JPWO2013073070A1 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JPWO2013073070A1
JPWO2013073070A1 JP2013544083A JP2013544083A JPWO2013073070A1 JP WO2013073070 A1 JPWO2013073070 A1 JP WO2013073070A1 JP 2013544083 A JP2013544083 A JP 2013544083A JP 2013544083 A JP2013544083 A JP 2013544083A JP WO2013073070 A1 JPWO2013073070 A1 JP WO2013073070A1
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
temperature
bypass circuit
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013544083A
Other languages
Japanese (ja)
Inventor
浩昭 中宗
浩昭 中宗
寿守務 吉村
寿守務 吉村
瑞朗 酒井
瑞朗 酒井
牧野 浩招
浩招 牧野
慎悟 濱田
慎悟 濱田
昭憲 坂部
昭憲 坂部
外囿 圭介
圭介 外囿
宏樹 岡澤
宏樹 岡澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013544083A priority Critical patent/JPWO2013073070A1/en
Publication of JPWO2013073070A1 publication Critical patent/JPWO2013073070A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

膨張弁4と第二熱交換器6(蒸発器)との間に設けた気液分離器5で分離された冷媒を第三熱交換器14を介して圧縮機1の吸入側に戻すバイパス回路7を有し、バイパス回路7の第三熱交換器14の出口側の冷媒温度と第三熱交換器14の入口側の冷媒温度との温度差に基づいて、バイパス回路7への液冷媒混入を防止するための液冷媒混入防止運転を行う。Bypass circuit for returning the refrigerant separated by the gas-liquid separator 5 provided between the expansion valve 4 and the second heat exchanger 6 (evaporator) to the suction side of the compressor 1 via the third heat exchanger 14. Liquid refrigerant into the bypass circuit 7 based on the temperature difference between the refrigerant temperature on the outlet side of the third heat exchanger 14 of the bypass circuit 7 and the refrigerant temperature on the inlet side of the third heat exchanger 14. The liquid refrigerant mixing prevention operation is performed to prevent this.

Description

本発明は、二相冷媒を気体冷媒及び液冷媒に分離する気液分離器を搭載した冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus equipped with a gas-liquid separator that separates a two-phase refrigerant into a gas refrigerant and a liquid refrigerant.

従来の冷凍サイクル装置として、圧縮機、凝縮器、減圧装置、気液分離器及び蒸発器を順次接続し、更に、一端を気液分離器に接続し、他端を蒸発器と圧縮機との間に接続したバイパス回路を備えた冷凍サイクル装置がある(例えば、特許文献1参照)。この冷凍サイクル装置では、気液分離器により冷媒を液相状態と気相状態とに分離し、気相状態の冷媒を、バイパス回路により蒸発器をバイパスして圧縮機に流入させる一方、液相状態の冷媒を蒸発器に流入させることで、蒸発器での熱交換量を増加させ、運転効率を向上するようにしている。   As a conventional refrigeration cycle device, a compressor, a condenser, a decompression device, a gas-liquid separator and an evaporator are sequentially connected, and one end is connected to the gas-liquid separator and the other end is connected to the evaporator and the compressor. There is a refrigeration cycle apparatus including a bypass circuit connected between them (see, for example, Patent Document 1). In this refrigeration cycle apparatus, the refrigerant is separated into a liquid phase state and a gas phase state by the gas-liquid separator, and the refrigerant in the gas phase state flows into the compressor by bypassing the evaporator by the bypass circuit. By allowing the refrigerant in the state to flow into the evaporator, the amount of heat exchange in the evaporator is increased, and the operation efficiency is improved.

特開2002−243284号公報(図1)Japanese Patent Laying-Open No. 2002-243284 (FIG. 1)

しかしながら、特許文献1の技術では、圧縮機運転周波数を上げて冷媒循環量を増加させた場合、気液分離器においてガス冷媒と液冷媒の分離が不十分となり、蒸発器側に本来流入させたい液冷媒がバイパス回路側に混入してしまうことがある。この場合、蒸発器に流入する液冷媒量が低下して冷凍サイクル装置の性能が低下するという課題があった。   However, in the technique of Patent Document 1, when the refrigerant operation amount is increased by increasing the compressor operating frequency, the gas-liquid separator is insufficiently separated between the gas refrigerant and the liquid refrigerant, and is originally intended to flow into the evaporator side. Liquid refrigerant may enter the bypass circuit. In this case, there has been a problem that the amount of liquid refrigerant flowing into the evaporator decreases and the performance of the refrigeration cycle apparatus decreases.

本発明は、上記のような課題を解決するためになされたものであり、気液分離器を搭載した冷凍サイクル装置において、バイパス回路への液冷媒の混入を防止して性能低下を防止することが可能な冷凍サイクル装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and in a refrigeration cycle apparatus equipped with a gas-liquid separator, prevents liquid refrigerant from entering the bypass circuit and prevents performance degradation. An object of the present invention is to provide a refrigeration cycle apparatus capable of performing the above.

本発明に係る冷凍サイクル装置は、圧縮機と、凝縮器として作用する第一熱交換器と、減圧装置と、気液分離器と、蒸発器として作用する第二熱交換器とを順次配管で接続した主回路と、気液分離器で分離された冷媒を第三熱交換器を介して圧縮機の吸入側に戻すバイパス回路と、バイパス回路に流れる流量を調整する流量調整装置と、バイパス回路の第三熱交換器の出口側の冷媒温度を検出する第一温度検出装置と、バイパス回路の第三熱交換器の入口側の冷媒温度を検出する第二温度検出装置と、第一温度検出装置の検出値と第二温度検出装置の検出値との温度差に基づいて、バイパス回路への液冷媒混入を防止するための液冷媒混入防止運転を行う制御装置とを備えたものである。   The refrigeration cycle apparatus according to the present invention comprises a compressor, a first heat exchanger that acts as a condenser, a decompression device, a gas-liquid separator, and a second heat exchanger that acts as an evaporator in order by piping. A connected main circuit, a bypass circuit for returning the refrigerant separated by the gas-liquid separator to the suction side of the compressor via the third heat exchanger, a flow rate adjusting device for adjusting a flow rate flowing through the bypass circuit, and a bypass circuit A first temperature detection device for detecting the refrigerant temperature on the outlet side of the third heat exchanger, a second temperature detection device for detecting the refrigerant temperature on the inlet side of the third heat exchanger of the bypass circuit, and a first temperature detection And a control device that performs a liquid refrigerant mixing prevention operation for preventing liquid refrigerant from mixing into the bypass circuit based on a temperature difference between the detected value of the device and the detected value of the second temperature detecting device.

本発明によれば、第一温度検出装置の検出値と第二温度検出装置の検出値との温度差に基づいて、液冷媒混入防止運転を行ってそれ以上の液冷媒の混入を防止するようにしたので、バイパス回路への液冷媒の混入による性能低下を防止することができる。   According to the present invention, based on the temperature difference between the detected value of the first temperature detecting device and the detected value of the second temperature detecting device, the liquid refrigerant mixing prevention operation is performed to prevent further mixing of the liquid refrigerant. As a result, it is possible to prevent performance degradation due to liquid refrigerant entering the bypass circuit.

本発明の実施の形態1に係る冷凍サイクル装置(暖房)の構成図である。It is a block diagram of the refrigerating-cycle apparatus (heating) which concerns on Embodiment 1 of this invention. 気液分離器を搭載した冷凍サイクル装置と、気液分離器を搭載していない冷凍サイクル装置とのそれぞれにおけるエンタルピと圧力との関係を示すモリエル線図である。It is a Mollier diagram which shows the relationship between the enthalpy and pressure in each of the refrigerating cycle apparatus carrying a gas-liquid separator, and the refrigerating cycle apparatus which is not carrying a gas-liquid separator. 気液分離器を搭載しない冷凍サイクル装置の構成図である。It is a block diagram of the refrigerating-cycle apparatus which does not mount a gas-liquid separator. 本発明の実施の形態1に係る冷凍サイクル装置におけるバイパス回路への液冷媒混入防止制御の流れを示すフローチャートである。It is a flowchart which shows the flow of liquid refrigerant mixing prevention control to the bypass circuit in the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置(暖房)の変形例1を示す図である。It is a figure which shows the modification 1 of the refrigerating-cycle apparatus (heating) which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置(暖房)の変形例2を示す図である。It is a figure which shows the modification 2 of the refrigerating-cycle apparatus (heating) which concerns on Embodiment 1 of this invention. 図6の変形例2の具体的な熱交換器の構成例を示す図である。It is a figure which shows the structural example of the specific heat exchanger of the modification 2 of FIG. 本発明の実施の形態1に係る冷凍サイクル装置(暖房)の変形例3を示す図である。It is a figure which shows the modification 3 of the refrigerating-cycle apparatus (heating) which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置(冷房)に係る冷凍サイクル装置の構成図である。It is a block diagram of the refrigerating cycle apparatus which concerns on the refrigerating cycle apparatus (cooling) which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置(冷房)に係る冷凍サイクル装置の変形例1を示す図である。It is a figure which shows the modification 1 of the refrigerating-cycle apparatus which concerns on the refrigerating-cycle apparatus (cooling) which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置(冷房)に係る冷凍サイクル装置の変形例3を示す図である。It is a figure which shows the modification 3 of the refrigerating-cycle apparatus which concerns on the refrigerating-cycle apparatus (cooling) which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置(冷房)に係る冷凍サイクル装置の変形例2を示す図である。It is a figure which shows the modification 2 of the refrigerating-cycle apparatus which concerns on the refrigerating-cycle apparatus (cooling) which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置(冷暖切り換え)に係る冷凍サイクル装置の構成図である。It is a block diagram of the refrigerating cycle apparatus which concerns on the refrigerating cycle apparatus (cooling / heating switching) which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の構成図である。It is a block diagram of the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置におけるバイパス回路への液冷媒混入防止制御の流れを示すフローチャートである。It is a flowchart which shows the flow of liquid refrigerant mixing prevention control to the bypass circuit in the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置の構成図である。It is a block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置におけるバイパス回路への液冷媒混入防止制御の流れを示すフローチャートである。It is a flowchart which shows the flow of liquid refrigerant mixing prevention control to the bypass circuit in the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置の構成図である。It is a block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置におけるバイパス回路への液冷媒混入防止制御の流れを示すフローチャートである。It is a flowchart which shows the flow of liquid refrigerant mixing prevention control to the bypass circuit in the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention.

実施の形態1.
(冷凍サイクル装置の全体構成)
図1は、本発明の実施の形態1に係る冷凍サイクル装置の構成図である。図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。実施の形態1では、冷凍サイクル装置の一例として、室内暖房を行う空気調和装置について説明する。
本実施の形態1に係る冷凍サイクル装置は、少なくとも、圧縮機1、第一熱交換器3、減圧装置としての膨張弁4、気液分離器5及び第二熱交換器6を備えており、これらが順次冷媒配管によって接続され、冷凍サイクル回路(冷媒回路)の主回路を構成している。冷凍サイクル装置は更に、第一熱交換器3に送風する第一送風機30と、第二熱交換器6に送風する第二送風機60と、冷凍サイクル装置全体を制御する制御装置40とを備えている。
Embodiment 1 FIG.
(Overall configuration of refrigeration cycle equipment)
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. In FIG. 1 and the drawings to be described later, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification. Furthermore, the forms of the constituent elements appearing in the entire specification are merely examples and are not limited to these descriptions. In the first embodiment, an air conditioner that performs indoor heating will be described as an example of a refrigeration cycle apparatus.
The refrigeration cycle apparatus according to Embodiment 1 includes at least a compressor 1, a first heat exchanger 3, an expansion valve 4 as a decompression device, a gas-liquid separator 5, and a second heat exchanger 6. These are sequentially connected by refrigerant piping, and constitute the main circuit of the refrigeration cycle circuit (refrigerant circuit). The refrigeration cycle apparatus further includes a first blower 30 that blows air to the first heat exchanger 3, a second blower 60 that blows air to the second heat exchanger 6, and a control device 40 that controls the entire refrigeration cycle apparatus. Yes.

気液分離器5は、膨張弁4から流入してきた気液二相冷媒を液冷媒及び気体冷媒に分離する。なお、図1では、気液分離器5が円柱状の容器形状に形成され、気液の密度差により液冷媒と気体冷媒とに分離するものを示したが、その他の形状、機構で液冷媒と気体冷媒に分離するものでも良い。   The gas-liquid separator 5 separates the gas-liquid two-phase refrigerant flowing from the expansion valve 4 into a liquid refrigerant and a gas refrigerant. In FIG. 1, the gas-liquid separator 5 is formed in a cylindrical container shape and is separated into liquid refrigerant and gas refrigerant due to the difference in gas-liquid density. Or a gas refrigerant may be used.

冷凍サイクル装置は更に、気液分離器5において分離されたガス冷媒を圧縮機1の吸入側に戻すバイパス回路7を備えている。バイパス回路7には、第三熱交換器14、キャピラリーチューブ10及びバイパス回路7の開閉を行う電磁弁11が設けられている。更に、バイパス回路7には第三熱交換器14の入口側に温度検出装置8が、出口側に温度検出装置9が設けられている。なお、キャピラリーチューブ10、電磁弁11の接続順序はこれに限定されるものではなく、何れの順序でも良い。   The refrigeration cycle apparatus further includes a bypass circuit 7 that returns the gas refrigerant separated in the gas-liquid separator 5 to the suction side of the compressor 1. The bypass circuit 7 is provided with a third heat exchanger 14, a capillary tube 10, and an electromagnetic valve 11 that opens and closes the bypass circuit 7. Further, the bypass circuit 7 is provided with a temperature detection device 8 on the inlet side of the third heat exchanger 14 and a temperature detection device 9 on the outlet side. In addition, the connection order of the capillary tube 10 and the electromagnetic valve 11 is not limited to this, and any order may be sufficient.

電磁弁11は、気液分離器5を作用させる場合には開状態として冷媒がバイパス回路7に流通するようにし、気液分離器5を作用させる必要がない場合は閉状態として冷媒がバイパス回路7に流通しないようにする。また、常に気液分離器5を作用させる場合にはバイパス回路7を閉じる必要がないので電磁弁11は省いても良い。   When the gas-liquid separator 5 is operated, the solenoid valve 11 is opened so that the refrigerant flows through the bypass circuit 7, and when the gas-liquid separator 5 does not need to be operated, the refrigerant is bypassed. Do not distribute to 7. Further, when the gas-liquid separator 5 is always operated, it is not necessary to close the bypass circuit 7, and therefore the electromagnetic valve 11 may be omitted.

キャピラリーチューブ10は、銅製等の毛細管であり、バイパス回路7に流通させる気体冷媒の流量を調整する。なお、流量を調整する手段として膨張弁を用いても良い。膨張弁を用いることで例えば冷媒の循環量変化、外気温度や室内温度の変化、利用側熱交換器が複数台ある場合の利用側熱交換器の運転台数の変化等で、気液分離器5に流入する二相冷媒の乾き度などが変化した場合でも、膨張弁の開度をそれぞれ変化させ第二熱交換器6に対する圧力損失を適正にすることでバイパス回路7側に流通させる気体冷媒の量を制御できる。   The capillary tube 10 is a capillary tube made of copper or the like, and adjusts the flow rate of the gaseous refrigerant to be circulated through the bypass circuit 7. An expansion valve may be used as a means for adjusting the flow rate. By using an expansion valve, the gas-liquid separator 5 can be used, for example, due to a change in the circulation amount of the refrigerant, a change in the outside air temperature or the room temperature, a change in the number of operating use side heat exchangers when there are a plurality of use side heat exchangers, etc. Even when the dryness of the two-phase refrigerant flowing into the refrigerant changes, the degree of gas refrigerant to be circulated to the bypass circuit 7 side by changing the opening of the expansion valve to make the pressure loss to the second heat exchanger 6 appropriate. You can control the amount.

そして、室内機に第一熱交換器3及び第一送風機30が配置され、室外機に圧縮機1、膨張弁4、気液分離器5、第二熱交換器6、バイパス回路7、第三熱交換器14、キャピラリーチューブ10及び電磁弁11が配置されている。   The first heat exchanger 3 and the first blower 30 are disposed in the indoor unit, and the compressor 1, the expansion valve 4, the gas-liquid separator 5, the second heat exchanger 6, the bypass circuit 7, and the third are disposed in the outdoor unit. A heat exchanger 14, a capillary tube 10 and a solenoid valve 11 are arranged.

制御装置40は、温度検出装置8及び温度検出装置9の検出信号や、図示しない他の温度検出装置や圧力検知装置からの検出信号に基づいて圧縮機1、膨張弁4、電磁弁11、第一送風機30及び第二送風機60を制御することができるように接続されている。制御装置40は更に、温度検出装置8及び温度検出装置9の検出信号に基づいてバイパス回路7への液冷媒混入の有無を判断し、判断結果に応じて圧縮機1又は電磁弁11を制御する処理も行う。この処理の詳細については後述する。なお、制御装置40は、室外機に設けられていても良いし、室内機に設けられていても良いし、また、室内制御装置と室外制御装置とに分けて構成し、互いに連携処理を行う構成にしても良い。   The control device 40 is based on detection signals from the temperature detection device 8 and the temperature detection device 9 and detection signals from other temperature detection devices and pressure detection devices (not shown). It connects so that the 1 air blower 30 and the 2nd air blower 60 can be controlled. The control device 40 further determines whether or not liquid refrigerant is mixed into the bypass circuit 7 based on the detection signals of the temperature detection device 8 and the temperature detection device 9, and controls the compressor 1 or the electromagnetic valve 11 according to the determination result. Processing is also performed. Details of this processing will be described later. In addition, the control apparatus 40 may be provided in the outdoor unit, may be provided in the indoor unit, or is configured separately into the indoor control apparatus and the outdoor control apparatus, and performs a cooperation process with each other. It may be configured.

(冷凍サイクル装置の暖房動作)
以下、冷凍サイクル装置の暖房動作について説明する。なお、電磁弁11は開状態とされているものとする。
圧縮機1は、吸入した気体冷媒を圧縮し、高温高圧の気体冷媒を吐出する。圧縮機1から吐出された冷媒は、凝縮器として機能する第一熱交換器3に流入する。第一熱交換器3は、圧縮機1から吐出された高温高圧の気体冷媒と、第一送風機30によって送られてくる空気との熱交換を実施し、その気体冷媒を凝縮させる。第一熱交換器3にて凝縮された冷媒は、膨張弁4に流入する。膨張弁4は、流入してきた液冷媒を膨張させて減圧し、低温低圧の気液二相冷媒として流出する。
(Heating operation of refrigeration cycle equipment)
Hereinafter, the heating operation of the refrigeration cycle apparatus will be described. It is assumed that the electromagnetic valve 11 is open.
The compressor 1 compresses the sucked gas refrigerant and discharges the high-temperature and high-pressure gas refrigerant. The refrigerant discharged from the compressor 1 flows into the first heat exchanger 3 that functions as a condenser. The first heat exchanger 3 performs heat exchange between the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 and the air sent by the first blower 30, and condenses the gas refrigerant. The refrigerant condensed in the first heat exchanger 3 flows into the expansion valve 4. The expansion valve 4 expands and decompresses the inflowing liquid refrigerant, and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant.

膨張弁4を流出した気液二相冷媒は気液分離器5に流入する。気液分離器5は、流入してきた気液二相冷媒を液冷媒及び気体冷媒に分離する。   The gas-liquid two-phase refrigerant that has flowed out of the expansion valve 4 flows into the gas-liquid separator 5. The gas-liquid separator 5 separates the flowing gas-liquid two-phase refrigerant into liquid refrigerant and gas refrigerant.

分離された液冷媒は、第二熱交換器6に流入する。第二熱交換器6は、気液分離器5によって気液二相冷媒から分離された低温低圧の液冷媒と、第二送風機60によって送られてくる空気との熱交換を実施し、その低温低圧の液冷媒を蒸発させる。   The separated liquid refrigerant flows into the second heat exchanger 6. The second heat exchanger 6 performs heat exchange between the low-temperature and low-pressure liquid refrigerant separated from the gas-liquid two-phase refrigerant by the gas-liquid separator 5 and the air sent by the second blower 60, and the low temperature The low-pressure liquid refrigerant is evaporated.

気液分離器5によって気液二相冷媒から分離された気体冷媒をバイパス回路7に流入する。バイパス回路7に流入した気体冷媒は、第三熱交換器14にて第二送風機60からの空気と熱交換した後、キャピラリーチューブ10を通過して圧縮機1に吸入される。   The gas refrigerant separated from the gas-liquid two-phase refrigerant by the gas-liquid separator 5 flows into the bypass circuit 7. The gaseous refrigerant flowing into the bypass circuit 7 exchanges heat with the air from the second blower 60 in the third heat exchanger 14, passes through the capillary tube 10, and is sucked into the compressor 1.

(気液分離器5の気液分離動作)
図2は、本発明の実施の形態1に係る、気液分離器を搭載した冷凍サイクル装置と、気液分離器5を搭載していない冷凍サイクル装置とのそれぞれにおけるエンタルピと圧力との関係を示すモリエル線図である。図3は、気液分離器を搭載しない冷凍サイクル装置の構成図である。図2において、実線は気液分離器5を搭載した冷凍サイクル装置、そして、破線は気液分離器5を搭載していない図3で示される冷凍サイクル装置のエンタルピと圧力との関係を示している。また、図2における点A〜点Fが示す各冷媒状態は、図1に示される本実施の形態1に係る冷凍サイクル装置における点A〜点Fにおける冷媒の各状態に対応している。更に、図2における点A〜点C及び点D’が示す各冷媒状態は、図3で示される冷凍サイクル装置における点A〜点C及び点D’における冷媒の各状態に対応している。
(Gas-liquid separation operation of the gas-liquid separator 5)
FIG. 2 shows the relationship between enthalpy and pressure in each of the refrigeration cycle apparatus equipped with the gas-liquid separator and the refrigeration cycle apparatus not equipped with the gas-liquid separator 5 according to Embodiment 1 of the present invention. It is a Mollier diagram shown. FIG. 3 is a configuration diagram of a refrigeration cycle apparatus not equipped with a gas-liquid separator. In FIG. 2, the solid line indicates the relationship between the enthalpy and pressure of the refrigeration cycle apparatus equipped with the gas-liquid separator 5 and the broken line indicates the refrigeration cycle apparatus shown in FIG. Yes. Moreover, each refrigerant | coolant state which the point A-point F in FIG. 2 shows respond | corresponds to each state of the refrigerant | coolant in the point A-point F in the refrigerating-cycle apparatus which concerns on this Embodiment 1 shown by FIG. Further, the refrigerant states indicated by points A to C and D ′ in FIG. 2 correspond to the refrigerant states at points A to C and D ′ in the refrigeration cycle apparatus shown in FIG. 3.

まず、図3で示される気液分離器5を搭載していない冷凍サイクル装置の動作について、図2及び図3を参照しながら説明する。
まず、圧縮機1によって圧縮され吐出された高温高圧の気体冷媒は、第一熱交換器3へ流入する(点A)。この第一熱交換器3へ流入した気体冷媒は、図示しない送風機から供給された室内空気と熱交換が実施されて凝縮し、液冷媒となって、第一熱交換器3から流出する。第一熱交換器3から流出した液冷媒(点B)は、膨張弁4へ流れ込み、この膨張弁4によって膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒(点C)は、第二熱交換器6へ流入し、図示しない送風機から供給された外気と熱交換が実施されて蒸発し、低温低圧の気体冷媒となって第二熱交換器6から流出する。この第二熱交換器6から流出した気体冷媒(点D’)は、圧縮機1に流入し、再び圧縮される。
First, the operation of the refrigeration cycle apparatus not equipped with the gas-liquid separator 5 shown in FIG. 3 will be described with reference to FIGS.
First, the high-temperature and high-pressure gaseous refrigerant compressed and discharged by the compressor 1 flows into the first heat exchanger 3 (point A). The gaseous refrigerant that has flowed into the first heat exchanger 3 undergoes heat exchange with room air supplied from a blower (not shown), condenses, becomes liquid refrigerant, and flows out of the first heat exchanger 3. The liquid refrigerant (point B) flowing out from the first heat exchanger 3 flows into the expansion valve 4 and is expanded and depressurized by the expansion valve 4 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant (point C) flows into the second heat exchanger 6, heat exchanges with outside air supplied from a blower (not shown), evaporates, and becomes a low-temperature and low-pressure gas refrigerant. It flows out of the heat exchanger 6. The gaseous refrigerant (point D ′) flowing out from the second heat exchanger 6 flows into the compressor 1 and is compressed again.

以上のように、気液分離器5を搭載していない冷凍サイクル装置においては、膨張弁4を通過した後の気液二相冷媒(点C)が第二熱交換器6へ流入するため、冷媒が第二熱交換器6を通過する際の圧力損失が大きくなる(図2において(PC−PD’)に相当する)。   As described above, in the refrigeration cycle apparatus not equipped with the gas-liquid separator 5, the gas-liquid two-phase refrigerant (point C) after passing through the expansion valve 4 flows into the second heat exchanger 6, The pressure loss when the refrigerant passes through the second heat exchanger 6 increases (corresponds to (PC-PD ′) in FIG. 2).

次に、図1で示される本実施の形態に係る気液分離器5を搭載した冷凍サイクル装置の動作について、図1と図2を参照しながら説明する。
まず、電磁弁11を開状態にして、バイパス回路7に冷媒が流通するようにする。圧縮機1によって圧縮され吐出された高温高圧の気体冷媒は、第一熱交換器3へ流入する(点A)。第一熱交換器3へ流入した気体冷媒は、室内空気と熱交換が実施されて凝縮し、液冷媒となって、第一熱交換器3から流出する。第一熱交換器3から流出した液冷媒(点B)は、膨張弁4へ流れ込み、この膨張弁4によって膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒(点C)は、気液分離器5へ流入する。
Next, the operation of the refrigeration cycle apparatus equipped with the gas-liquid separator 5 according to the present embodiment shown in FIG. 1 will be described with reference to FIGS. 1 and 2.
First, the electromagnetic valve 11 is opened so that the refrigerant flows through the bypass circuit 7. The high-temperature and high-pressure gaseous refrigerant compressed and discharged by the compressor 1 flows into the first heat exchanger 3 (point A). The gaseous refrigerant that has flowed into the first heat exchanger 3 is subjected to heat exchange with room air to condense, becomes liquid refrigerant, and flows out of the first heat exchanger 3. The liquid refrigerant (point B) flowing out from the first heat exchanger 3 flows into the expansion valve 4 and is expanded and depressurized by the expansion valve 4 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant (point C) flows into the gas-liquid separator 5.

そして、気液分離器5の外部へ流出した液冷媒(点E)は、第二熱交換器6へ流入する。第二熱交換器6へ流入した液冷媒は、外気と熱交換して蒸発し、気体冷媒となって第二熱交換器6から流出する。一方、気液分離器5の外部へ流出した気体冷媒(点F)は、バイパス回路7におけるキャピラリーチューブ10及び電磁弁11を経由した後、第二熱交換器6から流出した気体冷媒と合流し(点D)、圧縮機1へ流入し、再び圧縮される。   Then, the liquid refrigerant (point E) that flows out of the gas-liquid separator 5 flows into the second heat exchanger 6. The liquid refrigerant that has flowed into the second heat exchanger 6 evaporates by exchanging heat with the outside air and flows out from the second heat exchanger 6 as a gaseous refrigerant. On the other hand, the gaseous refrigerant (point F) flowing out of the gas-liquid separator 5 passes through the capillary tube 10 and the electromagnetic valve 11 in the bypass circuit 7 and then merges with the gaseous refrigerant flowing out from the second heat exchanger 6. (Point D) flows into the compressor 1 and is compressed again.

以上のように、図1で示される本実施の形態に係る気液分離器5を搭載した冷凍サイクル装置においては、第二熱交換器6に液冷媒のみを通過させるため、第二熱交換器6を通過する際の圧力損失を低下(図2において(PC−PD)に相当する)させることができる。このため、圧縮機1の吸入圧力が、圧力PD’から圧力PDに上昇し、圧縮機1が吸入圧力から吐出圧力まで圧縮するのに必要な仕事量を減少させることができる。これによって、第二熱交換器6の蒸発能力と圧縮機1の入力との比で示される成績係数を向上することができる。   As described above, in the refrigeration cycle apparatus equipped with the gas-liquid separator 5 according to the present embodiment shown in FIG. 1, only the liquid refrigerant passes through the second heat exchanger 6. 6 can be reduced (corresponding to (PC-PD) in FIG. 2). For this reason, the suction pressure of the compressor 1 increases from the pressure PD ′ to the pressure PD, and the amount of work required for the compressor 1 to compress from the suction pressure to the discharge pressure can be reduced. As a result, the coefficient of performance indicated by the ratio between the evaporation capacity of the second heat exchanger 6 and the input of the compressor 1 can be improved.

(液冷媒のバイパス回路7への混入の有無の判断)
本実施の形態1に係る冷凍サイクル装置では、バイパス回路7に第三熱交換器14を設け、バイパス回路7に流入した冷媒を第二送風機60からの空気と熱交換するようにしている。そして、第三熱交換器14の入口側に設けた温度検出装置8と出口側に設けた温度検出装置9の温度とに基づいてバイパス回路7への液冷媒混入の有無を判断するようにしている。以下、具体的に説明する。
(Judgment of the presence or absence of liquid refrigerant in the bypass circuit 7)
In the refrigeration cycle apparatus according to the first embodiment, the third heat exchanger 14 is provided in the bypass circuit 7 so that the refrigerant flowing into the bypass circuit 7 exchanges heat with the air from the second blower 60. Then, based on the temperature of the temperature detection device 8 provided on the inlet side of the third heat exchanger 14 and the temperature of the temperature detection device 9 provided on the outlet side, the presence or absence of liquid refrigerant mixing into the bypass circuit 7 is determined. Yes. This will be specifically described below.

バイパス回路7に液冷媒が混入せずにガス冷媒のみが流入した場合、ガス冷媒は第三熱交換器14で過熱され、温度検出装置8の検出値Tinと温度検出装置9の検出値Toutとの温度差が大きくなる。一方、バイパス回路7に液冷媒が混入した場合は、冷媒は液からガスへ二相変化するため温度変化はない。また、バイパス回路7に混入した液冷媒量が少量の場合は過熱されるが、その過熱度合いはガス冷媒のみの場合に比較して少ない。   When only the gas refrigerant flows into the bypass circuit 7 without mixing the liquid refrigerant, the gas refrigerant is overheated by the third heat exchanger 14, and the detected value Tin of the temperature detecting device 8 and the detected value Tout of the temperature detecting device 9 are The temperature difference increases. On the other hand, when a liquid refrigerant is mixed into the bypass circuit 7, the refrigerant changes in two phases from liquid to gas, so there is no temperature change. Further, when the amount of the liquid refrigerant mixed in the bypass circuit 7 is small, the liquid refrigerant is overheated, but the degree of overheating is smaller than that in the case of only the gas refrigerant.

このようにバイパス回路7内に流入する冷媒の状態と、温度検出装置8の検出値Tinと温度検出装置9の検出値Toutの温度差との間には以上のような関係があることから、温度検出装置8の検出値Tinと温度検出装置9の検出値Toutとの温度差を検出することで、バイパス回路7に液冷媒が混入しているか否かを判断できる。   Since the state of the refrigerant flowing into the bypass circuit 7 in this way and the temperature difference between the detection value Tin of the temperature detection device 8 and the detection value Tout of the temperature detection device 9 are as described above, By detecting the temperature difference between the detection value Tin of the temperature detection device 8 and the detection value Tout of the temperature detection device 9, it can be determined whether or not liquid refrigerant is mixed in the bypass circuit 7.

図4は、本発明の実施の形態1に係る冷凍サイクル装置におけるバイパス回路への液冷媒混入防止制御の流れを示すフローチャートである。図4に示す一連の処理は制御装置40により定期的に実施される。以下、図1の冷凍サイクル装置におけるバイパス回路7への液冷媒混入防止制御の流れを説明する。   FIG. 4 is a flowchart showing a flow of liquid refrigerant mixture prevention control to the bypass circuit in the refrigeration cycle apparatus according to Embodiment 1 of the present invention. A series of processing shown in FIG. 4 is periodically performed by the control device 40. Hereinafter, the flow of liquid refrigerant mixture prevention control to the bypass circuit 7 in the refrigeration cycle apparatus of FIG. 1 will be described.

制御装置40は、温度検出装置8により第三熱交換器14の入口側の冷媒温度Tinを検出すると共に、温度検出装置9により第三熱交換器14の出口側の冷媒温度Toutとを検出する(S1)。そして、これらの温度差Tout−Tinと予め設定された閾値Tsetとを比較し(S2)、温度差Tout−Tinが閾値Tset未満の場合、液冷媒混入有と判断して液冷媒混入防止運転を行う(S3)。液冷媒混入防止運転としては例えば、電磁弁11を閉とするか又は圧縮機1の運転周波数を低下させて循環冷媒量を低減する運転を行う。温度差Tout−Tinが閾値Tset以上の場合には液冷媒混入無と判断し、現状の運転(通常運転)を継続する(S4)。   The control device 40 detects the refrigerant temperature Tin on the inlet side of the third heat exchanger 14 with the temperature detection device 8 and detects the refrigerant temperature Tout on the outlet side of the third heat exchanger 14 with the temperature detection device 9. (S1). Then, the temperature difference Tout-Tin is compared with a preset threshold value Tset (S2). If the temperature difference Tout-Tin is less than the threshold value Tset, it is determined that liquid refrigerant is mixed, and the liquid refrigerant mixing prevention operation is performed. Perform (S3). As the liquid refrigerant mixing prevention operation, for example, the solenoid valve 11 is closed or the operation frequency of the compressor 1 is lowered to reduce the circulating refrigerant amount. If the temperature difference Tout−Tin is equal to or greater than the threshold Tset, it is determined that liquid refrigerant is not mixed, and the current operation (normal operation) is continued (S4).

(実施の形態1の効果)
以上のように、本実施の形態1によれば、バイパス回路7に設けた第三熱交換器14の入口と出口の冷媒温度差に基づいて、気液分離器5で分離仕切れなかった液冷媒のバイパス回路7への混入の有無を判断できる。
(Effect of Embodiment 1)
As described above, according to the first embodiment, the liquid refrigerant that is not separated and separated by the gas-liquid separator 5 based on the refrigerant temperature difference between the inlet and the outlet of the third heat exchanger 14 provided in the bypass circuit 7. It is possible to determine whether or not there is any mixture in the bypass circuit 7.

そして、バイパス回路7への液冷媒混入有と判断した場合には、液冷媒混入防止運転を行って、これ以上、バイパス回路7に液冷媒が混入しないようにしたので、暖房運転時の冷凍サイクルの性能低下を防止できる効果がある。また、液冷媒が圧縮機1の吸入側に戻らないため液圧縮などを防止でき、圧縮機1の信頼性を向上することができる。   When it is determined that the liquid refrigerant is mixed into the bypass circuit 7, the liquid refrigerant mixing prevention operation is performed so that the liquid refrigerant is not mixed into the bypass circuit 7 any more. There is an effect that can prevent the performance degradation. Further, since the liquid refrigerant does not return to the suction side of the compressor 1, liquid compression can be prevented and the reliability of the compressor 1 can be improved.

なお、冷凍サイクル装置は、図1に示した構成に更に、以下のような変形を加えても良い。この場合も同様の作用効果を得ることができる。   The refrigeration cycle apparatus may be modified as follows in addition to the configuration shown in FIG. In this case, the same effect can be obtained.

(変形例1)
図5に示すように圧縮機1の吸入側にアキュムレータ13を設けても良い。
(Modification 1)
As shown in FIG. 5, an accumulator 13 may be provided on the suction side of the compressor 1.

(変形例2)
第三熱交換器14を、第一熱交換器3又は第二熱交換器6と一体としても良い。図6には第三熱交換器14を第二熱交換器6と一体とした例を示している。また、このように一体に構成した具体的な熱交換器の構成例を次の図7に示す。
(Modification 2)
The third heat exchanger 14 may be integrated with the first heat exchanger 3 or the second heat exchanger 6. FIG. 6 shows an example in which the third heat exchanger 14 is integrated with the second heat exchanger 6. Further, FIG. 7 shows a specific configuration example of a specific heat exchanger configured integrally as described above.

図7は、第三熱交換器を第一熱交換器又は第二熱交換器と一体とした熱交換器の構成例を示す図である。
この例では熱交換器が伝熱管20とアルミフィン21で構成され、10本の伝熱管20の内、第一熱交換器3又は第二熱交換器6は伝熱管8本で構成され、バイパス回路7は伝熱管2本で構成されて第三熱交換器14の一部を構成している。またバイパス回路7の第三熱交換器14の入口側と出口側にそれぞれ温度検出装置8と温度検出装置9が設けられている。この変形例2では、第三熱交換器14を第一熱交換器3又は第二熱交換器6と一体の熱交換器で構成したので熱交換器を別々に製造するよりも低コストが図れる。なお、バイパス回路7は、この例では熱交換器の端部に配置されているが、配置場所は端部に限るものではない。
FIG. 7 is a diagram illustrating a configuration example of a heat exchanger in which the third heat exchanger is integrated with the first heat exchanger or the second heat exchanger.
In this example, the heat exchanger is composed of the heat transfer tubes 20 and the aluminum fins 21, and among the ten heat transfer tubes 20, the first heat exchanger 3 or the second heat exchanger 6 is composed of eight heat transfer tubes, and is bypassed. The circuit 7 is composed of two heat transfer tubes and constitutes a part of the third heat exchanger 14. Further, a temperature detection device 8 and a temperature detection device 9 are provided on the inlet side and the outlet side of the third heat exchanger 14 of the bypass circuit 7, respectively. In this modification 2, since the 3rd heat exchanger 14 was comprised with the heat exchanger integral with the 1st heat exchanger 3 or the 2nd heat exchanger 6, cost can be aimed at rather than manufacturing a heat exchanger separately. . In addition, although the bypass circuit 7 is arrange | positioned at the edge part of the heat exchanger in this example, the arrangement place is not restricted to an edge part.

(変形例3)
図1では、気液分離器5及び第三熱交換器14を室外機側に設けていたが、図8に示すように室内機側に設けても良い。
(Modification 3)
In FIG. 1, the gas-liquid separator 5 and the third heat exchanger 14 are provided on the outdoor unit side, but may be provided on the indoor unit side as shown in FIG.

(変形例4)
変形例1〜3を適宜組み合わせた構成としても良い。例えば、変形例1と変形例2とを組み合わせ、図5に示した構成において第二熱交換器6と第三熱交換器14とを一体で構成としても良い。また、例えば変形例2と変形例3とを組み合わせ、図8に示した構成において第一熱交換器3と第三熱交換器14とを一体とした構成としても良い。なお、第一熱交換器3は凝縮器、第三熱交換器14は蒸発器として作用することから、これらを一体形成すると互いの熱の影響を受けることになるが、その影響はさほど大きくないため、一体形成しても問題無い。しかし、一体として構成する場合は、図6に示したように両者とも蒸発器となる構成が好ましい。
(Modification 4)
It is good also as a structure which combined suitably the modifications 1-3. For example, the modification 1 and the modification 2 may be combined, and the second heat exchanger 6 and the third heat exchanger 14 may be integrally configured in the configuration illustrated in FIG. For example, the modification 2 and the modification 3 may be combined, and the first heat exchanger 3 and the third heat exchanger 14 may be integrated in the structure illustrated in FIG. In addition, since the 1st heat exchanger 3 acts as a condenser and the 3rd heat exchanger 14 acts as an evaporator, when these are integrally formed, it will receive the influence of a mutual heat, but the influence is not so big. Therefore, there is no problem even if it is integrally formed. However, when it is configured as a single unit, a configuration in which both are evaporators as shown in FIG. 6 is preferable.

以上の変形例は、以下に説明する冷凍サイクル装置においても、適用外と特に明記しない限りにおいて同様に適用される。   The above modifications are similarly applied to the refrigeration cycle apparatus described below unless otherwise specified as not applicable.

なお、この実施の形態1では、冷凍サイクル装置を、暖房運転を行う空気調和装置とし、暖房運転時に、気液分離器5で分離仕切れなかった液冷媒がバイパス回路7を通ることによる冷凍サイクルの性能低下を防止できる空気調和装置について説明した。しかし、冷凍サイクル装置は、暖房運転を行う空気調和装置に限られず、冷房運転を行う空気調和装置とし、冷房運転時の冷凍サイクルの性能低下を防止可能な空気調和装置としても良い。次の図9〜図12は、冷房運転を行う空気調和装置を示したものである。   In the first embodiment, the refrigeration cycle apparatus is an air conditioner that performs heating operation, and liquid refrigerant that is not separated and partitioned by the gas-liquid separator 5 during the heating operation passes through the bypass circuit 7. An air conditioner that can prevent performance degradation has been described. However, the refrigeration cycle apparatus is not limited to an air conditioner that performs a heating operation, but may be an air conditioner that performs a cooling operation, and may be an air conditioner that can prevent a decrease in performance of the refrigeration cycle during the cooling operation. Next, FIG. 9 to FIG. 12 show an air conditioner that performs a cooling operation.

(冷房運転のみを行う空気調和装置)
図9〜図12に示す空気調和装置と、これまでに説明した暖房運転を行う空気調和装置との違いは、第一熱交換器3を凝縮器、第二熱交換器6を蒸発器としていたのに代えて、第一熱交換器3を蒸発器、第二熱交換器6を凝縮器とする点であり、その他については同様である。以下、図9を参照し、冷房動作について説明する。
(Air conditioner that only performs cooling operation)
The difference between the air conditioner shown in FIGS. 9 to 12 and the air conditioner that performs the heating operation described so far is that the first heat exchanger 3 is a condenser and the second heat exchanger 6 is an evaporator. Instead of this, the first heat exchanger 3 is an evaporator and the second heat exchanger 6 is a condenser, and the others are the same. Hereinafter, the cooling operation will be described with reference to FIG.

(冷凍サイクル装置の冷房動作)
圧縮機1は、吸入した気体冷媒を圧縮し、高温高圧の気体冷媒を吐出する。圧縮機1から吐出された気体冷媒は第二熱交換器6に流入し、第二送風機60によって送られてくる外気との熱交換を実施し、その気体冷媒を凝縮させる。第二熱交換器6で凝縮された冷媒は、膨張弁4で膨張されて減圧し、低温低圧の気液二相冷媒として流出する。膨張弁4から流出した気液二相冷媒は、気液分離器5にて液冷媒及び気体冷媒に分離される。
(Cooling operation of refrigeration cycle equipment)
The compressor 1 compresses the sucked gas refrigerant and discharges the high-temperature and high-pressure gas refrigerant. The gaseous refrigerant discharged from the compressor 1 flows into the second heat exchanger 6, performs heat exchange with the outside air sent by the second blower 60, and condenses the gaseous refrigerant. The refrigerant condensed in the second heat exchanger 6 is expanded and decompressed by the expansion valve 4, and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flowing out from the expansion valve 4 is separated into a liquid refrigerant and a gas refrigerant by the gas-liquid separator 5.

分離された低温低圧の液冷媒は第一熱交換器3に流入し、第一送風機30によって送られてくる室内空気との熱交換を実施し、その低温低圧の液冷媒を蒸発させる。一方、気液分離器5にて分離された気体冷媒はバイパス回路7に流入し、第三熱交換器14、キャピラリーチューブ10及び電磁弁11を通過した後、第一熱交換器3を通過した気体冷媒と合流して圧縮機1に吸入される。なお、電磁弁11は、気液分離器5を作用させる必要がない場合は閉状態とし、冷媒がバイパス回路7に流通しないようにする点は上記と同様である。   The separated low-temperature and low-pressure liquid refrigerant flows into the first heat exchanger 3, performs heat exchange with the indoor air sent by the first blower 30, and evaporates the low-temperature and low-pressure liquid refrigerant. On the other hand, the gas refrigerant separated by the gas-liquid separator 5 flows into the bypass circuit 7, passes through the third heat exchanger 14, the capillary tube 10 and the electromagnetic valve 11, and then passes through the first heat exchanger 3. The gas refrigerant joins and is sucked into the compressor 1. Note that the solenoid valve 11 is closed when the gas-liquid separator 5 does not need to be actuated, and the refrigerant is prevented from flowing through the bypass circuit 7 in the same manner as described above.

このような冷房運転においても、上記暖房運転の場合と同様に第三熱交換器14の入口側と出口側の冷媒温度差に基づいてバイパス回路7への液冷媒混入の有無を判断できる。すなわち、冷房運転時に、気液分離器5で分離仕切れなかった液冷媒がバイパス回路7を通ることによる、冷房運転の性能低下を防止可能な空気調和装置を得ることができる。   Also in such a cooling operation, whether or not liquid refrigerant is mixed into the bypass circuit 7 can be determined based on the refrigerant temperature difference between the inlet side and the outlet side of the third heat exchanger 14 as in the case of the heating operation. That is, it is possible to obtain an air conditioner that can prevent the performance deterioration of the cooling operation due to the liquid refrigerant not separated and partitioned by the gas-liquid separator 5 through the bypass circuit 7 during the cooling operation.

ここで、図10〜図12の構成例について簡単に説明する。図10は、上記の変形例1(暖房運転を行う空気調和装置の説明部分で説明した変形例1)に相当し、図9の構成においてアキュムレータ13を設けたものである。図11は、同様に上記の変形例3に相当し、気液分離器5及び第三熱交換器14を室内機側に設けたものである。図12は、同様に上記の変形例2に相当し、第三熱交換器14を第一熱交換器3と一体としたものである。なお、第三熱交換器14を第二熱交換器6と一体としても良いが、第二熱交換器6は凝縮器であるため、第三熱交換器14を第一熱交換器3又は第二熱交換器6のどちらかの熱交換器と一体にするにあたっては、上述したように、第三熱交換器14と同じく蒸発器である第一熱交換器3と一体とすることが好ましい。また、同様に上記変形例4のように、各変形例1〜3を適宜組み合わせた構成としても良い。これらの構成とした場合にも、上記と同様の作用効果を得ることができる。   Here, the configuration examples of FIGS. 10 to 12 will be briefly described. FIG. 10 corresponds to Modification 1 described above (Modification 1 described in the description of the air conditioner that performs heating operation), and an accumulator 13 is provided in the configuration of FIG. 9. FIG. 11 similarly corresponds to the above-described modification example 3, in which the gas-liquid separator 5 and the third heat exchanger 14 are provided on the indoor unit side. FIG. 12 similarly corresponds to the above-described modified example 2, and the third heat exchanger 14 is integrated with the first heat exchanger 3. Although the third heat exchanger 14 may be integrated with the second heat exchanger 6, the second heat exchanger 6 is a condenser, so that the third heat exchanger 14 is replaced with the first heat exchanger 3 or the second heat exchanger 6. In integrating with the heat exchanger of either of the two heat exchangers 6, as described above, it is preferable to integrate with the first heat exchanger 3 that is an evaporator as with the third heat exchanger. Similarly, as in the above-described modification 4, each of the modifications 1 to 3 may be appropriately combined. Even if it is set as these structures, the effect similar to the above can be acquired.

(冷房運転及び暖房運転の切り換えが可能な空気調和装置)
上記では、冷凍サイクル装置が、暖房運転又は冷房運転を行う空気調和装置である場合を例に説明したが、図13に示すように四方弁2を設けて圧縮機1から吐出された冷媒の流路を変え、冷房運転と暖房運転とを切り換え可能な装置としても良い。図13(a)の構成においては、暖房運転時に気液分離器5を作用させる構成を示したが、図13(b)に示すように、冷房運転時に気液分離器5を作用させる構成としてももちろんよい。なお、四方弁2を設けた構成とする場合には、バイパス回路7に逆止弁12も設けるようにする。
(Air conditioner that can be switched between cooling operation and heating operation)
In the above description, the case where the refrigeration cycle apparatus is an air conditioner that performs heating operation or cooling operation has been described as an example. However, as shown in FIG. 13, the flow of the refrigerant discharged from the compressor 1 with the four-way valve 2 provided It is good also as an apparatus which can change a path | route and can switch between air_conditionaing | cooling operation and heating operation. In the configuration of FIG. 13A, the configuration in which the gas-liquid separator 5 is activated during the heating operation is shown. However, as illustrated in FIG. 13B, the configuration of operating the gas-liquid separator 5 in the cooling operation is illustrated. Of course it is good. When the four-way valve 2 is provided, a check valve 12 is also provided in the bypass circuit 7.

逆止弁12は、バイパス回路7において冷媒を一方向のみに流通させるものである。具体的には、圧縮機1から吐出した冷媒を、四方弁2の図13の実線で示す方向に流す場合(暖房運転)に、気液分離器5から圧縮機1への方向に冷媒を流通させる。また、圧縮機1から吐出した冷媒を、四方弁2の図13の破線で示す方向に流す場合(冷房運転)には、圧縮機1からの高温高圧の気体冷媒がバイパス回路7に流入することを防止し、高温高圧の気体冷媒の全てが第二熱交換器6に導かれるようにする。   The check valve 12 causes the refrigerant to flow only in one direction in the bypass circuit 7. Specifically, when the refrigerant discharged from the compressor 1 flows in the direction indicated by the solid line in FIG. 13 of the four-way valve 2 (heating operation), the refrigerant flows in the direction from the gas-liquid separator 5 to the compressor 1. Let Further, when the refrigerant discharged from the compressor 1 flows in the direction indicated by the broken line in FIG. 13 of the four-way valve 2 (cooling operation), the high-temperature and high-pressure gaseous refrigerant from the compressor 1 flows into the bypass circuit 7. The high-temperature and high-pressure gaseous refrigerant is all guided to the second heat exchanger 6.

なお、電磁弁11が冷媒の流れに対して順方向、逆方向共に締め切り可能な種類のものであれば電磁弁11のみの開閉で冷媒流れを制御できるので逆止弁12は省いても良い。また第二熱交換器6が蒸発器として運転が実施される場合に常に気液分離器5を作用させる場合にはバイパス回路7を閉じる必要がないので電磁弁11は省いても良い。   Note that the check valve 12 may be omitted because the refrigerant flow can be controlled only by opening and closing the solenoid valve 11 if the solenoid valve 11 is of a type that can be closed in both the forward and reverse directions with respect to the refrigerant flow. Further, when the gas-liquid separator 5 is always operated when the second heat exchanger 6 is operated as an evaporator, it is not necessary to close the bypass circuit 7, so the electromagnetic valve 11 may be omitted.

(暖房運転)
暖房運転の際は、四方弁2を実線側に切り換える。圧縮機1によって圧縮され吐出された高温高圧の気体冷媒は、四方弁2を経由して、第一熱交換器3へ流入する。それ以降の動作は図1で説明した動作と同様である。
(Heating operation)
During the heating operation, the four-way valve 2 is switched to the solid line side. The high-temperature and high-pressure gaseous refrigerant compressed and discharged by the compressor 1 flows into the first heat exchanger 3 via the four-way valve 2. The subsequent operation is the same as the operation described in FIG.

(冷房運転)
冷房運転の際は、四方弁2を破線側に切り換える。また、電磁弁11を閉状態にして、バイパス回路7に冷媒が流通しないようにする。
圧縮機1によって圧縮され吐出された高温高圧の気体冷媒は、四方弁2を経由して、第二熱交換器6へ流入する。第二熱交換器6へ流入した気体冷媒は、外気と熱交換が実施されて凝縮し、液冷媒となって、第二熱交換器6から流出する。
(Cooling operation)
During the cooling operation, the four-way valve 2 is switched to the broken line side. Further, the solenoid valve 11 is closed to prevent the refrigerant from flowing through the bypass circuit 7.
The high-temperature and high-pressure gaseous refrigerant compressed and discharged by the compressor 1 flows into the second heat exchanger 6 via the four-way valve 2. The gaseous refrigerant that has flowed into the second heat exchanger 6 undergoes heat exchange with the outside air, condenses, becomes liquid refrigerant, and flows out of the second heat exchanger 6.

第二熱交換器6から流出した液冷媒は、気液分離器5へ流入する。気液分離器5へ流入した液冷媒は、液体状態のまま流出する。気液分離器5を流出した液冷媒は、膨張弁4へ流れ込み、この膨張弁4によって膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、第一熱交換器3へ流入する。第一熱交換器3へ流入した気液二相冷媒は、室内空気と熱交換が実施されて蒸発し、気体冷媒となって、第一熱交換器3から流出する。第一熱交換器3を流出した気体冷媒は、四方弁2を経由して、圧縮機1へ流入し、再び圧縮される。   The liquid refrigerant flowing out from the second heat exchanger 6 flows into the gas-liquid separator 5. The liquid refrigerant that has flowed into the gas-liquid separator 5 flows out in a liquid state. The liquid refrigerant that has flowed out of the gas-liquid separator 5 flows into the expansion valve 4 and is expanded and depressurized by the expansion valve 4 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the first heat exchanger 3. The gas-liquid two-phase refrigerant that has flowed into the first heat exchanger 3 undergoes heat exchange with room air, evaporates, becomes a gaseous refrigerant, and flows out of the first heat exchanger 3. The gaseous refrigerant that has flowed out of the first heat exchanger 3 flows into the compressor 1 via the four-way valve 2 and is compressed again.

ここでは、図13の構成に四方弁2を設けて暖房運転と冷房運転とを切り換え可能とした例を示したが、四方弁2の設置は、図13の構成に限らず、上述した全ての構成例(変形例含む)において四方弁2を設けた構成にすることができる。   Here, an example is shown in which the four-way valve 2 is provided in the configuration of FIG. 13 so that the heating operation and the cooling operation can be switched. However, the installation of the four-way valve 2 is not limited to the configuration of FIG. In the configuration example (including the modification), the four-way valve 2 can be provided.

実施の形態2.
実施の形態1では、温度検出装置8と温度検出装置9を用いてバイパス回路7への液冷媒混入の有無を判断するようにしていたが、実施の形態2では、第三熱交換器14の入口側の温度検出装置8を省略し、第三熱交換器14の出口側の温度検出装置9の検出値に基づいてバイパス回路7への液冷媒混入の有無を判断するようにしたものである。なお、実施の形態2は、バイパス回路7への液冷媒混入の有無の判断に関わる構成及び判断方法が実施の形態1と異なり、それ以外については実施の形態1と同様である。
Embodiment 2. FIG.
In the first embodiment, the presence or absence of liquid refrigerant in the bypass circuit 7 is determined using the temperature detection device 8 and the temperature detection device 9, but in the second embodiment, the third heat exchanger 14 The temperature detector 8 on the inlet side is omitted, and the presence or absence of liquid refrigerant in the bypass circuit 7 is determined based on the detected value of the temperature detector 9 on the outlet side of the third heat exchanger 14. . The second embodiment is different from the first embodiment in the configuration and the determination method related to the determination of the presence or absence of liquid refrigerant in the bypass circuit 7, and is otherwise the same as the first embodiment.

図14は、本発明の実施の形態2に係る冷凍サイクル装置の構成図である。
図14に示すように、実施の形態2の冷凍サイクル装置は、第三熱交換器14の入口側の温度検出装置8を省略した構成であり、その他は図1に示した実施の形態1と同様である。このように第三熱交換器14の出口側に温度検出装置9のみを設ける場合は、例えば温度検出装置9を感温筒とすると共にこの感温筒にダイヤフラム式の膨張弁4等を接続し、この膨張弁4を電磁弁11の代わりとして用いても良い。なお、図14には暖房運転を行う冷凍サイクル装置の構成例を示したが、実施の形態2は、実施の形態1で説明した全ての構成(変形例も含む)にも適用可能である。
FIG. 14 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
As shown in FIG. 14, the refrigeration cycle apparatus of the second embodiment has a configuration in which the temperature detection device 8 on the inlet side of the third heat exchanger 14 is omitted, and the rest is the same as that of the first embodiment shown in FIG. It is the same. When only the temperature detection device 9 is provided on the outlet side of the third heat exchanger 14 as described above, for example, the temperature detection device 9 is a temperature sensing cylinder, and a diaphragm type expansion valve 4 or the like is connected to the temperature sensing cylinder. The expansion valve 4 may be used in place of the electromagnetic valve 11. In addition, although the structural example of the refrigerating-cycle apparatus which performs heating operation was shown in FIG. 14, Embodiment 2 is applicable also to all the structures (including a modification) demonstrated in Embodiment 1. FIG.

図15は、本発明の実施の形態2に係る冷凍サイクル装置におけるバイパス回路への液冷媒混入防止制御の流れを示すフローチャートである。図15に示す一連の処理は制御装置40により定期的に実施される。以下、図14の冷凍サイクル装置におけるバイパス回路7への液冷媒混入防止制御の流れを説明する。   FIG. 15 is a flowchart showing a flow of liquid refrigerant mixture prevention control to the bypass circuit in the refrigeration cycle apparatus according to Embodiment 2 of the present invention. A series of processing shown in FIG. 15 is periodically performed by the control device 40. Hereinafter, the flow of liquid refrigerant mixture prevention control to the bypass circuit 7 in the refrigeration cycle apparatus of FIG. 14 will be described.

制御装置40は、温度検出装置9にて第三熱交換器14の出口側の冷媒温度Toutを検出する(S11)。制御装置40は、予め試験等でバイパス回路7への液冷媒の有無と温度検出装置9の検出値との相関を求めて記憶しており、その相関と、温度検出装置9の検出値Toutとから液冷媒の混入の有無を判断する(S12)。それ以降の処理は図5に示した実施の形態1と同様であり、液冷媒混入有と判断した場合は液冷媒混入防止運転を行い(S13)、液冷媒混入無と判断した場合は、現状の運転(通常運転)を継続する(S14)。   The control device 40 detects the refrigerant temperature Tout on the outlet side of the third heat exchanger 14 by the temperature detection device 9 (S11). The control device 40 obtains and stores in advance a correlation between the presence or absence of liquid refrigerant in the bypass circuit 7 and the detection value of the temperature detection device 9 by a test or the like, and the correlation and the detection value Tout of the temperature detection device 9 From this, it is determined whether or not liquid refrigerant is mixed (S12). The subsequent processing is the same as that of the first embodiment shown in FIG. 5. When it is determined that liquid refrigerant is mixed, liquid refrigerant mixing prevention operation is performed (S13). The operation (normal operation) is continued (S14).

以上説明したように、実施の形態2によれば、実施の形態1と同様の効果が得られると共に、バイパス回路7への液冷媒の有無の判断を、温度検出装置9の検出値のみで行うことができる。   As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained, and the presence / absence of liquid refrigerant in the bypass circuit 7 is determined only by the detection value of the temperature detection device 9. be able to.

実施の形態3.
実施の形態3は、実施の形態1及び実施の形態2とはまた別のバイパス回路7への液冷媒混入有無の判断を行うものである。なお、実施の形態3は、バイパス回路7への液冷媒混入の有無の判断に関わる構成及び判断方法が実施の形態1と異なり、それ以外については実施の形態1と同様である。
Embodiment 3 FIG.
In the third embodiment, whether or not liquid refrigerant is mixed into the bypass circuit 7 different from those in the first and second embodiments is determined. The third embodiment is different from the first embodiment in the configuration and the determination method related to the determination of the presence or absence of liquid refrigerant in the bypass circuit 7, and is otherwise the same as the first embodiment.

図16は、本発明の実施の形態3に係る冷凍サイクル装置の構成図である。
実施の形態3の冷凍サイクル装置は、実施の形態1の構成において、第三熱交換器14の入口側に設けた温度検出装置8を省略すると共に、第三熱交換器14と同じ機器(ここでは室外機)内に配置された第二熱交換器6の出口側に温度検出装置9Aを設けた構成としたものである。
FIG. 16 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
The refrigeration cycle apparatus of Embodiment 3 omits the temperature detection device 8 provided on the inlet side of the third heat exchanger 14 in the configuration of Embodiment 1, and has the same equipment as the third heat exchanger 14 (here Then, the temperature detection device 9A is provided on the outlet side of the second heat exchanger 6 disposed in the outdoor unit.

図17は、本発明の実施の形態3に係る冷凍サイクル装置におけるバイパス回路7への液冷媒混入防止制御の流れを示すフローチャートである。図17に示す一連の処理は制御装置40により定期的に実施される。以下、図16の冷凍サイクル装置におけるバイパス回路7への液冷媒混入防止制御の流れを説明する。   FIG. 17 is a flowchart showing a flow of liquid refrigerant mixture prevention control to the bypass circuit 7 in the refrigeration cycle apparatus according to Embodiment 3 of the present invention. A series of processing shown in FIG. 17 is periodically performed by the control device 40. Hereinafter, the flow of liquid refrigerant mixture prevention control to the bypass circuit 7 in the refrigeration cycle apparatus of FIG. 16 will be described.

制御装置40は、温度検出装置9により第三熱交換器14の出口側の冷媒温度Tout−3を検出すると共に、温度検出装置9Aにより第二熱交換器6の出口側の冷媒温度Tout−2を検出する(S21)。制御装置40は、冷媒温度Tout−3と冷媒温度Tout−2とを比較し(S22)、冷媒温度Tout−3が冷媒温度Tout−2以下の場合、液冷媒の混入有りと判断して、実施の形態1と同様に液冷媒混入防止運転を行い(S23)、冷媒温度Tout−3が冷媒温度Tout−2より高い場合、液冷媒混入無と判断して現状の運転(通常運転)を継続する(S24)。なお、制御装置40は、予め試験等でバイパス回路7への液冷媒の有無と冷媒温度Tout−3と冷媒温度Tout−2の比較値との相関を求めて記憶し、その相関と冷媒温度Tout−3と冷媒温度Tout−2の比較値から液冷媒の混入の有無を判断しても良い。   The control device 40 detects the refrigerant temperature Tout-3 on the outlet side of the third heat exchanger 14 by using the temperature detection device 9, and the refrigerant temperature Tout-2 on the outlet side of the second heat exchanger 6 by using the temperature detection device 9A. Is detected (S21). The control device 40 compares the refrigerant temperature Tout-3 with the refrigerant temperature Tout-2 (S22). If the refrigerant temperature Tout-3 is equal to or lower than the refrigerant temperature Tout-2, it is determined that liquid refrigerant is mixed, and the control is performed. The liquid refrigerant mixing prevention operation is performed in the same manner as in the first embodiment (S23), and when the refrigerant temperature Tout-3 is higher than the refrigerant temperature Tout-2, it is determined that liquid refrigerant is not mixed, and the current operation (normal operation) is continued. (S24). Note that the control device 40 obtains and stores a correlation between the presence / absence of liquid refrigerant in the bypass circuit 7 and the comparison value of the refrigerant temperature Tout-3 and the refrigerant temperature Tout-2 in advance by a test or the like, and stores the correlation and the refrigerant temperature Tout. -3 and refrigerant temperature Tout-2 may be used to determine whether liquid refrigerant is mixed.

以上説明したように、実施の形態3によれば、実施の形態1と同様の効果が得られると共に、バイパス回路7への液冷媒の有無の判断を、温度検出装置9と温度検出装置9Aの検出値から判断できる。なお、図16には暖房運転を行う冷凍サイクル装置の構成例を示したが、実施の形態3は、実施の形態1で説明した全ての構成例(変形例含む)の内、第三熱交換器と共に同じ機器内に配置される熱交換器(第一熱交換器3又は第二熱交換器6)が蒸発器の場合に適用可能である。具体的には、これまでの図の例でいえば、図8、図9、図10を除く構成に適用可能である。図8、図9、図10の構成は、第三熱交換器と共に同じ機器内に配置される熱交換器が凝縮器として機能するため、凝縮器の出口の冷媒温度と蒸発器となる第三熱交換器の出口の冷媒温度との比較ではバイパス回路7への液混入の有無を判断することができない。よって、これらについては適用外とするが、それ以外には適用可能である。   As described above, according to the third embodiment, the same effect as that of the first embodiment can be obtained, and the determination of the presence or absence of liquid refrigerant in the bypass circuit 7 can be performed by the temperature detection device 9 and the temperature detection device 9A. It can be judged from the detected value. In addition, although the structural example of the refrigerating-cycle apparatus which performs heating operation was shown in FIG. 16, Embodiment 3 is 3rd heat exchange among all the structural examples (including modification) demonstrated in Embodiment 1. FIG. This is applicable when the heat exchanger (the first heat exchanger 3 or the second heat exchanger 6) disposed in the same apparatus together with the evaporator is an evaporator. Specifically, in the examples shown so far, the present invention can be applied to configurations other than those shown in FIGS. In the configurations of FIGS. 8, 9, and 10, the heat exchanger disposed in the same apparatus together with the third heat exchanger functions as a condenser. Therefore, the refrigerant temperature at the outlet of the condenser and the third as the evaporator. The comparison with the refrigerant temperature at the outlet of the heat exchanger cannot determine whether liquid has entered the bypass circuit 7. Therefore, these are not applicable, but can be applied to other cases.

実施の形態4.
実施の形態4は、実施の形態1〜3とはまた別のバイパス回路7への液冷媒混入有無の判断を行うものである。なお、実施の形態4は、バイパス回路7への液冷媒混入の有無の判断に関わる構成及び判断方法が実施の形態1と異なり、それ以外については実施の形態1と同様である。
Embodiment 4 FIG.
In the fourth embodiment, whether or not liquid refrigerant is mixed into the bypass circuit 7 different from those in the first to third embodiments is determined. The fourth embodiment is different from the first embodiment in the configuration and the determination method related to the determination of the presence or absence of liquid refrigerant in the bypass circuit 7, and is otherwise the same as the first embodiment.

図18は、本発明の実施の形態4に係る冷凍サイクル装置の構成図である。
実施の形態4の冷凍サイクル装置は、実施の形態1の構成において、第三熱交換器14の入口側に設けた温度検出装置8と出口側に設けた温度検出装置9とを省略すると共に、室温を検出する室温検出装置9Bを室内機に設けた構成としたものである。
FIG. 18 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
The refrigeration cycle apparatus of the fourth embodiment omits the temperature detection device 8 provided on the inlet side of the third heat exchanger 14 and the temperature detection device 9 provided on the outlet side in the configuration of the first embodiment, The room temperature detecting device 9B for detecting the room temperature is provided in the indoor unit.

図19は、本発明の実施の形態4に係る冷凍サイクル装置におけるバイパス回路7への液冷媒混入防止制御の流れを示すフローチャートである。図19に示す一連の処理は制御装置40により定期的に実施される。以下、図18の冷凍サイクル装置におけるバイパス回路7への液冷媒混入防止制御の流れを説明する。   FIG. 19 is a flowchart showing a flow of liquid refrigerant mixture prevention control to the bypass circuit 7 in the refrigeration cycle apparatus according to Embodiment 4 of the present invention. A series of processing shown in FIG. 19 is periodically performed by the control device 40. Hereinafter, the flow of liquid refrigerant mixture prevention control to the bypass circuit 7 in the refrigeration cycle apparatus of FIG. 18 will be described.

制御装置40は、室温検出装置9Bにより室温の変化をモニターして(S31)、室温が予め設定した所定時間(例えば、10分)以上、変化しないかどうかをチェックする(S32)。制御装置40は、室温が所定時間の間に変化した場合、液冷媒の混入有りと判断して、実施の形態1と同様に液冷媒混入防止運転を行う(S33)。冷凍サイクル装置では、室温検出装置9Bで検出された室温が設定温度を維持するように制御を行っており、液冷媒混入があると、冷凍サイクル装置の性能が低下するため、設定温度を維持できなくなる。すなわち、暖房運転時に室温が低下してしまう。よって、この温度低下を検出することにより液冷媒の混入を検出できる。一方、制御装置40は、室温が所定時間以上、変化しなかった場合、液冷媒混入無と判断して現状の運転(通常運転)を継続する(S34)。   The controller 40 monitors the change in the room temperature by the room temperature detector 9B (S31), and checks whether the room temperature does not change for a predetermined time (for example, 10 minutes) or more (S32). When the room temperature changes during the predetermined time, the control device 40 determines that liquid refrigerant is mixed, and performs the liquid refrigerant mixing prevention operation as in the first embodiment (S33). In the refrigeration cycle apparatus, control is performed so that the room temperature detected by the room temperature detection device 9B maintains the set temperature. If liquid refrigerant is mixed, the performance of the refrigeration cycle apparatus is degraded, so the set temperature can be maintained. Disappear. That is, the room temperature decreases during heating operation. Therefore, mixing of the liquid refrigerant can be detected by detecting this temperature drop. On the other hand, if the room temperature has not changed for a predetermined time or longer, the control device 40 determines that no liquid refrigerant is mixed and continues the current operation (normal operation) (S34).

以上説明したように、実施の形態4によれば、実施の形態1と同様の効果が得られると共に、バイパス回路7への液冷媒の有無の判断を、室温検出装置9Bの検出値から判断できる。なお、図18には暖房運転を行う冷凍サイクル装置の構成例を示したが、実施の形態4は、実施の形態1で説明した全ての構成例(変形例含む)に適用可能である。   As described above, according to the fourth embodiment, the same effect as in the first embodiment can be obtained, and the determination of the presence or absence of liquid refrigerant in the bypass circuit 7 can be determined from the detection value of the room temperature detection device 9B. . In addition, although the structural example of the refrigerating cycle apparatus which performs heating operation was shown in FIG. 18, Embodiment 4 is applicable to all the structural examples (including a modification) demonstrated in Embodiment 1. FIG.

なお、上記実施の形態1〜4に係る冷凍サイクル装置を循環する冷媒として、特に限定するものではないが、R410A、R32又はR161等のフロン系冷媒の他、自然冷媒である二酸化炭素又は炭化水素等を利用することができる。この他、地球温暖化係数が低い冷媒であるテトラフルオロプロペンを成分とする冷媒として用いても良い。   In addition, it does not specifically limit as a refrigerant | coolant which circulates the refrigerating-cycle apparatus based on the said Embodiment 1-4, However, Carbon dioxide or hydrocarbon which is natural refrigerant | coolants other than CFC-type refrigerant | coolants, such as R410A, R32, or R161 Etc. can be used. In addition, you may use as a refrigerant | coolant which uses the tetrafluoro propene which is a refrigerant | coolant with a low global warming potential as a component.

また、上記実施の形態1〜4において、気液分離器5から圧縮機1の吸入側を接続するバイパス回路7が、電磁弁11、逆止弁12及びキャピラリーチューブ10を備える構成としたが、これに限定されるものではなく、これらに代えて流量調整弁を備える構成としても良い。   In the first to fourth embodiments, the bypass circuit 7 that connects the suction side of the compressor 1 from the gas-liquid separator 5 includes the electromagnetic valve 11, the check valve 12, and the capillary tube 10. It is not limited to this, It is good also as a structure provided with a flow regulating valve instead of these.

また、上記実施の形態1〜4に係る冷凍サイクル装置として空気調和機を例に説明したが、これに限定されるものではなく、ヒートポンプ式給湯装置又は冷蔵庫等、その他の冷凍サイクル装置に適用するものとしても良い。更に、上記実施の形態1〜4に係る気液分離器5は、冷凍サイクル装置に搭載するものとしたが、これに限定されるものではなく、冷媒ではなくその他の流体の気液分離に適用するものとしても良い。   Moreover, although the air conditioner was demonstrated to the example as a refrigerating cycle apparatus which concerns on the said Embodiment 1-4, it is not limited to this, It applies to other refrigerating cycle apparatuses, such as a heat pump type hot water supply apparatus or a refrigerator. It is good as a thing. Furthermore, although the gas-liquid separator 5 which concerns on the said Embodiment 1-4 shall be mounted in a refrigerating-cycle apparatus, it is not limited to this, It applies to the gas-liquid separation of other fluids instead of a refrigerant | coolant It is good to do.

1 圧縮機、2 四方弁、3 第一熱交換器、4 膨張弁、5 気液分離器、6 第二熱交換器、7 バイパス回路、8 温度検出装置、9 温度検出装置、9A 温度検出装置、9B 室温検出装置、10 キャピラリーチューブ、11 電磁弁、12 逆止弁、13 アキュムレータ、14 第三熱交換器、20 伝熱管、21 アルミフィン、30 第一送風機、40 制御装置、60 第二送風機。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 1st heat exchanger, 4 Expansion valve, 5 Gas-liquid separator, 6 2nd heat exchanger, 7 Bypass circuit, 8 Temperature detection apparatus, 9 Temperature detection apparatus, 9A Temperature detection apparatus , 9B Room temperature detection device, 10 Capillary tube, 11 Solenoid valve, 12 Check valve, 13 Accumulator, 14 Third heat exchanger, 20 Heat transfer tube, 21 Aluminum fin, 30 First blower, 40 Control device, 60 Second blower .

Claims (18)

圧縮機と、凝縮器として作用する第一熱交換器と、減圧装置と、気液分離器と、蒸発器として作用する第二熱交換器とを順次配管で接続した主回路と、
前記気液分離器で分離された冷媒を第三熱交換器を介して前記圧縮機の吸入側に戻すバイパス回路と、
前記バイパス回路に流れる流量を調整する流量調整装置と、
前記バイパス回路の前記第三熱交換器の出口側の冷媒温度を検出する第一温度検出装置と、
前記バイパス回路の前記第三熱交換器の入口側の冷媒温度を検出する第二温度検出装置と、
前記第一温度検出装置の検出値と前記第二温度検出装置の検出値との温度差に基づいて、前記バイパス回路への液冷媒混入を防止するための液冷媒混入防止運転を行う制御装置と
を備えたことを特徴とする冷凍サイクル装置。
A main circuit in which a compressor, a first heat exchanger that acts as a condenser, a decompression device, a gas-liquid separator, and a second heat exchanger that acts as an evaporator are sequentially connected by piping;
A bypass circuit for returning the refrigerant separated by the gas-liquid separator to the suction side of the compressor via a third heat exchanger;
A flow rate adjusting device for adjusting a flow rate flowing through the bypass circuit;
A first temperature detection device for detecting a refrigerant temperature on the outlet side of the third heat exchanger of the bypass circuit;
A second temperature detection device for detecting a refrigerant temperature on the inlet side of the third heat exchanger of the bypass circuit;
A control device that performs a liquid refrigerant mixing prevention operation for preventing liquid refrigerant from being mixed into the bypass circuit based on a temperature difference between a detection value of the first temperature detection device and a detection value of the second temperature detection device; A refrigeration cycle apparatus comprising:
前記制御装置は、前記第一温度検出装置の検出値と前記第二温度検出装置の検出値との温度差に基づいて前記気液分離器から前記バイパス回路への液冷媒混入の有無を判断し、液冷媒混入有と判断すると、前記液冷媒混入防止運転を行うことを特徴とする請求項1記載の冷凍サイクル装置。   The control device determines whether liquid refrigerant is mixed into the bypass circuit from the gas-liquid separator based on a temperature difference between a detection value of the first temperature detection device and a detection value of the second temperature detection device. 2. The refrigeration cycle apparatus according to claim 1, wherein when it is determined that liquid refrigerant is mixed, the liquid refrigerant mixing prevention operation is performed. 前記制御装置は、前記第一温度検出装置の検出値と前記第二温度検出装置の検出値との温度差が閾値未満の場合には液冷媒混入有、前記温度差が閾値以上の場合には液冷媒混入無と判断することを特徴とする請求項2記載の冷凍サイクル装置。   When the temperature difference between the detection value of the first temperature detection device and the detection value of the second temperature detection device is less than a threshold value, the control device includes liquid refrigerant, and when the temperature difference is greater than or equal to the threshold value, The refrigeration cycle apparatus according to claim 2, wherein it is determined that liquid refrigerant is not mixed. 圧縮機と、凝縮器として作用する第一熱交換器と、減圧装置と、気液分離器と、蒸発器として作用する第二熱交換器とを順次配管で接続した主回路と、
前記気液分離器で分離された冷媒を第三熱交換器を介して前記圧縮機の吸入側に戻すバイパス回路と、
前記バイパス回路に流れる流量を調整する流量調整装置と、
前記バイパス回路の前記第三熱交換器の出口側の冷媒温度を検出する第一温度検出装置と、
前記第一温度検出装置の検出値に基づいて、前記バイパス回路への液冷媒混入を防止するための液冷媒混入防止運転を行う制御装置と
を備えたことを特徴とする冷凍サイクル装置。
A main circuit in which a compressor, a first heat exchanger that acts as a condenser, a decompression device, a gas-liquid separator, and a second heat exchanger that acts as an evaporator are sequentially connected by piping;
A bypass circuit for returning the refrigerant separated by the gas-liquid separator to the suction side of the compressor via a third heat exchanger;
A flow rate adjusting device for adjusting a flow rate flowing through the bypass circuit;
A first temperature detection device for detecting a refrigerant temperature on the outlet side of the third heat exchanger of the bypass circuit;
A refrigeration cycle apparatus comprising: a control device that performs a liquid refrigerant mixture prevention operation for preventing liquid refrigerant from mixing into the bypass circuit based on a detection value of the first temperature detection device.
前記制御装置は、前記第一温度検出装置の検出値に基づいて前記気液分離器から前記バイパス回路への液冷媒混入の有無を判断し、液冷媒混入有と判断すると、前記液冷媒混入防止運転を行うことを特徴とする請求項4記載の冷凍サイクル装置。   The control device determines whether or not liquid refrigerant is mixed into the bypass circuit from the gas-liquid separator based on the detection value of the first temperature detection device. The refrigeration cycle apparatus according to claim 4, wherein the refrigeration cycle apparatus is operated. 前記制御装置は、前記バイパス回路への液冷媒の有無と前記第一温度検出装置の検出値との相関を予め求めて記憶しており、前記第一温度検出装置の検出値と前記相関とに基づいて液冷媒混入の有無を判断することを特徴とする請求項5記載の冷凍サイクル装置。   The control device obtains and stores in advance a correlation between the presence or absence of liquid refrigerant in the bypass circuit and the detected value of the first temperature detecting device, and the detected value and the correlation of the first temperature detecting device are stored. 6. The refrigeration cycle apparatus according to claim 5, wherein presence or absence of liquid refrigerant is determined based on the determination. 圧縮機と、凝縮器として作用する第一熱交換器と、減圧装置と、気液分離器と、蒸発器として作用する第二熱交換器とを順次配管で接続した主回路と、
前記気液分離器で分離された冷媒を第三熱交換器を介して前記圧縮機の吸入側に戻すバイパス回路と、
前記バイパス回路に流れる流量を調整する流量調整装置と、
前記バイパス回路の前記第三熱交換器の出口側の冷媒温度を検出する第一温度検出装置と、
前記第二熱交換器の出口側の冷媒温度を検出する第二温度検出装置と、
前記第一温度検出装置の検出値と前記第二温度検出装置の検出値とに基づいて、前記バイパス回路への液冷媒混入を防止するための液冷媒混入防止運転を行う制御装置と
を備えたことを特徴とする冷凍サイクル装置。
A main circuit in which a compressor, a first heat exchanger that acts as a condenser, a decompression device, a gas-liquid separator, and a second heat exchanger that acts as an evaporator are sequentially connected by piping;
A bypass circuit for returning the refrigerant separated by the gas-liquid separator to the suction side of the compressor via a third heat exchanger;
A flow rate adjusting device for adjusting a flow rate flowing through the bypass circuit;
A first temperature detection device for detecting a refrigerant temperature on the outlet side of the third heat exchanger of the bypass circuit;
A second temperature detection device for detecting the refrigerant temperature on the outlet side of the second heat exchanger;
And a control device that performs a liquid refrigerant mixture prevention operation for preventing liquid refrigerant from mixing into the bypass circuit based on the detection value of the first temperature detection device and the detection value of the second temperature detection device. A refrigeration cycle apparatus characterized by that.
前記制御装置は、前記第一温度検出装置の検出値と前記第二温度検出装置の検出値との温度差に基づいて前記気液分離器から前記バイパス回路への液冷媒混入の有無を判断し、液冷媒混入有と判断すると、前記液冷媒混入防止運転を行うことを特徴とする請求項7記載の冷凍サイクル装置。   The control device determines whether liquid refrigerant is mixed into the bypass circuit from the gas-liquid separator based on a temperature difference between a detection value of the first temperature detection device and a detection value of the second temperature detection device. 8. The refrigeration cycle apparatus according to claim 7, wherein when the liquid refrigerant is mixed, the liquid refrigerant mixing prevention operation is performed. 前記制御装置は、前記第一温度検出装置の検出値と前記第二温度検出装置とを比較し、前記第一温度検出装置の検出値が前記第二温度検出装置の検出値以下の場合、液冷媒混入有と判断し、前記第一温度検出装置の検出値が前記第二温度検出装置の検出値よりも高い場合、液冷媒混入無と判断することを特徴とする請求項8記載の冷凍サイクル装置。   The control device compares the detection value of the first temperature detection device with the second temperature detection device, and if the detection value of the first temperature detection device is less than or equal to the detection value of the second temperature detection device, 9. The refrigeration cycle according to claim 8, wherein it is determined that the refrigerant is mixed, and if the detected value of the first temperature detecting device is higher than the detected value of the second temperature detecting device, it is determined that the liquid refrigerant is not mixed. apparatus. 圧縮機と、凝縮器として作用する第一熱交換器と、減圧装置と、気液分離器と、蒸発器として作用する第二熱交換器とを順次配管で接続した主回路と、
前記気液分離器で分離された冷媒を第三熱交換器を介して前記圧縮機の吸入側に戻すバイパス回路と、
前記バイパス回路に流れる流量を調整する流量調整装置と、
前記第一熱交換器又は前記第二熱交換器が設置された室内の温度を検出する室温検出装置と、
前記室温検出装置で検出された室温の時間変化に基づいて、前記バイパス回路への液混入を防止するための液冷媒混入運転を行う制御装置と
を備えたことを特徴とする冷凍サイクル装置。
A main circuit in which a compressor, a first heat exchanger that acts as a condenser, a decompression device, a gas-liquid separator, and a second heat exchanger that acts as an evaporator are sequentially connected by piping;
A bypass circuit for returning the refrigerant separated by the gas-liquid separator to the suction side of the compressor via a third heat exchanger;
A flow rate adjusting device for adjusting a flow rate flowing through the bypass circuit;
A room temperature detector for detecting the temperature in the room where the first heat exchanger or the second heat exchanger is installed;
A refrigeration cycle apparatus comprising: a control device that performs a liquid refrigerant mixing operation for preventing liquid mixture into the bypass circuit based on a time change in room temperature detected by the room temperature detection device.
前記制御装置は、前記室温検出装置で検出された室温の時間変化に基づいて前記気液分離器から前記バイパス回路への液冷媒混入の有無を判断し、液冷媒混入有と判断すると、前記液冷媒混入防止運転を行うことを特徴とする請求項10記載の冷凍サイクル装置。   The controller determines whether liquid refrigerant is mixed into the bypass circuit from the gas-liquid separator based on a time change in room temperature detected by the room temperature detector, and determines that liquid refrigerant is mixed, The refrigeration cycle apparatus according to claim 10, wherein the refrigerant mixing prevention operation is performed. 前記制御装置は、前記室温が予め設定した所定時間の間に変化した場合、液冷媒混入有、前記室温が前記所定時間以上、変化しなかった場合、液冷媒混入無と判断することを特徴とする請求項11記載の冷凍サイクル装置。   The control device determines that liquid refrigerant is mixed when the room temperature changes during a predetermined time set in advance, and that liquid refrigerant is not mixed when the room temperature does not change for the predetermined time or more. The refrigeration cycle apparatus according to claim 11. 前記第二熱交換器と前記第三熱交換器とを一体の熱交換器で構成したことを特徴とする請求項1乃至請求項12の何れか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 12, wherein the second heat exchanger and the third heat exchanger are configured as an integral heat exchanger. 前記第一熱交換器と前記第三熱交換器とを一体の熱交換器で構成したことを特徴とする請求項1乃至請求項6、請求項10乃至請求項12の何れか一項に記載の冷凍サイクル装置。   The said 1st heat exchanger and said 3rd heat exchanger were comprised by the integral heat exchanger, The any one of Claims 1 thru | or 6 and Claims 10 thru | or 12 characterized by the above-mentioned. Refrigeration cycle equipment. 前記主回路の冷媒の循環方向を切り換える四方弁を備え、前記四方弁の切り換えにより前記第一熱交換器を前記凝縮器から蒸発器に切り換えて作用させると共に、前記第二熱交換器を前記蒸発器から凝縮器に切り換えて作用させることを可能としたことを特徴とする請求項1乃至請求項13の何れか一項に記載の冷凍サイクル装置。   A four-way valve for switching a circulation direction of the refrigerant in the main circuit; the first heat exchanger is switched from the condenser to the evaporator by switching the four-way valve; and the second heat exchanger is the evaporation The refrigeration cycle apparatus according to any one of claims 1 to 13, wherein the refrigeration cycle apparatus can be operated by switching from a condenser to a condenser. 第一熱交換器を室内機に配置し、第二熱交換器を室外機に配置したことを特徴とする請求項1乃至請求項15の何れか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 15, wherein the first heat exchanger is disposed in the indoor unit, and the second heat exchanger is disposed in the outdoor unit. 第二熱交換器を室内機に配置し、第一熱交換器を室外機に配置したことを特徴とする請求項1乃至請求項15の何れか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 15, wherein the second heat exchanger is disposed in the indoor unit, and the first heat exchanger is disposed in the outdoor unit. 前記液冷媒混入防止運転は、前記流量調整装置を閉とするか又は圧縮機周波数を低下させて循環冷媒量を低減する運転を行うことを特徴とする請求項1乃至請求項17の何れか一項に記載の冷凍サイクル装置。   18. The liquid refrigerant mixing prevention operation is an operation in which the flow rate adjusting device is closed or a compressor frequency is lowered to reduce a circulating refrigerant amount. The refrigeration cycle apparatus according to item.
JP2013544083A 2011-11-18 2012-05-31 Refrigeration cycle equipment Pending JPWO2013073070A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013544083A JPWO2013073070A1 (en) 2011-11-18 2012-05-31 Refrigeration cycle equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011252243 2011-11-18
JP2011252243 2011-11-18
JP2013544083A JPWO2013073070A1 (en) 2011-11-18 2012-05-31 Refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
JPWO2013073070A1 true JPWO2013073070A1 (en) 2015-04-02

Family

ID=48429175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013544083A Pending JPWO2013073070A1 (en) 2011-11-18 2012-05-31 Refrigeration cycle equipment

Country Status (2)

Country Link
JP (1) JPWO2013073070A1 (en)
WO (1) WO2013073070A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460858A (en) * 2020-12-01 2021-03-09 珠海格力电器股份有限公司 Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780446A (en) * 2020-08-14 2020-10-16 中国铁路设计集团有限公司 CO (carbon monoxide)2Device for increasing high water inlet temperature of heat pump and application method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116794A (en) * 2002-09-24 2004-04-15 Mitsubishi Electric Corp Refrigeration cycle
JP2008008555A (en) * 2006-06-29 2008-01-17 Fuji Electric Retail Systems Co Ltd Refrigerant flow controller
JP2008045837A (en) * 2006-08-18 2008-02-28 Samsung Electronics Co Ltd Air conditioner
JP2008051425A (en) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd Air conditioner
JP2008241125A (en) * 2007-03-27 2008-10-09 Sanyo Electric Co Ltd Refrigerating unit
JP2011106810A (en) * 2009-09-30 2011-06-02 Daikin Industries Ltd Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116794A (en) * 2002-09-24 2004-04-15 Mitsubishi Electric Corp Refrigeration cycle
JP2008008555A (en) * 2006-06-29 2008-01-17 Fuji Electric Retail Systems Co Ltd Refrigerant flow controller
JP2008045837A (en) * 2006-08-18 2008-02-28 Samsung Electronics Co Ltd Air conditioner
JP2008051425A (en) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd Air conditioner
JP2008241125A (en) * 2007-03-27 2008-10-09 Sanyo Electric Co Ltd Refrigerating unit
JP2011106810A (en) * 2009-09-30 2011-06-02 Daikin Industries Ltd Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460858A (en) * 2020-12-01 2021-03-09 珠海格力电器股份有限公司 Air conditioner

Also Published As

Publication number Publication date
WO2013073070A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5430667B2 (en) Heat pump equipment
JP4475278B2 (en) Refrigeration apparatus and air conditioner
JP3894221B1 (en) Air conditioner
JP6223469B2 (en) Air conditioner
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP2005069566A (en) Freezer
JP2009229051A (en) Refrigerating device
KR101901540B1 (en) Air conditioning device
WO2013179334A1 (en) Air conditioning device
JP6328270B2 (en) Air conditioner
JP5186949B2 (en) Refrigeration equipment
JP3781046B2 (en) Air conditioner
JP3861891B2 (en) Air conditioner
JPWO2015140994A1 (en) Heat source side unit and air conditioner
JP2006308207A (en) Refrigerating device
JP2008002742A (en) Refrigerating device
WO2014103407A1 (en) Air-conditioning device
JP2016205729A (en) Refrigeration cycle device
JP6643630B2 (en) Air conditioner
JP6336066B2 (en) Air conditioner
WO2013073070A1 (en) Refrigeration cycle device
JP2009228972A (en) Refrigerating device
JP6391825B2 (en) Refrigeration cycle equipment
JP7258129B2 (en) air conditioner
JP5176874B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150507