JP2007051841A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2007051841A
JP2007051841A JP2005238158A JP2005238158A JP2007051841A JP 2007051841 A JP2007051841 A JP 2007051841A JP 2005238158 A JP2005238158 A JP 2005238158A JP 2005238158 A JP2005238158 A JP 2005238158A JP 2007051841 A JP2007051841 A JP 2007051841A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
heat
pressure
intermediate pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005238158A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kawabe
義和 川邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005238158A priority Critical patent/JP2007051841A/en
Publication of JP2007051841A publication Critical patent/JP2007051841A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of a compressor by preventing injection of liquid refrigerant in an injection cycle using carbon dioxide refrigerant. <P>SOLUTION: This device comprises elements such as an injection compressor 101, a radiator 102 and a heat releasing blower 128, a branch part 103, a first expansion valve 104, a second expansion valve 106, a heat absorber 107 and a heat absorbing blower 129, a first internal heat exchanger 126, a second internal heat exchanger 125 that is a second heat exchange means, a flow control valve 141, a first pipe temperature sensor 112, a second pipe temperature sensor 142, an evaporation temperature sensor 143 and an injection circuit controller 110. The first expansion valve 104 is controlled based on the difference in detection temperature between the evaporation temperature sensor 143 and the first pipe temperature sensor 112, and the flow control valve 141 is controlled based on the difference in detection temperature between the evaporation temperature sensor 143 and the second pipe temperature sensor 142. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、インジェクションサイクルを用いた冷凍サイクル装置に関するものである。なかでも、二酸化炭素を冷媒として用い、冷媒間で熱交換を行う熱交換器を備えた構成において、冷房過負荷運転時の性能改善と信頼性向上を行う技術に関するものである。   The present invention relates to a refrigeration cycle apparatus using an injection cycle. In particular, the present invention relates to a technique for improving performance and reliability during cooling overload operation in a configuration including a heat exchanger that uses carbon dioxide as a refrigerant and exchanges heat between refrigerants.

従来、二酸化炭素を用いた臨界圧力を超える蒸気圧縮式冷凍サイクルの冷凍能力を損なうことなく圧縮機などの大型化を防止する蒸気圧縮式冷凍サイクルの技術が開示されている(例えば、特許文献1参照)。   Conventionally, a technique of a vapor compression refrigeration cycle that prevents an increase in size of a compressor or the like without impairing the refrigeration capacity of the vapor compression refrigeration cycle that exceeds a critical pressure using carbon dioxide has been disclosed (for example, Patent Document 1). reference).

この技術は、図3に示すように、圧縮装置301、放熱器302、分岐部303、第1減圧装置304、冷却器305、第2減圧装置306、蒸発器307などで構成されている。さらに、アキュムレータ308、制御装置310、冷却された吹出し空気の温度を検出する温度センサー311、インジェクションする冷媒の温度を検出する温度センサー312、インジェクションする冷媒の圧力を検出する圧力センサー313、室内温度センサー314、室外温度センサー315、温度設定手段316、放熱器302の出口冷媒温度を検出する温度センサー317、同じく出口冷媒圧力を検出する圧力センサー318、送風機328、329などが設けられ、装置全体を構成している。またここで、矢印330、331は吹出し空気を示している。   As shown in FIG. 3, this technique includes a compression device 301, a radiator 302, a branching portion 303, a first decompression device 304, a cooler 305, a second decompression device 306, an evaporator 307, and the like. Furthermore, accumulator 308, control device 310, temperature sensor 311 for detecting the temperature of the cooled blown air, temperature sensor 312 for detecting the temperature of the refrigerant to be injected, pressure sensor 313 for detecting the pressure of the refrigerant to be injected, and room temperature sensor 314, an outdoor temperature sensor 315, a temperature setting means 316, a temperature sensor 317 for detecting the outlet refrigerant temperature of the radiator 302, a pressure sensor 318 for detecting the outlet refrigerant pressure, blowers 328 and 329, and the like constitute the entire apparatus. is doing. Further, here, arrows 330 and 331 indicate blown air.

図3において、放熱器302を通過した二酸化炭素冷媒を分岐部303で分岐させ、一方をインジェクション冷媒として第1減圧装置304にて減圧するとともに、減圧された冷媒と他方側の冷媒とを冷却器305にて熱交換して他方側の冷媒を冷却する。これにより、第2減圧装置306の入口側における他方側の冷媒の比エンタルピーを小さくすることができるので、蒸発器307の入口と出口との比エンタルピー差を大きくすることができる。従って、冷凍能力を損なうことなく、圧縮装置301などの各機器の大型化を防止することができるとしている。
特開平10−288411号公報
In FIG. 3, the carbon dioxide refrigerant that has passed through the radiator 302 is branched by the branching portion 303, and one of them is decompressed by the first decompression device 304 as an injection refrigerant, and the decompressed refrigerant and the refrigerant on the other side are cooled. At 305, heat is exchanged to cool the other refrigerant. Thereby, since the specific enthalpy of the refrigerant on the other side on the inlet side of the second decompression device 306 can be reduced, the specific enthalpy difference between the inlet and the outlet of the evaporator 307 can be increased. Accordingly, it is possible to prevent an increase in the size of each device such as the compression device 301 without impairing the refrigerating capacity.
JP-A-10-288411

しかしながら、特許文献1に記載の従来の装置において、インジェクション冷媒の経路にはアキュムレータが配備されておらず、第1減圧装置により液冷媒がインジェクションされない過熱度5K程度に保つとされているが、圧縮機の運転周波数の変更や室内風量の変更などによるサイクル状態の変化に対し、第1減圧装置だけでは対応できなくなり過量の液冷媒をインジェクションして圧縮機の故障をまねく可能性があるという課題がある。   However, in the conventional apparatus described in Patent Document 1, no accumulator is provided in the injection refrigerant path, and it is said that the superheat degree is maintained at about 5K at which the liquid refrigerant is not injected by the first decompression device. There is a problem that a change in the cycle state due to a change in the operating frequency of the machine, a change in the indoor air flow, etc. cannot be handled only by the first decompression device, and an excessive amount of liquid refrigerant may be injected to cause a compressor failure. is there.

本発明は、前記従来の課題を解決するもので、圧縮機の運転周波数の変更や室内風量の変更などによるサイクル状態の変化が生じても、インジェクション冷媒の状態を制御して、特に液冷媒をインジェクションすることを防止し、信頼性の高い冷凍サイクル装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and even if a change in cycle state occurs due to a change in the operating frequency of the compressor or a change in the indoor air volume, the state of the injection refrigerant is controlled, and particularly the liquid refrigerant is used. An object of the present invention is to provide a highly reliable refrigeration cycle apparatus that prevents injection.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、第1の減圧手段を出た冷媒の中間圧吸入口側経路において、高圧の冷媒と熱交換するための第2の熱交換手段と第1の熱交換手段との間に流量制御弁を持つバイパス経路を設け、第1の減圧手段を出た冷媒は第2の熱交換手段からバイパス経路を通って、あるいは第1の熱交換手段を通っ
てインジェクション圧縮機の中間圧吸入口へと導かれるものである。これにより、第1の減圧手段を出た冷媒と放熱手段を出た冷媒の熱交換能力を速やかに変更することができる。
In order to solve the above-described conventional problems, the refrigeration cycle apparatus of the present invention includes a second heat exchange for exchanging heat with a high-pressure refrigerant in an intermediate-pressure inlet side path of the refrigerant that has exited the first decompression means. A bypass path having a flow control valve is provided between the first heat exchange means and the first heat exchange means, and the refrigerant exiting the first pressure reduction means passes through the bypass path from the second heat exchange means or the first heat. It is led to the intermediate pressure inlet of the injection compressor through the exchange means. Thereby, the heat exchange capability of the refrigerant | coolant which exited the 1st pressure reduction means and the refrigerant | coolant which exited the thermal radiation means can be changed rapidly.

また、前記従来の課題を解決するために、本発明の冷凍サイクル装置は、第2の熱交換手段において冷媒の蒸発温度を検出する蒸発温度検知手段と、第2の熱交換手段の出口において第1の減圧手段を出た冷媒の温度を検出する第1の冷媒温度検出手段と、バイパス経路の合流後から中間圧吸入口手前に第1の減圧手段を出た冷媒の温度を検出する第2の冷媒温度検出手段を備え、蒸発温度検知手段の検出温度と、第1の冷媒温度検出手段、および第2の冷媒温度検出手段の検出温度比較するものである。これにより、冷媒の過熱度を温度検出手段のみで検出することがでるとともに、2箇所で監視することができる。   In order to solve the above-described conventional problem, the refrigeration cycle apparatus of the present invention includes an evaporating temperature detecting means for detecting the evaporating temperature of the refrigerant in the second heat exchanging means, and an outlet at the outlet of the second heat exchanging means. A first refrigerant temperature detecting means for detecting the temperature of the refrigerant that has exited the first decompression means, and a second that detects the temperature of the refrigerant that has exited the first decompression means before the intermediate pressure inlet after joining the bypass path. The refrigerant temperature detection means is provided, and the detection temperature of the evaporation temperature detection means is compared with the detection temperatures of the first refrigerant temperature detection means and the second refrigerant temperature detection means. Thereby, the superheat degree of the refrigerant can be detected only by the temperature detecting means, and can be monitored at two locations.

本発明の冷凍サイクル装置は、流量制御弁を通常開き、バイパス経路から冷媒を中間圧吸入口へ返す状態で運転を行い、運転状態の変化により中間圧吸入口へ帰る冷媒の乾き度が低下してきた場合に流量制御弁を閉じ、第1の減圧手段を出た冷媒のすべてが第2の熱交換手段を出た後第1の熱交換手段を通すもので、中間圧吸入口へ帰る冷媒の乾き度の変化に対し素早く対応して液戻りを防ぎ、信頼性の向上を図ることができる。   The refrigeration cycle apparatus of the present invention is operated with the flow control valve normally opened and returning the refrigerant from the bypass path to the intermediate pressure suction port, and the dryness of the refrigerant returning to the intermediate pressure suction port is reduced due to a change in the operation state. In this case, the flow control valve is closed, and all of the refrigerant that has exited the first pressure reducing means passes through the first heat exchanging means after exiting the second heat exchanging means, and the refrigerant returning to the intermediate pressure suction port It can respond quickly to changes in dryness to prevent liquid return and improve reliability.

また、本発明の冷凍サイクル装置は、蒸発温度検知手段の検出温度と、第1の冷媒温度検出手段、および第2の冷媒温度検出手段の検出温度とを比較して、冷媒の過熱度を温度検出手段のみで検出するとともに、2箇所で監視するもので、安価な構成で制御の信頼性向上を図ることができる。   Further, the refrigeration cycle apparatus of the present invention compares the detected temperature of the evaporating temperature detecting means with the detected temperatures of the first refrigerant temperature detecting means and the second refrigerant temperature detecting means, and determines the degree of superheat of the refrigerant. The detection is performed only by the detection means and monitoring is performed at two locations, and the reliability of the control can be improved with an inexpensive configuration.

第1の発明は、第1の減圧手段を出た冷媒の経路において、第2の熱交換手段と第1の熱交換手段の間に流量制御弁を持つバイパス経路を設け、第1の減圧手段を出た冷媒は第2の熱交換手段からバイパス経路を通って、あるいは第1の熱交換手段を通ってインジェクション圧縮機の中間圧吸入口へと導かれるものである。そして、流量制御弁を通常開き、バイパス経路から冷媒を中間圧吸入口へ返す状態で運転を行い、運転状態の変化により中間圧吸入口へ帰る冷媒の乾き度が低下してきた場合に流量制御弁を閉じ、第1の減圧手段を出た冷媒のすべてが第2の熱交換手段を出た後第1の熱交換手段を通すもので、中間圧吸入口へ帰る冷媒の乾き度の変化に対し素早く対応して液戻りを防ぎ、信頼性の向上を図ることができる。   According to a first aspect of the present invention, a bypass path having a flow rate control valve is provided between the second heat exchanging means and the first heat exchanging means in the refrigerant path exiting the first pressure reducing means, and the first pressure reducing means The refrigerant that has exited is guided from the second heat exchange means through the bypass path or through the first heat exchange means to the intermediate pressure suction port of the injection compressor. When the flow control valve is normally opened and the refrigerant is returned to the intermediate pressure suction port from the bypass path, the flow control valve is operated when the dryness of the refrigerant returning to the intermediate pressure suction port decreases due to a change in the operation state. All of the refrigerant that has exited the first pressure reducing means passes through the first heat exchanging means after leaving the second heat exchanging means, and the change in the dryness of the refrigerant returning to the intermediate pressure suction port It can respond quickly to prevent liquid return and improve reliability.

第2の発明は、特に第1の発明において、高圧冷媒を第1の減圧手段へ分岐する位置を第1の熱交換手段の手前とするもので、第1の減圧手段を通過する冷媒の冷熱が第2の減圧手段を通る冷媒にすべて与えられ、吸熱手段で熱を吸収するので、冷凍性能の優れた装置を提供することができる。   In the second invention, in particular, in the first invention, the position where the high-pressure refrigerant branches to the first decompression means is located before the first heat exchange means, and the cold heat of the refrigerant passing through the first decompression means. Is all given to the refrigerant passing through the second decompression means, and the heat absorption means absorbs heat, so that an apparatus with excellent refrigerating performance can be provided.

第3の発明は、特に第1の発明において、高圧冷媒を第1の減圧手段へ分岐する位置を第1の熱交換手段と前記第2の熱交換手段の間とするもので、第1の減圧手段を通過する冷媒は、放熱手段を出て分岐する前の循環量の多い冷媒と熱交換するため、第1の熱交換手段における第1の減圧手段を通過する冷媒の加熱能力が高く、中間圧吸入口への液戻りを防ぐ力が高く、信頼性に優れた装置を提供することができる。   According to a third aspect of the present invention, in particular, in the first aspect, the position where the high-pressure refrigerant branches to the first decompression unit is between the first heat exchange unit and the second heat exchange unit. Since the refrigerant passing through the decompression means exchanges heat with the refrigerant having a large circulation amount before leaving the heat dissipation means and branching, the heating capacity of the refrigerant passing through the first decompression means in the first heat exchange means is high, It is possible to provide a highly reliable device that has a high ability to prevent liquid return to the intermediate pressure inlet.

第4の発明は、特に第1から第3の発明において、インジェクション回路制御手段が蒸発温度検知手段の検出温度と、第1の冷媒温度検出手段、および第2の冷媒温度検出手段の検出温度とを比較して、冷媒の過熱度を温度検出手段のみで検出するとともに、2箇所で監視するもので、安価な構成で制御の信頼性向上を図ることができる。   According to a fourth aspect of the invention, in particular, in the first to third aspects of the invention, the injection circuit control means detects the temperature detected by the evaporation temperature detection means, the detection temperature of the first refrigerant temperature detection means, and the detection temperature of the second refrigerant temperature detection means. Thus, the degree of superheat of the refrigerant is detected only by the temperature detection means and monitored at two locations, and the reliability of control can be improved with an inexpensive configuration.

第5の発明は、特に第4の発明において、蒸発温度検知手段の検出温度と第2の冷媒温度検出手段の検出温度を比較して、温度差が所定の値になるよう第1の減圧手段を操作するとともに、蒸発温度検知手段の検出温度と第1の冷媒温度検出手段の検出温度を比較して、温度差が所定の値になるよう流量制御弁を操作するもので、簡単な制御アルゴリズムで信頼性の高い制御を行うことができる。   According to a fifth aspect of the present invention, in the fourth aspect of the invention, the first pressure reducing means in the fourth aspect of the invention compares the detected temperature of the evaporation temperature detecting means with the detected temperature of the second refrigerant temperature detecting means so that the temperature difference becomes a predetermined value. And the flow rate control valve is operated so that the temperature difference becomes a predetermined value by comparing the detected temperature of the evaporating temperature detecting means with the detected temperature of the first refrigerant temperature detecting means. Therefore, highly reliable control can be performed.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明における第1の実施の形態である冷凍サイクル装置の構成図である。図1に示すように、インジェクション圧縮機101、放熱手段である放熱器102と放熱用送風機128、放熱した高圧の冷媒を分流する分岐部103、第1の減圧手段である第1膨張弁104、第2の減圧手段である第2膨張弁106、吸熱手段である吸熱器107と吸熱用送風機129、第1の熱交換手段である第1内部熱交換器126、第2の熱交換手段である第2内部熱交換器125、流量制御弁141、第1の冷媒温度検出手段である第1配管温度センサー112、第2の冷媒温度検出手段である第2配管温度センサー142、蒸発温度検出手段である蒸発温度センサー143、インジェクション回路制御装置110、などの要素で構成されている。
(Embodiment 1)
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention. As shown in FIG. 1, an injection compressor 101, a radiator 102 and a heat radiating fan 128 as heat radiating means, a branching portion 103 for diverting the radiated high-pressure refrigerant, a first expansion valve 104 as a first pressure reducing means, A second expansion valve 106 serving as a second pressure reducing means, a heat absorber 107 serving as a heat absorbing means, a blower 129 for heat absorption, a first internal heat exchanger 126 serving as a first heat exchanging means, and a second heat exchanging means. The second internal heat exchanger 125, the flow rate control valve 141, the first pipe temperature sensor 112 as the first refrigerant temperature detection means, the second pipe temperature sensor 142 as the second refrigerant temperature detection means, and the evaporation temperature detection means It is comprised by elements, such as a certain evaporation temperature sensor 143 and the injection circuit control apparatus 110.

インジェクション圧縮機101の吐出口150から送り出された高温高圧で超臨界状態の二酸化炭素冷媒(以降、冷媒と称する)は、放熱器102で冷却された後、分岐部103において、第1膨張弁104へ向かう中間圧吸入口側経路153と第1内部熱交換器126へ向かう低圧吸入口側経路154とに分けられる。   A high-temperature, high-pressure, supercritical carbon dioxide refrigerant (hereinafter referred to as a refrigerant) sent from the discharge port 150 of the injection compressor 101 is cooled by the radiator 102 and then the first expansion valve 104 at the branch portion 103. It is divided into an intermediate pressure inlet side path 153 heading toward and a low pressure inlet side path 154 heading toward the first internal heat exchanger 126.

中間圧吸入口側経路153において、分岐部103から第1膨張弁104へ流れる冷媒は、第1膨張弁104で減圧膨張した後に第2内部熱交換器125へ流れる。そして、分岐部103で分流されて第1内部熱交換器126へ流れ、続いて第2内部熱交換器125に流れてきたもう一方の冷媒から吸熱して蒸発しながら第2内部熱交換器125を出ると、第1内部熱交換器126へ流れてさらに吸熱して、あるいは第1内部熱交換器126は通らずに流量制御弁141を通ってインジェクション圧縮機101の中間圧吸入口151へ戻る。   In the intermediate pressure inlet side path 153, the refrigerant flowing from the branch portion 103 to the first expansion valve 104 is decompressed and expanded by the first expansion valve 104 and then flows to the second internal heat exchanger 125. Then, the second internal heat exchanger 125 is divided while flowing at the branching portion 103 and flows to the first internal heat exchanger 126, and then absorbs heat and evaporates from the other refrigerant flowing to the second internal heat exchanger 125. , It flows to the first internal heat exchanger 126 and further absorbs heat, or passes through the flow control valve 141 without passing through the first internal heat exchanger 126 and returns to the intermediate pressure inlet 151 of the injection compressor 101. .

一方、低圧吸入口側経路154において、分岐部103から第1内部熱交換器126、第2内部熱交換器125を流れ、超臨界状態のまま冷却された冷媒は、第2膨張弁106にて減圧膨張し、吸熱器107において吸熱し蒸発してインジェクション圧縮機101の低圧吸入口152へ戻る。低圧吸入口152の手前にはアキュムレータ108が設けられて冷媒が液状態のまま吸入される液戻りを防止している。   On the other hand, in the low-pressure inlet side path 154, the refrigerant that has flowed from the branch portion 103 through the first internal heat exchanger 126 and the second internal heat exchanger 125 and has been cooled while being in the supercritical state passes through the second expansion valve 106. It expands under reduced pressure, absorbs heat in the heat absorber 107 and evaporates, and returns to the low pressure inlet 152 of the injection compressor 101. An accumulator 108 is provided in front of the low-pressure suction port 152 to prevent liquid return from being sucked in the liquid state.

第1の実施の形態における冷凍サイクルの能力は、放熱器102の放熱能力を同じとすると、インジェクションを行わない冷凍サイクルに比べて吸熱器107を通る冷媒量は低下するが、第1内部熱交換器126、第2内部熱交換器125で冷却されるため能力は大きく変わらない。厳密には、中間圧吸入口151の比エンタルピーが低圧吸入口152の比エンタルピーより小さい分だけ能力を落とすことになる。しかしながら、低圧から高圧まで圧縮される冷媒が減ることによって圧縮動力が低減され、総合的には効率が向上する。   The capacity of the refrigeration cycle in the first embodiment is that if the heat dissipation capacity of the radiator 102 is the same, the amount of refrigerant passing through the heat absorber 107 is lower than that of the refrigeration cycle in which injection is not performed, but the first internal heat exchange The capacity is not greatly changed because it is cooled by the condenser 126 and the second internal heat exchanger 125. Strictly speaking, the specific enthalpy of the intermediate pressure inlet 151 is reduced by an amount smaller than the specific enthalpy of the low pressure inlet 152. However, the reduction of the refrigerant compressed from the low pressure to the high pressure reduces the compression power and improves the overall efficiency.

第1の実施の形態では、安定状態においては流量制御弁141が全開に設定されており、第1膨張弁104は、蒸発温度センサー143の検出温度と第1配管温度センサー11
2の検出温度が所定の温度差を保つようインジェクション回路制御装置110によって制御されている。このように蒸発温度センサー143の検出温度との比較を行う構成としているので、高価な圧力センサーなどを使用せず安価に構成できる。
In the first embodiment, in the stable state, the flow control valve 141 is set to fully open, and the first expansion valve 104 is detected by the temperature detected by the evaporation temperature sensor 143 and the first pipe temperature sensor 11.
The detected temperature of 2 is controlled by the injection circuit control device 110 so as to maintain a predetermined temperature difference. Thus, since it is set as the structure which compares with the detection temperature of the evaporation temperature sensor 143, it can comprise at low cost, without using an expensive pressure sensor.

実際には蒸発温度センサー143の検出温度よりも第1配管温度センサー112の検出温度が3K程度高くなるように設定するのが望ましい。そして、流量制御弁141を通る冷媒と、第1内部熱交換器126を通りさらに加熱された冷媒とが合流した後の冷媒の温度、つまり第2配管温度センサー142の検出温度は蒸発温度センサー143の検出温度よりも5〜6K程度高くなる。   Actually, it is desirable to set the detection temperature of the first piping temperature sensor 112 to be about 3K higher than the detection temperature of the evaporation temperature sensor 143. The temperature of the refrigerant after the refrigerant passing through the flow control valve 141 and the refrigerant further heated through the first internal heat exchanger 126 merge, that is, the detected temperature of the second pipe temperature sensor 142 is the evaporation temperature sensor 143. It becomes higher by about 5-6K than the detected temperature.

インジェクション圧縮機101の運転周波数を変化させた場合や、放熱用送風機128あるいは吸熱用送風機129の風量が変化した場合など、冷凍サイクルのバランスが変化し、蒸発温度センサー143の検出温度に対し第1配管温度センサー112の検出温度が低下してきた場合には、第1膨張弁104が絞られ温度差を維持するよう制御される。しかし、第1膨張弁104は不安定を避けるために制御速度が抑えられているため蒸発温度センサー143と第1配管温度センサー112の検出温度差を維持できなくなる場合がある。このとき、蒸発温度センサー143の検出温度に対し、第2配管温度センサー142の検出温度も相対的に低下していく。   When the operating frequency of the injection compressor 101 is changed, or when the air flow of the heat dissipating blower 128 or the heat absorbing blower 129 is changed, the balance of the refrigeration cycle changes, and the first temperature relative to the detected temperature of the evaporation temperature sensor 143 changes. When the temperature detected by the pipe temperature sensor 112 is lowered, the first expansion valve 104 is throttled to control the temperature difference. However, since the control speed of the first expansion valve 104 is suppressed to avoid instability, the detected temperature difference between the evaporation temperature sensor 143 and the first pipe temperature sensor 112 may not be maintained. At this time, the detected temperature of the second pipe temperature sensor 142 is also relatively lowered with respect to the detected temperature of the evaporation temperature sensor 143.

第1の膨張弁104および流量制御弁141の一連制御において、最終目的は中間圧吸入口151の冷媒の過熱度を確保することであり、第2配管温度センサー142の検出温度が蒸発温度センサー143の検出温度よりも5〜6K程度高くすることである。したがって、蒸発温度センサー143の検出温度に対し、第2配管温度センサー142の検出温度が相対的に低下してくると、インジェクション回路制御装置110は流量制御弁141を絞っていき、最終的には遮断する。   In the series control of the first expansion valve 104 and the flow rate control valve 141, the final purpose is to ensure the degree of superheat of the refrigerant in the intermediate pressure inlet 151, and the temperature detected by the second pipe temperature sensor 142 is the evaporation temperature sensor 143. The temperature is about 5-6K higher than the detected temperature. Therefore, when the detected temperature of the second piping temperature sensor 142 is relatively lowered with respect to the detected temperature of the evaporation temperature sensor 143, the injection circuit control device 110 throttles the flow control valve 141, and finally. Cut off.

この動作により、流量制御弁141を通る冷媒が減り、第1内部熱交換器126を通って加熱される冷媒が増えるので、蒸発温度センサー143の検出温度に対し、第2配管温度センサー142の検出温度が相対的に低下するのを抑え、中間圧吸入口151への液戻りを防止することができる。   By this operation, the refrigerant passing through the flow control valve 141 decreases and the refrigerant heated through the first internal heat exchanger 126 increases, so that the second pipe temperature sensor 142 detects the detected temperature of the evaporation temperature sensor 143. It is possible to suppress the temperature from being relatively lowered and prevent the liquid from returning to the intermediate pressure inlet 151.

(実施の形態2)
図2は、本発明における第2の実施の形態である冷凍サイクル装置の構成図である。第2の実施の形態が第1の実施の形態と異なる点は、放熱器102の後に第1の熱交換手段である第1内部熱交換器226、その後に分岐部203が配備されていることであり、分岐部203において第1膨張弁104へ向かう中間圧吸入口側経路253と第2内部熱交換器125へ向かう低圧吸入口側経路254とに分けられる。
(Embodiment 2)
FIG. 2 is a configuration diagram of a refrigeration cycle apparatus according to a second embodiment of the present invention. The second embodiment is different from the first embodiment in that a first internal heat exchanger 226 that is a first heat exchange means is disposed after the radiator 102, and a branching section 203 is disposed thereafter. In the branch portion 203, the intermediate pressure inlet side path 253 toward the first expansion valve 104 and the low pressure inlet side path 254 toward the second internal heat exchanger 125 are divided.

図2において、インジェクション圧縮機101の吐出口150から送り出された高温高圧で超臨界状態の冷媒は、放熱器102で冷却された後、第1内部熱交換器226で冷却された後、分岐部203において第1膨張弁104へ向かう冷媒と第2内部熱交換器125に向かう冷媒に分けられる。分岐部203から第1膨張弁104へ流れる冷媒、第2内部熱交換器125に向かう冷媒の動作や制御は以後第1の実施の形態と同様である。   In FIG. 2, the high-temperature, high-pressure, supercritical refrigerant sent out from the discharge port 150 of the injection compressor 101 is cooled by the radiator 102, cooled by the first internal heat exchanger 226, and then branched. In 203, the refrigerant is divided into a refrigerant directed to the first expansion valve 104 and a refrigerant directed to the second internal heat exchanger 125. The operation and control of the refrigerant flowing from the branching section 203 to the first expansion valve 104 and the refrigerant going to the second internal heat exchanger 125 are the same as those in the first embodiment.

第1内部熱交換器226の配置を変えた効果としては、第1内部熱交換器226において冷却される冷媒の流量が多くなるため、放熱器102後の冷媒の状態が同じであれば第1の実施の形態に比べて冷却される冷媒の平均温度が上がり、第2内部熱交換器125から流れてきた冷媒を加熱し、中間圧吸入口151への液戻りを防止する能力に優れている。   As an effect of changing the arrangement of the first internal heat exchanger 226, the flow rate of the refrigerant cooled in the first internal heat exchanger 226 increases, so that the first state is the same if the state of the refrigerant after the radiator 102 is the same. Compared to the embodiment, the average temperature of the refrigerant to be cooled is increased, and the ability to heat the refrigerant flowing from the second internal heat exchanger 125 and prevent liquid return to the intermediate pressure inlet 151 is excellent. .

以上説明してきたように、本発明における冷凍サイクル装置は、第1内部熱交換器126あるいは226(図2)と、第2内部熱交換器125と、第1膨張弁104と、流量制御弁141を備え、第2内部熱交換器125と第1膨張弁104を制御することで中間圧吸入口151への液戻りを防止し、信頼性の高い装置を提供することができる。   As described above, the refrigeration cycle apparatus according to the present invention includes the first internal heat exchanger 126 or 226 (FIG. 2), the second internal heat exchanger 125, the first expansion valve 104, and the flow control valve 141. By controlling the second internal heat exchanger 125 and the first expansion valve 104, liquid return to the intermediate pressure inlet 151 can be prevented, and a highly reliable device can be provided.

また、本発明における冷凍サイクル装置は、図1に示すように分岐部103後に第1内部熱交換器126と第2内部熱交換器125とを配備することにより、冷凍能力をほとんど落とすことなく、圧縮動力を低減して効率の高い運転を行うことができる。   In addition, the refrigeration cycle apparatus according to the present invention has a first internal heat exchanger 126 and a second internal heat exchanger 125 after the branching portion 103 as shown in FIG. A highly efficient operation can be performed by reducing the compression power.

また、本発明における冷凍サイクル装置は、図2に示すように、放熱器102からの冷媒を第1内部熱交換器226で冷却した後、分岐部203において第1膨張弁104へ向かう冷媒と第2内部熱交換器125に向かう冷媒に分けるよう配置することで、中間圧吸入口151への液戻りを防止する能力に優れた装置を提供することができる。   Further, as shown in FIG. 2, the refrigeration cycle apparatus according to the present invention cools the refrigerant from the radiator 102 by the first internal heat exchanger 226, and then supplies the refrigerant and the refrigerant directed to the first expansion valve 104 at the branch portion 203. By disposing the refrigerant so as to be divided into the two refrigerants directed to the internal heat exchanger 125, it is possible to provide an apparatus having an excellent ability to prevent liquid return to the intermediate pressure inlet 151.

また、本発明における冷凍サイクル装置は、図1、図2に示すように蒸発温度センサー143と、第1配管温度センサー112と、第2配管温度センサー142とを備え、その温度情報に基づいて第1膨張弁104と、流量制御弁141を制御することで、高価な圧力センサーを用いることなく安価な装置を提供することができる。   The refrigeration cycle apparatus according to the present invention includes an evaporation temperature sensor 143, a first pipe temperature sensor 112, and a second pipe temperature sensor 142 as shown in FIGS. 1 and 2, and based on the temperature information. By controlling the 1 expansion valve 104 and the flow control valve 141, an inexpensive apparatus can be provided without using an expensive pressure sensor.

また、本発明における冷凍サイクル装置は、図1、図2に示すように、蒸発温度センサー143の検出温度と、第1配管温度センサー112の検出温度の差に基づいて第1膨張弁104を制御し、蒸発温度センサー143の検出温度と第2配管温度センサー142の検出温度との差に基づいて流量制御弁141を制御することで、簡単な制御アルゴリズムで信頼性の高い制御を行うことができる。   1 and 2, the refrigeration cycle apparatus according to the present invention controls the first expansion valve 104 based on the difference between the temperature detected by the evaporation temperature sensor 143 and the temperature detected by the first pipe temperature sensor 112. By controlling the flow rate control valve 141 based on the difference between the temperature detected by the evaporation temperature sensor 143 and the temperature detected by the second pipe temperature sensor 142, highly reliable control can be performed with a simple control algorithm. .

本発明の冷凍サイクル装置は、第1の減圧手段を出た冷媒の経路において、第2の熱交換手段と第1の熱交換手段の間に流量制御弁を持つバイパス経路を設け、第1の減圧手段と流量制御弁を、蒸発温度検知手段の検出温度と、第1の冷媒温度検出手段、および第2の冷媒温度検出手段の検出温度と比較して制御し、インジェクション圧縮機の中間圧吸入口への液戻りを防止するものであって、二酸化炭素冷媒を用いた空気調和機や冷凍装置に対して特に有効なものであるが、ヒートポンプ給湯装置などにも適用できる。また、二酸化炭素以外の冷媒を用いた装置においても効果を有する。   In the refrigeration cycle apparatus of the present invention, a bypass path having a flow rate control valve is provided between the second heat exchange means and the first heat exchange means in the refrigerant path exiting the first decompression means, The pressure reducing means and the flow rate control valve are controlled by comparing the detected temperature of the evaporating temperature detecting means with the detected temperatures of the first refrigerant temperature detecting means and the second refrigerant temperature detecting means, and the intermediate pressure suction of the injection compressor The liquid return to the mouth is prevented and is particularly effective for an air conditioner or a refrigeration apparatus using a carbon dioxide refrigerant, but can also be applied to a heat pump hot water supply apparatus or the like. Moreover, it has an effect also in the apparatus using refrigerants other than carbon dioxide.

本発明の実施の形態1における冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態2における冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus in Embodiment 2 of this invention. 従来の技術を用いた冷凍サイクル装置の構成図Configuration diagram of refrigeration cycle equipment using conventional technology

符号の説明Explanation of symbols

101 インジェクション圧縮機
102 放熱器
103,203 分岐部
104 第1膨張弁
106 第2膨張弁
107 吸熱器
110 インジェクション回路制御装置
112 第1配管温度センサー
125 第2熱交換器
126,226 第1熱交換器
141 流量制御弁
142 第2配管温度センサー
143 蒸発温度センサー
151 中間圧吸入口
152 低圧吸入口
153,253 中間圧吸入口側経路
154,254 低圧吸入口側経路

DESCRIPTION OF SYMBOLS 101 Injection compressor 102 Radiator 103,203 Branch part 104 1st expansion valve 106 2nd expansion valve 107 Heat absorber 110 Injection circuit control apparatus 112 1st piping temperature sensor 125 2nd heat exchanger 126,226 1st heat exchanger 141 Flow control valve 142 Second piping temperature sensor 143 Evaporation temperature sensor 151 Intermediate pressure inlet 152 Low pressure inlet 153,253 Intermediate pressure inlet side path 154,254 Low pressure inlet side path

Claims (5)

低圧吸入口と中間圧吸入口をもち、冷媒を圧縮して高温高圧の冷媒を送り出すインジェクション圧縮機と、前記高温高圧の冷媒の熱を放出する放熱手段と、放熱した高圧の冷媒を前記インジェクション圧縮機の低圧吸入口側経路と中間圧吸入口側経路とに分流する分岐部と、前記中間圧吸入口側経路に高圧の冷媒を中間の圧力に減圧膨張させるための第1の減圧手段と、前記中間圧吸入口側経路の中間圧で蒸発する冷媒と前記放熱手段で放熱した高圧の冷媒との間で熱交換を行う第1と第2の2つの熱交換手段と、前記2つの熱交換手段で熱交換した高圧の冷媒を低圧に減圧膨張させるための第2の減圧手段と、前記第2の減圧手段の後に低圧の冷媒による吸熱手段と、前記中間圧吸入口側経路の前記第2の熱交換手段の後に流量制御弁を有して前記第1の熱交換手段をバイパスするバイパス経路とを備え、
前記中間圧吸入口側経路の前記第1の減圧手段を出た冷媒は第2の熱交換手段から第1の熱交換手段へと流れるとともに、前記バイパス経路を通っても前記インジェクション圧縮機の前記中間圧吸入口へと導かれる構成とし、
前記第1の熱交換手段と前記第2の熱交換手段とで冷却されたもう一方の高圧の冷媒は、前記第2の減圧手段と前記吸熱手段とを通って前記インジェクション圧縮機の前記低圧吸入口へと導かれる構成とし、
前記中間圧吸入口側経路においては、前記第1の減圧手段と前記流量制御弁とを調整して中間圧吸入口へ吸入される冷媒の状態を制御するインジェクション回路制御手段を備えたことを特徴とする冷凍サイクル装置。
An injection compressor having a low-pressure inlet and an intermediate-pressure inlet, compressing the refrigerant and sending out the high-temperature and high-pressure refrigerant, a heat radiating means for releasing the heat of the high-temperature and high-pressure refrigerant, and the injected high-pressure refrigerant into the injection compression A branch part for branching into a low pressure inlet side path and an intermediate pressure inlet side path of the machine, and a first pressure reducing means for decompressing and expanding high pressure refrigerant to an intermediate pressure in the intermediate pressure inlet side path; First and second heat exchange means for exchanging heat between the refrigerant evaporating at an intermediate pressure in the intermediate pressure inlet side path and the high-pressure refrigerant radiated by the heat radiating means; and the two heat exchanges A second decompression means for decompressing and expanding the high-pressure refrigerant heat-exchanged by the means to a low pressure, a heat-absorbing means by the low-pressure refrigerant after the second decompression means, and the second passage in the intermediate pressure inlet side path A flow control valve after the heat exchange means And a bypass path for bypassing the first heat exchange means Te,
The refrigerant that has exited the first pressure reducing means of the intermediate pressure inlet side path flows from the second heat exchanging means to the first heat exchanging means, and also passes through the bypass path, the refrigerant of the injection compressor. It is configured to be guided to the intermediate pressure inlet,
The other high-pressure refrigerant cooled by the first heat exchanging means and the second heat exchanging means passes through the second pressure reducing means and the heat absorbing means, and the low pressure suction of the injection compressor. The composition is guided to the mouth,
The intermediate pressure suction side path includes injection circuit control means for controlling the state of refrigerant sucked into the intermediate pressure suction port by adjusting the first pressure reducing means and the flow rate control valve. A refrigeration cycle device.
分岐部を第1の熱交換手段の手前に配設したことを特徴とする請求項1記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the branch portion is disposed in front of the first heat exchange means. 分岐部を第1の熱交換手段と第2の熱交換手段との間に配設したことを特徴とする請求項1記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the branch portion is disposed between the first heat exchange means and the second heat exchange means. 中間圧吸入口側経路において、第2の熱交換手段における冷媒の蒸発温度を検出する蒸発温度検出手段と、前記第2の熱交換手段の出口の冷媒の温度を検出する第1の冷媒温度検出手段と、中間圧吸入口手前の冷媒の温度を検出する第2の冷媒温度検出手段とを備え、インジェクション回路制御手段が前記蒸発温度検出手段と前記第1の冷媒温度検出手段と前記第2の冷媒温度検出手段とによる温度情報に基づいて、第1の減圧手段と流量制御弁とを制御することを特徴とする請求項1から3記載の冷凍サイクル装置。 In the intermediate pressure inlet side path, the evaporating temperature detecting means for detecting the evaporating temperature of the refrigerant in the second heat exchanging means, and the first refrigerant temperature detecting for detecting the temperature of the refrigerant at the outlet of the second heat exchanging means. And a second refrigerant temperature detecting means for detecting the temperature of the refrigerant before the intermediate pressure inlet, and the injection circuit control means includes the evaporating temperature detecting means, the first refrigerant temperature detecting means, and the second refrigerant temperature detecting means. 4. The refrigeration cycle apparatus according to claim 1, wherein the first pressure reducing means and the flow rate control valve are controlled based on temperature information from the refrigerant temperature detecting means. インジェクション回路制御手段が、蒸発温度検出手段の検出温度と第1の冷媒温度検出手段の検出温度とを比較して、その温度差が所定の値になるように第1の減圧手段を操作するとともに、前記蒸発温度検出手段の検出温度と第2の冷媒温度検出手段の検出温度とを比較して、その温度差が所定の値になるように流量制御弁を操作することを特徴とする請求項4記載の冷凍サイクル装置。

The injection circuit control means compares the detected temperature of the evaporating temperature detecting means with the detected temperature of the first refrigerant temperature detecting means and operates the first pressure reducing means so that the temperature difference becomes a predetermined value. The flow rate control valve is operated so that the temperature difference between the detected temperature of the evaporating temperature detecting means and the detected temperature of the second refrigerant temperature detecting means is compared to a predetermined value. 4. The refrigeration cycle apparatus according to 4.

JP2005238158A 2005-08-19 2005-08-19 Refrigeration cycle device Pending JP2007051841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238158A JP2007051841A (en) 2005-08-19 2005-08-19 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238158A JP2007051841A (en) 2005-08-19 2005-08-19 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2007051841A true JP2007051841A (en) 2007-03-01

Family

ID=37916401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238158A Pending JP2007051841A (en) 2005-08-19 2005-08-19 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2007051841A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241125A (en) * 2007-03-27 2008-10-09 Sanyo Electric Co Ltd Refrigerating unit
JP2009229055A (en) * 2008-02-28 2009-10-08 Daikin Ind Ltd Refrigerating device
KR20100063173A (en) * 2008-12-03 2010-06-11 삼성전자주식회사 Air conditioner and control method thereof
JP2010175204A (en) * 2009-01-30 2010-08-12 Fujitsu General Ltd Refrigeration air conditioner
WO2010109832A1 (en) * 2009-03-26 2010-09-30 三菱電機株式会社 Refrigerator
JP2012149844A (en) * 2011-01-20 2012-08-09 Mitsubishi Electric Corp Refrigerating cycle device
WO2013001572A1 (en) * 2011-06-29 2013-01-03 三菱電機株式会社 Air-conditioning device
WO2017057861A3 (en) * 2015-10-01 2017-05-18 엘지전자 주식회사 Air conditioning system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241125A (en) * 2007-03-27 2008-10-09 Sanyo Electric Co Ltd Refrigerating unit
JP2009229055A (en) * 2008-02-28 2009-10-08 Daikin Ind Ltd Refrigerating device
KR20100063173A (en) * 2008-12-03 2010-06-11 삼성전자주식회사 Air conditioner and control method thereof
KR101590884B1 (en) * 2008-12-03 2016-02-19 삼성전자 주식회사 Air conditioner and control method thereof
JP2010175204A (en) * 2009-01-30 2010-08-12 Fujitsu General Ltd Refrigeration air conditioner
CN102365507B (en) * 2009-03-26 2015-04-01 三菱电机株式会社 Refrigerator
JP5496182B2 (en) * 2009-03-26 2014-05-21 三菱電機株式会社 refrigerator
CN102365507A (en) * 2009-03-26 2012-02-29 三菱电机株式会社 Refrigerator
WO2010109832A1 (en) * 2009-03-26 2010-09-30 三菱電機株式会社 Refrigerator
JP2012149844A (en) * 2011-01-20 2012-08-09 Mitsubishi Electric Corp Refrigerating cycle device
WO2013001572A1 (en) * 2011-06-29 2013-01-03 三菱電機株式会社 Air-conditioning device
US9638447B2 (en) 2011-06-29 2017-05-02 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2017057861A3 (en) * 2015-10-01 2017-05-18 엘지전자 주식회사 Air conditioning system
US10852027B2 (en) 2015-10-01 2020-12-01 Lg Electronics Inc. Air conditioning system

Similar Documents

Publication Publication Date Title
JP4321095B2 (en) Refrigeration cycle equipment
US8181480B2 (en) Refrigeration device
JP6019837B2 (en) Heat pump system
JP2007051841A (en) Refrigeration cycle device
JP2018124046A (en) Air conditioner
JP5375919B2 (en) heat pump
JP4317793B2 (en) Cooling system
KR101973204B1 (en) A combined refrigerating and freezing system and a control method the same
JP5068342B2 (en) Refrigeration equipment
JP2008175430A (en) Air conditioner
JP2020192965A (en) Heat exchange system
KR101173736B1 (en) Refrigerating and freezing combine air conditioning system
US20220252317A1 (en) A heat pump
JP2006194537A (en) Heat pump device
KR102313304B1 (en) Air conditioner for carbon dioxide
JP5436631B2 (en) Refrigeration equipment
WO2020240732A1 (en) Refrigeration cycle device
JP6704513B2 (en) Refrigeration cycle equipment
KR100613502B1 (en) Heat pump type air conditioner
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP2010038408A (en) Outdoor heat exchanger and refrigerating cycle device mounted with the same
KR100591323B1 (en) Heat pump type air conditioner
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
WO2017138243A1 (en) Refrigeration cycle device
KR100403017B1 (en) An inverter cooling device and process of heat pump