JP6695033B2 - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
JP6695033B2
JP6695033B2 JP2017520214A JP2017520214A JP6695033B2 JP 6695033 B2 JP6695033 B2 JP 6695033B2 JP 2017520214 A JP2017520214 A JP 2017520214A JP 2017520214 A JP2017520214 A JP 2017520214A JP 6695033 B2 JP6695033 B2 JP 6695033B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration circuit
compressor
evaporator
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017520214A
Other languages
Japanese (ja)
Other versions
JPWO2016189810A1 (en
Inventor
明広 重田
明広 重田
松井 大
大 松井
誠之 飯高
誠之 飯高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2016189810A1 publication Critical patent/JPWO2016189810A1/en
Application granted granted Critical
Publication of JP6695033B2 publication Critical patent/JP6695033B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Description

本発明は、ヒートポンプ装置の低圧側圧力の上昇を抑制する技術に関する。   The present invention relates to a technique for suppressing an increase in low-pressure side pressure of a heat pump device.

従来、この種のヒートポンプ装置として、空調用冷凍サイクルと給湯用冷凍サイクルとの2つの冷凍回路で構成されるものが知られている。   2. Description of the Related Art Conventionally, as this type of heat pump device, there is known a heat pump device including two refrigeration circuits, an air conditioning refrigeration cycle and a hot water supply refrigeration cycle.

空調用冷凍サイクルは、空調用圧縮機、室外熱交換器、室外熱交換器用開閉手段、室外熱交換器用絞り手段、室内熱交換器、室内熱交換器用開閉手段、及び、室内熱交換器用絞り手段が直列に接続されている。冷媒−冷媒熱交換器、及び、給湯熱源用絞り手段が直列に接続されている。冷媒−冷媒熱交換器、及び、給湯熱源用絞り手段が、室内熱交換器、室内熱交換器用開閉手段、及び、室内熱交換器用絞り手段に並列に接続されている。空調用冷凍サイクルは、空調用冷媒を循環させる。   The refrigeration cycle for air conditioning includes an air conditioning compressor, an outdoor heat exchanger, an outdoor heat exchanger opening / closing means, an outdoor heat exchanger throttling means, an indoor heat exchanger, an indoor heat exchanger opening / closing means, and an indoor heat exchanger throttling means. Are connected in series. The refrigerant-refrigerant heat exchanger and the hot-water supply heat source throttling means are connected in series. The refrigerant-refrigerant heat exchanger and the hot-water supply heat source throttle means are connected in parallel to the indoor heat exchanger, the indoor heat exchanger opening / closing means, and the indoor heat exchanger throttle means. The air conditioning refrigeration cycle circulates an air conditioning refrigerant.

また、給湯用冷凍サイクルは給湯用圧縮機、熱媒体−冷媒熱交換器、給湯用絞り手段、及び、冷媒−冷媒熱交換器が直列に接続して構成されている。給湯用冷凍サイクルは、給湯用冷媒を循環させる。   The hot-water supply refrigeration cycle is configured by connecting a hot-water supply compressor, a heat medium-refrigerant heat exchanger, a hot-water supply expansion means, and a refrigerant-refrigerant heat exchanger in series. The hot water supply refrigeration cycle circulates a hot water supply refrigerant.

空調用冷凍サイクルと給湯用冷凍サイクルとは、冷媒−冷媒熱交換器で、空調用冷媒と給湯用冷媒とが熱交換を行なうように接続されることで、空調用冷凍サイクルでの冷房あるいは暖房運転と、給湯用冷凍サイクルでの給湯用熱媒体の加熱運転とを同時に行うことが可能となる(例えば、特許文献1参照)。   The refrigeration cycle for air conditioning and the refrigeration cycle for hot water supply are refrigerant-refrigerant heat exchangers, and are connected so as to exchange heat between the refrigerant for air conditioning and the refrigerant for hot water supply, thereby performing cooling or heating in the refrigeration cycle for air conditioning. It is possible to simultaneously perform the operation and the heating operation of the hot-water supply heat medium in the hot-water supply refrigeration cycle (see, for example, Patent Document 1).

しかしながら、上記従来の構成では、空調用冷凍サイクルで暖房負荷が高い時や、外気温度が高い条件での冷房運転の場合には、空調用冷凍サイクルの凝縮温度が高くなる。したがって、冷媒−冷媒熱交換器での給湯用冷凍サイクルの蒸発温度も高くなり、低圧側圧力が上昇する。給湯用冷凍サイクルに二酸化炭素冷媒が使用された場合、低圧側圧力が臨界圧力以上となり、超臨界冷媒となる。超臨界冷媒が給湯用圧縮機に吸入されると、給湯用圧縮機内のオイルのシール性が低下して、圧縮機の信頼性が低下するという問題がある。   However, in the above conventional configuration, the condensation temperature of the air conditioning refrigeration cycle becomes high when the heating load is high in the air conditioning refrigeration cycle or when the cooling operation is performed under the condition that the outside air temperature is high. Therefore, the evaporation temperature of the hot-water supply refrigeration cycle in the refrigerant-refrigerant heat exchanger also rises, and the low-pressure side pressure rises. When a carbon dioxide refrigerant is used in the hot water supply refrigeration cycle, the low-pressure side pressure becomes equal to or higher than the critical pressure and becomes a supercritical refrigerant. When the supercritical refrigerant is sucked into the hot water supply compressor, there is a problem that the sealability of oil in the hot water supply compressor deteriorates, and the reliability of the compressor deteriorates.

国際公開第2009/098751号International Publication No. 2009/098751

本発明は、上述した事情に鑑みてなされたものであり、給湯用冷凍サイクルの低圧側圧力の上昇を抑えることのできるヒートポンプ装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat pump device capable of suppressing an increase in the low-pressure side pressure of a hot water supply refrigeration cycle.

上記目的を達成するために、本発明に係るヒートポンプ装置は、第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる給湯用冷凍サイクルとしての第1冷凍回路と、第2冷媒を循環させ、第1蒸発器で第1冷凍回路と熱交換を行
空調用冷凍サイクルとしての第2冷凍回路と、制御部と、を備えている。制御部は、第1冷凍回路の低圧側圧力が所定値以下となるように、第2冷凍回路を循環する第2冷媒の流量を小さくするとともに、第1絞り手段の開度を小さくする第1冷凍回路低圧抑制モードを有する。
In order to achieve the above object, a heat pump device according to the present invention is a hot water supply refrigeration system in which a first compressor, a first condenser, a first throttle means, and a first evaporator are annularly connected to circulate a first refrigerant. A first refrigeration circuit as a cycle, a second refrigeration circuit as an air conditioning refrigeration cycle that circulates a second refrigerant, and exchanges heat with the first refrigeration circuit in the first evaporator, and a control unit. .. The control section reduces the flow rate of the second refrigerant circulating in the second refrigeration circuit and reduces the opening degree of the first throttle means so that the low-pressure side pressure of the first refrigeration circuit becomes a predetermined value or less. It has a refrigeration circuit low pressure suppression mode.

これによって、第2冷媒の流量が低下するとともに、第1冷凍回路の低圧側の冷媒密度が低下して第1冷凍回路を流れる第1冷媒の流量も低下する。従って、蒸発器における第2冷媒から第1冷媒への熱交換量が低下する。よって、第1冷媒の蒸発量が減少し、第1冷凍回路の低圧側圧力が下がることとなる。   As a result, the flow rate of the second refrigerant decreases, the refrigerant density on the low pressure side of the first refrigeration circuit decreases, and the flow rate of the first refrigerant flowing through the first refrigeration circuit also decreases. Therefore, the amount of heat exchange from the second refrigerant to the first refrigerant in the evaporator is reduced. Therefore, the evaporation amount of the first refrigerant is reduced, and the low pressure side pressure of the first refrigeration circuit is lowered.

本発明によれば、第1冷凍回路の低圧側圧力を下げ、第1冷媒の臨界圧力以下で第1冷媒を第1圧縮機に吸入することができる。これにより、第1圧縮機の信頼性を向上できる。   According to the present invention, the pressure on the low pressure side of the first refrigeration circuit can be reduced, and the first refrigerant can be sucked into the first compressor at a pressure equal to or lower than the critical pressure of the first refrigerant. Thereby, the reliability of the first compressor can be improved.

また、第1冷凍回路の低圧側圧力を低下させることで、蒸発器での第1冷媒のエンタルピ差を大きくすることができる。これにより、運転初期状態から、高い加熱能力を出力することができる。   Further, by decreasing the pressure on the low pressure side of the first refrigeration circuit, the enthalpy difference of the first refrigerant in the evaporator can be increased. As a result, a high heating capacity can be output from the initial state of operation.

図1は、本発明の実施形態に係る冷凍サイクル図である。FIG. 1 is a refrigeration cycle diagram according to an embodiment of the present invention. 図2は、同作用を説明するための図である。FIG. 2 is a diagram for explaining the same operation. 図3は、同作用を説明するための図である。FIG. 3 is a diagram for explaining the same operation. 図4は、同作用を説明するための図である。FIG. 4 is a diagram for explaining the same operation. 図5は、同作用を説明するための図である。FIG. 5 is a diagram for explaining the same operation. 図6は、制御フローを示す図である。FIG. 6 is a diagram showing a control flow. 図7は、別の実施形態の制御フローを示す図である。FIG. 7 is a diagram showing a control flow of another embodiment. 図8は、別の実施形態の制御フローを示す図である。FIG. 8 is a diagram showing a control flow of another embodiment.

第1の発明に係るヒートポンプ装置は、第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、第1蒸発器で第1冷凍回路と熱交換を行う第2冷凍回路と、制御部と、を備えている。制御部は、第1冷凍回路の低圧側圧力が所定値以下となるように第2冷凍回路を循環する第2冷媒の流量を小さくするとともに、第1絞り手段の開度を小さくする第1冷凍回路低圧抑制モードを有する。   A heat pump device according to a first aspect of the present invention includes a first refrigeration circuit that connects a first compressor, a first condenser, a first throttle means, and a first evaporator in an annular shape, and circulates a first refrigerant, and a second refrigerant. And a second refrigerating circuit that heat-exchanges with the first refrigerating circuit in the first evaporator, and a control unit. The control unit reduces the flow rate of the second refrigerant circulating in the second refrigeration circuit so that the low-pressure side pressure of the first refrigeration circuit becomes equal to or lower than a predetermined value, and reduces the opening degree of the first throttle means. It has a circuit low voltage suppression mode.

第1の発明によれば、第2冷媒の流量が低下するとともに、第1冷凍回路の低圧側の冷媒密度が低下し、第1冷凍回路を流れる第1冷媒の流量も低下する。従って、蒸発器における第2冷媒から第1冷媒への熱交換量が低下する。よって、第1冷媒の蒸発量が減少し、第1冷凍回路の低圧側圧力を低下させることができる。   According to the first aspect, the flow rate of the second refrigerant decreases, the refrigerant density on the low pressure side of the first refrigeration circuit decreases, and the flow rate of the first refrigerant flowing through the first refrigeration circuit also decreases. Therefore, the amount of heat exchange from the second refrigerant to the first refrigerant in the evaporator is reduced. Therefore, the evaporation amount of the first refrigerant is reduced, and the low pressure side pressure of the first refrigeration circuit can be reduced.

第2の発明に係るヒートポンプ装置は、第2冷凍回路は、第2圧縮機、室外熱交換器、第2絞り手段を有する室外ユニットと、室内熱交換器を有する室内ユニットと、第1蒸発器に第2冷媒を循環する循環回路と、を備えている。循環回路には、第2冷媒の循環量を制御する第3絞り手段が備えられ、第1冷凍回路低圧抑制モードは、第1冷凍回路の低圧側圧力が所定値以下となるように、第3絞り手段の開度を小さくするとともに、第1絞り手段の開度を小さくする。   In the heat pump device according to the second aspect of the present invention, the second refrigeration circuit has an outdoor unit having a second compressor, an outdoor heat exchanger, and a second expansion means, an indoor unit having an indoor heat exchanger, and a first evaporator. And a circulation circuit for circulating the second refrigerant. The circulation circuit is provided with a third throttle means for controlling the circulation amount of the second refrigerant, and in the first refrigeration circuit low pressure suppression mode, the third refrigeration circuit is controlled so that the low pressure side pressure of the first refrigeration circuit becomes a predetermined value or less. The opening of the throttle means is reduced and the opening of the first throttle means is reduced.

第2の発明によれば、第2冷媒の流量が低下するとともに、第1冷凍回路の低圧側の冷媒密度が低下し、第1冷凍回路を流れる第1冷媒の流量も低下する。従って、蒸発器における第2冷媒から第1冷媒への熱交換量が低下する。よって、第1冷媒の蒸発量が減少し、第1冷凍回路の低圧側圧力を低下させることができる。   According to the second aspect, the flow rate of the second refrigerant decreases, the refrigerant density on the low pressure side of the first refrigeration circuit decreases, and the flow rate of the first refrigerant flowing through the first refrigeration circuit also decreases. Therefore, the amount of heat exchange from the second refrigerant to the first refrigerant in the evaporator is reduced. Therefore, the evaporation amount of the first refrigerant is reduced, and the low pressure side pressure of the first refrigeration circuit can be reduced.

第3の発明に係るヒートポンプ装置は、第1圧縮機の低圧側圧力を検出する圧力検出手段を備えている。制御部は低圧側圧力が所定値以下となったとき、第1冷凍回路低圧抑制モードを実行する。   A heat pump device according to a third aspect of the present invention includes pressure detection means for detecting the low pressure side pressure of the first compressor. The control unit executes the first refrigeration circuit low pressure suppression mode when the low pressure side pressure becomes equal to or lower than a predetermined value.

第3の発明によれば、圧力検出手段が、第1圧縮機の低圧側圧力を検出し、低圧側圧力が所定値以下となったとき、第1冷凍回路低圧抑制モードを実行するため、第1冷凍回路低圧抑制モードを正確に実行できる。   According to the third aspect of the invention, the pressure detecting means detects the low pressure side pressure of the first compressor and executes the first refrigeration circuit low pressure suppression mode when the low pressure side pressure becomes equal to or lower than a predetermined value. 1 The refrigeration circuit low pressure suppression mode can be accurately executed.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、この実施形態によって、本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to this embodiment.

図1は、本発明のヒートポンプ装置の実施形態を示す冷凍サイクル図である。   FIG. 1 is a refrigeration cycle diagram showing an embodiment of a heat pump device of the present invention.

図1に示すヒートポンプ装置は、給湯用冷凍サイクルとしての第1冷凍回路5と、空調用冷凍サイクルとしての第2冷凍回路15との2つの冷凍回路から構成される。   The heat pump device shown in FIG. 1 includes two refrigerating circuits, a first refrigerating circuit 5 as a hot water supply refrigerating cycle and a second refrigerating circuit 15 as an air conditioning refrigerating cycle.

第1冷凍回路は、熱生成ユニット40を構成する回路であり、給湯用冷媒(第1冷媒)が循環される。第2冷凍回路は、室外ユニット10と、室内ユニット30と、第1冷凍回路5に跨って配管される循環回路20とで構成され、空調用冷媒(第2冷媒)が循環される。循環回路20は、後述するガス管25と液管27とを熱生成ユニット40の蒸発器4(第1蒸発器)を介してつなぐ回路である。   The first refrigeration circuit is a circuit that constitutes the heat generation unit 40, and the hot water supply refrigerant (first refrigerant) is circulated. The second refrigeration circuit includes an outdoor unit 10, an indoor unit 30, and a circulation circuit 20 that is piped across the first refrigeration circuit 5, and an air-conditioning refrigerant (second refrigerant) is circulated. The circulation circuit 20 is a circuit that connects a gas pipe 25 and a liquid pipe 27, which will be described later, via the evaporator 4 (first evaporator) of the heat generation unit 40.

給湯用冷媒および空調用冷媒としては、R22、R410A、R407C、R32、R134aなどのフロン系冷媒のほかに、二酸化炭素(CO2)などの自然冷媒が用いられる。特に、給湯用冷媒としては高温用途に広く用いられるR407C,R134aや二酸化炭素(CO2)が望ましい。   As the hot-water supply refrigerant and the air-conditioning refrigerant, natural refrigerants such as carbon dioxide (CO2) are used in addition to CFC-based refrigerants such as R22, R410A, R407C, R32, and R134a. In particular, R407C, R134a and carbon dioxide (CO2), which are widely used for high temperature applications, are preferable as the hot water supply refrigerant.

本実施形態においては、1台の室外ユニット10に対して、2台の室内ユニット30および1台の熱生成ユニット40がそれぞれ接続された構成となっている。なお、冷凍サイクル構成に関しては、図1に示したものに限定されない。例えば、室外ユニット10は2台以上、室内ユニット30も1台もしくは3台以上、熱生成ユニット40も2台以上、並列に接続可能である。本実施の形態では、第1冷凍回路5及び第2冷凍回路15の制御手段として制御部116を備える。   In this embodiment, two indoor units 30 and one heat generation unit 40 are connected to one outdoor unit 10, respectively. The refrigeration cycle configuration is not limited to that shown in FIG. For example, two or more outdoor units 10, one or three indoor units 30 and two or more heat generation units 40 can be connected in parallel. In the present embodiment, the control unit 116 is provided as a control unit for the first refrigeration circuit 5 and the second refrigeration circuit 15.

第1冷凍回路を構成する熱生成ユニット40は、給湯用圧縮機(第1圧縮機)1と、給湯用冷媒と水を主成分とする熱媒体と熱交換する凝縮器(第1凝縮器)2と、絞り手段(第1絞り手段)3と、後述するガス管25から供給される空調用冷媒と給湯用冷媒とが熱交換する蒸発器(第1蒸発器)4と、を冷媒配管で直列に接続して構成され、給湯用冷媒を循環させる。蒸発器4は、プレート式の熱交換器である。   The heat generation unit 40 that constitutes the first refrigeration circuit includes a hot water supply compressor (first compressor) 1 and a condenser (first condenser) that exchanges heat with a hot water supply refrigerant and a heat medium containing water as a main component. 2, a throttle means (first throttle means) 3, and an evaporator (first evaporator) 4 for exchanging heat between a refrigerant for air conditioning and a refrigerant for hot water supply which are supplied from a gas pipe 25 described later by refrigerant pipes. It is configured to be connected in series to circulate the hot water supply refrigerant. The evaporator 4 is a plate-type heat exchanger.

給湯用圧縮機1と蒸発器4との間には、給湯用圧縮機1に吸入される給湯用冷媒の圧力を検出する第1冷凍回路低圧検出手段(圧力検出手段)6が配設されている。   A first refrigeration circuit low pressure detection means (pressure detection means) 6 for detecting the pressure of the hot water supply refrigerant sucked into the hot water supply compressor 1 is provided between the hot water supply compressor 1 and the evaporator 4. There is.

凝縮器(第1凝縮器)2には、給湯用冷媒と熱交換する熱媒体の配管2aが接続され、配管2aには循環ポンプ2bが接続されている。   The condenser (first condenser) 2 is connected to a pipe 2a for a heat medium that exchanges heat with the hot water supply refrigerant, and the pipe 2a is connected to a circulation pump 2b.

なお、熱媒体には水道水を用いることが一般的であるが、寒冷地の場合はエチレングリコールやアルコールを所定量水に溶解させた不凍液を用いてもよい。   Note that tap water is generally used as the heat medium, but in the case of a cold region, an antifreeze solution obtained by dissolving a predetermined amount of ethylene glycol or alcohol in water may be used.

凝縮器2で70〜90℃にまで沸き上げられた熱媒体は貯湯タンク(図示せず)に蓄えられる。熱媒体が飲料水の場合は直接給湯に使われる。一方、熱媒体が不凍液など飲料水でない場合は、室内に設置されたラジエータなどに供給されて暖房用途に、あるいは貯湯タンクで熱を飲料水に受け渡して給湯用途に利用される。   The heat medium boiled up to 70 to 90 ° C. in the condenser 2 is stored in a hot water storage tank (not shown). When the heating medium is drinking water, it is used directly for hot water supply. On the other hand, when the heat medium is not drinking water such as antifreeze, it is supplied to a radiator or the like installed in the room and used for heating, or heat is transferred to drinking water in a hot water storage tank and used for hot water supply.

第2冷凍回路について説明する。   The second refrigeration circuit will be described.

室外ユニット10と室内ユニット30とは、高温高圧のガス化した空調用冷媒が流れるガス管25と、低圧の空調用冷媒が流れる吸入管26と、高圧の液化した空調用冷媒が流れる液管27とで接続されている。室内ユニット30が、図1に示すように2台存在するときは、室内ユニット30は3本の配管に対して並列に接続される。一方、室外ユニット10と熱生成ユニット40とは、室内ユニット30と同じく配管に対し並列に接続されるが、ガス管25と液管27との二本の配管で接続されている。   The outdoor unit 10 and the indoor unit 30 include a gas pipe 25 through which a high-temperature and high-pressure gasified air-conditioning refrigerant flows, a suction pipe 26 through which a low-pressure air-conditioning refrigerant flows, and a liquid pipe 27 through which a high-pressure liquefied air-conditioning refrigerant flows. Connected with and. When there are two indoor units 30 as shown in FIG. 1, the indoor units 30 are connected in parallel to the three pipes. On the other hand, the outdoor unit 10 and the heat generation unit 40 are connected in parallel to the pipes like the indoor unit 30, but are connected by two pipes of a gas pipe 25 and a liquid pipe 27.

室外ユニット10は、空調用圧縮機(第2圧縮機)7と、室外熱交換器11と、室外熱交換器11の一方の入口に配設された室外ガス管開閉手段12bおよび室外吸入管開閉手段12aと、室外熱交換器11の他方の入口に配設された室外熱交換器用絞り手段(第2絞り手段)13とを備えている。   The outdoor unit 10 includes an air conditioning compressor (second compressor) 7, an outdoor heat exchanger 11, an outdoor gas pipe opening / closing means 12b disposed at one inlet of the outdoor heat exchanger 11, and an outdoor suction pipe opening / closing. Means 12a and outdoor heat exchanger throttling means (second throttling means) 13 arranged at the other inlet of the outdoor heat exchanger 11 are provided.

空調用圧縮機7は、空調用冷媒を圧縮する。室外熱交換器11は、室外送風ファン17により送られる空気と、空調用冷媒とが熱交換するよう構成されている。室外熱交換器11は、一般的には、フィン・チューブ型やマイクロチューブ型の熱交換器が適用される。室外ガス管開閉手段12bは、ガス管25における空調用冷媒の流量を制御する。室外吸入管開閉手段12aは、吸入管26における空調用冷媒の流量を制御する。室外熱交換器用絞り手段13は、室外熱交換器11に供給する空調用冷媒の流量を調整する。   The air conditioning compressor 7 compresses the air conditioning refrigerant. The outdoor heat exchanger 11 is configured to exchange heat between the air sent by the outdoor blower fan 17 and the air conditioning refrigerant. As the outdoor heat exchanger 11, a fin-tube type or microtube type heat exchanger is generally applied. The outdoor gas pipe opening / closing means 12b controls the flow rate of the air-conditioning refrigerant in the gas pipe 25. The outdoor suction pipe opening / closing means 12 a controls the flow rate of the air conditioning refrigerant in the suction pipe 26. The outdoor heat exchanger throttling means 13 adjusts the flow rate of the air-conditioning refrigerant supplied to the outdoor heat exchanger 11.

空調用圧縮機7の吸入側には、空調用圧縮機7にガス冷媒を供給するアキュムレータ12が接続されている。空調用圧縮機7の吐出側には、吐出するガス状態の空調用冷媒に含まれる冷凍機油を分離する油分離器16が接続されている。油分離器16で分離された冷凍機油は、油戻し管114により空調用圧縮機7に戻される。油戻し管114の連通は、油戻し管開閉弁115の開閉により制御される。   An accumulator 12 that supplies a gas refrigerant to the air conditioning compressor 7 is connected to the suction side of the air conditioning compressor 7. An oil separator 16 that separates refrigerating machine oil contained in the discharged gas-state refrigerant for air conditioning is connected to the discharge side of the air conditioning compressor 7. The refrigeration oil separated by the oil separator 16 is returned to the air conditioning compressor 7 through the oil return pipe 114. The communication of the oil return pipe 114 is controlled by opening and closing the oil return pipe opening / closing valve 115.

室内ユニット30は、室内熱交換器8a、8bと、室内熱交換器8a、8bの一方の入口に配設された室内ガス管開閉手段9b、9dおよび室内吸入管開閉手段9a、9cと、室内熱交換器8a、8bの他方の入口に配設された室内熱交換器用絞り手段10a、10bと、を備えている。室内熱交換器8a、8bは、室内送風ファン32で送られる空気と、空調用冷媒とが熱交換するよう構成されており、一般的には、フィン・チューブ型やマイクロチューブ型の熱交換器が適用される。室内ガス管開閉手段9b、9dは、ガス管25との空調用冷媒の流通の有無を制御する。室内吸入管開閉手段9a、9cは、吸入管26との空調用冷媒の流通の有無を制御する。室内熱交換器用絞り手段10a、10bは、室内熱交換器8a、8bに供給する空調用冷媒の流量を調整する。   The indoor unit 30 includes indoor heat exchangers 8a and 8b, indoor gas pipe opening / closing means 9b and 9d and indoor suction pipe opening / closing means 9a and 9c, which are arranged at one inlet of the indoor heat exchangers 8a and 8b. The indoor heat exchanger throttling means 10a and 10b arranged at the other inlets of the heat exchangers 8a and 8b. The indoor heat exchangers 8a and 8b are configured such that the air sent by the indoor blower fan 32 and the air-conditioning refrigerant exchange heat with each other. Generally, the fin-tube type or the microtube type heat exchanger is used. Is applied. The indoor gas pipe opening / closing means 9b and 9d control whether or not the air-conditioning refrigerant flows through the gas pipe 25. The indoor suction pipe opening / closing means 9a, 9c control whether or not the air-conditioning refrigerant flows through the suction pipe 26. The indoor heat exchanger throttling means 10a, 10b adjust the flow rate of the air conditioning refrigerant supplied to the indoor heat exchangers 8a, 8b.

空調用圧縮機7の吐出側は、室外ガス管開閉手段19を介して室外熱交換器11の一端に冷媒配管で接続される。室外熱交換器11の他端に接続される液管27は、室外熱交換器用絞り手段13を介して室外ユニット10の外で分岐し、この分岐した液管27の一方は、並列に接続される室内ユニット30内でそれぞれの室内熱交換器用絞り手段10a、10bを介して、室内熱交換器8a、8bの一端に冷媒配管で接続される。   The discharge side of the air conditioning compressor 7 is connected to one end of the outdoor heat exchanger 11 by a refrigerant pipe via the outdoor gas pipe opening / closing means 19. The liquid pipe 27 connected to the other end of the outdoor heat exchanger 11 branches outside the outdoor unit 10 via the outdoor heat exchanger throttling means 13, and one of the branched liquid pipes 27 is connected in parallel. In the indoor unit 30, the refrigerant is connected to one end of each of the indoor heat exchangers 8a and 8b through the refrigerant heat pipes 10a and 10b.

室内熱交換器8a、8bの他端は、2方向に分岐した冷媒配管で接続され、一方は室内ガス管開閉手段9b、9dを介してガス管25に接続され、他方は、室内吸入管開閉手段9a、9cを介して吸入管26に接続される。   The other ends of the indoor heat exchangers 8a and 8b are connected by refrigerant pipes branched in two directions, one is connected to the gas pipe 25 through the indoor gas pipe opening / closing means 9b and 9d, and the other is open / close the indoor suction pipe. It is connected to the suction pipe 26 via means 9a, 9c.

分岐した液管27の他方は、蒸発器用絞り手段14(第3絞り手段)を介して蒸発器4の一端に接続される。蒸発器4の他端には、ガス管25が接続される。   The other of the branched liquid pipes 27 is connected to one end of the evaporator 4 via the evaporator throttle means 14 (third throttle means). A gas pipe 25 is connected to the other end of the evaporator 4.

以下、その動作、作用を説明する。   The operation and action will be described below.

まず、室内熱交換器8a、8bを凝縮器として利用して第2冷凍回路15を暖房運転し、第1冷凍回路5も運転する場合について説明する。図2に示されるように、空調用圧縮機7から吐出された第2冷媒は、開状態の室内ガス管開閉手段9b、9dを通って室内熱交換器8a、8bに流入し、室内空気に放熱する。また第1冷凍回路5では、給湯用圧縮機1から吐出された第1冷媒は、凝縮器2にて放熱し、絞り手段3で絞られて蒸発器4に流入し、第2冷媒から吸熱して給湯用圧縮機1に吸入される。   First, a case where the indoor heat exchangers 8a and 8b are used as condensers to perform the heating operation of the second refrigeration circuit 15 and also the first refrigeration circuit 5 will be described. As shown in FIG. 2, the second refrigerant discharged from the air conditioning compressor 7 flows into the indoor heat exchangers 8a and 8b through the indoor gas pipe opening / closing means 9b and 9d in the open state, and becomes the indoor air. Dissipate heat. In the first refrigeration circuit 5, the first refrigerant discharged from the hot water supply compressor 1 radiates heat in the condenser 2, is squeezed by the expansion means 3 and flows into the evaporator 4, and absorbs heat from the second refrigerant. Is sucked into the hot water supply compressor 1.

そして、蒸発器4にて第1冷媒に吸熱された第2冷媒、及び、室内熱交換器8a、8bから流出した第2冷媒は、蒸発器用絞り手段14、及び、室内熱交換器用絞り手段10a、10bをほぼ絞られることなく通った後に合流する。合流した第2冷媒は、室外熱交換器用絞り手段13で絞られて室外熱交換器11に流入する。室外熱交換器11に流入した第2冷媒は、室外空気から吸熱して開状態の室外吸入管開閉手段12aを通って、空調用圧縮機7に吸入される。   Then, the second refrigerant absorbed in the first refrigerant in the evaporator 4 and the second refrigerant flowing out from the indoor heat exchangers 8a and 8b are the evaporator throttle means 14 and the indoor heat exchanger throttle means 10a. Merge after passing through 10b with almost no restriction. The combined second refrigerant is throttled by the outdoor heat exchanger throttling means 13 and flows into the outdoor heat exchanger 11. The second refrigerant flowing into the outdoor heat exchanger 11 absorbs heat from the outdoor air, passes through the outdoor suction pipe opening / closing means 12a in the open state, and is sucked into the air conditioning compressor 7.

室内吸入管開閉手段9a、9c及び室外ガス管開閉手段12bは閉じられており、第2冷媒が流通しないようになっている。   The indoor suction pipe opening / closing means 9a, 9c and the outdoor gas pipe opening / closing means 12b are closed so that the second refrigerant does not flow.

次に、室内熱交換器8a、8bを蒸発器として利用して第2冷凍回路15を冷房運転し、第1冷凍回路5も運転する場合について説明する。図3に示されるように、空調用圧縮機7から吐出された第2冷媒は、開状態の室外ガス管開閉手段12bを通って室外熱交換器11に流入し、室外空気に放熱する。また第1冷凍回路5では第2冷凍回路15の暖房運転時同様、給湯用圧縮機1から吐出された第1冷媒は、凝縮器2にて放熱し、絞り手段3で絞られて蒸発器4に流入し、第2冷媒から吸熱して給湯用圧縮機1に吸入される。   Next, a case will be described in which the indoor heat exchangers 8a and 8b are used as evaporators to perform the cooling operation of the second refrigeration circuit 15 and also operate the first refrigeration circuit 5. As shown in FIG. 3, the second refrigerant discharged from the air conditioning compressor 7 flows into the outdoor heat exchanger 11 through the open outdoor gas pipe opening / closing means 12b and radiates heat to the outdoor air. In the first refrigeration circuit 5, as in the heating operation of the second refrigeration circuit 15, the first refrigerant discharged from the hot water supply compressor 1 radiates heat in the condenser 2 and is squeezed by the throttle means 3 to be evaporated. Flows in, is absorbed by the second refrigerant, and is sucked into the hot water supply compressor 1.

そして、蒸発器4にて第1冷媒に吸熱された第2冷媒、及び、室外熱交換器11から流出した第2冷媒は、蒸発器用絞り手段14、及び、室外熱交換器用絞り手段13をほぼ絞られることなく通り、室内熱交換器用絞り手段10a、10bで絞られて室内熱交換器8a、8bに流入して室内空気から吸熱する。室内熱交換気8a、8bで熱交換を行った第2冷媒は、開状態の室内吸入管開閉手段9a、9cを通って、空調用圧縮機7に吸入される。室内ガス管開閉手段9b、9d及び室外吸入管開閉手段12aは閉じられており、第2冷媒が流通しないようになっている。   Then, the second refrigerant that has absorbed the first refrigerant in the evaporator 4 and the second refrigerant that has flowed out of the outdoor heat exchanger 11 pass through the evaporator throttle means 14 and the outdoor heat exchanger throttle means 13. It passes without being throttled, is throttled by the indoor heat exchanger throttling means 10a, 10b, flows into the indoor heat exchangers 8a, 8b, and absorbs heat from the indoor air. The second refrigerant that has exchanged heat with the indoor heat exchange air 8a, 8b is sucked into the air conditioning compressor 7 through the indoor suction pipe opening / closing means 9a, 9c in the open state. The indoor gas pipe opening / closing means 9b and 9d and the outdoor suction pipe opening / closing means 12a are closed so that the second refrigerant does not flow.

また、室内熱交換器8aを凝縮器として、室内熱交換器8bを蒸発器として利用して第2冷凍回路15を冷暖同時運転し、第1冷凍回路5も運転する場合について説明する。図4に示されるように、空調用圧縮機7から吐出された第2冷媒は、開状態の室内ガス管開閉手段9bを通って室内熱交換器8aに流入し、室内空気に放熱する。また第1冷凍回路5では、給湯用圧縮機1から吐出された第1冷媒は、凝縮器2にて放熱し、絞り手段3で絞られて蒸発器4に流入し、第2冷媒から吸熱して給湯用圧縮機1に吸入される。   Further, a case will be described in which the indoor heat exchanger 8a is used as a condenser and the indoor heat exchanger 8b is used as an evaporator to perform the cooling / heating simultaneous operation of the second refrigeration circuit 15 and also operate the first refrigeration circuit 5. As shown in FIG. 4, the second refrigerant discharged from the air conditioning compressor 7 flows into the indoor heat exchanger 8a through the indoor gas pipe opening / closing means 9b in the open state, and radiates heat to indoor air. In the first refrigeration circuit 5, the first refrigerant discharged from the hot water supply compressor 1 radiates heat in the condenser 2, is squeezed by the expansion means 3 and flows into the evaporator 4, and absorbs heat from the second refrigerant. Is sucked into the hot water supply compressor 1.

そして、蒸発器4にて第1冷媒に吸熱された第2冷媒、及び、室内熱交換器8aから流出した第2冷媒は、蒸発器用絞り手段14、及び、室内熱交換器用絞り手段10aをほぼ絞られることなく通り、室内熱交換器用絞り手段10b、及び、室外熱交換器用絞り手段13で絞られて室内熱交換器8b、及び、室外熱交換器11に流入する。室内熱交換器8b、及び、室外熱交換器11に流入した第2冷媒は、室内空気、及び、室外空気から吸熱して開状態の室内吸入管開閉手段9c、及び、室外吸入管開閉手段12aを通って、空調用圧縮機7に吸入される。この場合、室内吸入管開閉手段9a、室内ガス管開閉手段9d及び室外ガス管開閉手段12bは閉じられており、第2冷媒が流通しないようになっている。   Then, the second refrigerant that has absorbed the first refrigerant in the evaporator 4 and the second refrigerant that has flowed out of the indoor heat exchanger 8a substantially pass through the evaporator throttle means 14 and the indoor heat exchanger throttle means 10a. It passes without being throttled, and is throttled by the indoor heat exchanger throttling means 10b and the outdoor heat exchanger throttling means 13 and flows into the indoor heat exchanger 8b and the outdoor heat exchanger 11. The second refrigerant flowing into the indoor heat exchanger 8b and the outdoor heat exchanger 11 absorbs heat from the indoor air and the outdoor air, and the indoor suction pipe opening / closing means 9c and the outdoor suction pipe opening / closing means 12a are in an open state. And is sucked into the air conditioning compressor 7. In this case, the indoor suction pipe opening / closing means 9a, the indoor gas pipe opening / closing means 9d, and the outdoor gas pipe opening / closing means 12b are closed so that the second refrigerant does not flow.

室内熱交換器8aを蒸発器として、室内熱交換器8bを凝縮器として利用して第2冷凍回路を冷暖同時運転し、第1冷凍回路5も運転する場合について説明する。図5に示されるように、室内吸入管開閉手段9a、及び、室内ガス管開閉手段9dを開状態とし、室内ガス管開閉手段9b、及び、室内吸入管開閉手段9cを閉状態として、室外熱交換器開閉手段の開閉は変えず運転する。   A case will be described in which the indoor heat exchanger 8a is used as an evaporator and the indoor heat exchanger 8b is used as a condenser to perform the cooling / heating simultaneous operation of the second refrigeration circuit and also the first refrigeration circuit 5. As shown in FIG. 5, the indoor suction pipe opening / closing means 9a and the indoor gas pipe opening / closing means 9d are in the open state, and the indoor gas pipe opening / closing means 9b and the indoor suction pipe opening / closing means 9c are in the closed state. Operate without changing the opening / closing of the exchange opening / closing means.

以上のような運転状態で、第2冷凍回路15が暖房運転で室内空気への放熱量が多く必要(例えば、室内の温度が5℃で、設定温度が30℃)な場合や、冷房運転で室外空気の温度が高く(例えば、40℃)、室外熱交換器11へ流入する第2冷媒の温度を室外空気の温度以上としなければならない場合、第2冷凍回路15の高圧側圧力が高くなる。従って、蒸発器4に流入する第2冷媒も圧力が高くなることで、凝縮温度が高くなり、第2冷媒から第1冷媒への熱交換量が多くなる。その結果、第1冷凍回路5の低圧側圧力が高くなる。   In the above operating state, when the second refrigeration circuit 15 requires a large amount of heat radiation to the indoor air in the heating operation (for example, the indoor temperature is 5 ° C. and the set temperature is 30 ° C.), or the cooling operation is performed. When the temperature of the outdoor air is high (for example, 40 ° C.) and the temperature of the second refrigerant flowing into the outdoor heat exchanger 11 must be equal to or higher than the temperature of the outdoor air, the high pressure side pressure of the second refrigeration circuit 15 becomes high. .. Therefore, the pressure of the second refrigerant flowing into the evaporator 4 also becomes high, so that the condensation temperature becomes high and the amount of heat exchange from the second refrigerant to the first refrigerant increases. As a result, the pressure on the low pressure side of the first refrigeration circuit 5 increases.

特に、第1冷媒が二酸化炭素(CO2)の場合には臨界点(31.1℃、7.4MPa)が低く、上述のように第2冷凍回路15の凝縮温度が高くなると、第1冷凍回路5の低圧側が超臨界状態となった状態で、給湯用圧縮機1に吸い込まれる場合がある。そして、超臨界冷媒となって給湯用圧縮機1に吸入されると、給湯用圧縮機1内のオイルのシール性が低下して、給湯用圧縮機1の信頼性が低下する。   Particularly, when the first refrigerant is carbon dioxide (CO2), the critical point (31.1 ° C, 7.4 MPa) is low, and when the condensation temperature of the second refrigeration circuit 15 becomes high as described above, the first refrigeration circuit The low-pressure side of 5 may be sucked into the hot-water supply compressor 1 in a supercritical state. Then, when it becomes supercritical refrigerant and is taken into the hot water supply compressor 1, the sealability of the oil in the hot water supply compressor 1 deteriorates, and the reliability of the hot water supply compressor 1 decreases.

本実施の形態では、制御部116は図6に示されるように、第1冷凍回路低圧検出手段6が検出した圧力Ps1が所定値α(例えば5.5Mps)以上か否かを判断する(S1)。この圧力Ps1が所定値α以上であれば、第1冷凍回路低圧抑制モードが設定される。第1冷凍回路低圧抑制モードが設定されると、低圧側圧力Ps1が所定値α以下となるように、蒸発器用絞り手段14の弁開度を低下させて、第2冷凍回路15を循環する第2冷媒の流量を低下させるとともに、第1絞り手段3の弁開度を低下させる(S2)。   In the present embodiment, as shown in FIG. 6, the control unit 116 determines whether the pressure Ps1 detected by the first refrigeration circuit low pressure detection means 6 is equal to or higher than a predetermined value α (for example, 5.5 Mps) (S1). ). If the pressure Ps1 is equal to or higher than the predetermined value α, the first refrigeration circuit low pressure suppression mode is set. When the first refrigeration circuit low pressure suppression mode is set, the valve opening degree of the evaporator throttle means 14 is reduced and the second refrigeration circuit 15 is circulated so that the low pressure side pressure Ps1 becomes equal to or lower than the predetermined value α. The flow rates of the two refrigerants are reduced and the valve opening degree of the first throttle means 3 is reduced (S2).

第1絞り手段3の弁開度が低下すると、第1冷凍回路5の低圧側の冷媒密度が低下し、第1冷凍回路5を流れる第1冷媒の流量も低下する。従って、蒸発器4における第2冷媒から第1冷媒への熱交換量が低下する。よって、第1冷媒の蒸発量が減少し、第1冷凍回路5の低圧側圧力が低下することとなる。   When the valve opening degree of the first throttle means 3 decreases, the refrigerant density on the low pressure side of the first refrigeration circuit 5 decreases, and the flow rate of the first refrigerant flowing through the first refrigeration circuit 5 also decreases. Therefore, the amount of heat exchange from the second refrigerant to the first refrigerant in the evaporator 4 decreases. Therefore, the evaporation amount of the first refrigerant is reduced, and the low pressure side pressure of the first refrigeration circuit 5 is reduced.

また、凝縮器2での熱媒体は熱容量が大きくかつ温度が低い媒体(例えば、10℃の水)のため、第1冷凍回路5の運転初期状態では、凝縮器2の凝縮温度が上がらず、蒸発器4の第1冷凍回路5の低圧側圧力が高く、加熱能力が低くなる。   Further, since the heat medium in the condenser 2 has a large heat capacity and a low temperature (for example, water at 10 ° C.), the condensation temperature of the condenser 2 does not rise in the initial operation state of the first refrigeration circuit 5, The pressure on the low pressure side of the first refrigeration circuit 5 of the evaporator 4 is high and the heating capacity is low.

この第1冷凍回路5の運転初期状態において、第1冷凍回路5の低圧側圧力が低下することで、蒸発器4での第1冷媒のエンタルピ差を大きくすることができる。その結果、運転初期状態から高い加熱能力を出力することができる。   In the initial operation state of the first refrigerating circuit 5, the low-pressure side pressure of the first refrigerating circuit 5 decreases, so that the enthalpy difference of the first refrigerant in the evaporator 4 can be increased. As a result, a high heating capacity can be output from the initial state of operation.

また、給湯用圧縮機1に吸入される第1冷媒の過熱度が高い場合に、第1冷凍回路5の低圧側圧力が低下することで、蒸発器4出口での第1冷媒の過熱度を小さくすることができる。これにより、給湯用圧縮機1に吸入される第1冷媒の過熱度増大による効率低下や、給湯用圧縮機1から吐出される第1冷媒の温度過昇を抑制できる。   Further, when the superheat degree of the first refrigerant drawn into the hot water supply compressor 1 is high, the low-pressure side pressure of the first refrigeration circuit 5 is reduced, so that the superheat degree of the first refrigerant at the outlet of the evaporator 4 is increased. Can be made smaller. As a result, it is possible to suppress the efficiency decrease due to the increase in the degree of superheat of the first refrigerant drawn into the hot water supply compressor 1 and the excessive temperature rise of the first refrigerant discharged from the hot water supply compressor 1.

また、本実施の形態では、第2冷凍回路15の第2冷媒の流量を小さくする手段として蒸発器用絞り手段14の開度を小さくしたがこれに限られない。空調用圧縮機7の搬送量を小さく、例えば空調用圧縮機7の周波数を低下して(S2)、第2冷凍回路15の第2冷媒の流量を小さくすることや、蒸発器用絞り手段14の開度を小さくするとともに、空調用圧縮機7の搬送量を小さくして第2冷凍回路15の第2冷媒の流量を小さくすることも可能である。   Further, in the present embodiment, the opening degree of the evaporator throttle means 14 is reduced as a means for reducing the flow rate of the second refrigerant in the second refrigeration circuit 15, but the invention is not limited to this. To reduce the flow rate of the second refrigerant in the second refrigeration circuit 15 by reducing the transport amount of the air conditioning compressor 7, for example, lowering the frequency of the air conditioning compressor 7 (S2), and reducing the evaporator throttle means 14. It is also possible to reduce the opening degree and the transport amount of the air conditioning compressor 7 to reduce the flow rate of the second refrigerant in the second refrigeration circuit 15.

また、本実施の形態では、第1冷凍回路5の低圧側圧力を検出する手段として用いた第1冷凍回路低圧検出手段6を、給湯用圧縮機1と蒸発器4との間に配設したが、絞り手段3と蒸発器4との間に配設することも可能である。   Further, in the present embodiment, the first refrigeration circuit low pressure detection means 6 used as a means for detecting the low pressure side pressure of the first refrigeration circuit 5 is arranged between the hot water supply compressor 1 and the evaporator 4. However, it is also possible to arrange it between the throttle means 3 and the evaporator 4.

また、本実施形態では、蒸発器4をプレート式の熱交換器で構成している。この蒸発器4をプレート式の熱交換器とすることにより、低圧側に保有する第1冷媒量を少なくし、高圧側への搬送量増加に伴う高圧側圧力の急上昇を抑制することができる。   Further, in the present embodiment, the evaporator 4 is composed of a plate type heat exchanger. By using the evaporator 4 as a plate-type heat exchanger, it is possible to reduce the amount of the first refrigerant held on the low pressure side and suppress a rapid increase in the high pressure side pressure due to an increase in the transport amount to the high pressure side.

また、本実施形態では、給湯用圧縮機1に吸入される第1冷媒の過熱度が高い場合に、第1冷凍回路5の低圧側圧力を低下することで蒸発器4出口での第1冷媒の過熱度を小さくすることができ、給湯用圧縮機1に吸入される第1冷媒の過熱度増大による効率低下や、給湯用圧縮機1から吐出される第1冷媒の温度過昇を抑制することができる。   In addition, in the present embodiment, when the superheat degree of the first refrigerant drawn into the hot water supply compressor 1 is high, the pressure on the low pressure side of the first refrigeration circuit 5 is reduced to reduce the first refrigerant at the outlet of the evaporator 4. Of the first refrigerant can be reduced, and the efficiency decrease due to the increase of the superheat degree of the first refrigerant drawn into the hot water supply compressor 1 and the excessive temperature rise of the first refrigerant discharged from the hot water supply compressor 1 can be suppressed. be able to.

本実施の形態では第1冷凍回路5の低圧側圧力を検出する圧力検出手段として第1冷凍回路低圧検出手段6を用いたが、図1に示すように、別の形態として蒸発器4入口の温度を検出する蒸発器入口温度検出手段117を用いてもよい。   In the present embodiment, the first refrigeration circuit low pressure detection means 6 is used as the pressure detection means for detecting the low pressure side pressure of the first refrigeration circuit 5, but as shown in FIG. You may use the evaporator inlet temperature detection means 117 which detects temperature.

この場合、図7の制御フローとなる。図7の制御フローでは、図6の制御フローと比較したとき、(S11)の判断が異なっている。その他のステップは、図6の制御フローと同じであるので、説明を省略する。   In this case, the control flow is shown in FIG. In the control flow of FIG. 7, the determination of (S11) is different when compared with the control flow of FIG. The other steps are the same as those in the control flow of FIG.

すなわち、蒸発器入口温度検出手段117が検出した温度Teinが例えば20℃以上か否かが判断される(S11)。   That is, it is determined whether the temperature Tein detected by the evaporator inlet temperature detecting means 117 is, for example, 20 ° C. or higher (S11).

そして、例えば20℃以上の場合には、以下、図6の制御フローと同様に、ステップS2に移行するように制御される。   Then, for example, when the temperature is 20 ° C. or higher, the control is performed so as to shift to step S2, similarly to the control flow of FIG.

従って、蒸発器4における第2冷媒から第1冷媒への熱交換量が低下して第1冷媒の蒸発量が減少し、第1冷凍回路5の低圧側圧力が下がることとなる。   Therefore, the amount of heat exchange from the second refrigerant to the first refrigerant in the evaporator 4 decreases, the evaporation amount of the first refrigerant decreases, and the low-pressure side pressure of the first refrigeration circuit 5 decreases.

よって、第1冷媒は臨界圧力以下で圧縮機に吸入されることができ、より安価に圧縮機の信頼性を向上することができる。   Therefore, the first refrigerant can be drawn into the compressor at a critical pressure or less, and the reliability of the compressor can be improved at a lower cost.

また、本実施の形態では、図1に示すように、別の形態として空調用圧縮機7の吐出圧力を検出する空調用圧縮機吐出圧力検出手段118を用いてもよい。   Further, in the present embodiment, as shown in FIG. 1, an air conditioning compressor discharge pressure detecting means 118 for detecting the discharge pressure of the air conditioning compressor 7 may be used as another form.

この場合、図8の制御フローとなる。図8の制御フローでは、図6の制御フローと比較したとき、(S12)の判断が異なっている。その他のステップは、図6の制御フローと同じであるので、説明を省略する。   In this case, the control flow is shown in FIG. In the control flow of FIG. 8, the determination of (S12) is different when compared with the control flow of FIG. The other steps are the same as those in the control flow of FIG.

すなわち、空調用圧縮機吐出圧力検出手段118が検出する圧力が例えば3.7Mps以上か否かが判断される(S11)。   That is, it is determined whether or not the pressure detected by the air-conditioning compressor discharge pressure detecting means 118 is, for example, 3.7 MPa or more (S11).

そして、例えば3.7Mpsの場合には、以下、図6の制御フローと同様に、ステップS2に移行するように制御される。   Then, for example, in the case of 3.7 Mbps, the control is performed so as to shift to step S2, similarly to the control flow of FIG.

これによれば、蒸発器4での吸熱側の温度によらず、第1冷凍回路5の低圧側圧力が低下することとなる。よって、蒸発器4での吸熱側の温度によらず、第1冷凍回路5の低圧側圧力を臨界圧力以下にして給湯用圧縮機1に吸入することができ、より簡素な構成で圧縮機の信頼性を向上することができる。   According to this, the pressure on the low pressure side of the first refrigeration circuit 5 decreases regardless of the temperature on the heat absorption side of the evaporator 4. Therefore, the low-pressure side pressure of the first refrigeration circuit 5 can be reduced to the critical pressure or less and sucked into the hot water supply compressor 1 regardless of the temperature on the heat absorption side of the evaporator 4, and the compressor of a simpler configuration can be used. The reliability can be improved.

以上、本実施の形態に基づいて本発明を説明したが、本発明はこの実施形態に限定されるものではない。あくまでも本発明の実施の態様を例示するものであるから、本発明の趣旨を逸脱しない範囲で任意に変更、及び応用が可能である。   The present invention has been described above based on the present embodiment, but the present invention is not limited to this embodiment. Since the embodiments of the present invention are merely illustrated, the present invention can be arbitrarily modified and applied without departing from the spirit of the present invention.

以上のように本発明に係るヒートポンプ装置は、給湯用冷凍サイクルの低圧側圧力の上昇を抑えることが可能となり、給湯機能あるいは暖房機能を備えたヒートポンプ装置に適用できる。   As described above, the heat pump device according to the present invention can suppress an increase in the low-pressure side pressure of the hot water supply refrigeration cycle, and can be applied to a heat pump device having a hot water supply function or a heating function.

1 給湯用圧縮機(第1圧縮機)
2 凝縮器(第1凝縮器)
3 絞り手段(第1絞り手段)
4 蒸発器(第1蒸発器)
5 給湯用冷凍サイクル(第1冷凍回路)
6 第1冷凍回路低圧検出手段(圧力検出手段)
7 空調用圧縮機(第2圧縮機)
10 室外ユニット
11 室外熱交換器
13 室外熱交換器用絞り手段(第2絞り手段)
14 蒸発器用絞り手段(第3絞り手段)
15 空調用冷凍サイクル(第2冷凍回路)
116 制御部
20 循環回路
30 室内ユニット
Compressor for hot water supply (first compressor)
2 Condenser (first condenser)
3 Drawing means (first drawing means)
4 Evaporator (first evaporator)
5 Refrigeration cycle for hot water supply (first refrigeration circuit)
6 First refrigeration circuit low pressure detection means (pressure detection means)
7 Air-conditioning compressor (second compressor)
10 outdoor unit 11 outdoor heat exchanger 13 outdoor heat exchanger throttling means (second throttling means)
14 Evaporator throttle means (third throttle means)
15 Air conditioning refrigeration cycle (second refrigeration circuit)
116 control unit 20 circulation circuit 30 indoor unit

Claims (3)

第1圧縮機、第1凝縮器、第1絞り手段、第1蒸発器を環状に接続し、第1冷媒を循環させる給湯用冷凍サイクルとしての第1冷凍回路と、
第2冷媒を循環させ、前記第1蒸発器で前記第1冷凍回路と熱交換を行う空調用冷凍サイクルとしての第2冷凍回路と、
制御部と、を備え、
前記制御部は、前記第1冷凍回路の低圧側圧力が所定値以下となるように前記第2冷凍回路を循環する第2冷媒の流量を小さくするとともに、前記第1絞り手段の開度を小さくする第1冷凍回路低圧抑制モードを有する、ヒートポンプ装置。
A first refrigeration circuit as a hot water supply refrigeration cycle in which a first compressor, a first condenser, a first throttle means, and a first evaporator are annularly connected, and a first refrigerant is circulated;
A second refrigeration circuit as an air conditioning refrigeration cycle in which a second refrigerant is circulated and heat is exchanged with the first refrigeration circuit in the first evaporator;
And a control unit,
The control unit reduces the flow rate of the second refrigerant circulating in the second refrigeration circuit so that the low-pressure side pressure of the first refrigeration circuit becomes a predetermined value or less, and reduces the opening degree of the first throttle means. A heat pump device having a first refrigeration circuit low-pressure suppression mode to perform.
前記第2冷凍回路は、第2圧縮機、室外熱交換器、第2絞り手段を有する室外ユニットと、室内熱交換器を有する室内ユニットと、前記第1蒸発器に前記第2冷媒を循環する循環回路と、を備え、
前記循環回路には、前記第2冷媒の循環量を制御する第3絞り手段を備え、
前記第1冷凍回路低圧抑制モードは、前記第1冷凍回路の低圧側圧力が所定値以下となるように、前記第3絞り手段の開度を小さくするとともに、前記第1絞り手段の開度を小さくする、請求項1に記載のヒートポンプ装置。
The second refrigeration circuit circulates the second refrigerant through the second compressor, the outdoor heat exchanger, the outdoor unit having the second expansion means, the indoor unit having the indoor heat exchanger, and the first evaporator. And a circulation circuit,
The circulation circuit is provided with a third throttle means for controlling the circulation amount of the second refrigerant,
In the first refrigeration circuit low pressure suppression mode, the opening degree of the third throttle means is decreased and the opening degree of the first throttle means is decreased so that the low pressure side pressure of the first refrigeration circuit becomes a predetermined value or less. The heat pump device according to claim 1, which is reduced in size.
前記第1圧縮機の低圧側圧力を検出する圧力検出手段を備え、前記制御部は低圧側圧力が所定値以下となったとき、前記第1冷凍回路低圧抑制モードを実行する、請求項1又は2に記載のヒートポンプ装置。 The pressure detecting means for detecting the low pressure side pressure of the first compressor is provided, and the control unit executes the first refrigeration circuit low pressure suppression mode when the low pressure side pressure becomes equal to or lower than a predetermined value. The heat pump device according to item 2.
JP2017520214A 2015-05-28 2016-05-12 Heat pump device Expired - Fee Related JP6695033B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015108184 2015-05-28
JP2015108184 2015-05-28
PCT/JP2016/002319 WO2016189810A1 (en) 2015-05-28 2016-05-12 Heat pump device

Publications (2)

Publication Number Publication Date
JPWO2016189810A1 JPWO2016189810A1 (en) 2018-03-15
JP6695033B2 true JP6695033B2 (en) 2020-05-20

Family

ID=57392665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017520214A Expired - Fee Related JP6695033B2 (en) 2015-05-28 2016-05-12 Heat pump device

Country Status (3)

Country Link
EP (1) EP3306226A4 (en)
JP (1) JP6695033B2 (en)
WO (1) WO2016189810A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030055A (en) * 2018-08-24 2018-12-18 上海佐竹冷热控制技术有限公司 CO2Air-conditioning heat exchanger Performance Test System and its test method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286289A (en) * 2003-03-20 2004-10-14 Sanyo Electric Co Ltd Refrigerant cycle device
JP2004309027A (en) * 2003-04-08 2004-11-04 Matsushita Electric Ind Co Ltd Control method for heat pump device
JP2009097779A (en) * 2007-10-16 2009-05-07 Denso Corp Supercritical refrigerating cycle
WO2011158305A1 (en) * 2010-06-18 2011-12-22 三菱電機株式会社 Refrigerating air-conditioning device
JP5693247B2 (en) * 2011-01-11 2015-04-01 三菱電機株式会社 Refrigeration cycle apparatus and refrigerant discharge apparatus

Also Published As

Publication number Publication date
WO2016189810A1 (en) 2016-12-01
EP3306226A1 (en) 2018-04-11
EP3306226A4 (en) 2018-06-20
JPWO2016189810A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP5991989B2 (en) Refrigeration air conditioner
JP6595205B2 (en) Refrigeration cycle equipment
JP5847366B1 (en) Air conditioner
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP6792057B2 (en) Refrigeration cycle equipment
JP5908183B1 (en) Air conditioner
JP2017161182A (en) Heat pump device
JPWO2011089652A1 (en) Air conditioning and hot water supply complex system
JP6038382B2 (en) Air conditioner
US20220090815A1 (en) Air-conditioning apparatus
JP6695033B2 (en) Heat pump device
JP6695034B2 (en) Heat pump device
JP6272364B2 (en) Refrigeration cycle equipment
JP6675083B2 (en) Binary heat pump device
WO2015121993A1 (en) Refrigeration cycle device
JPWO2019198175A1 (en) Refrigeration cycle equipment
KR101658021B1 (en) A Heatpump System Using Duality Cold Cycle
JP6692083B2 (en) Dual heat pump device
JP6820205B2 (en) Refrigerant circuit system and control method
JP2010038408A (en) Outdoor heat exchanger and refrigerating cycle device mounted with the same
WO2017138243A1 (en) Refrigeration cycle device
JP7390605B2 (en) heat pump system
JPWO2013073070A1 (en) Refrigeration cycle equipment
EP3217118B1 (en) Heat pump apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R151 Written notification of patent or utility model registration

Ref document number: 6695033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees