (CO 2) are used in addition to chlorofluorocarbon refrigerants such as R22, R410A, R407C, R32, and R134a. In particular, R407C, R134a and carbon dioxide (CO2) widely used for high temperature applications are desirable as the hot water supply refrigerant.
 本実施形態においては、1台の室外ユニット10に対して、2台の室内ユニット30および1台の熱生成ユニット40がそれぞれ接続された構成となっている。なお、冷凍サイクル構成に関しては、図1に示したものに限定されない。例えば、室外ユニット10は2台以上、室内ユニット30も1台もしくは3台以上、熱生成ユニット40も2台以上、並列に接続可能である。本実施の形態では、第1冷凍回路5及び第2冷凍回路15の制御手段として制御部116を備える。 In the present embodiment, two indoor units 30 and one heat generation unit 40 are connected to one outdoor unit 10, respectively. The refrigeration cycle configuration is not limited to that shown in FIG. For example, two or more outdoor units 10, one or three or more indoor units 30, and two or more heat generation units 40 can be connected in parallel. In the present embodiment, a control unit 116 is provided as control means for the first refrigeration circuit 5 and the second refrigeration circuit 15.
 第1冷凍回路を構成する熱生成ユニット40は、給湯用圧縮機(第1圧縮機)1と、給湯用冷媒と水を主成分とする熱媒体と熱交換する凝縮器(第1凝縮器)2と、絞り手段(第1絞り手段)3と、後述するガス管25から供給される空調用冷媒と給湯用冷媒とが熱交換する蒸発器(第1蒸発器)4と、を冷媒配管で直列に接続して構成され、給湯用冷媒を循環させる。蒸発器4は、プレート式の熱交換器である。 The heat generating unit 40 constituting the first refrigeration circuit includes a hot water supply compressor (first compressor) 1 and a condenser (first condenser) for exchanging heat with a hot water supply refrigerant and a heat medium mainly composed of water. 2, a throttle means (first throttle means) 3, and an evaporator (first evaporator) 4 that exchanges heat between an air conditioning refrigerant and a hot water supply refrigerant supplied from a gas pipe 25 to be described later, through a refrigerant pipe. It is connected in series and circulates hot water supply refrigerant. The evaporator 4 is a plate type heat exchanger.
 給湯用圧縮機1と蒸発器4との間には、給湯用圧縮機1に吸入される給湯用冷媒の圧力を検出する第1冷凍回路低圧検出手段6が配設されている。 Between the hot water supply compressor 1 and the evaporator 4, first refrigeration circuit low pressure detection means 6 for detecting the pressure of the hot water supply refrigerant sucked into the hot water supply compressor 1 is disposed.
 凝縮器(第1凝縮器)2には、給湯用冷媒と熱交換する熱媒体の配管2aが接続され、配管2aには循環ポンプ2bが接続されている。 The condenser (first condenser) 2 is connected to a heat medium pipe 2a that exchanges heat with the hot water supply refrigerant, and the pipe 2a is connected to a circulation pump 2b.
 なお、熱媒体には水道水を用いることが一般的であるが、寒冷地の場合はエチレングリコールやアルコールを所定量水に溶解させた不凍液を用いてもよい。 Note that tap water is generally used as the heat medium, but in a cold region, an antifreeze solution in which ethylene glycol or alcohol is dissolved in a predetermined amount of water may be used.
 凝縮器2で70~90℃にまで沸き上げられた熱媒体は貯湯タンク(図示せず)に蓄えられる。熱媒体が飲料水の場合は直接給湯に使われる。一方、熱媒体が不凍液など飲料水でない場合は、室内に設置されたラジエータなどに供給されて暖房用途に、あるいは貯湯タンクで熱を飲料水に受け渡して給湯用途に利用される。 The heat medium boiled up to 70-90 ° C. in the condenser 2 is stored in a hot water storage tank (not shown). When the heat medium is drinking water, it is used directly for hot water supply. On the other hand, when the heat medium is not drinking water such as antifreeze, it is supplied to a radiator or the like installed indoors and used for heating, or used for hot water supply by transferring heat to drinking water in a hot water storage tank.
 第2冷凍回路について説明する。 The second refrigeration circuit will be described.
 室外ユニット10と室内ユニット30とは、高温高圧のガス化した空調用冷媒が流れるガス管25と、低圧の空調用冷媒が流れる吸入管26と、高圧の液化した空調用冷媒が流れる液管27とで接続されている。室内ユニット30が、図1に示すように2台存在するときは、室内ユニット30は3本の配管に対して並列に接続される。一方、室外ユニット10と熱生成ユニット40とは、室内ユニット30と同じく配管に対し並列に接続されるが、ガス管25と液管27との二本の配管で接続されている。 The outdoor unit 10 and the indoor unit 30 include a gas pipe 25 through which high-temperature and high-pressure gasified air-conditioning refrigerant flows, a suction pipe 26 through which low-pressure air-conditioning refrigerant flows, and a liquid pipe 27 through which high-pressure liquefied air-conditioning refrigerant flows. And connected with. When there are two indoor units 30 as shown in FIG. 1, the indoor units 30 are connected in parallel to the three pipes. On the other hand, the outdoor unit 10 and the heat generation unit 40 are connected in parallel to the pipe as in the indoor unit 30, but are connected by two pipes of a gas pipe 25 and a liquid pipe 27.
 室外ユニット10は、空調用圧縮機(第2圧縮機)7と、室外熱交換器11と、室外熱交換器11の一方の入口に配設された室外ガス管開閉手段12bおよび室外吸入管開閉手段12aと、室外熱交換器11の他方の入口に配設された室外熱交換器用絞り手段(第2絞り手段)13とを備えている。 The outdoor unit 10 includes an air conditioning compressor (second compressor) 7, an outdoor heat exchanger 11, an outdoor gas pipe opening / closing means 12 b disposed at one inlet of the outdoor heat exchanger 11, and an outdoor suction pipe opening / closing. Means 12a and outdoor heat exchanger throttle means (second throttle means) 13 provided at the other inlet of the outdoor heat exchanger 11 are provided.
 空調用圧縮機7は、空調用冷媒を圧縮する。室外熱交換器11は、室外送風ファン17により送られる空気と、空調用冷媒とが熱交換するよう構成されている。室外熱交換器11は、一般的には、フィン・チューブ型やマイクロチューブ型の熱交換器が適用される。室外ガス管開閉手段12bは、ガス管25における空調用冷媒の流量を制御する。室外吸入管開閉手段12aは、吸入管26における空調用冷媒の流量を制御する。室外熱交換器用絞り手段13は、室外熱交換器11に供給する空調用冷媒の流量を調整する。 The air conditioning compressor 7 compresses the air conditioning refrigerant. The outdoor heat exchanger 11 is configured to exchange heat between the air sent by the outdoor blower fan 17 and the air conditioning refrigerant. The outdoor heat exchanger 11 is generally a fin-tube or microtube heat exchanger. The outdoor gas pipe opening / closing means 12b controls the flow rate of the air-conditioning refrigerant in the gas pipe 25. The outdoor suction pipe opening / closing means 12 a controls the flow rate of the air conditioning refrigerant in the suction pipe 26. The outdoor heat exchanger throttling means 13 adjusts the flow rate of the air-conditioning refrigerant supplied to the outdoor heat exchanger 11.
 空調用圧縮機7の吸入側には、空調用圧縮機7にガス冷媒を供給するアキュムレータ12が接続されている。空調用圧縮機7の吐出側には、吐出するガス状態の空調用冷媒に含まれる冷凍機油を分離する油分離器16が接続されている。油分離器16で分離された冷凍機油は、油戻し管114により空調用圧縮機7に戻される。油戻し管114の連通は、油戻し管開閉弁115の開閉により制御される。 An accumulator 12 that supplies a gas refrigerant to the air conditioning compressor 7 is connected to the suction side of the air conditioning compressor 7. An oil separator 16 is connected to the discharge side of the air-conditioning compressor 7 to separate the refrigerating machine oil contained in the discharged air-conditioning refrigerant. The refrigerating machine oil separated by the oil separator 16 is returned to the air conditioning compressor 7 through the oil return pipe 114. The communication of the oil return pipe 114 is controlled by opening and closing the oil return pipe opening / closing valve 115.
 室内ユニット30は、室内熱交換器8a、8bと、室内熱交換器8a、8bの一方の入口に配設された室内ガス管開閉手段9b、9dおよび室内吸入管開閉手段9a、9cと、室内熱交換器8a、8bの他方の入口に配設された室内熱交換器用絞り手段10a、10bと、を備えている。室内熱交換器8a、8bは、室内送風ファン32で送られる空気と、空調用冷媒とが熱交換するよう構成されており、一般的には、フィン・チューブ型やマイクロチューブ型の熱交換器が適用される。室内ガス管開閉手段9b、9dは、ガス管25との空調用冷媒の流通の有無を制御する。室内吸入管開閉手段9a、9cは、吸入管26との空調用冷媒の流通の有無を制御する。室内熱交換器用絞り手段10a、10bは、室内熱交換器8a、8bに供給する空調用冷媒の流量を調整する。 The indoor unit 30 includes indoor heat exchangers 8a, 8b, indoor gas pipe opening / closing means 9b, 9d and indoor intake pipe opening / closing means 9a, 9c disposed at one inlet of the indoor heat exchangers 8a, 8b, And indoor heat exchanger throttling means 10a, 10b disposed at the other inlets of the heat exchangers 8a, 8b. The indoor heat exchangers 8a and 8b are configured to exchange heat between the air sent by the indoor blower fan 32 and the air-conditioning refrigerant, and are generally fin-tube or microtube heat exchangers. Applies. The indoor gas pipe opening / closing means 9b and 9d control the presence or absence of the circulation of the air-conditioning refrigerant with the gas pipe 25. The indoor suction pipe opening / closing means 9a and 9c control the presence or absence of the circulation of the air-conditioning refrigerant with the suction pipe 26. The indoor heat exchanger throttling means 10a and 10b adjust the flow rate of the air-conditioning refrigerant supplied to the indoor heat exchangers 8a and 8b.
 空調用圧縮機7の吐出側は、室外ガス管開閉弁19を介して室外熱交換器11の一端に冷媒配管で接続される。室外熱交換器11の他端に接続される液管27は、室外熱交換器用絞り手段13を介して室外ユニット10の外で分岐し、この分岐した液管27の一方は、並列に接続される室内ユニット30内でそれぞれの室内熱交換器用絞り手段10a、10bを介して、室内熱交換器8a、8bの一端に冷媒配管で接続される。 The discharge side of the air conditioning compressor 7 is connected to one end of the outdoor heat exchanger 11 via an outdoor gas pipe opening / closing valve 19 by a refrigerant pipe. The liquid pipe 27 connected to the other end of the outdoor heat exchanger 11 branches outside the outdoor unit 10 via the outdoor heat exchanger throttling means 13, and one of the branched liquid pipes 27 is connected in parallel. The indoor heat exchanger 8 is connected to one end of the indoor heat exchangers 8a and 8b through refrigerant pipes via the indoor heat exchanger throttle means 10a and 10b.
 室内熱交換器8a、8bの他端は、2方向に分岐した冷媒配管で接続され、一方は室内ガス管開閉手段9b、9dを介してガス管25に接続され、他方は、室内吸入管開閉手段9a、9cを介して吸入管26に接続される。 The other ends of the indoor heat exchangers 8a and 8b are connected by refrigerant piping branched in two directions, one is connected to the gas pipe 25 via the indoor gas pipe opening / closing means 9b and 9d, and the other is opened and closed to the indoor intake pipe. Connected to the suction pipe 26 via means 9a, 9c.
 分岐した液管27の他方は、蒸発器用絞り手段14(第3絞り手段)を介して蒸発器4の一端に接続される。蒸発器4の他端には、ガス管25が接続される。 The other end of the branched liquid pipe 27 is connected to one end of the evaporator 4 via the evaporator throttle means 14 (third throttle means). A gas pipe 25 is connected to the other end of the evaporator 4.
 以下、その動作、作用を説明する。 The operation and action will be described below.
 まず、室内熱交換器8a、8bを凝縮器として利用して第2冷凍回路15を暖房運転し、第1冷凍回路5も運転する場合について説明する。図2に示されるように、空調用圧縮機7から吐出された第2冷媒は、開状態の室内ガス管開閉手段9b、9dを通って室内熱交換器8a、8bに流入し、室内空気に放熱する。また第1冷凍回路5では、給湯用圧縮機1から吐出された第1冷媒は、凝縮器2にて放熱し、絞り手段3で絞られて蒸発器4に流入し、第2冷媒から吸熱して給湯用圧縮機1に吸入される。 First, the case where the second refrigeration circuit 15 is heated using the indoor heat exchangers 8a and 8b as condensers and the first refrigeration circuit 5 is also operated will be described. As shown in FIG. 2, the second refrigerant discharged from the air conditioning compressor 7 flows into the indoor heat exchangers 8a and 8b through the open indoor gas pipe opening / closing means 9b and 9d, and becomes indoor air. Dissipate heat. In the first refrigeration circuit 5, the first refrigerant discharged from the hot water supply compressor 1 radiates heat in the condenser 2, is squeezed by the throttling means 3, flows into the evaporator 4, and absorbs heat from the second refrigerant. And sucked into the hot water supply compressor 1.
 そして、蒸発器4にて第1冷媒に吸熱された第2冷媒、及び、室内熱交換器8a、8bから流出した第2冷媒は、蒸発器用絞り手段14、及び、室内熱交換器用絞り手段10a、10bをほぼ絞られることなく通った後に合流する。合流した第2冷媒は、室外熱交換器用絞り手段13で絞られて室外熱交換器11に流入する。室外熱交換器11に流入した第2冷媒は、室外空気から吸熱して開状態の室外吸入管開閉手段12aを通って、空調用圧縮機7に吸入される。 The second refrigerant absorbed by the first refrigerant in the evaporator 4 and the second refrigerant flowing out of the indoor heat exchangers 8a and 8b are converted into the evaporator throttle means 14 and the indoor heat exchanger throttle means 10a. After passing through 10b almost without being squeezed, they merge. The joined second refrigerant is throttled by the outdoor heat exchanger throttling means 13 and flows into the outdoor heat exchanger 11. The second refrigerant flowing into the outdoor heat exchanger 11 absorbs heat from the outdoor air and is sucked into the air conditioning compressor 7 through the open outdoor suction pipe opening / closing means 12a.
 室内吸入管開閉手段9a、9c及び室外ガス管開閉手段12bは閉じられており、第2冷媒が流通しないようになっている。 The indoor suction pipe opening / closing means 9a, 9c and the outdoor gas pipe opening / closing means 12b are closed so that the second refrigerant does not flow.
 次に、室内熱交換器8a、8bを蒸発器として利用して第2冷凍回路15を冷房運転し、第1冷凍回路5も運転する場合について説明する。図3に示されるように、空調用圧縮機7から吐出された第2冷媒は、開状態の室外ガス管開閉手段12bを通って室外熱交換器11に流入し、室外空気に放熱する。また第1冷凍回路5では第2冷凍回路15の暖房運転時同様、給湯用圧縮機1から吐出された第1冷媒は、凝縮器2にて放熱し、絞り手段3で絞られて蒸発器4に流入し、第2冷媒から吸熱して給湯用圧縮機1に吸入される。 Next, a case where the second refrigeration circuit 15 is cooled using the indoor heat exchangers 8a and 8b as evaporators and the first refrigeration circuit 5 is also operated will be described. As shown in FIG. 3, the second refrigerant discharged from the air conditioning compressor 7 flows into the outdoor heat exchanger 11 through the outdoor gas pipe opening / closing means 12b in the open state, and radiates heat to the outdoor air. In the first refrigeration circuit 5, as in the heating operation of the second refrigeration circuit 15, the first refrigerant discharged from the hot water supply compressor 1 dissipates heat in the condenser 2, is squeezed by the throttle means 3, and is squeezed by the evaporator 4. The heat is absorbed from the second refrigerant and sucked into the hot water supply compressor 1.
 そして、蒸発器4にて第1冷媒に吸熱された第2冷媒、及び、室外熱交換器11から流出した第2冷媒は、蒸発器用絞り手段14、及び、室外熱交換器用絞り手段13をほぼ絞られることなく通り、室内熱交換器用絞り手段10a、10bで絞られて室内熱交換器8a、8bに流入して室内空気から吸熱する。室内熱交換器8a、8bで熱交換を行った第2冷媒は、開状態の室内吸入管開閉手段9a、9cを通って、空調用圧縮機7に吸入される。室内ガス管開閉手段9b、9d及び室外吸入管開閉手段12aは閉じられており、第2冷媒が流通しないようになっている。 Then, the second refrigerant absorbed by the first refrigerant in the evaporator 4 and the second refrigerant flowing out of the outdoor heat exchanger 11 pass through the evaporator throttle means 14 and the outdoor heat exchanger throttle means 13. Without being throttled, it is throttled by the indoor heat exchanger throttling means 10a, 10b, flows into the indoor heat exchangers 8a, 8b, and absorbs heat from the room air. The second refrigerant having exchanged heat with the indoor heat exchangers 8a and 8b is sucked into the air conditioning compressor 7 through the open indoor intake pipe opening / closing means 9a and 9c. The indoor gas pipe opening / closing means 9b, 9d and the outdoor suction pipe opening / closing means 12a are closed so that the second refrigerant does not flow.
 また、室内熱交換器8aを凝縮器として、室内熱交換器8bを蒸発器として利用して第2冷凍回路15を冷暖同時運転し、第1冷凍回路5も運転する場合について説明する。図4に示されるように、空調用圧縮機7から吐出された第2冷媒は、開状態の室内ガス管開閉手段9bを通って室内熱交換器8aに流入し、室内空気に放熱する。また第1冷凍回路5では、給湯用圧縮機1から吐出された第1冷媒は、凝縮器2にて放熱し、絞り手段3で絞られて蒸発器4に流入し、第2冷媒から吸熱して給湯用圧縮機1に吸入される。 Further, a case will be described in which the second refrigeration circuit 15 is operated simultaneously with cooling and heating, and the first refrigeration circuit 5 is also operated using the indoor heat exchanger 8a as a condenser and the indoor heat exchanger 8b as an evaporator. As shown in FIG. 4, the second refrigerant discharged from the air conditioning compressor 7 flows into the indoor heat exchanger 8a through the open indoor gas pipe opening / closing means 9b and radiates heat to the indoor air. In the first refrigeration circuit 5, the first refrigerant discharged from the hot water supply compressor 1 radiates heat in the condenser 2, is squeezed by the throttling means 3, flows into the evaporator 4, and absorbs heat from the second refrigerant. And sucked into the hot water supply compressor 1.
 そして、蒸発器4にて第1冷媒に吸熱された第2冷媒、及び、室内熱交換器8aから流出した第2冷媒は、蒸発器用絞り手段14、及び、室内熱交換器用絞り手段10aをほぼ絞られることなく通り、室内熱交換器用絞り手段10b、及び、室外熱交換器用絞り手段13で絞られて室内熱交換器8b、及び、室外熱交換器11に流入する。室内熱交換器8b、及び、室外熱交換器11に流入した第2冷媒は、室内空気、及び、室外空気から吸熱して開状態の室内吸入管開閉手段9c、及び、室外吸入管開閉手段12aを通って、空調用圧縮機7に吸入される。この場合、室内吸入管開閉手段9a、室内ガス管開閉手段9d及び室外ガス管開閉手段12bは閉じられており、第2冷媒が流通しないようになっている。 Then, the second refrigerant absorbed by the first refrigerant in the evaporator 4 and the second refrigerant flowing out of the indoor heat exchanger 8a are substantially passed through the evaporator throttle means 14 and the indoor heat exchanger throttle means 10a. Without being throttled, it is throttled by the indoor heat exchanger throttling means 10 b and the outdoor heat exchanger throttling means 13 and flows into the indoor heat exchanger 8 b and the outdoor heat exchanger 11. The second refrigerant that has flowed into the indoor heat exchanger 8b and the outdoor heat exchanger 11 absorbs heat from the indoor air and outdoor air, and the indoor intake pipe opening / closing means 9c and the outdoor intake pipe opening / closing means 12a open. And is sucked into the air conditioning compressor 7. In this case, the indoor suction pipe opening / closing means 9a, the indoor gas pipe opening / closing means 9d, and the outdoor gas pipe opening / closing means 12b are closed so that the second refrigerant does not flow.
 室内熱交換器8aを蒸発器として、室内熱交換器8bを凝縮器として利用して第2冷凍回路を冷暖同時運転し、第1冷凍回路5も運転する場合について説明する。図5に示されるように、室内吸入管開閉手段9a、及び、室内ガス管開閉手段9dを開状態とし、室内ガス管開閉手段9b、及び、室内吸入管開閉手段9cを閉状態として、室外熱交換器開閉手段の開閉は変えず運転する。 A case will be described in which the indoor heat exchanger 8a is used as an evaporator and the indoor heat exchanger 8b is used as a condenser to simultaneously operate the second refrigeration circuit for cooling and heating, and the first refrigeration circuit 5 is also operated. As shown in FIG. 5, the indoor intake pipe opening / closing means 9a and the indoor gas pipe opening / closing means 9d are opened, the indoor gas pipe opening / closing means 9b and the indoor intake pipe opening / closing means 9c are closed, Operate without changing the switching mechanism.
 以上のような運転状態で、第2冷凍回路15が暖房運転で室内空気への放熱量が多く必要(例えば、室内の温度が5℃で、設定温度が30℃)な場合や、冷房運転で室外空気の温度が高く(例えば、40℃)、室外熱交換器11へ流入する第2冷媒の温度を室外空気の温度以上としなければならない場合、第2冷凍回路15の高圧側圧力が高くなる。従って、蒸発器4に流入する第2冷媒も圧力が高くなることで、凝縮温度が高くなり、第2冷媒から第1冷媒への熱交換量が多くなる。その結果、第1冷凍回路5の低圧側圧力が高くなる。 In the operation state as described above, the second refrigeration circuit 15 is in the heating operation and requires a large amount of heat radiation to the room air (for example, the indoor temperature is 5 ° C. and the set temperature is 30 ° C.) or in the cooling operation. When the temperature of the outdoor air is high (for example, 40 ° C.) and the temperature of the second refrigerant flowing into the outdoor heat exchanger 11 must be equal to or higher than the temperature of the outdoor air, the high-pressure side pressure of the second refrigeration circuit 15 increases. . Therefore, the pressure of the second refrigerant flowing into the evaporator 4 also increases, so that the condensation temperature increases and the amount of heat exchange from the second refrigerant to the first refrigerant increases. As a result, the low pressure side pressure of the first refrigeration circuit 5 is increased.
 特に、第1冷媒が二酸化炭素(CO2)の場合には臨界点(31.1℃、7.4MPa)が低く、上述のように第2冷凍回路15の凝縮温度が高くなると、第1冷凍回路5の低圧側が超臨界状態となった状態で、給湯用圧縮機1に吸い込まれる場合がある。そして、超臨界冷媒となって給湯用圧縮機1に吸入されると、給湯用圧縮機1内のオイルのシール性が低下して、給湯用圧縮機1の信頼性が低下する。 In particular, when the first refrigerant is carbon dioxide (CO2), the critical point (31.1 ° C., 7.4 MPa) is low, and when the condensation temperature of the second refrigeration circuit 15 increases as described above, the first refrigeration circuit. 5 may be sucked into the hot water supply compressor 1 in a state where the low pressure side is in a supercritical state. And if it becomes a supercritical refrigerant and is sucked into the hot water supply compressor 1, the sealing property of the oil in the hot water supply compressor 1 is lowered, and the reliability of the hot water supply compressor 1 is lowered.
 本実施の形態では、制御部116は、図6に示されるように、第1冷凍回路低圧検出手段6が検出した圧力Ps1が第1所定値α(例えば5.5Mps)以上か否かを判断し(S1)、ついで第1冷凍回路5の給湯設定温度(または暖房設定温度)が所定温度以上かを判断する(S2)。圧力Ps1が第1所定値α以上であって、給湯設定温度が例えば70℃以下(または暖房設定温度が例えば25℃以下)であれば、第1冷凍回路低圧抑制第1モードとする。第1冷凍回路低圧抑制第1モードでは、第1冷凍回路低圧検出手段6が検出する圧力Ps1が第1所定値α以下となるように、給湯用圧縮機1の搬送量(周波数)を増加する(S3)。 In the present embodiment, as shown in FIG. 6, the control unit 116 determines whether or not the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is equal to or higher than a first predetermined value α (for example, 5.5 Mps). Then (S1), it is then determined whether the hot water supply set temperature (or heating set temperature) of the first refrigeration circuit 5 is equal to or higher than a predetermined temperature (S2). If the pressure Ps1 is equal to or higher than the first predetermined value α and the hot water supply set temperature is 70 ° C. or lower (or the heating set temperature is 25 ° C. or lower, for example), the first refrigeration circuit low pressure suppression first mode is set. In the first refrigeration circuit low pressure suppression first mode, the conveyance amount (frequency) of the hot water supply compressor 1 is increased so that the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is equal to or lower than the first predetermined value α. (S3).
 本実施形態によれば、第1冷凍回路5の低圧側から高圧側への搬送量が増加することで低圧側の冷媒密度が低下することとなる。従って、蒸発器4での吸熱側の温度によらず、第1冷凍回路5の低圧側圧力が低下することとなる。よって、蒸発器4での吸熱側の温度によらず、第1冷凍回路5の低圧側圧力を臨界圧力以下にして給湯用圧縮機1に吸入することができ、給湯用圧縮機1の信頼性を向上することができる。 According to the present embodiment, the refrigerant density on the low pressure side decreases as the transport amount from the low pressure side to the high pressure side of the first refrigeration circuit 5 increases. Therefore, the low-pressure side pressure of the first refrigeration circuit 5 decreases regardless of the temperature on the heat absorption side in the evaporator 4. Therefore, regardless of the temperature on the heat absorption side in the evaporator 4, the low pressure side pressure of the first refrigeration circuit 5 can be reduced to a critical pressure or less and sucked into the hot water supply compressor 1. Can be improved.
 また、第1冷凍回路5の低圧側圧力が低下して給湯用圧縮機1に吸込まれる第1冷媒の冷媒密度は低下するが、搬送量が増えるため、冷媒循環量は低下しない。 Further, although the low-pressure side pressure of the first refrigeration circuit 5 decreases and the refrigerant density of the first refrigerant sucked into the hot water supply compressor 1 decreases, the amount of refrigerant circulation does not decrease because the transport amount increases.
 従って、蒸発器4における吸熱量は減少せず、凝縮器2における加熱量は低下しないこととなる。よって、第1冷凍回路5の低圧側圧力が低下しつつ、第1冷凍回路5の加熱能力の低下を抑制することができる。 Therefore, the endothermic amount in the evaporator 4 does not decrease, and the heating amount in the condenser 2 does not decrease. Therefore, the fall of the heating capability of the 1st freezing circuit 5 can be controlled, reducing the low-pressure side pressure of the 1st freezing circuit 5.
 一方、第1冷凍回路5において、例えば高温水あるいは高温風を生成する場合には、第1冷凍回路5の高圧側圧力を上げる必要がある。 On the other hand, in the first refrigeration circuit 5, for example, when high-temperature water or high-temperature air is generated, it is necessary to increase the high-pressure side pressure of the first refrigeration circuit 5.
 本実施の形態では、図6に示す(S2およびS4)において、凝縮器(第1凝縮器)2の利用側で高温水あるいは高温風を生成する必要があるか否かが判断される。 In this embodiment, in (S2 and S4) shown in FIG. 6, it is determined whether or not it is necessary to generate hot water or hot air on the use side of the condenser (first condenser) 2.
 すなわち給湯設定温度が例えば70℃以上(または暖房設定温度が例えば25℃以上)に設定されていれば、第1冷凍回路低圧検出手段6が検出する圧力Ps1が、第1所定値αよりも高く設定された第2所定値β以上か否かが判断される(S4)。 That is, if the hot water supply set temperature is set to 70 ° C. or higher (or the heating set temperature is 25 ° C. or higher, for example), the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is higher than the first predetermined value α. It is determined whether or not the set second predetermined value β or more (S4).
 ここでは圧力Ps1が第2所定値βのとき、第1冷凍回路5の高圧側圧力が例えば13Mpsとなるように設定される。 Here, when the pressure Ps1 is the second predetermined value β, the high-pressure side pressure of the first refrigeration circuit 5 is set to 13 Mps, for example.
 上記(S4)において、圧力Ps1が第2所定値β以下の場合には、第1冷凍回路低圧抑制第2モードとする(S5)。 In the above (S4), when the pressure Ps1 is equal to or lower than the second predetermined value β, the first refrigeration circuit low pressure suppression second mode is set (S5).
 この第1冷凍回路低圧抑制第2モードでは、第1冷凍回路低圧検出手段6が検出する圧力Ps1が第2所定値β以下となるように、給湯用圧縮機1の搬送量を増加するとともに絞り手段3の開度を小さくする。 In the first refrigeration circuit low pressure suppression second mode, the conveyance amount of the hot water supply compressor 1 is increased and throttled so that the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is equal to or lower than the second predetermined value β. The opening degree of the means 3 is reduced.
 これによって、第1冷凍回路5の低圧側から高圧側への第1冷媒の搬送量が増加するとともに、高圧側から低圧側への第1冷媒の搬送量が減少する。 This increases the transport amount of the first refrigerant from the low pressure side to the high pressure side of the first refrigeration circuit 5 and decreases the transport amount of the first refrigerant from the high pressure side to the low pressure side.
 従って、第1冷凍回路5の高圧側の冷媒密度が上昇し、高圧側圧力が上昇するとともに低圧側の冷媒密度が低下し、低圧側圧力が低下する。よって、高温出水や高温風が必要な場合でも、高圧側圧力の上昇に伴う低圧側圧力の上昇を抑制することとなる。これにより、高温出水や高温風が必要な場合でも、低圧側圧力を臨界圧力以下に低下して給湯用圧縮機1に吸入でき、給湯用圧縮機1の信頼性を向上できる。 Therefore, the refrigerant density on the high pressure side of the first refrigeration circuit 5 increases, the high pressure side pressure increases, the refrigerant density on the low pressure side decreases, and the low pressure side pressure decreases. Therefore, even when high temperature water discharge or high temperature wind is required, an increase in the low pressure side pressure accompanying an increase in the high pressure side pressure is suppressed. As a result, even when high temperature water discharge or high temperature wind is required, the low pressure side pressure can be reduced below the critical pressure and sucked into the hot water supply compressor 1, and the reliability of the hot water supply compressor 1 can be improved.
 また、上記(S4)において、圧力Ps1が第2所定値β以上の場合には、第1冷凍回路低圧抑制第3モードとする(S6)。 In the above (S4), when the pressure Ps1 is equal to or higher than the second predetermined value β, the first refrigeration circuit low pressure suppression third mode is set (S6).
 第1冷凍回路低圧抑制第3モードでは、第1冷凍回路低圧検出手段6が検出する圧力Ps1が第2所定値β以下となるように、第2冷凍回路15の第2冷媒の流量を小さくする為に、蒸発器用絞り手段14の開度を小さくする。 In the first refrigeration circuit low pressure suppression third mode, the flow rate of the second refrigerant in the second refrigeration circuit 15 is reduced so that the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is equal to or lower than the second predetermined value β. Therefore, the opening degree of the evaporator throttle means 14 is reduced.
 第1冷凍回路5および第2冷凍回路15の運転状態が、上記したように、第2冷凍回路15が暖房運転で室内空気への放熱量が多く必要(例えば、室内の温度が5℃で、設定温度が30℃)な場合や、冷房運転で室外空気の温度が高く(例えば、40℃)、室外熱交換器11へ流入する第2冷媒の温度を室外空気の温度以上としなければならない場合、第2冷凍回路15の高圧側圧力が高くなる。従って、蒸発器4に流入する第2冷媒も圧力が高くなることで、凝縮温度が高くなり、第2冷媒から第1冷媒への熱交換量が多くなって、第1冷凍回路5の低圧側圧力が高くなる。 As described above, the operation state of the first refrigeration circuit 5 and the second refrigeration circuit 15 is such that the second refrigeration circuit 15 is in a heating operation and requires a large amount of heat released to room air (for example, the indoor temperature is 5 ° C., When the set temperature is 30 ° C., or when the temperature of the outdoor air is high (for example, 40 ° C.) during the cooling operation, and the temperature of the second refrigerant flowing into the outdoor heat exchanger 11 must be equal to or higher than the temperature of the outdoor air The high-pressure side pressure of the second refrigeration circuit 15 is increased. Therefore, the pressure of the second refrigerant flowing into the evaporator 4 also increases, so that the condensation temperature increases, the amount of heat exchange from the second refrigerant to the first refrigerant increases, and the low pressure side of the first refrigeration circuit 5 Pressure increases.
 この場合、第1冷凍回路5において、例えば、凝縮器2の放熱側の温度が高いような給湯機の沸き終いや、空気調和機の暖房過負荷などの場合、第1冷凍回路5の高圧側圧力が高くて低圧側の第1冷媒を高圧側に搬送し難くなる。 In this case, in the first refrigeration circuit 5, for example, at the end of boiling of the hot water heater in which the temperature on the heat radiation side of the condenser 2 is high, the heating overload of the air conditioner, etc., the high pressure side of the first refrigeration circuit 5 The pressure is high and it becomes difficult to convey the first refrigerant on the low pressure side to the high pressure side.
 本実施の形態では、圧力Ps1が第2所定値β以上の場合に、第1冷凍回路低圧抑制第3モードとなり、第1冷凍回路低圧検出手段6が検出する圧力Ps1が第2所定値β以下となるように、第2冷凍回路15の第2冷媒の流量を小さくする為に、蒸発器用絞り手段14の開度を小さくするため、蒸発器4における第2冷媒から第1冷媒への熱交換量を低下することができる。 In the present embodiment, when the pressure Ps1 is equal to or higher than the second predetermined value β, the first refrigeration circuit low pressure suppression third mode is set, and the pressure Ps1 detected by the first refrigeration circuit low pressure detecting means 6 is equal to or lower than the second predetermined value β. In order to reduce the flow rate of the second refrigerant in the second refrigeration circuit 15 so that the opening degree of the evaporator throttle means 14 is reduced, heat exchange from the second refrigerant to the first refrigerant in the evaporator 4 is performed. The amount can be reduced.
 従って、凝縮器2での放熱側の温度が高く、第1冷凍回路5の高圧側圧力高くて、低圧側から高圧側への冷媒密度を上げられない場合でも、第2冷媒からの吸熱による第1冷媒の蒸発量が減少し、低圧側の冷媒密度を低下できる。よって、沸き終いや暖房過負荷となる場合でも、低圧側圧力を低下できる。これにより、沸き終いや暖房過負荷となる場合でも、低圧側圧力を臨界圧力以下に低下して給湯用圧縮機1に吸入することができ、より簡素な構成で給湯用圧縮機1の信頼性を向上できる。 Therefore, even when the temperature on the heat radiation side in the condenser 2 is high, the pressure on the high-pressure side of the first refrigeration circuit 5 is high, and the refrigerant density from the low-pressure side to the high-pressure side cannot be increased, the second heat absorption due to the second refrigerant absorbs heat. The amount of evaporation of one refrigerant is reduced, and the refrigerant density on the low pressure side can be reduced. Therefore, the low pressure side pressure can be reduced even when boiling ends or heating overload occurs. As a result, even when boiling ends or heating overload occurs, the low-pressure side pressure can be reduced below the critical pressure and sucked into the hot water supply compressor 1, and the reliability of the hot water supply compressor 1 can be improved with a simpler configuration. Can be improved.
 また、本実施の形態では第2冷凍回路15の第2冷媒の流量を小さくする手段として蒸発器用絞り手段14の開度を小さくしたが、これに限られない。空調用圧縮機7の搬送量を小さくして第2冷凍回路15の第2冷媒の流量を小さくすることや、蒸発器用絞り手段14の開度を小さくするとともに、空調用圧縮機7の搬送量を小さくして第2冷凍回路15の第2冷媒の流量を小さくすることも可能である。 In the present embodiment, the opening degree of the evaporator throttle means 14 is reduced as a means for reducing the flow rate of the second refrigerant in the second refrigeration circuit 15, but the present invention is not limited to this. The conveyance amount of the air-conditioning compressor 7 is reduced by reducing the conveyance amount of the air-conditioning compressor 7 to reduce the flow rate of the second refrigerant in the second refrigeration circuit 15 and the opening degree of the evaporator throttle means 14. It is also possible to reduce the flow rate of the second refrigerant in the second refrigeration circuit 15 by reducing the value of.
 また、以上のように本実施形態では、蒸発器4をプレート式の熱交換器で構成している。蒸発器4をプレート式の熱交換器とすることで、低圧側に保有する第1冷媒量を少なくし、高圧側への搬送量増加に伴う高圧側圧力の急上昇を抑制することができる。また、給湯用圧縮機1に吸入される第1冷媒の過熱度が高い場合に、第1冷凍回路5の低圧側圧力を低下することで蒸発器4出口での第1冷媒の過熱度を小さくすることができ、給湯用圧縮機1に吸入される第1冷媒の過熱度増大による効率低下や、給湯用圧縮機1から吐出される第1冷媒の温度過昇を抑制することができる。 Further, as described above, in this embodiment, the evaporator 4 is configured by a plate heat exchanger. By making the evaporator 4 a plate-type heat exchanger, the amount of the first refrigerant held on the low pressure side can be reduced, and a rapid increase in the high pressure side pressure accompanying an increase in the conveyance amount to the high pressure side can be suppressed. Moreover, when the superheat degree of the 1st refrigerant | coolant suck | inhaled by the compressor 1 for hot water supply is high, the superheat degree of the 1st refrigerant | coolant in the evaporator 4 exit is made small by reducing the low pressure side pressure of the 1st freezing circuit 5. Therefore, it is possible to suppress a decrease in efficiency due to an increase in the degree of superheat of the first refrigerant sucked into the hot water supply compressor 1 and an increase in temperature of the first refrigerant discharged from the hot water supply compressor 1.
 本実施の形態では第1冷凍回路5の低圧側圧力を検出する手段として用いた第1冷凍回路低圧検出手段6を、給湯用圧縮機1と蒸発器4との間に配設したが、絞り手段3と蒸発器4との間に配設することも可能である。 In the present embodiment, the first refrigeration circuit low pressure detection means 6 used as means for detecting the low pressure side pressure of the first refrigeration circuit 5 is disposed between the hot water supply compressor 1 and the evaporator 4. It is also possible to arrange between the means 3 and the evaporator 4.
 本実施の形態では第1冷凍回路5の低圧側圧力を検出する手段として第1冷凍回路低圧検出手段6を用いたが、図1に示すように、別の形態として蒸発器4入口の温度を検出する蒸発器入口温度検出手段117を用いてもよい。 In the present embodiment, the first refrigeration circuit low pressure detecting means 6 is used as means for detecting the low pressure side pressure of the first refrigeration circuit 5, but as shown in FIG. You may use the evaporator inlet temperature detection means 117 to detect.
 この場合、図7の制御フローとなる。図7の制御フローでは、図6の制御フローと比較したとき、(S11)の判断が異なっている。その他のステップは、図6の制御フローと同じであるので、説明を省略する。 In this case, the control flow is as shown in FIG. The control flow of FIG. 7 differs from the determination of (S11) when compared with the control flow of FIG. The other steps are the same as the control flow in FIG.
 すなわち、蒸発器入口温度検出手段117が検出した温度Teinが例えば20℃以上か否かが判断される(S11)。 That is, it is determined whether or not the temperature Tein detected by the evaporator inlet temperature detection means 117 is 20 ° C. or more, for example (S11).
 そして、例えば20℃以上の場合には、以下、図6の制御フローと同様に、ステップS2に移行するように制御される。 For example, when the temperature is 20 ° C. or higher, the control is performed so as to proceed to step S2 in the same manner as in the control flow of FIG.
 また、本実施の形態では、図1に示すように、別の形態として空調用圧縮機7の吐出圧力を検出する空調用圧縮機吐出圧力検出手段118を用いてもよい。 Further, in the present embodiment, as shown in FIG. 1, an air conditioning compressor discharge pressure detecting means 118 for detecting the discharge pressure of the air conditioning compressor 7 may be used as another embodiment.
 この場合、図8の制御フローとなる。図8の制御フローでは、図6の制御フローと比較したとき、(S12)の判断が異なっている。その他のステップは、図6の制御フローと同じであるので、説明を省略する。 In this case, the control flow is as shown in FIG. The control flow of FIG. 8 differs from the determination of (S12) when compared with the control flow of FIG. The other steps are the same as the control flow in FIG.
 すなわち、空調用圧縮機吐出圧力検出手段118が検出する圧力が例えば3.7Mps以上か否かが判断される(S11)。 That is, it is determined whether or not the pressure detected by the air-conditioning compressor discharge pressure detecting means 118 is, for example, 3.7 Mps or more (S11).
 そして、例えば3.7Mpsの場合には、以下、図6の制御フローと同様に、ステップS2に移行するように制御される。 Then, for example, in the case of 3.7 Mps, control is performed so as to proceed to step S2 in the same manner as in the control flow of FIG.
 これによれば、蒸発器4での吸熱側の温度によらず、第1冷凍回路5の低圧側圧力が低下することとなる。よって、蒸発器4での吸熱側の温度によらず、第1冷凍回路5の低圧側圧力を臨界圧力以下にして給湯用圧縮機1に吸入することができ、より簡素な構成で圧縮機の信頼性を向上することができる。 According to this, the low-pressure side pressure of the first refrigeration circuit 5 is reduced regardless of the temperature on the heat absorption side in the evaporator 4. Therefore, regardless of the temperature on the heat absorption side in the evaporator 4, the low pressure side pressure of the first refrigeration circuit 5 can be reduced below the critical pressure and sucked into the hot water supply compressor 1, and the compressor can be constructed with a simpler configuration. Reliability can be improved.
 以上、本実施の形態に基づいて本発明を説明したが、本発明はこの実施形態に限定されるものではない。あくまでも本発明の実施の態様を例示するものであるから、本発明の趣旨を逸脱しない範囲で任意に変更、及び応用が可能である。 As mentioned above, although this invention was demonstrated based on this Embodiment, this invention is not limited to this embodiment. Since the embodiments of the present invention are merely illustrated, modifications and applications can be arbitrarily made without departing from the spirit of the present invention.
 以上のように本発明に係るヒートポンプ装置は、給湯用冷凍サイクルの低圧側圧力の上昇を抑えることが可能となり、給湯機能あるいは暖房機能を備えたヒートポンプ装置に適用できる。 As described above, the heat pump device according to the present invention can suppress an increase in the low-pressure side pressure of the hot water supply refrigeration cycle, and can be applied to a heat pump device having a hot water supply function or a heating function.
 1 給湯用圧縮機(第1圧縮機)
 2 凝縮器(第1凝縮器)
 3 絞り手段(第1絞り手段)
 4 蒸発器(第1蒸発器)
 5 給湯用冷凍サイクル(第1冷凍回路)
 6 第1冷凍回路低圧検出手段
 7 空調用圧縮機(第2圧縮機)
 10 室外ユニット
 11 室外熱交換器
 13 室外熱交換器用絞り手段(第2絞り手段)
 14 蒸発器用絞り手段(第3絞り手段)
 15 空調用冷凍サイクル(第2冷凍回路)
 116 制御部
 20 循環回路
 30 室内ユニット
1 Hot water supply compressor (first compressor)
2 Condenser (first condenser)
3 Aperture means (first aperture means)
4 Evaporator (first evaporator)
5 Hot water supply refrigeration cycle (first refrigeration circuit)
6 First refrigeration circuit low pressure detection means 7 Air conditioning compressor (second compressor)
10 outdoor unit 11 outdoor heat exchanger 13 throttling means for outdoor heat exchanger (second throttling means)
14 Throttle means for evaporator (third throttle means)
15 Refrigeration cycle for air conditioning (second refrigeration circuit)
116 Control unit 20 Circulating circuit 30 Indoor unit

Claims (6)

  1.  第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、前記第1蒸発器で前記第1冷凍回路と熱交換を行う第2冷凍回路と、制御部と、を備え、
     前記制御部は、前記第1冷凍回路の低圧側圧力が所定値以下となるように、前記第1圧縮機の搬送量を増加する、第1冷凍回路低圧抑制第1モードを有する、ヒートポンプ装置。
    The first compressor, the first condenser, the first throttling means, and the first evaporator are connected in an annular shape, the first refrigeration circuit for circulating the first refrigerant, the second refrigerant is circulated, and the first evaporator A second refrigeration circuit for exchanging heat with the first refrigeration circuit, and a control unit,
    The said control part is a heat pump apparatus which has a 1st freezing circuit low pressure suppression 1st mode which increases the conveyance amount of a said 1st compressor so that the low voltage | pressure side pressure of a said 1st freezing circuit may become below a predetermined value.
  2.  第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、前記第1蒸発器で前記第1冷凍回路と熱交換を行う第2冷凍回路と、制御部と、を備え、
     前記制御部は、前記第1冷凍回路の低圧側圧力が所定値以下となるように、前記第1圧縮機の搬送量を増加するとともに、前記第1絞り手段の開度を小さくする、第1冷凍回路低圧抑制第2モードを有する、ヒートポンプ装置。
    The first compressor, the first condenser, the first throttling means, and the first evaporator are connected in an annular shape, the first refrigeration circuit for circulating the first refrigerant, the second refrigerant is circulated, and the first evaporator A second refrigeration circuit for exchanging heat with the first refrigeration circuit, and a control unit,
    The control unit increases the transport amount of the first compressor and decreases the opening of the first throttle means so that the low-pressure side pressure of the first refrigeration circuit is a predetermined value or less. A heat pump device having a second mode of low-pressure refrigeration circuit suppression.
  3.  第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、前記第1蒸発器で前記第1冷凍回路と熱交換を行う第2冷凍回路と、制御部と、を備え、
     前記制御部は、前記第1冷凍回路の低圧側圧力が所定値以下となるように、前記第2冷凍回路の第2冷媒の流量を小さくする、第1冷凍回路低圧抑制第3モードを有する、ヒートポンプ装置。
    The first compressor, the first condenser, the first throttling means, and the first evaporator are connected in an annular shape, the first refrigeration circuit for circulating the first refrigerant, the second refrigerant is circulated, and the first evaporator A second refrigeration circuit for exchanging heat with the first refrigeration circuit, and a control unit,
    The control unit has a first refrigeration circuit low pressure suppression third mode in which the flow rate of the second refrigerant in the second refrigeration circuit is reduced so that the low pressure side pressure of the first refrigeration circuit is a predetermined value or less. Heat pump device.
  4.  前記第2冷凍回路は、第2圧縮機、室外熱交換器、第2絞り手段を有する室外ユニットと、室内熱交換器を有する室内ユニットと、前記第1蒸発器に第2冷媒を循環する循環回路と、を備え、この循環回路には、第2冷媒の循環量を制御する第3絞り手段を備え、
     前記第1冷凍回路低圧抑制第3モードは、前記第1冷凍回路の低圧側圧力が所定値以下となるように、前記第3絞り手段の開度を小さくする、請求項3に記載のヒートポンプ装置。
    The second refrigeration circuit has a second compressor, an outdoor heat exchanger, an outdoor unit having a second throttling means, an indoor unit having an indoor heat exchanger, and a circulation for circulating the second refrigerant to the first evaporator. A circuit, and the circulation circuit includes a third throttle means for controlling a circulation amount of the second refrigerant,
    4. The heat pump device according to claim 3, wherein in the first refrigeration circuit low pressure suppression third mode, the opening degree of the third throttling means is reduced so that the low pressure side pressure of the first refrigeration circuit is a predetermined value or less. .
  5.  前記第1冷凍回路低圧抑制第3モードは、前記第1冷凍回路の低圧側圧力が所定値以下となるように、前記第2圧縮機の搬送量を小さくする、請求項3に記載のヒートポンプ装置。 4. The heat pump device according to claim 3, wherein in the first refrigeration circuit low-pressure suppression third mode, the conveyance amount of the second compressor is reduced so that the low-pressure side pressure of the first refrigeration circuit is a predetermined value or less. .
  6.  前記第1蒸発器は、前記第1冷凍回路と前記第2冷凍回路とで熱交換を行う熱交換器である、請求項1から5の何れか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 5, wherein the first evaporator is a heat exchanger that performs heat exchange between the first refrigeration circuit and the second refrigeration circuit.
PCT/JP2016/002322 2015-05-28 2016-05-12 Heat pump device WO2016189813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017520217A JP6695034B2 (en) 2015-05-28 2016-05-12 Heat pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015108185 2015-05-28
JP2015-108185 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016189813A1 true WO2016189813A1 (en) 2016-12-01

Family

ID=57392673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002322 WO2016189813A1 (en) 2015-05-28 2016-05-12 Heat pump device

Country Status (2)

Country Link
JP (1) JP6695034B2 (en)
WO (1) WO2016189813A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186043A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Hot-water supply device, and dual hot-water generation unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097779A (en) * 2007-10-16 2009-05-07 Denso Corp Supercritical refrigerating cycle
JP2012145254A (en) * 2011-01-11 2012-08-02 Mitsubishi Electric Corp Refrigeration cycle device and refrigerant discharge device
JP2014105963A (en) * 2012-11-29 2014-06-09 Panasonic Corp Refrigeration unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286289A (en) * 2003-03-20 2004-10-14 Sanyo Electric Co Ltd Refrigerant cycle device
JP2004309027A (en) * 2003-04-08 2004-11-04 Matsushita Electric Ind Co Ltd Control method for heat pump device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097779A (en) * 2007-10-16 2009-05-07 Denso Corp Supercritical refrigerating cycle
JP2012145254A (en) * 2011-01-11 2012-08-02 Mitsubishi Electric Corp Refrigeration cycle device and refrigerant discharge device
JP2014105963A (en) * 2012-11-29 2014-06-09 Panasonic Corp Refrigeration unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186043A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Hot-water supply device, and dual hot-water generation unit

Also Published As

Publication number Publication date
JPWO2016189813A1 (en) 2018-03-15
JP6695034B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
US10845095B2 (en) Air-conditioning apparatus
JP5634502B2 (en) Air conditioning and hot water supply complex system
US9441862B2 (en) Air-conditioning apparatus including intermediate heat exchangers
WO2011048695A1 (en) Air conditioning device
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JPWO2011048662A1 (en) Heat pump equipment
WO2015125743A1 (en) Air-conditioning device
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
WO2013031591A1 (en) Supercritical cycle and heat pump hot-water supplier using same
JP2017161182A (en) Heat pump device
JP2005249319A (en) Heat pump hot water supply air-conditioner
US20130061622A1 (en) Refrigerating and air-conditioning apparatus
JP2007051841A (en) Refrigeration cycle device
US20220090815A1 (en) Air-conditioning apparatus
KR101823469B1 (en) High temperature hot water supply and heating and air conditioning system with partial load using dual cycle
WO2016189813A1 (en) Heat pump device
WO2016189810A1 (en) Heat pump device
KR20170000029U (en) cascade heat pump
JP6675083B2 (en) Binary heat pump device
KR101658021B1 (en) A Heatpump System Using Duality Cold Cycle
JP2006003023A (en) Refrigerating unit
JP2017161164A (en) Air-conditioning hot water supply system
JP6692083B2 (en) Dual heat pump device
JP2010038408A (en) Outdoor heat exchanger and refrigerating cycle device mounted with the same
WO2017138243A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799528

Country of ref document: EP

Kind code of ref document: A1