JP6675083B2 - Binary heat pump device - Google Patents

Binary heat pump device Download PDF

Info

Publication number
JP6675083B2
JP6675083B2 JP2017003913A JP2017003913A JP6675083B2 JP 6675083 B2 JP6675083 B2 JP 6675083B2 JP 2017003913 A JP2017003913 A JP 2017003913A JP 2017003913 A JP2017003913 A JP 2017003913A JP 6675083 B2 JP6675083 B2 JP 6675083B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
refrigeration circuit
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017003913A
Other languages
Japanese (ja)
Other versions
JP2018112367A (en
Inventor
明広 重田
明広 重田
誠之 飯高
誠之 飯高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017003913A priority Critical patent/JP6675083B2/en
Publication of JP2018112367A publication Critical patent/JP2018112367A/en
Application granted granted Critical
Publication of JP6675083B2 publication Critical patent/JP6675083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、二元冷凍サイクルの低段側サイクルにおいて、端末の運転状況によって回路内を循環する冷媒量を調整する二元ヒートポンプ装置に関するものである。   TECHNICAL FIELD The present invention relates to a binary heat pump device that adjusts the amount of refrigerant circulating in a circuit in a low-stage cycle of a binary refrigeration cycle according to an operation state of a terminal.

従来、この種の二元ヒートポンプ装置は図10に示すように、高段側冷凍サイクル1と低段側冷凍サイクル2とを備えて構成されたものがある。(例えば、特許文献1参照)
高段側冷凍サイクル1は、第1圧縮機10、第1凝縮器11、第1絞り手段12、及び、第1蒸発器13が直列に接続して構成された経路における第1冷媒の循環である。
低段側冷凍サイクル2は、第2圧縮機20、第2凝縮器21、受液器22、第2絞り手段23、及び、第2蒸発器24が直列に接続して構成された経路における、第2冷媒の循環である。
第1蒸発器13と第2凝縮器21とは冷媒−冷媒熱交換器25を構成し、高段側冷凍サイクル1と低段側冷凍サイクル2とは、冷媒−冷媒熱交換器25において、第1冷媒と第2冷媒とが熱交換を行なうように接続することにより、第2蒸発器24にて冷凍室から吸熱し、庫内を冷却する。第2蒸発器24は、アルミフィンと銅管から構成されるフィンチューブ熱交換器が一般的に使用される。
また図11は、特許文献1に記載された従来の二元ヒートポンプ装置の構造を示すものである。図11に示すように、従来の二元ヒートポンプ装置は、第1圧縮機10、第1凝縮器11、第1絞り手段12および、これらが収められた第1筐体30と、第2圧縮機20、冷媒−冷媒熱交換器25、受液器22、第2絞り手段23および、これらが収められた第2筐体31とによって構成され、受液器22が冷媒−冷媒熱交換器25の下方に配設されることにより、低段側冷凍サイクル2の循環が停止した場合に、冷媒−冷媒熱交換器25内の液化した第2冷媒を重力によって迅速に受液器22に流下する。
従って、第2冷媒に二酸化炭素のような臨界温度の低い冷媒を用いた際、低段側冷凍サイクル2の循環が停止した場合に、外気に暖められて第2冷媒が気相状態になることによる、低段側冷凍サイクル2内の圧力上昇を抑制することができる。
Conventionally, as shown in FIG. 10, this type of dual heat pump device includes a high-stage refrigeration cycle 1 and a low-stage refrigeration cycle 2. (For example, see Patent Document 1)
The high-stage refrigeration cycle 1 circulates a first refrigerant in a path configured by connecting a first compressor 10, a first condenser 11, a first restrictor 12, and a first evaporator 13 in series. is there.
The low-stage refrigeration cycle 2 includes a second compressor 20, a second condenser 21, a liquid receiver 22, a second throttle unit 23, and a second evaporator 24 connected in series. This is the circulation of the second refrigerant.
The first evaporator 13 and the second condenser 21 constitute a refrigerant-refrigerant heat exchanger 25, and the high-stage refrigeration cycle 1 and the low-stage refrigeration cycle 2 By connecting the first refrigerant and the second refrigerant so as to perform heat exchange, the second evaporator 24 absorbs heat from the freezing room and cools the inside of the refrigerator. As the second evaporator 24, a fin tube heat exchanger composed of aluminum fins and copper tubes is generally used.
FIG. 11 shows a structure of a conventional dual heat pump device described in Patent Document 1. As shown in FIG. 11, the conventional binary heat pump device includes a first compressor 10, a first condenser 11, a first throttle unit 12, a first housing 30 in which these are housed, and a second compressor. 20, a refrigerant-refrigerant heat exchanger 25, a liquid receiver 22, a second throttle means 23, and a second housing 31 in which these are accommodated. By being disposed below, when the circulation of the low-stage refrigeration cycle 2 is stopped, the liquefied second refrigerant in the refrigerant-refrigerant heat exchanger 25 quickly flows down to the receiver 22 by gravity.
Therefore, when a refrigerant having a low critical temperature such as carbon dioxide is used as the second refrigerant, when the circulation of the low-stage refrigeration cycle 2 is stopped, the second refrigerant is heated to the outside air and becomes a gaseous state. Therefore, the pressure increase in the low-stage refrigeration cycle 2 can be suppressed.

特許第5800994号公報Japanese Patent No. 5800994

例えば、前記従来の構成において、高段側冷凍サイクル1の第1凝縮器11にて熱媒体の加熱運転を行うような二元ヒートポンプ装置の場合、第2冷媒にR410Aのような臨界温度の高い冷媒を用いられることが一般的なため、外気に暖められて第2冷媒が気相状態になることがない。したがって、液化した第2冷媒を受液器22に貯留する必要がなくなる。その代わりに、第2蒸発器24が外気と熱交換を行うが、低外気温時には、空気中の水分が第2蒸発器24によって冷却されて第2蒸発器24のアルミフィンおよび銅管に結露水が発生し、その結露水が霜となって成長して熱交換できなくなるため、定期的に霜取り運転が行われる。この霜取り運転を、受液器22から冷媒-冷媒熱交換器30の方向に流れる、いわゆる逆サイクルにより行う場合、受液器22より上方に第2冷媒を搬送する必要が生じる。
しかしながら、従来の構成では、第2冷媒が受液器22から冷媒-冷媒熱交換器30の方向へ流れる霜取り運転を行うときに、液化した第2冷媒が受液器22に貯留されたままになり、霜取り運転時に第2冷凍回路を循環する第2冷媒が不足するという課題を有していた。
For example, in the above-described conventional configuration, in the case of a dual heat pump device that performs a heating operation of the heat medium in the first condenser 11 of the high-stage refrigeration cycle 1, the second refrigerant has a high critical temperature such as R410A. Since a refrigerant is generally used, the second refrigerant does not enter a gaseous state due to being heated by the outside air. Therefore, there is no need to store the liquefied second refrigerant in the liquid receiver 22. Instead, the second evaporator 24 performs heat exchange with the outside air, but at low outside air temperature, the moisture in the air is cooled by the second evaporator 24 and condensed on the aluminum fins and the copper tubes of the second evaporator 24. Water is generated, and the condensed water grows as frost and becomes unable to exchange heat, so that a defrosting operation is performed periodically. When this defrosting operation is performed by a so-called reverse cycle that flows from the liquid receiver 22 to the refrigerant-refrigerant heat exchanger 30, it is necessary to transport the second refrigerant above the liquid receiver 22.
However, in the conventional configuration, when performing the defrosting operation in which the second refrigerant flows from the liquid receiver 22 in the direction of the refrigerant-refrigerant heat exchanger 30, the liquefied second refrigerant remains stored in the liquid receiver 22. Therefore, there is a problem that the second refrigerant circulating in the second refrigeration circuit during the defrosting operation is insufficient.

従来の課題を解決するために、本発明の二元ヒートポンプ装置は、圧縮機、凝縮器、第1絞り手段、蒸発器を配管で環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、前記蒸発器にて前記第1冷媒と熱交換を行う第2冷凍回路と、前記第2冷凍回路の前記蒸発器の出口側に順に受液器と、第2絞り手段と、を備え、前記第2冷凍回路で前記第2冷媒の循環が停止した場合に、前記受液器内の前記第2冷媒の液面が、前記蒸発器内の前記第2冷媒の液面より上方となるように前記受液器が配設されるものである。
これにより、第2冷凍回路において前記第2冷媒の循環が停止した場合に、蒸発器内の第2冷媒の液面が受液器内の第2冷媒の液面より上方となるように受液器が配設されることとなり、逆サイクルの霜取り運転を行う場合、受液器に貯留された液冷媒が重力によって蒸発器の方へ流下することとなる。
In order to solve the conventional problems, a binary heat pump device according to the present invention includes a first refrigeration circuit that circulates a first refrigerant by connecting a compressor, a condenser, a first throttle unit, and an evaporator in a ring shape with piping. A second refrigeration circuit for circulating a second refrigerant and exchanging heat with the first refrigerant in the evaporator; a receiver in the order of an outlet side of the evaporator in the second refrigeration circuit; Means, wherein when the circulation of the second refrigerant is stopped in the second refrigeration circuit, the liquid level of the second refrigerant in the liquid receiver is changed to the liquid level of the second refrigerant in the evaporator. The liquid receiver is disposed above the surface.
Thereby, when the circulation of the second refrigerant is stopped in the second refrigeration circuit, the liquid is received such that the liquid level of the second refrigerant in the evaporator is higher than the liquid level of the second refrigerant in the liquid receiver. When a reverse cycle defrosting operation is performed, the liquid refrigerant stored in the liquid receiver flows down to the evaporator due to gravity.

本発明の二元ヒートポンプ装置は、逆サイクルの霜取り運転を行う場合に、加熱運転によって受液器に貯留される液化した第2冷媒が残ることなく、排出されるため、霜取り運転時の第2冷凍回路を循環する第2冷媒の不足を抑制することができる。   When performing the reverse cycle defrosting operation, the dual heat pump device of the present invention discharges the second liquefied refrigerant stored in the receiver by the heating operation without remaining, so that the second heat pump device performs the second defrosting operation. The shortage of the second refrigerant circulating in the refrigeration circuit can be suppressed.

本発明の実施の形態1における二元ヒートポンプ装置の冷媒と熱媒体の回路図Circuit diagram of refrigerant and heat medium of dual heat pump device according to Embodiment 1 of the present invention 本発明の実施の形態1における二元ヒートポンプ装置に備えられる熱生成ユニットの内部構造を示す正面図Front view showing the internal structure of the heat generation unit provided in the dual heat pump device according to Embodiment 1 of the present invention. 本発明の実施の形態1における二元ヒートポンプ装置の第1冷凍回路にて熱媒体の加熱運転のみを行う場合の冷媒と熱媒体の回路図Circuit diagram of refrigerant and heat medium when only heating operation of heat medium is performed in the first refrigeration circuit of the dual heat pump device according to Embodiment 1 of the present invention. 本発明の実施の形態1における二元ヒートポンプ装置の第2冷凍回路を暖房運転し、第1冷凍回路にて熱媒体の加熱運転も行う場合の冷媒と熱媒体の回路図Circuit diagram of refrigerant and heat medium when heating operation is performed on the second refrigeration circuit of the dual heat pump device according to Embodiment 1 of the present invention and heating operation is also performed on the heat medium in the first refrigeration circuit. 本発明の実施の形態1における二元ヒートポンプ装置の第2冷凍回路を冷房運転し、第1冷凍回路にて熱媒体の加熱運転も行う場合の冷媒と熱媒体の回路図Circuit diagram of the refrigerant and the heat medium when the second refrigeration circuit of the dual heat pump device according to Embodiment 1 of the present invention performs the cooling operation and also performs the heating operation of the heat medium in the first refrigeration circuit. 本発明の実施の形態1における二元ヒートポンプ装置の第2冷凍回路を冷暖同時運転し、第1冷凍回路にて熱媒体の加熱運転も行う場合の冷媒と熱媒体の回路図Circuit diagram of the refrigerant and the heat medium in the case where the second refrigeration circuit of the dual heat pump device according to Embodiment 1 of the present invention performs simultaneous cooling and heating operations and also performs the heating operation of the heat medium in the first refrigeration circuit. 本発明の実施の形態1における二元ヒートポンプ装置の第2冷凍回路の室内熱交換器を変更して冷暖同時運転し、第1冷凍回路にて熱媒体の加熱運転も行う場合の冷媒と熱媒体の回路図Refrigerant and heat medium in the case where the indoor heat exchanger of the second refrigeration circuit of the dual heat pump device according to Embodiment 1 of the present invention is changed to perform simultaneous cooling / heating operation and also perform the heating operation of the heat medium in the first refrigeration circuit Circuit diagram of 本発明の実施の形態1における二元ヒートポンプ装置の第2冷凍回路にて室外熱交換器の霜取り運転を行う場合の冷媒と熱媒体の回路図Circuit diagram of refrigerant and heat medium when defrosting operation of the outdoor heat exchanger is performed in the second refrigeration circuit of the dual heat pump device according to Embodiment 1 of the present invention. 本発明の実施の形態1における二元ヒートポンプ装置の冷媒と熱媒体の別の構成図Another configuration diagram of the refrigerant and the heat medium of the dual heat pump device according to Embodiment 1 of the present invention. 従来の二元ヒートポンプ装置の冷媒と熱媒体の回路図Circuit diagram of refrigerant and heat medium of conventional binary heat pump device 従来の二元ヒートポンプ装置の冷媒と熱媒体の構成図Configuration diagram of refrigerant and heat medium of conventional binary heat pump device

第1の発明は、圧縮機、凝縮器、第1絞り手段、蒸発器を配管で環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、前記蒸発器にて前記第1冷媒と熱交換を行う第2冷凍回路と、前記第2冷凍回路の前記蒸発器の出口側に順に受液器と、第2絞り手段と、を備え、前記第2冷凍回路で前記第2冷媒の循環が停止した場合に、前記受液器内の前記第2冷媒の液面が、前記蒸発器内の前記第2冷媒の液面より上方となるように前記受液器が配設されるものである。   According to a first aspect of the present invention, a compressor, a condenser, a first throttle device, and an evaporator are connected in a ring shape by a pipe, a first refrigeration circuit for circulating a first refrigerant, and a second refrigerant are circulated. A second refrigeration circuit for exchanging heat with the first refrigerant, a liquid receiver in order on the outlet side of the evaporator of the second refrigeration circuit, and second throttle means. When the circulation of the second refrigerant is stopped, the liquid receiver is arranged such that the liquid level of the second refrigerant in the liquid receiver is higher than the liquid level of the second refrigerant in the evaporator. It is to be arranged.

これによって第2冷凍回路において前記第2冷媒の循環が停止した場合に、蒸発器内の第2冷媒の液面が受液器内の第2冷媒の液面よりも上方となるように受液器が配設されるため、逆サイクルの霜取り運転を行う場合、受液器に貯留された液冷媒が重力によって蒸発器の方へ流下することとなる。
よって、逆サイクルの霜取り運転を行う場合に、加熱運転によって受液器に貯留される液化した第2冷媒が残ることなく、排出されるため、霜取り運転時の第2冷凍回路を循環する第2冷媒の不足を抑制することができる。
Thereby, when the circulation of the second refrigerant is stopped in the second refrigeration circuit, the liquid is received such that the liquid level of the second refrigerant in the evaporator is higher than the liquid level of the second refrigerant in the liquid receiver. When the defrosting operation is performed in the reverse cycle, the liquid refrigerant stored in the receiver flows down toward the evaporator due to gravity.
Therefore, when the reverse cycle defrosting operation is performed, the liquefied second refrigerant stored in the receiver by the heating operation is discharged without remaining, and the second refrigerant circulating in the second refrigeration circuit during the defrosting operation is discharged. Shortage of the refrigerant can be suppressed.

前記受液器の下端は、前記蒸発器の上端よりも上方に配設されることを特徴とするものである。   The lower end of the liquid receiver is disposed above the upper end of the evaporator.

これによって、逆サイクルの霜取り運転を行う場合、受液器に貯留された液冷媒が重力によって蒸発器の方へ流下することとなる。
よって、逆サイクルの霜取り運転を行う場合に、加熱運転により受液器に貯留された液化した第2冷媒が残ることなく、排出されるため、霜取り運転時の第2冷凍回路を循環する第2冷媒の不足を抑制することができる。
Thus, when performing the reverse cycle defrosting operation, the liquid refrigerant stored in the receiver flows down toward the evaporator due to gravity.
Therefore, when performing the reverse cycle defrosting operation, the liquefied second refrigerant stored in the receiver by the heating operation is discharged without remaining, and the second refrigerant circulating in the second refrigeration circuit during the defrosting operation is discharged. Shortage of the refrigerant can be suppressed.

第3の発明は、圧縮機、凝縮器、第1絞り手段、蒸発器を配管で環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、前記蒸発器にて前記第1冷媒と熱交換を行う第2冷凍回路と、前記第2冷凍回路の前記蒸発器の出口側に順に受液器と、第2絞り手段と、制御部と、を備え、前記制御部は前記第1冷凍回路が加熱運転以外の場合に、前記第2絞り手段の開度を加熱運転時より小さくするものである。   According to a third aspect of the present invention, a compressor, a condenser, a first restrictor, and an evaporator are connected in a ring shape by piping, a first refrigeration circuit for circulating a first refrigerant, and a second refrigerant are circulated. A second refrigeration circuit for exchanging heat with the first refrigerant, and a liquid receiver, a second throttling means, and a control unit in order at an outlet side of the evaporator of the second refrigeration circuit. The part is for making the opening degree of the second throttle means smaller when the first refrigeration circuit is not in the heating operation than in the heating operation.

第1冷凍回路が加熱運転以外を行う場合に第2絞り手段の開度を加熱運転時より小さくすることにより、例えば、逆サイクルの霜取り運転を行う場合に、第2絞り手段から流出する第2冷媒を気化膨張させて、受液器に貯留された液化した第2冷媒を排出することとなる。
また、第2絞り手段を通過した低圧の液状態の第2冷媒が受液器に流入することを防止することとなる。
よって、受液器での第2冷媒の貯留量が多くなる、第1冷凍回路が加熱運転の沸き終い間際に、逆サイクルの霜取り運転を行う場合でも、受液器に貯留された第2冷媒を速やかに排出して、第2冷凍回路を循環する第2冷媒の不足を抑制することができる。
また、霜取り運転時に、受液器に追加で第2冷媒が貯留されることを防止することができる。
By making the opening degree of the second throttle means smaller than that in the heating operation when the first refrigeration circuit performs other than the heating operation, for example, when performing the reverse cycle defrosting operation, the second flow out of the second throttle means is performed. The refrigerant is vaporized and expanded, and the liquefied second refrigerant stored in the receiver is discharged.
Further, the second refrigerant in the low-pressure liquid state that has passed through the second throttle means is prevented from flowing into the receiver.
Therefore, even if the first refrigeration circuit performs the defrosting operation in the reverse cycle immediately before the first refrigeration circuit finishes boiling in the heating operation, the amount of the second refrigerant stored in the liquid receiver increases. The shortage of the second refrigerant circulating in the second refrigeration circuit can be suppressed by quickly discharging the refrigerant.
In addition, during the defrosting operation, it is possible to prevent the second refrigerant from being additionally stored in the liquid receiver.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment.

(実施の形態1)
図1は本発明の第1の実施の形態における二元ヒートポンプ装置500の冷媒と熱媒体の回路図である。図1において二元ヒートポンプ装置500は、第1冷凍回路100と、第2冷凍回路102と熱媒体回路104とから構成される。
(Embodiment 1)
FIG. 1 is a circuit diagram of the refrigerant and the heat medium of the dual heat pump device 500 according to the first embodiment of the present invention. In FIG. 1, a dual heat pump device 500 includes a first refrigeration circuit 100, a second refrigeration circuit 102, and a heat medium circuit 104.

第1冷凍回路100は、圧縮機41、凝縮器42、第1絞り手段43、及び、蒸発器44が冷媒配管45を用いて順次直列に接続して構成されるものであり、第1冷凍回路100内には第1冷媒が循環される。
また、圧縮機41の吐出側には、圧縮機41から吐出される第1冷媒の温度を検知する圧縮機吐出温度検知手段46が配設されている。圧縮機41の吸入側には、圧縮機41から吸入される第1冷媒の温度を検知する圧縮機吸入温度検知手段47が設けられている。さらに、圧縮機41の吸入側には、圧縮機41から吸入される第1冷媒の圧力を検知する圧縮機吸入圧力検知手段48が設けられている。さらに、蒸発器44には、第2冷凍回路102における蒸発器44の中間温度を検知する第2冷凍回路蒸発器中間温度検知手段49が設けられている。
蒸発器44は第1冷媒と第2冷媒を熱交換する冷媒―冷媒熱交換器であり、プレート熱交換器や、二重管式熱交換器が用いられる。
The first refrigeration circuit 100 is configured by connecting a compressor 41, a condenser 42, a first throttle means 43, and an evaporator 44 in series using a refrigerant pipe 45 in sequence. A first refrigerant is circulated in 100.
On the discharge side of the compressor 41, a compressor discharge temperature detecting means 46 for detecting the temperature of the first refrigerant discharged from the compressor 41 is provided. On the suction side of the compressor 41, a compressor suction temperature detecting means 47 for detecting the temperature of the first refrigerant sucked from the compressor 41 is provided. Further, on the suction side of the compressor 41, a compressor suction pressure detecting means 48 for detecting the pressure of the first refrigerant sucked from the compressor 41 is provided. Further, the evaporator 44 is provided with a second refrigeration circuit evaporator intermediate temperature detecting means 49 for detecting an intermediate temperature of the evaporator 44 in the second refrigeration circuit 102.
The evaporator 44 is a refrigerant-refrigerant heat exchanger for exchanging heat between the first refrigerant and the second refrigerant, and uses a plate heat exchanger or a double-pipe heat exchanger.

熱媒体回路104は、熱媒体貯留手段50と、例えば、ポンプなどからなる熱媒体搬送手段51と、凝縮器42とが配管52によって順次直列に接続された構成となっており、熱媒体回路104には、熱媒体が循環される。
また、凝縮器42は第1冷媒と熱媒体とを熱交換する熱媒体―冷媒熱交換器であり、プレート熱交換器や、二重管式熱交換器、シェルチューブ熱交換器が用いられる。
The heat medium circuit 104 has a structure in which a heat medium storage means 50, a heat medium transport means 51 such as a pump, for example, and a condenser 42 are sequentially connected in series by a pipe 52. Circulates a heat medium.
The condenser 42 is a heat medium-refrigerant heat exchanger for exchanging heat between the first refrigerant and the heat medium, and includes a plate heat exchanger, a double tube heat exchanger, and a shell tube heat exchanger.

第2冷凍回路102は、第2圧縮機53、室内空気と熱交換を行う室内熱交換器54a、54b、室内熱交換器54a、54bの一方の入口に配設された室内熱交換器用開閉手段55a、55b、55c、55d、室内熱交換器54a、54bの他方の入口に配設された室内熱交換器用絞り手段56a、56b、室外空気と熱交換を行う室外熱交換器57、室外熱交換器57の一方の入口に配設された室外熱交換器用開閉手段58a、58b、室外熱交換器57の他方の入口に配設された室外熱交換器用絞り手段59が第2冷媒配管60により直列に接続された構成である。   The second refrigeration circuit 102 includes a second compressor 53, indoor heat exchangers 54a and 54b that perform heat exchange with indoor air, and an indoor heat exchanger opening / closing means disposed at one inlet of the indoor heat exchangers 54a and 54b. 55a, 55b, 55c, 55d; throttle means 56a, 56b for the indoor heat exchanger provided at the other inlet of the indoor heat exchangers 54a, 54b; an outdoor heat exchanger 57 for exchanging heat with outdoor air; an outdoor heat exchange The outdoor heat exchanger opening / closing means 58a, 58b provided at one inlet of the heat exchanger 57 and the outdoor heat exchanger throttle means 59 provided at the other inlet of the outdoor heat exchanger 57 are connected in series by the second refrigerant pipe 60. The configuration is connected to.

また、蒸発器44の一方の入口に配設された蒸発器用開閉手段61a、61b、蒸発器44、第3絞り手段62、受液器63及び第2絞り手段64が順次直列に接続されている。これら蒸発器用開閉手段61a、61b、蒸発器44、第3絞り手段62、受液器63及び第2絞り手段64は、室内熱交換器54a、54b、室内熱交換器用開閉手段55a、55b、55c、55d、室内熱交換器用絞り手段56a、56bを第2冷媒配管60により並列に接続して構成されている。第2冷凍回路102には、第2冷媒が循環される。   Further, evaporator opening / closing means 61a, 61b, evaporator 44, third throttle means 62, liquid receiver 63, and second throttle means 64 provided at one inlet of evaporator 44 are sequentially connected in series. . These evaporator opening / closing means 61a, 61b, evaporator 44, third throttle means 62, liquid receiver 63, and second throttle means 64 comprise indoor heat exchangers 54a, 54b, indoor heat exchanger opening / closing means 55a, 55b, 55c. , 55d and throttle means 56a, 56b for the indoor heat exchanger are connected in parallel by a second refrigerant pipe 60. The second refrigerant is circulated in the second refrigeration circuit 102.

第1冷媒としては、R22、R410A、R407C、R32、R134aなどのフロン系冷媒のほかに、二酸化炭素(CO2)などの自然冷媒が用いられ、特に、高温用途に広く用いられるR407C,R134aや二酸化炭素(CO2)が望ましい。   As the first refrigerant, a natural refrigerant such as carbon dioxide (CO2) is used in addition to a chlorofluorocarbon-based refrigerant such as R22, R410A, R407C, R32, and R134a. Carbon (CO2) is desirable.

また、第2冷媒としては、R22、R410A、R407C、R32、R134aなどのフロン系冷媒のような臨界温度の高い冷媒が用いられ、第2冷凍回路102が停止した場合に、外気に暖められて第2冷媒が気相状態になり、過度に第2冷凍回路102内の圧力が上昇することがない。   In addition, as the second refrigerant, a refrigerant having a high critical temperature such as a chlorofluorocarbon-based refrigerant such as R22, R410A, R407C, R32, or R134a is used. The second refrigerant is in a gaseous state, so that the pressure in the second refrigeration circuit 102 does not excessively increase.

特に、第1冷媒に臨界温度の低い二酸化炭素を用いる場合、第2冷媒の凝縮温度と、第2冷媒の蒸発温度との温度差が大きくなる為、蒸発器44出口における第2冷媒の過冷却度が大きくなり、液状態の第2冷媒の密度が高くなる為、受液器63が必要となる。   In particular, when carbon dioxide having a low critical temperature is used as the first refrigerant, the temperature difference between the condensation temperature of the second refrigerant and the evaporation temperature of the second refrigerant increases, so that the second refrigerant is supercooled at the outlet of the evaporator 44. Since the temperature increases and the density of the second refrigerant in the liquid state increases, the liquid receiver 63 is required.

また、第2圧縮機53の吐出側には、第2圧縮機53から吐出される第2冷媒の圧力を検知する第2圧縮機吐出圧力検知手段65が設けられ、第2圧縮機53の吸入側には、第2圧縮機53に吸入される第2冷媒の圧力を検知する第2圧縮機吸入圧力検知手段66が設けられている。   On the discharge side of the second compressor 53, a second compressor discharge pressure detecting means 65 for detecting the pressure of the second refrigerant discharged from the second compressor 53 is provided. On the side, a second compressor suction pressure detecting means 66 for detecting the pressure of the second refrigerant sucked into the second compressor 53 is provided.

各室内熱交換器54a、54bと各室内熱交換器用開閉手段55a、55b、55c、55dとの間には、第2冷媒の温度を検知する室内熱交換器第1温度検知手段67a、67bが設けられ、各室内熱交換器54a、54bと各室内熱交換器用絞り手段56a、56bとの間には、第2冷媒の温度を検知する室内熱交換器第2温度検知手段68a、68bが設けられている。
また、室外熱交換器57と室外熱交換器用開閉手段58a、58bとの間には、第2冷媒の温度を検知する室外熱交換器第1温度検知手段69と、室外熱交換器57と室外熱交換器用絞り手段59との間には、第2冷媒の温度を検知する室外熱交換器第2温度検知手段70が設けられている。
Between each indoor heat exchanger 54a, 54b and each indoor heat exchanger opening / closing means 55a, 55b, 55c, 55d, an indoor heat exchanger first temperature detecting means 67a, 67b for detecting the temperature of the second refrigerant is provided. A second indoor heat exchanger temperature detecting means 68a, 68b for detecting the temperature of the second refrigerant is provided between each indoor heat exchanger 54a, 54b and each indoor heat exchanger throttle means 56a, 56b. Have been.
Further, between the outdoor heat exchanger 57 and the outdoor heat exchanger opening / closing means 58a, 58b, an outdoor heat exchanger first temperature detecting means 69 for detecting the temperature of the second refrigerant, and the outdoor heat exchanger 57 and the outdoor heat exchanger An outdoor heat exchanger second temperature detecting means 70 for detecting the temperature of the second refrigerant is provided between the heat exchanger throttle means 59.

また、蒸発器44と第3絞り手段62との間には、第2冷媒の温度を検知する第2冷凍回路蒸発器出口温度検知手段71が設けられている。
また、第2絞り手段64の出口側に第2冷媒の圧力を検知する第2冷凍回路中間圧力検知手段72と、第2冷媒の温度を検知する第2冷凍回路中間温度検知手段73がそれぞれ設けられている。
さらに、凝縮器42と熱媒体搬送手段51との間には、凝縮器42に流入する熱媒体の温度を検知する、熱媒体凝縮器入口温度検知手段74が設けられている。
さらに、凝縮器42と熱媒体貯留手段50との間には、凝縮器42に流出する熱媒体の温度を検知する、熱媒体凝縮器出口温度検知手段75が設けられている。
A second refrigeration circuit evaporator outlet temperature detecting means 71 for detecting the temperature of the second refrigerant is provided between the evaporator 44 and the third throttle means 62.
A second refrigeration circuit intermediate pressure detecting means 72 for detecting the pressure of the second refrigerant and a second refrigeration circuit intermediate temperature detecting means 73 for detecting the temperature of the second refrigerant are provided at the outlet side of the second throttle means 64, respectively. Have been.
Further, between the condenser 42 and the heat medium transport means 51, a heat medium condenser inlet temperature detecting means 74 for detecting the temperature of the heat medium flowing into the condenser 42 is provided.
Further, between the condenser 42 and the heat medium storage means 50, a heat medium condenser outlet temperature detection means 75 for detecting the temperature of the heat medium flowing into the condenser 42 is provided.

また、本実施形態の二元ヒートポンプ装置500は、第1冷凍回路100、第2冷凍回路102及び、熱媒体回路104の制御手段として制御部200を備えている。
制御部200は、1つまたは複数のマイコンを用いて実現可能である。その場合、マイコンは例えばCPU、ROMやフラッシュメモリ、RAMを含む構成であれば良く、CPUは、ROMに格納されたコンピュータプログラムを、RAMを作業領域として使いながら実行し、第1冷凍回路100、第2冷凍回路102及び、熱媒体回路104の各部を総括的に制御する。
制御部200は、第1冷凍回路100を加熱運転する場合以外のときに、第2絞り手段64の開度を、第1冷凍回路100を加熱運転するときの第2絞り手段64の開度よりも小さくなるように制御する。
Further, the dual heat pump device 500 of the present embodiment includes the control unit 200 as a control unit of the first refrigeration circuit 100, the second refrigeration circuit 102, and the heat medium circuit 104.
The control unit 200 can be realized using one or a plurality of microcomputers. In this case, the microcomputer may have a configuration including, for example, a CPU, a ROM, a flash memory, and a RAM. The CPU executes a computer program stored in the ROM while using the RAM as a work area, and executes the first refrigeration circuit 100, Each part of the second refrigeration circuit 102 and the heat medium circuit 104 is generally controlled.
The control unit 200 sets the opening degree of the second throttle unit 64 at a time other than when the first refrigeration circuit 100 is operated for heating, based on the opening degree of the second throttle unit 64 during the heating operation of the first refrigeration circuit 100. Is also controlled to be small.

図2は本発明の第1の実施の形態における二元ヒートポンプ装置500に備えられる熱生成ユニット300の内部構造を示す正面図である。
熱生成ユニット300は、ケーシング305を備え、このケーシング305の内部には、以下のものが配置される。すなわち、圧縮機41と、凝縮器42と、第1絞り手段43と、蒸発器44とによって構成される第1冷凍回路100、さらに、熱媒体搬送手段51と、配管52とによって構成される熱媒体回路104、そして、ケーシング305には、第2冷媒配管60と、第3絞り手段62と、受液器63と、第2絞り手段64とから構成される第2冷凍回路102である。
FIG. 2 is a front view showing the internal structure of the heat generation unit 300 provided in the dual heat pump device 500 according to the first embodiment of the present invention.
The heat generation unit 300 includes a casing 305, and the following are arranged inside the casing 305. That is, the first refrigeration circuit 100 constituted by the compressor 41, the condenser 42, the first throttle means 43, and the evaporator 44, and the heat medium constituted by the heat medium transfer means 51 and the pipe 52. The medium circuit 104 and the casing 305 are the second refrigeration circuit 102 including the second refrigerant pipe 60, the third throttle unit 62, the liquid receiver 63, and the second throttle unit 64.

図2に示すように、ケーシング305の隅部には、熱媒体搬送手段51を支持する支持台111が配置されている。支持台111の上には、熱媒体搬送手段51が配置されている。支持台111の隣には、圧縮機41を支持する圧縮機支持台112が配置されている。圧縮機支持台112の上には、圧縮機41が配置されている。   As shown in FIG. 2, at a corner of the casing 305, a support table 111 that supports the heat medium transport unit 51 is arranged. On the support 111, the heat medium transporting means 51 is arranged. A compressor support 112 for supporting the compressor 41 is arranged next to the support 111. On the compressor support 112, the compressor 41 is arranged.

蒸発器44を上面に設置するための蒸発器架台301が、圧縮機支持台112および圧縮機41の近傍に配置される。また、蒸発器架台301の位置は、二元ヒートポンプを正面視した際の、支持台111が配置される側とは反対側の隅部でもある。そして、この蒸発器架台301は、ケーシング305の側板部材113に固定されている。
蒸発器架台301の下方には、凝縮器42が配置されている。また、蒸発器架台301の上面には、蒸発器44が配置されている。
An evaporator base 301 for installing the evaporator 44 on the upper surface is arranged near the compressor support base 112 and the compressor 41. Further, the position of the evaporator base 301 is also a corner on the side opposite to the side where the support base 111 is arranged when the dual heat pump is viewed from the front. The evaporator base 301 is fixed to the side plate member 113 of the casing 305.
The condenser 42 is disposed below the evaporator base 301. On the upper surface of the evaporator base 301, the evaporator 44 is arranged.

蒸発器架台301の上部には、受液器63を上面に設置する受液器架台302が配置されている。この受液器架台302は、ケーシング305の側板部材113に固定されている。
受液器架台302の上面には、受液器63が配置されている。
このように、受液器架台302を隔てて、受液器架台302の下方に蒸発器44が配置され、受液器架台302の上面に受液器63が配置されている。受液器63の下端63Aは、蒸発器44の上端44Aよりも上方に配置されている。
Above the evaporator mount 301, a liquid receiver mount 302 on which the liquid receiver 63 is installed is disposed. The receiver base 302 is fixed to the side plate member 113 of the casing 305.
The liquid receiver 63 is arranged on the upper surface of the liquid receiver base 302.
As described above, the evaporator 44 is disposed below the receiver base 302 with the receiver base 302 therebetween, and the receiver 63 is disposed on the upper surface of the receiver base 302. The lower end 63A of the liquid receiver 63 is disposed above the upper end 44A of the evaporator 44.

受液器63には、第2冷媒が溜まる。この受液器63に溜まる第2冷媒の液面は、点線により液面Aとして図2に示している。また、蒸発器44内の第2冷媒の液面は、点線により液面Bとして図2に示している。
受液器63は、第2冷凍回路102において第2冷媒の循環が停止した場合の受液器63内の第2冷媒の液面Aが、蒸発器44内の第2冷媒の液面Bよりも上方となるように設置されていればよい。
The second refrigerant is stored in the liquid receiver 63. The liquid level of the second refrigerant stored in the liquid receiver 63 is shown in FIG. The liquid level of the second refrigerant in the evaporator 44 is shown in FIG.
The liquid receiver 63 is configured such that the liquid level A of the second refrigerant in the liquid receiver 63 when the circulation of the second refrigerant is stopped in the second refrigeration circuit 102 is higher than the liquid level B of the second refrigerant in the evaporator 44. It suffices if it is installed so that it is also above.

以上のように構成された二元ヒートポンプ装置500について、以下その動作、作用を説明する。
まず、図3は本発明の実施の形態1における二元ヒートポンプ装置500の第1冷凍回路100にて熱媒体の加熱運転のみを行う場合の冷媒と熱媒体の回路図である。なお、図3の記載において、中が黒く塗りつぶされた開閉手段は閉状態であることを示している(以下同じ)。
図3に示すように、第1冷凍回路100にて熱媒体の加熱運転のみを行う場合、第2圧縮機53から吐出された第2冷媒は、開状態の蒸発器用開閉手段61bを通って蒸発器44に流入する。また第1冷凍回路100では圧縮機41から吐出された第1冷媒は、凝縮器42にて熱媒体に放熱し、圧縮機吐出温度検知手段46で検知された温度に基づいて第1絞り手段43により絞られて蒸発器44に流入し、第2冷媒から吸熱して圧縮機41に吸入される。熱媒体は熱媒体貯留手段50の下部から熱媒体搬送手段51にて凝縮器42に搬送され、凝縮器42において第1冷媒の熱で加熱された後に熱媒体貯留手段50の上部から積層式に貯留される。
The operation and operation of the dual heat pump device 500 configured as described above will be described below.
First, FIG. 3 is a circuit diagram of the refrigerant and the heating medium when only the heating operation of the heating medium is performed in the first refrigeration circuit 100 of the dual heat pump device 500 according to Embodiment 1 of the present invention. Note that, in the description of FIG. 3, the opening / closing means whose inside is painted black indicates a closed state (the same applies hereinafter).
As shown in FIG. 3, when only the heating operation of the heat medium is performed in the first refrigeration circuit 100, the second refrigerant discharged from the second compressor 53 evaporates through the evaporator opening / closing means 61b in the open state. Into the vessel 44. In the first refrigeration circuit 100, the first refrigerant discharged from the compressor 41 radiates heat to the heat medium in the condenser 42, and based on the temperature detected by the compressor discharge temperature detecting means 46, the first throttle means 43. And flows into the evaporator 44, absorbs heat from the second refrigerant, and is sucked into the compressor 41. The heat medium is conveyed from the lower part of the heat medium storage means 50 to the condenser 42 by the heat medium conveyance means 51, and is heated by the heat of the first refrigerant in the condenser 42, and is stacked from the upper part of the heat medium storage means 50. Will be stored.

また、蒸発器44にて第1冷媒に吸熱された第2冷媒は、全開の第3絞り手段62を通過した後に、蒸発器44から流出した第2冷媒の圧力と温度に基づいた量の第2冷媒が受液器63に貯留される。受液器63から流出した第2冷媒は、第2圧縮機吐出圧力検知手段65により検知された圧力から算出される凝縮温度と、第2冷凍回路蒸発器出口温度検知手段71により検知された温度との差から求まる過冷却度に基づいて第2絞り手段64により絞られる。第2絞り手段64から流出した第2冷媒は、室外熱交換器用絞り手段59にて第2圧縮機吸入圧力検知手段66により検知された圧力から算出される蒸発温度と、室外熱交換器第1温度検知手段69により検知された温度の差から求まる過熱度に基づいて室外熱交換器57を流通する量を調整され、室外熱交換器57にて室外空気から吸熱する。
そして、室外熱交換器57から流出した第2冷媒は、開状態の室外熱交換器用開閉手段58aを通って、第2圧縮機53に吸入される。この場合、蒸発器用開閉手段61a、室内熱交換器用開閉手段55b、55d、室外熱交換器用開閉手段58b及び、室内熱交換器用絞り手段56a、56bは閉じられており、第2冷媒が流通しないようになっている。
また、室内熱交換器54a、54b内に第2冷媒が溜まらないように室内熱交換器用開閉手段55a、55cは開かれている。
The second refrigerant absorbed by the first refrigerant in the evaporator 44 passes through the third throttle unit 62 which is fully opened, and then has an amount based on the pressure and temperature of the second refrigerant flowing out of the evaporator 44. The two refrigerants are stored in the receiver 63. The second refrigerant flowing out of the receiver 63 has a condensing temperature calculated from the pressure detected by the second compressor discharge pressure detecting means 65 and a temperature detected by the second refrigeration circuit evaporator outlet temperature detecting means 71. Is narrowed by the second throttle means 64 based on the degree of supercooling determined from the difference between The second refrigerant that has flowed out of the second throttle means 64 has an evaporation temperature calculated from the pressure detected by the second compressor suction pressure detecting means 66 by the outdoor heat exchanger throttle means 59 and the second heat exchanger first heat exchanger. The amount of heat flowing through the outdoor heat exchanger 57 is adjusted based on the degree of superheat determined from the temperature difference detected by the temperature detecting means 69, and the outdoor heat exchanger 57 absorbs heat from outdoor air.
Then, the second refrigerant flowing out of the outdoor heat exchanger 57 passes through the open / close means 58a for the outdoor heat exchanger in the open state and is sucked into the second compressor 53. In this case, the evaporator opening / closing means 61a, the indoor heat exchanger opening / closing means 55b, 55d, the outdoor heat exchanger opening / closing means 58b, and the indoor heat exchanger throttle means 56a, 56b are closed, so that the second refrigerant does not flow. It has become.
The indoor heat exchanger opening / closing means 55a and 55c are opened so that the second refrigerant does not accumulate in the indoor heat exchangers 54a and 54b.

次に、図4は本発明の実施の形態1における二元ヒートポンプ装置500の第2冷凍回路102を暖房運転し、第1冷凍回路100にて熱媒体の加熱運転も行う場合の冷媒と熱媒体の回路図である。
図4に示すように、室内熱交換器54a、54bを凝縮器として利用して第2冷凍回路102を暖房運転し、第1冷凍回路100にて熱媒体の加熱運転も行う場合、第2圧縮機53から吐出された第2冷媒は、開状態の室内熱交換器用開閉手段55b、55dを通って室内熱交換器54a、54bに流入し、室内熱交換器54a、54bにて室内空気に放熱する。また第1冷凍回路100においては、圧縮機41から吐出された第1冷媒は、凝縮器42にて熱媒体に放熱し、圧縮機吐出温度検知手段46により検知された温度に基づいて第1絞り手段43により絞られて蒸発器44に流入し、開状態の蒸発器用開閉手段61bを通って蒸発器44に流入する第2冷媒から吸熱して圧縮機41に吸入される。熱媒体は熱媒体貯留手段50の下部から熱媒体搬送手段51にて凝縮器42に搬送され、凝縮器42において第1冷媒の熱により加熱された後に熱媒体貯留手段50の上部から積層式に貯留される。
Next, FIG. 4 shows the refrigerant and the heat medium in the case where the second refrigeration circuit 102 of the dual heat pump device 500 according to Embodiment 1 of the present invention performs the heating operation and the first refrigeration circuit 100 also performs the heating operation of the heat medium. FIG.
As shown in FIG. 4, when the second refrigeration circuit 102 performs the heating operation using the indoor heat exchangers 54 a and 54 b as a condenser and also performs the heating operation of the heat medium in the first refrigeration circuit 100, the second compression is performed. The second refrigerant discharged from the unit 53 flows into the indoor heat exchangers 54a, 54b through the open / close means 55b, 55d for the indoor heat exchanger in the open state, and radiates heat to the indoor air at the indoor heat exchangers 54a, 54b. I do. In the first refrigeration circuit 100, the first refrigerant discharged from the compressor 41 radiates heat to the heat medium in the condenser 42, and the first refrigerant is discharged based on the temperature detected by the compressor discharge temperature detecting means 46. It is throttled by the means 43 and flows into the evaporator 44, absorbs heat from the second refrigerant flowing into the evaporator 44 through the evaporator opening / closing means 61 b in the open state, and is sucked into the compressor 41. The heat medium is conveyed from the lower part of the heat medium storage means 50 to the condenser 42 by the heat medium conveyance means 51, and is heated by the heat of the first refrigerant in the condenser 42, and then stacked from the heat medium storage means 50 in a stacked manner. Will be stored.

一方、蒸発器44にて第1冷媒に吸熱された第2冷媒は、全開の第3絞り手段62を通過した後に、蒸発器44から流出した第2冷媒の圧力と温度に基づいた量の第2冷媒が受液器63に貯留される。受液器63から流出した第2冷媒は、第2圧縮機吐出圧力検知手段65により検知された圧力から算出される凝縮温度と、第2冷凍回路蒸発器出口温度検知手段71により検知された温度との差から求まる過冷却度に基づいて第2絞り手段64により絞られる。室内熱交換器54a、54bから流出した第2冷媒は、第2圧縮機吐出圧力検知手段65により検知された圧力から算出される凝縮温度と、室内熱交換器第2温度検知手段68a、68bにより検知された温度との差から求まる、それぞれの過冷却度に基づいて室内熱交換器用絞り手段56a、56bにより絞られた後に第2絞り手段64から流出した第2冷媒と合流し、室外熱交換器57にて室外空気から吸熱する。室外熱交換器用絞り手段59は、第2圧縮機吸入圧力検知手段66により検知された圧力から算出される蒸発温度と、室外熱交換器第1温度検知手段69により検知された温度の差から求まる過熱度に基づいて室外熱交換器57を流通する第2冷媒を調整する。
そして、室外熱交換器57から流出した第2冷媒は、開状態の室外熱交換器用開閉手段58aを通って、第2圧縮機53に吸入される。この場合、蒸発器用開閉手段61a、室内熱交換器用開閉手段55a、55c及び室外熱交換器用開閉手段58bは閉じられており、第2冷媒が流通しないようになっている。
On the other hand, the second refrigerant absorbed by the first refrigerant in the evaporator 44 passes through the third opening means 62 which is fully open, and then has an amount based on the pressure and temperature of the second refrigerant flowing out of the evaporator 44. The two refrigerants are stored in the receiver 63. The second refrigerant flowing out of the receiver 63 has a condensing temperature calculated from the pressure detected by the second compressor discharge pressure detecting means 65 and a temperature detected by the second refrigeration circuit evaporator outlet temperature detecting means 71. Is narrowed by the second throttle means 64 based on the degree of supercooling determined from the difference between The second refrigerant flowing out of the indoor heat exchangers 54a and 54b is condensed by the condensing temperature calculated from the pressure detected by the second compressor discharge pressure detecting means 65, and the second refrigerant is detected by the indoor heat exchanger second temperature detecting means 68a and 68b. Based on the degree of supercooling, which is obtained from the difference between the detected temperature and the degree of subcooling, the refrigerant is throttled by the indoor heat exchanger throttle means 56a and 56b and then merges with the second refrigerant flowing out of the second throttle means 64 to perform outdoor heat exchange. The heat is absorbed from the outdoor air by the vessel 57. The outdoor heat exchanger throttle means 59 is obtained from the difference between the evaporation temperature calculated from the pressure detected by the second compressor suction pressure detection means 66 and the temperature detected by the outdoor heat exchanger first temperature detection means 69. The second refrigerant flowing through the outdoor heat exchanger 57 is adjusted based on the degree of superheat.
Then, the second refrigerant flowing out of the outdoor heat exchanger 57 passes through the open / close means 58a for the outdoor heat exchanger in the open state and is sucked into the second compressor 53. In this case, the evaporator opening / closing means 61a, the indoor heat exchanger opening / closing means 55a and 55c, and the outdoor heat exchanger opening / closing means 58b are closed, so that the second refrigerant does not flow.

また、図5は本発明の実施の形態1における二元ヒートポンプ装置500の第2冷凍回路102を冷房運転し、第1冷凍回路100にて熱媒体の加熱運転も行う場合の冷媒と熱媒体の回路図である。
図5に示すように、室内熱交換器54a、54bを蒸発器として利用して第2冷凍回路102を冷房運転し、第1冷凍回路100にて熱媒体の加熱運転も行う場合、第2圧縮機53から吐出された第2冷媒は、開状態の室外熱交換器用開閉手段58bを通って室外熱交換器57に流入し、室外空気に放熱する。また第1冷凍回路100においては第2冷凍回路102の暖房運転時同様、圧縮機41から吐出された第1冷媒は、凝縮器42にて熱媒体に放熱し、圧縮機吐出温度検知手段46により検知された温度に基づいて第1絞り手段43により絞られて蒸発器44に流入し、開状態の蒸発器用開閉手段61bを通って蒸発器44に流入する第2冷媒から吸熱して圧縮機41に吸入される。熱媒体は熱媒体貯留手段50の下部から熱媒体搬送手段51にて凝縮器42に搬送され、凝縮器42において第1冷媒の熱により加熱された後に熱媒体貯留手段50の上部から積層式に貯留される。
FIG. 5 is a diagram showing the refrigerant and heat medium in the case where the second refrigeration circuit 102 of the dual heat pump device 500 according to Embodiment 1 of the present invention performs the cooling operation and the first refrigeration circuit 100 also performs the heating operation of the heat medium. It is a circuit diagram.
As shown in FIG. 5, when the second refrigeration circuit 102 performs the cooling operation using the indoor heat exchangers 54 a and 54 b as the evaporator and also performs the heating operation of the heat medium in the first refrigeration circuit 100, the second compression is performed. The second refrigerant discharged from the unit 53 flows into the outdoor heat exchanger 57 through the open / close means 58b for the outdoor heat exchanger in the open state, and radiates heat to the outdoor air. In the first refrigeration circuit 100, similarly to the heating operation of the second refrigeration circuit 102, the first refrigerant discharged from the compressor 41 radiates heat to the heat medium in the condenser 42, and is discharged by the compressor discharge temperature detecting means 46. Based on the detected temperature, it is throttled by the first throttle means 43 and flows into the evaporator 44, and absorbs heat from the second refrigerant flowing into the evaporator 44 through the evaporator opening / closing means 61 b in the open state to compress the compressor 41. Inhaled. The heat medium is conveyed from the lower part of the heat medium storage means 50 to the condenser 42 by the heat medium conveyance means 51, and is heated by the heat of the first refrigerant in the condenser 42, and then stacked from the heat medium storage means 50 in a stacked manner. Will be stored.

また、蒸発器44にて第1冷媒に吸熱された第2冷媒は、全開の第3絞り手段62を通過した後に、蒸発器44から流出した第2冷媒の圧力と温度に基づいた量の第2冷媒が受液器63に貯留される。受液器63から流出した第2冷媒は、第2圧縮機吐出圧力検知手段65により検知された圧力から算出される凝縮温度と、第2冷凍回路蒸発器出口温度検知手段71により検知された温度との差から求まる過冷却度に基づいて第2絞り手段64により絞られる。室外熱交換器57から流出した第2冷媒は、第2圧縮機吐出圧力検知手段65により検知された圧力から算出される凝縮温度と、室外熱交換器第2温度検知手段70により検知された温度との差から求まる過冷却度に基づいて室外熱交換器用絞り手段59により絞られた後に第2絞り手段64から流出した第2冷媒と合流し、室内熱交換器54a、54bにて室内空気から吸熱する。室内熱交換器用絞り手段56a、56bは、第2圧縮機吸入圧力検知手段66により検知された圧力から算出される蒸発温度と、室内熱交換器第1温度検知手段67a、67bにより検知された温度の差から求まる、それぞれの過熱度に基づいて室内熱交換器54a、54bを流通する第2冷媒を調整する。
そして、室内熱交換器54a、54bから流出した第2冷媒は、開状態の室内熱交換器用開閉手段55a、55cを通って、第2圧縮機53に吸入される。この場合、蒸発器用開閉手段61a、室内熱交換器用開閉手段55b、55d及び室外熱交換器用開閉手段58aは閉じられており、第2冷媒が流通しないようになっている。
また、図6は本発明の実施の形態1における二元ヒートポンプ装置500の第2冷凍回路102を冷暖同時運転し、第1冷凍回路100にて熱媒体の加熱運転も行う場合の冷媒と熱媒体の回路図である。
The second refrigerant absorbed by the first refrigerant in the evaporator 44 passes through the third throttle unit 62 which is fully opened, and then has an amount based on the pressure and temperature of the second refrigerant flowing out of the evaporator 44. The two refrigerants are stored in the receiver 63. The second refrigerant flowing out of the receiver 63 has a condensing temperature calculated from the pressure detected by the second compressor discharge pressure detecting means 65 and a temperature detected by the second refrigeration circuit evaporator outlet temperature detecting means 71. Is narrowed by the second throttle means 64 based on the degree of supercooling determined from the difference between The second refrigerant flowing out of the outdoor heat exchanger 57 has a condensing temperature calculated from the pressure detected by the second compressor discharge pressure detecting means 65 and a temperature detected by the outdoor heat exchanger second temperature detecting means 70. And the second refrigerant flowing out of the second throttle means 64 after being throttled by the outdoor heat exchanger throttle means 59 based on the degree of supercooling determined from the difference from the indoor air in the indoor heat exchangers 54a and 54b. Endothermic. The indoor heat exchanger throttling means 56a and 56b are provided for calculating the evaporation temperature calculated from the pressure detected by the second compressor suction pressure detecting means 66 and the temperature detected by the indoor heat exchanger first temperature detecting means 67a and 67b. The second refrigerant flowing through the indoor heat exchangers 54a and 54b is adjusted based on the respective degrees of superheat determined from the difference in
The second refrigerant flowing out of the indoor heat exchangers 54a and 54b passes through the open / close means 55a and 55c for the indoor heat exchanger and is sucked into the second compressor 53. In this case, the evaporator opening / closing means 61a, the indoor heat exchanger opening / closing means 55b, 55d, and the outdoor heat exchanger opening / closing means 58a are closed, so that the second refrigerant does not flow.
FIG. 6 shows a refrigerant and a heat medium when the second refrigeration circuit 102 of the dual heat pump device 500 according to Embodiment 1 of the present invention is operated simultaneously with cooling and heating, and the first refrigeration circuit 100 also performs a heating operation on the heat medium. FIG.

図6に示すように、室内熱交換器54aを凝縮器として、室内熱交換器54bを蒸発器として利用して第2冷凍回路102を冷暖同時運転し、第1冷凍回路100にて熱媒体の加熱運転も行う場合、第2圧縮機53から吐出された第2冷媒は、開状態の室内熱交換器用開閉手段55bを通って室内熱交換器54aに流入し、室内空気に放熱する。また第1冷凍回路100においては、圧縮機41から吐出された第1冷媒は、凝縮器42にて熱媒体に放熱し、圧縮機吐出温度検知手段46により検知された温度に基づいて第1絞り手段43により絞られて蒸発器44に流入し、開状態の蒸発器用開閉手段61bを通って蒸発器44に流入する第2冷媒から吸熱して圧縮機41に吸入される。熱媒体は熱媒体貯留手段50の下部から熱媒体搬送手段51にて凝縮器42に搬送され、凝縮器42において第1冷媒の熱により加熱された後に熱媒体貯留手段50の上部から積層式に貯留される。   As shown in FIG. 6, the second refrigeration circuit 102 is operated simultaneously with cooling and heating by using the indoor heat exchanger 54a as a condenser and the indoor heat exchanger 54b as an evaporator. When the heating operation is also performed, the second refrigerant discharged from the second compressor 53 flows into the indoor heat exchanger 54a through the open / close means 55b for the indoor heat exchanger in the open state, and radiates heat to the indoor air. In the first refrigeration circuit 100, the first refrigerant discharged from the compressor 41 radiates heat to the heat medium in the condenser 42, and the first refrigerant is discharged based on the temperature detected by the compressor discharge temperature detecting means 46. It is throttled by the means 43 and flows into the evaporator 44, absorbs heat from the second refrigerant flowing into the evaporator 44 through the evaporator opening / closing means 61 b in the open state, and is sucked into the compressor 41. The heat medium is conveyed from the lower part of the heat medium storage means 50 to the condenser 42 by the heat medium conveyance means 51, and is heated by the heat of the first refrigerant in the condenser 42, and then stacked from the heat medium storage means 50 in a stacked manner. Will be stored.

また、蒸発器44にて第1冷媒に吸熱された第2冷媒は、第2圧縮機吐出圧力検知手段65により検知された圧力から算出される凝縮温度と、第2冷凍回路蒸発器出口温度検知手段71により検知された温度との差から求まる過冷却度に基づいて第3絞り手段62により絞られた後に、受液器63及び全開の第2絞り手段64を流れる。室内熱交換器54aから流出した第2冷媒は、第2圧縮機吐出圧力検知手段65により検知された圧力から算出される凝縮温度と、室内熱交換器第2温度検知手段68aにより検知された温度との差から求まる過冷却度に基づいて室内熱交換器用絞り手段56aにより絞られた後に合流し、室内熱交換器54a、及び、室外熱交換器57にて室内空気と室外空気から吸熱する。室内熱交換器用絞り手段56bと室外熱交換器用絞り手段59は、第2圧縮機吸入圧力検知手段66により検知された圧力から算出される蒸発温度と、室内熱交換器第1温度検知手段67b、及び、室外熱交換器第1温度検知手段69により検知された温度の差から求まる、それぞれの過熱度に基づいて室内熱交換器54b、及び、室外熱交換器57を流通する第2冷媒を調整する。
そして、室内熱交換器54b、及び、室外熱交換器57から流出した第2冷媒は、開状態の室内熱交換器用開閉手段55cと室外熱交換器用開閉手段58aを通って、第2圧縮機53に吸入される。この場合、蒸発器用開閉手段61a、室内熱交換器用開閉手段55a、55d及び室外熱交換器用開閉手段58bは閉じられており、第2冷媒が流通しないようになっている。
The second refrigerant absorbed by the first refrigerant in the evaporator 44 has a condensing temperature calculated from the pressure detected by the second compressor discharge pressure detecting means 65 and a second refrigeration circuit evaporator outlet temperature detection. After being throttled by the third throttle means 62 based on the degree of supercooling determined from the difference from the temperature detected by the means 71, it flows through the liquid receiver 63 and the fully opened second throttle means 64. The second refrigerant flowing out of the indoor heat exchanger 54a has a condensing temperature calculated from the pressure detected by the second compressor discharge pressure detecting means 65 and a temperature detected by the indoor heat exchanger second temperature detecting means 68a. After being throttled by the indoor heat exchanger throttle means 56a based on the degree of supercooling determined from the difference between the two, they are merged, and the indoor heat exchanger 54a and the outdoor heat exchanger 57 absorb heat from indoor air and outdoor air. The throttle means 56b for the indoor heat exchanger and the throttle means 59 for the outdoor heat exchanger are provided with an evaporation temperature calculated from the pressure detected by the second compressor suction pressure detecting means 66, and an indoor heat exchanger first temperature detecting means 67b. And the second refrigerant flowing through the indoor heat exchanger 54b and the outdoor heat exchanger 57 is adjusted based on the degree of superheat determined from the difference between the temperatures detected by the outdoor heat exchanger first temperature detecting means 69. I do.
The second refrigerant flowing out of the indoor heat exchanger 54b and the outdoor heat exchanger 57 passes through the open / close means 55c for the indoor heat exchanger and the open / close means 58a for the outdoor heat exchanger in the open state, and passes through the second compressor 53. Inhaled. In this case, the evaporator opening / closing means 61a, the indoor heat exchanger opening / closing means 55a and 55d, and the outdoor heat exchanger opening / closing means 58b are closed, so that the second refrigerant does not flow.

図7は本発明の実施の形態1における二元ヒートポンプ装置500の第2冷凍回路102の室内熱交換器を変更して冷暖同時運転し、第1冷凍回路100にて熱媒体の加熱運転も行う場合の冷媒と熱媒体の回路図である。
図7に示すように、室内熱交換器54aを蒸発器として、室内熱交換器54bを凝縮器として利用して第2冷凍回路102を冷暖同時運転し、第1冷凍回路100にて熱媒体の加熱運転も行う場合、室内熱交換器用開閉手段55a、55dを開状態とし、室内熱交換器用開閉手段55b、55cを閉状態として、室外熱交換器用開閉手段58a、及び、58bの開閉状態は変えず運転する。
FIG. 7 shows that the indoor heat exchanger of the second refrigeration circuit 102 of the dual heat pump device 500 according to Embodiment 1 of the present invention is changed to perform simultaneous cooling and heating operation, and also perform the heating operation of the heat medium in the first refrigeration circuit 100. It is a circuit diagram of a refrigerant | coolant and a heat carrier in the case.
As shown in FIG. 7, the second refrigeration circuit 102 is simultaneously operated for cooling and heating using the indoor heat exchanger 54 a as an evaporator and the indoor heat exchanger 54 b as a condenser, and the first refrigeration circuit 100 When the heating operation is also performed, the open / close means 55a, 55d for the indoor heat exchanger are opened, the open / close means 55b, 55c for the indoor heat exchanger are closed, and the open / close state of the open / close means 58a, 58b for the outdoor heat exchanger is changed. Drive.

また、図8は本発明の実施の形態1における二元ヒートポンプ装置500の第2冷凍回路102にて室外熱交換器57の霜取り運転を行う場合の冷媒と熱媒体の回路図である。
図8に示すように、室外熱交換器57を凝縮器として利用して第2冷凍回路102にて霜取り運転を行う場合、第2圧縮機53から吐出された第2冷媒は、開状態の室外熱交換器用開閉手段58bを通って室外熱交換器57に流入し、室外熱交換器57表面に付着した霜に放熱することにより霜を融解して、霜取りを行う。
また、室外熱交換器57を通過した第2冷媒は、全開より若干開度を小さくした室外熱交換器用絞り手段59、室内熱交換器用絞り手段56a、56b、室内熱交換器54a、54b、および、室内熱交換器用開閉手段55a、55cを順次流通して、第2圧縮機53に吸入される。その際、第1冷凍回路100および熱媒体回路104は停止する。
また、第2絞り手段64は開度を小さくして、第2冷媒が流通しないようにされている。
第1冷凍回路100が加熱運転を行う場合に、受液器63に貯留された第2冷媒は、全開の第3絞り手段62を通過して、開状態の蒸発器用開閉手段61aを流通した後に第2圧縮機53に吸入される。
この場合、蒸発器用開閉手段61b、室内熱交換器用開閉手段55b、55d及び室外熱交換器用開閉手段58aは閉じられており、第2冷媒が流通しないようになっている。
FIG. 8 is a circuit diagram of the refrigerant and the heat medium when performing the defrosting operation of outdoor heat exchanger 57 in second refrigeration circuit 102 of dual heat pump device 500 according to Embodiment 1 of the present invention.
As shown in FIG. 8, when performing the defrosting operation in the second refrigeration circuit 102 using the outdoor heat exchanger 57 as a condenser, the second refrigerant discharged from the second compressor 53 is in an open outdoor state. It flows into the outdoor heat exchanger 57 through the heat exchanger opening / closing means 58b and dissipates heat to the frost attached to the surface of the outdoor heat exchanger 57 to melt the frost and perform defrosting.
The second refrigerant that has passed through the outdoor heat exchanger 57 has an opening degree 59 for the outdoor heat exchanger, an opening degree of the indoor heat exchanger 56a, 56b, an opening degree of the indoor heat exchanger 54a, 54b, and an opening degree slightly smaller than the full opening. Then, the refrigerant flows through the indoor heat exchanger opening / closing means 55 a and 55 c sequentially, and is sucked into the second compressor 53. At that time, the first refrigeration circuit 100 and the heat medium circuit 104 stop.
The second throttle means 64 has a small opening so that the second refrigerant does not flow.
When the first refrigeration circuit 100 performs the heating operation, the second refrigerant stored in the liquid receiver 63 passes through the third opening means 62 which is fully open, and flows through the opening / closing means 61a for the evaporator in the open state. It is sucked into the second compressor 53.
In this case, the evaporator opening / closing means 61b, the indoor heat exchanger opening / closing means 55b, 55d, and the outdoor heat exchanger opening / closing means 58a are closed, so that the second refrigerant does not flow.

以上のような運転状態において、特に、第2冷媒に臨界温度が高いフロン系冷媒(例えば、R410A)、第1冷媒に臨界温度が低い二酸化炭素を用いて蒸発温度を臨界点以下とする場合、第1冷凍回路100の加熱運転のみを行うときに、蒸発器44において第1冷媒と第2冷媒の温度差が大きくなり、蒸発器44から流出する第2冷媒の過冷却度が大きくなる。その場合、第2冷媒の密度が大きくなって、受液器63に貯留される液化した第2冷媒の量が多くなる。
一方で、第2冷凍回路102にて室外熱交換器57の霜取り運転が入ると、蒸発器44、室内熱交換器54a、54bと比べて比較的管内の容積が大きい室外熱交換器57において第2冷媒の圧力を上げて凝縮温度を高めるために多くの第2冷媒が必要になるが、受液器63に液化した第2冷媒が貯留されたままになると、室外熱交換器57において使う第2冷媒が不足して、圧力が上がらないために凝縮温度が上がらず、室外熱交換器57の霜を融解する時間が長期化してしまう。第2冷凍回路102の霜取り運転を行っている間は、第1冷凍回路100の加熱運転が停止するので、加熱された熱媒体が追加されず、例えば、熱媒体を循環して使う床暖房やラジエターでは、第2冷凍回路102の霜取り運転中は熱媒体の温度が低下していくこととなる。
In the operating state as described above, in particular, when the second refrigerant is a fluorocarbon-based refrigerant having a high critical temperature (for example, R410A), and the first refrigerant is carbon dioxide having a low critical temperature, and the evaporating temperature is lower than the critical point, When only the heating operation of the first refrigeration circuit 100 is performed, the temperature difference between the first refrigerant and the second refrigerant in the evaporator 44 increases, and the degree of supercooling of the second refrigerant flowing out of the evaporator 44 increases. In that case, the density of the second refrigerant increases, and the amount of the liquefied second refrigerant stored in the receiver 63 increases.
On the other hand, when the defrosting operation of the outdoor heat exchanger 57 is started in the second refrigeration circuit 102, the outdoor heat exchanger 57 having a relatively large volume in the pipe as compared with the evaporator 44 and the indoor heat exchangers 54a and 54b. Although a large amount of the second refrigerant is required to raise the pressure of the second refrigerant to increase the condensing temperature, if the liquefied second refrigerant remains stored in the receiver 63, the second refrigerant used in the outdoor heat exchanger 57 (2) Since the refrigerant is insufficient and the pressure does not increase, the condensing temperature does not increase, and the time for melting the frost in the outdoor heat exchanger 57 is prolonged. While the defrosting operation of the second refrigeration circuit 102 is being performed, the heating operation of the first refrigeration circuit 100 is stopped, so that the heated heat medium is not added. In the radiator, during the defrosting operation of the second refrigeration circuit 102, the temperature of the heat medium decreases.

そこで、本実施の形態では、第2冷凍回路102において第2冷媒の循環が停止した場合に、受液器63内の第2冷媒の液面Aが、蒸発器44内の第2冷媒の液面Bより上方となるように受液器63を配置している。すなわち、第2冷凍回路102において第2冷媒の循環が停止した場合に、蒸発器44内の第2冷媒の液面Bが受液器63内の第2冷媒の液面Aより下方となるように受液器63が配設されることになり、逆サイクルの霜取り運転を行う場合、受液器63に貯留された液化した第2冷媒が重力によって蒸発器44の方へ流下することとなる。さらに、蒸発器44から蒸発器用開閉手段61aを通って、室内熱交換器54a、54bから流出した第2冷媒と合流して第2圧縮機53に吸入されて、第2冷媒の圧力を上昇することとなる。   Therefore, in the present embodiment, when the circulation of the second refrigerant in the second refrigeration circuit 102 is stopped, the liquid level A of the second refrigerant in the receiver 63 changes the liquid level of the second refrigerant in the evaporator 44. The liquid receiver 63 is arranged above the surface B. That is, when the circulation of the second refrigerant is stopped in the second refrigeration circuit 102, the liquid level B of the second refrigerant in the evaporator 44 is lower than the liquid level A of the second refrigerant in the receiver 63. In the case of performing a reverse cycle defrosting operation, the liquefied second refrigerant stored in the liquid receiver 63 flows down toward the evaporator 44 due to gravity. . Further, the refrigerant from the evaporator 44 passes through the evaporator opening / closing means 61a, merges with the second refrigerant flowing out of the indoor heat exchangers 54a and 54b, is sucked into the second compressor 53, and increases the pressure of the second refrigerant. It will be.

以上のように、本実施の形態においては、第2冷凍回路102において第2冷媒の循環が停止した場合に、受液器63内の第2冷媒の液面Aが、蒸発器44内の第2冷媒の液面Bより上方となるように受液器63が設置されている。すなわち、第2冷凍回路102において第2冷媒の循環が停止した場合に、蒸発器44内の第2冷媒の液面Bが受液器63内の第2冷媒の液面Aより下方となるように受液器63が配設されることになり、逆サイクルの霜取り運転を行う場合、受液器63に貯留された液化した第2冷媒が重力によって蒸発器44の方へ流下することとなる。さらに、蒸発器44から蒸発器用開閉手段61aを通って、室内熱交換器54a、54bから流出した第2冷媒と合流して第2圧縮機53に吸入されて、第2冷媒の圧力を上昇することとなる。   As described above, in the present embodiment, when the circulation of the second refrigerant in the second refrigeration circuit 102 is stopped, the liquid level A of the second refrigerant in the receiver 63 changes to the level of the second refrigerant in the evaporator 44. The liquid receiver 63 is installed above the liquid level B of the two refrigerants. That is, when the circulation of the second refrigerant is stopped in the second refrigeration circuit 102, the liquid level B of the second refrigerant in the evaporator 44 is lower than the liquid level A of the second refrigerant in the receiver 63. In the case of performing a reverse cycle defrosting operation, the liquefied second refrigerant stored in the liquid receiver 63 flows down toward the evaporator 44 due to gravity. . Further, the refrigerant from the evaporator 44 passes through the evaporator opening / closing means 61a, merges with the second refrigerant flowing out of the indoor heat exchangers 54a and 54b, is sucked into the second compressor 53, and increases the pressure of the second refrigerant. It will be.

これによって、逆サイクルの霜取り運転を行う場合に、第1冷凍回路100の加熱運転によって受液器63に貯留された液化した第2冷媒が残ることなく、受液器63から排出されるので、霜取り運転時の第2冷凍回路102を循環する第2冷媒の不足を抑制することができ、霜取り運転の長期化を抑制して、機器の快適性を向上できる。   Accordingly, when performing the reverse cycle defrosting operation, the liquefied second refrigerant stored in the receiver 63 by the heating operation of the first refrigeration circuit 100 is discharged from the receiver 63 without remaining, The shortage of the second refrigerant circulating in the second refrigeration circuit 102 during the defrosting operation can be suppressed, and the prolongation of the defrosting operation can be suppressed, and the comfort of the device can be improved.

また、本実施の形態では制御部200が第1冷凍回路100が加熱運転以外の場合に、第2絞り手段64の開度を加熱運転時より小さくすることにより、例えば、逆サイクルの霜取り運転を行う場合に、第2絞り手段64から流出する第2冷媒を気化膨張させて、受液器63に貯留された液化した第2冷媒を排出することとなる。
また、第2絞り手段64を通過した低圧の液状態の第2冷媒が受液器63に流入することを防止することとなる。
よって、熱媒体貯留手段50内が第1冷凍回路100において加熱された熱媒体によりほぼ満たされ、熱媒体貯留手段50下部から凝縮器42に搬送される熱媒体の温度が高くなる、いわゆる沸き終いの間際で、受液器63における第2冷媒の貯留量が多くなる時に、逆サイクルの霜取り運転を行う場合でも、受液器63に貯留された第2冷媒を速やかに排出して、第2冷凍回路102を循環する第2冷媒の不足を抑制することができる。
また、霜取り運転時に、受液器63に追加で第2冷媒が貯留されることを防止することにより、霜取り運転の長期化を抑制して、機器の快適性を向上できる。
また、霜取り運転時に蒸発器44において第1冷凍回路100から第2冷媒への吸熱を防止することができ、霜取り運転後に再び加熱運転を行う際の第1冷凍回路100の立ち上がりを早くして、機器の快適性を向上できる。
Further, in the present embodiment, when the first refrigeration circuit 100 is not in the heating operation, the control unit 200 makes the opening degree of the second expansion unit 64 smaller than that in the heating operation, for example, to perform the reverse cycle defrosting operation. In this case, the second refrigerant flowing out of the second throttle means 64 is vaporized and expanded, and the liquefied second refrigerant stored in the liquid receiver 63 is discharged.
Further, it is possible to prevent the second refrigerant in a low-pressure liquid state that has passed through the second throttle means 64 from flowing into the liquid receiver 63.
Therefore, the inside of the heat medium storage means 50 is almost filled with the heat medium heated in the first refrigeration circuit 100, and the temperature of the heat medium conveyed from the lower part of the heat medium storage means 50 to the condenser 42 increases, so-called boiling end. Immediately before, when the stored amount of the second refrigerant in the receiver 63 increases, even when performing the reverse cycle defrosting operation, the second refrigerant stored in the receiver 63 is quickly discharged, and the second refrigerant is discharged. The shortage of the second refrigerant circulating in the second refrigeration circuit 102 can be suppressed.
In addition, by preventing the second refrigerant from being additionally stored in the receiver 63 during the defrosting operation, it is possible to suppress a prolonged defrosting operation and improve the comfort of the device.
Further, heat absorption from the first refrigeration circuit 100 to the second refrigerant can be prevented in the evaporator 44 during the defrosting operation, and the rising of the first refrigeration circuit 100 when performing the heating operation again after the defrosting operation is accelerated, Equipment comfort can be improved.

また、本実施の形態では、受液器63の容積が蒸発器44の容積に比べて大きいことから、受液器63の下端63Aが蒸発器44の上端44Aより高くなるように設置されているが、例えば、受液器63の容積が、蒸発器44の容積に比べて小さい場合は、図9に示すように、第2冷凍回路102において第2冷媒の循環が停止した場合に、受液器63内の第2冷媒の液面Cが、蒸発器44内の第2冷媒の液面Dより上方となるように受液器63が設置されてもよい。
このとき、受液器63の下端63Aが蒸発器44の上端44Aより低い位置に設置されている。受液器63と蒸発器44は架台303上に設置されている。
このように、受液器63の容積と、蒸発器44の容積との差によって、受液器63内の第2冷媒の液面と、蒸発器44内の第2冷媒の液面との位置関係が変化するが、受液器63内の第2冷媒の液面が、蒸発器44内の第2冷媒の液面よりも上方となるように、受液器63と蒸発器44を設置することにより、同様の効果を得ることができる。
Further, in the present embodiment, since the volume of the liquid receiver 63 is larger than the volume of the evaporator 44, the lower end 63A of the liquid receiver 63 is installed to be higher than the upper end 44A of the evaporator 44. However, for example, when the volume of the liquid receiver 63 is smaller than the volume of the evaporator 44, as shown in FIG. 9, when the circulation of the second refrigerant in the second refrigeration circuit 102 is stopped, The liquid receiver 63 may be installed such that the liquid level C of the second refrigerant in the vessel 63 is higher than the liquid level D of the second refrigerant in the evaporator 44.
At this time, the lower end 63A of the liquid receiver 63 is installed at a position lower than the upper end 44A of the evaporator 44. The liquid receiver 63 and the evaporator 44 are installed on a gantry 303.
As described above, the position of the liquid level of the second refrigerant in the liquid receiver 63 and the liquid level of the second refrigerant in the evaporator 44 are determined by the difference between the volume of the liquid receiver 63 and the volume of the evaporator 44. Although the relationship changes, the liquid receiver 63 and the evaporator 44 are installed such that the liquid level of the second refrigerant in the liquid receiver 63 is higher than the liquid level of the second refrigerant in the evaporator 44. Thereby, a similar effect can be obtained.

また、本実施の形態では、第3絞り手段62の開度を第1冷凍回路100にて熱媒体の加熱運転のみを行うか否かに基づいて調整しているが、第2冷凍回路中間圧力検知手段72により検知された圧力や、第2冷凍回路蒸発器出口温度検知手段71により検知された温度と第2冷凍回路中間温度検知手段73により検知された温度との差(第2冷凍回路中間温度差)に基づいて調整することで、機器の効率が最適となるように第2冷凍回路102を循環する第2冷媒の量を調整することもできる。   Further, in the present embodiment, the opening degree of the third throttle means 62 is adjusted based on whether or not only the heating operation of the heat medium is performed in the first refrigeration circuit 100, but the second refrigeration circuit intermediate pressure is adjusted. The pressure detected by the detection means 72 or the difference between the temperature detected by the second refrigeration circuit evaporator outlet temperature detection means 71 and the temperature detected by the second refrigeration circuit intermediate temperature detection means 73 (the second refrigeration circuit intermediate temperature). By adjusting based on the (temperature difference), the amount of the second refrigerant circulating in the second refrigeration circuit 102 can be adjusted so that the efficiency of the device is optimized.

また、本実施の形態では、積層式の熱媒体貯留手段50としたことにより、凝縮器42において熱媒体を使用可能な温度まで一気に加熱することができるので、熱媒体が足りなくなった場合でも、わずかな時間で補充することができ、利用者の使い勝手を向上することができる。   Further, in the present embodiment, since the heating medium can be heated to a usable temperature in the condenser 42 at once by using the stacked heating medium storing means 50, even when the heating medium becomes insufficient, Replenishment can be performed in a short time, and the usability of the user can be improved.

以上のように、本発明にかかる二元ヒートポンプ装置は、二元冷凍サイクルにおける低段側冷凍回路の霜取り運転時間を短縮するもので、空気調和機、チラー、乾燥機、給湯空調複合装置、温水暖房機等の用途に適用できる。   As described above, the binary heat pump device according to the present invention shortens the defrosting operation time of the low-stage refrigeration circuit in the binary refrigeration cycle, and includes an air conditioner, a chiller, a dryer, a hot water supply air conditioning combined device, Applicable to applications such as heaters.

41 圧縮機
42 凝縮器
43 第1絞り手段
44 蒸発器
44A 蒸発器の上端
51 熱媒体搬送手段
62 第3絞り手段
63 受液器
63A 受液器の下端
64 第2絞り手段
100 第1冷凍回路
102 第2冷凍回路
104 熱媒体回路
200 制御部
300 熱生成ユニット
305 ケーシング
500 二元ヒートポンプ装置
A 液面
B 液面
41 Compressor 42 Condenser 43 First throttle means 44 Evaporator 44A Upper end of evaporator 51 Heat medium transport means 62 Third throttle means 63 Liquid receiver 63A Lower end of liquid receiver 64 Second throttle means 100 First refrigeration circuit 102 Second refrigeration circuit 104 Heat medium circuit 200 Control unit 300 Heat generation unit 305 Casing 500 Binary heat pump device A Liquid level B Liquid level

Claims (1)

圧縮機、凝縮器、第1絞り手段、蒸発器が配管によって環状に接続され、
第1冷媒を循環させる第1冷凍回路と、
第2冷媒を循環させ、前記蒸発器にて前記第1冷媒と熱交換を行う第2冷凍回路と、
前記第2冷凍回路の前記蒸発器の出口側に順に受液器と、第2絞り手段と、
制御部と、を備え、
前記制御部は、前記第1冷凍回路の加熱運転以外の場合において、前記第2絞り手段を有する前記第2冷凍回路にて、前記第2絞り手段、前記受液器、前記蒸発器の順で冷媒を流す逆サイクルによる霜取り運転をする場合に、前記第2絞り手段の開度を加熱運転時より小さくすることを特徴とする二元ヒートポンプ装置。
The compressor, the condenser, the first throttle means, and the evaporator are connected in a ring by piping,
A first refrigeration circuit for circulating a first refrigerant,
A second refrigeration circuit that circulates a second refrigerant and exchanges heat with the first refrigerant in the evaporator;
A liquid receiver, a second restrictor, in order on the outlet side of the evaporator of the second refrigeration circuit;
And a control unit,
The control unit, in a case other than the heating operation of the first refrigeration circuit, in the second refrigeration circuit having the second restriction unit, the second restriction unit, the liquid receiver, and the evaporator in this order. when the defrosting operation by the reverse cycle refrigerant flows include binary heat pump apparatus according to claim to Rukoto smaller than during the heating operation the opening of the second throttle means.
JP2017003913A 2017-01-13 2017-01-13 Binary heat pump device Active JP6675083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017003913A JP6675083B2 (en) 2017-01-13 2017-01-13 Binary heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017003913A JP6675083B2 (en) 2017-01-13 2017-01-13 Binary heat pump device

Publications (2)

Publication Number Publication Date
JP2018112367A JP2018112367A (en) 2018-07-19
JP6675083B2 true JP6675083B2 (en) 2020-04-01

Family

ID=62912157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003913A Active JP6675083B2 (en) 2017-01-13 2017-01-13 Binary heat pump device

Country Status (1)

Country Link
JP (1) JP6675083B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022118843A1 (en) * 2020-12-01 2022-06-09
JP7372556B2 (en) * 2021-09-30 2023-11-01 ダイキン工業株式会社 Refrigerant containers and refrigeration cycle equipment

Also Published As

Publication number Publication date
JP2018112367A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP5956743B2 (en) Air conditioner
JP6125000B2 (en) Dual refrigeration equipment
JP2008530498A (en) HVAC system with powered supercooler
JP5409715B2 (en) Air conditioner
JP2012077983A (en) Refrigerating circuit
JP2008002759A (en) Binary refrigerating system and cold storage
JP4428341B2 (en) Refrigeration cycle equipment
JP5908183B1 (en) Air conditioner
JP2017161182A (en) Heat pump device
GB2579476A (en) Heat exchange unit and refrigeration cycle device
JP5430604B2 (en) Dual refrigeration equipment
JPWO2015140885A1 (en) Refrigeration cycle equipment
JP6675083B2 (en) Binary heat pump device
JP2010196963A (en) Dual type heat pump and refrigerating device
JP6433422B2 (en) Refrigeration cycle equipment
JP6091567B2 (en) Refrigerator and refrigeration equipment
JP2009180493A (en) Heating auxiliary unit and air conditioner
JP2006003023A (en) Refrigerating unit
JP6692083B2 (en) Dual heat pump device
JP6695034B2 (en) Heat pump device
JP6695033B2 (en) Heat pump device
JP2017161164A (en) Air-conditioning hot water supply system
JP2010112698A (en) Refrigeration device
JP5796588B2 (en) Open showcase
JP7390605B2 (en) heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200220

R151 Written notification of patent or utility model registration

Ref document number: 6675083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151