JP2011052884A - Refrigerating air conditioner - Google Patents

Refrigerating air conditioner Download PDF

Info

Publication number
JP2011052884A
JP2011052884A JP2009201451A JP2009201451A JP2011052884A JP 2011052884 A JP2011052884 A JP 2011052884A JP 2009201451 A JP2009201451 A JP 2009201451A JP 2009201451 A JP2009201451 A JP 2009201451A JP 2011052884 A JP2011052884 A JP 2011052884A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pressure
temperature
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009201451A
Other languages
Japanese (ja)
Other versions
JP5452138B2 (en
Inventor
Yoshihiro Sumida
嘉裕 隅田
Takuya Ito
拓也 伊藤
Takashi Okazaki
多佳志 岡崎
Makoto Saito
信 齊藤
Hisahira Kato
央平 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009201451A priority Critical patent/JP5452138B2/en
Publication of JP2011052884A publication Critical patent/JP2011052884A/en
Application granted granted Critical
Publication of JP5452138B2 publication Critical patent/JP5452138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating air conditioner suppressing increase in condensation pressure when high temperature water is taken out and having good operating efficiency and high reliability. <P>SOLUTION: The refrigerating air conditioner includes a supercooling heat exchanger 3 inserted between a condenser 2 and an electronic type expansion valve 4 of a refrigerating cycle device 31 and cooling a refrigerant from the condenser 2 by exchanging heat with a low temperature refrigerant. Based on refrigerant pressure on the discharge side of the compressor 1 detected by a pressure sensor 11 and refrigerant temperature on the outlet side of the supercooling heat exchanger 3 detected by a thermistor 21, a supercooling degree of the supercooling heat exchanger 3 is calculated, and an opening of the electronic type expansion valve 4 is controlled so that the supercooling degree becomes a first predetermined value. A low pressure gas liquid two-phase refrigerant from the electronic type expansion valve 4 is used as the low temperature refrigerant of the supercooling heat exchanger 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば、給湯設備や暖房設備、加熱設備、乾燥設備などに利用される冷凍サイクル装置を用いた冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner using a refrigeration cycle apparatus used for, for example, hot water supply equipment, heating equipment, heating equipment, drying equipment, and the like.

従来の冷凍空調装置には、圧縮機と、凝縮器と、気液分離器と、過冷却熱交換器と、膨張弁と、蒸発器とが冷媒配管により順次に接続され、前述の気液分離器の底部と圧縮機の吸入側との間にバイパス管によって毛細管と開閉弁が接続されたものがある。   In a conventional refrigeration air conditioner, a compressor, a condenser, a gas-liquid separator, a supercooling heat exchanger, an expansion valve, and an evaporator are sequentially connected by a refrigerant pipe. In some cases, a capillary tube and an on-off valve are connected by a bypass pipe between the bottom of the vessel and the suction side of the compressor.

前述の冷凍空調装置においては、圧縮機で圧縮された冷媒は凝縮器で熱交換されて高圧気液二相冷媒となり、気液分離器に流入する。この気液分離器を出た冷媒は、過冷却熱交換器で蒸発器に入る前の低圧気液二相冷媒により冷却され、過冷却状態となって膨張弁に流入し、ここで減圧されて低圧気液二相冷媒となる。その気液二相冷媒は、過冷却熱交換器を経て蒸発器に流入し、低圧蒸気冷媒となって圧縮機の吸入側に至る。一方、気液分離器で分離された一部の液冷媒は毛細管および開閉弁を介して圧縮機の吸入側に流入し、蒸発器からの低圧蒸気冷媒と合流して再び圧縮機により圧縮される(例えば、特許文献1参照)。   In the above-described refrigeration air conditioner, the refrigerant compressed by the compressor is heat-exchanged by the condenser to become a high-pressure gas-liquid two-phase refrigerant and flows into the gas-liquid separator. The refrigerant exiting this gas-liquid separator is cooled by the low-pressure gas-liquid two-phase refrigerant before entering the evaporator in the supercooling heat exchanger, enters a supercooled state, flows into the expansion valve, and is decompressed here. It becomes a low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the evaporator through the supercooling heat exchanger and becomes low-pressure vapor refrigerant and reaches the suction side of the compressor. On the other hand, a part of the liquid refrigerant separated by the gas-liquid separator flows into the suction side of the compressor through the capillary tube and the on-off valve, joins with the low-pressure vapor refrigerant from the evaporator, and is compressed again by the compressor. (For example, refer to Patent Document 1).

特開平10−259959号公報(第4頁、図1)JP-A-10-259959 (page 4, FIG. 1)

前述した従来の冷凍空調装置は、凝縮器の出口側に気液分離器と過冷却熱交換器が設けられているので、凝縮器の出口側の冷媒状態が気液二相状態あるいは飽和液状態となる。そのため、高温水の条件化での給湯運転時でも凝縮圧力を低く抑えることができ、効率のよい運転ができる。しかし、蒸発器の出口側の冷媒過熱度を一定に制御する一般的な制御方法の場合には、運転条件によっては必ずしも過冷却熱交換器の出口側の冷媒が過冷却状態になるとは限らず、過冷却熱交換器の出口側の冷媒が気液二相状態となる場合もあった。   In the conventional refrigeration air conditioner described above, a gas-liquid separator and a supercooling heat exchanger are provided on the outlet side of the condenser, so that the refrigerant state on the outlet side of the condenser is a gas-liquid two-phase state or a saturated liquid state. It becomes. Therefore, the condensation pressure can be kept low even during hot water supply operation under the condition of high-temperature water, and efficient operation can be performed. However, in the case of a general control method in which the refrigerant superheat degree on the outlet side of the evaporator is controlled to be constant, the refrigerant on the outlet side of the supercooling heat exchanger is not necessarily in a supercooled state depending on operating conditions. In some cases, the refrigerant on the outlet side of the supercooling heat exchanger is in a gas-liquid two-phase state.

過冷却熱交換器の出口側の冷媒が気液二相状態となった場合、その二相冷媒が膨張弁を通過するので、冷凍サイクルの安定性が悪化し、圧力や温度のハンチングが発生し、冷凍空調装置の信頼性が悪化する可能性がある。また、気液二相冷媒が膨張弁を通過するときに冷媒の流動音や振動が大きくなり、冷凍空調装置の騒音が増加する可能性もある。   When the refrigerant on the outlet side of the supercooling heat exchanger enters a gas-liquid two-phase state, the two-phase refrigerant passes through the expansion valve, so the stability of the refrigeration cycle deteriorates and pressure and temperature hunting occurs. There is a possibility that the reliability of the refrigeration air conditioner will deteriorate. Further, when the gas-liquid two-phase refrigerant passes through the expansion valve, the flow noise and vibration of the refrigerant increase, and the noise of the refrigeration air conditioner may increase.

本発明は、前記のような課題を解決するためになされたもので、特に高温水を取り出す場合の凝縮圧力の上昇を抑え、運転効率がよく、さらに、信頼性の高い冷凍空調装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. In particular, the present invention provides a refrigeration / air-conditioning apparatus that suppresses an increase in condensation pressure particularly when high-temperature water is taken out, has high operating efficiency, and is highly reliable. For the purpose.

本発明に係る冷凍空調装置は、圧縮機、凝縮器、第1減圧装置、蒸発器が冷媒配管により順次に接続された冷凍サイクル装置と、冷凍サイクル装置の凝縮器と第1減圧装置との間に挿入され凝縮器からの冷媒を低温冷媒と熱交換して冷却する過冷却熱交換器と、圧縮機から吐出される冷媒の圧力を検出する冷媒圧力検出手段と、過冷却熱交換器から流出される冷媒の温度を検出する第1冷媒温度検出手段と、冷媒圧力検出手段により検出された冷媒の圧力と第1冷媒温度検出手段により検出された冷媒の温度とに基づいて過冷却熱交換器の過冷却度を演算し、その過冷却度が第1の所定値になるように第1減圧装置の開度を制御する制御装置とを備えたものである。   A refrigeration air conditioner according to the present invention includes a compressor, a condenser, a first decompression device, a refrigeration cycle device in which an evaporator is sequentially connected by a refrigerant pipe, and between the condenser of the refrigeration cycle device and the first decompression device. The subcooled heat exchanger that exchanges heat from the condenser with the low-temperature refrigerant to cool it, the refrigerant pressure detection means that detects the pressure of the refrigerant discharged from the compressor, and the subcooled heat exchanger First refrigerant temperature detection means for detecting the temperature of the refrigerant to be performed, a supercooling heat exchanger based on the refrigerant pressure detected by the refrigerant pressure detection means and the refrigerant temperature detected by the first refrigerant temperature detection means And a control device for controlling the degree of opening of the first pressure reducing device so that the degree of supercooling becomes a first predetermined value.

本発明においては、過冷却熱交換器を凝縮器の出口側に設け、その過冷却熱交換器から流出される冷媒の過冷却度が第1の所定値になるように第1減圧装置の開度を制御している。そのため、どのような運転条件や負荷条件であっても凝縮器の出口側の冷媒を高圧気液二相状態とし、かつ第1減圧装置の入口側の冷媒を過冷却液状態とすることができる。その結果、特に高温水を取り出す場合の凝縮圧力の上昇を抑えることが可能になり、運転効率がよく、さらに、冷凍サイクルの安定性が向上し、冷媒の流動音の発生や異常振動の発生も無く、騒音の小さな冷凍空調装置を提供できる。   In the present invention, a supercooling heat exchanger is provided on the outlet side of the condenser, and the first pressure reducing device is opened so that the degree of supercooling of the refrigerant flowing out of the supercooling heat exchanger becomes a first predetermined value. Control the degree. Therefore, the refrigerant on the outlet side of the condenser can be in a high-pressure gas-liquid two-phase state and the refrigerant on the inlet side of the first decompression device can be in a supercooled liquid state under any operating condition or load condition. . As a result, it is possible to suppress an increase in the condensation pressure, particularly when high-temperature water is taken out, and the operation efficiency is improved.In addition, the stability of the refrigeration cycle is improved, and the flow noise of the refrigerant and abnormal vibration are also generated. And a low-noise refrigeration air conditioner can be provided.

本発明の実施の形態1に係る冷凍空調装置を示す冷媒回路の構成図である。It is a block diagram of the refrigerant circuit which shows the refrigeration air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍空調装置を示す冷媒回路の構成図である。It is a block diagram of the refrigerant circuit which shows the refrigerating air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍空調装置を示す冷媒回路の構成図である。It is a block diagram of the refrigerant circuit which shows the refrigeration air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍空調装置を示す冷媒回路の構成図である。It is a block diagram of the refrigerant circuit which shows the refrigerating air conditioning apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る冷凍空調装置を示す冷媒回路の構成図である。It is a block diagram of the refrigerant circuit which shows the refrigerating air conditioning apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る冷凍空調装置を示す冷媒回路の構成図である。It is a block diagram of the refrigerant circuit which shows the refrigerating air conditioning apparatus which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る冷凍空調装置を示す冷媒回路の構成図である。It is a block diagram of the refrigerant circuit which shows the refrigerating air conditioning apparatus which concerns on Embodiment 7 of this invention.

実施の形態1.
図1は本発明の実施の形態1に係る冷凍空調装置を示す冷媒回路の構成図である。
図1において、冷凍空調装置の冷凍サイクル装置31は、圧縮機1、凝縮器2、第1減圧装置である電子式膨張弁4、蒸発器5が冷媒配管により順次に接続されて構成されている。凝縮器2と電子式膨張弁4との間には、凝縮器2からの冷媒(高圧気液二相冷媒)を低温冷媒(低圧気液二相冷媒)と熱交換して冷却する過冷却熱交換器3が設けられている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a refrigerant circuit showing a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
In FIG. 1, a refrigeration cycle apparatus 31 of a refrigeration air conditioner is configured by sequentially connecting a compressor 1, a condenser 2, an electronic expansion valve 4 serving as a first decompression device, and an evaporator 5 through a refrigerant pipe. . Between the condenser 2 and the electronic expansion valve 4, supercooling heat that cools the refrigerant (high-pressure gas-liquid two-phase refrigerant) from the condenser 2 by exchanging heat with the low-temperature refrigerant (low-pressure gas-liquid two-phase refrigerant). An exchanger 3 is provided.

凝縮器2は、例えばプレート式熱交換器からなり、暖房時に、流入する水を凝縮冷媒により加熱し、例えば60℃の高温の水にして供給する。蒸発器5は、例えばプレートフィンアンドチューブ熱交換器からなり空気と熱交換する。過冷却熱交換器3は、例えばプレート式熱交換器からなり、電子式膨張弁4を出て蒸発器5に入る前の低圧気液二相冷媒により凝縮器2からの高圧気液二相冷媒を冷却するように構成されている。   The condenser 2 is composed of, for example, a plate heat exchanger, and heats inflowing water with a condensed refrigerant during heating, and supplies the water as, for example, high-temperature water of 60 ° C. The evaporator 5 is composed of, for example, a plate fin and tube heat exchanger, and exchanges heat with air. The supercooling heat exchanger 3 is composed of, for example, a plate heat exchanger, and the high-pressure gas-liquid two-phase refrigerant from the condenser 2 by the low-pressure gas-liquid two-phase refrigerant before leaving the electronic expansion valve 4 and entering the evaporator 5. It is configured to cool.

圧縮機1と凝縮器2の間の冷媒配管には、冷媒圧力検出手段である圧力センサー11が取り付けられ、過冷却熱交換器3の出口側の冷媒配管には、第1冷媒温度検出手段であるサーミスタ21が取り付けられている。圧力センサー11は、圧縮機1から吐出される高圧気液二相冷媒の圧力を検出し、サーミスタ21は、過冷却熱交換器3から流出される冷媒の温度を検出する。   A pressure sensor 11 that is a refrigerant pressure detection means is attached to the refrigerant pipe between the compressor 1 and the condenser 2, and the refrigerant pipe on the outlet side of the supercooling heat exchanger 3 is connected to the refrigerant pipe at the first refrigerant temperature detection means. A certain thermistor 21 is attached. The pressure sensor 11 detects the pressure of the high-pressure gas-liquid two-phase refrigerant discharged from the compressor 1, and the thermistor 21 detects the temperature of the refrigerant flowing out from the supercooling heat exchanger 3.

制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の冷媒圧力(高圧気液二相冷媒の圧力)から飽和液温度を演算し、この飽和液温度とサーミスタ21により検出された過冷却熱交換器3の出口側の冷媒温度の差から過冷却熱交換器3の出口側の過冷却度を算出する。さらに、制御装置10は、算出した過冷却度と第1の所定値(例えば5℃)とを比較し、その所定値との差があるときは過冷却度が5℃になるように電子式膨張弁4の開度を制御する。   The control device 10 calculates the saturated liquid temperature from the refrigerant pressure (pressure of the high-pressure gas-liquid two-phase refrigerant) on the discharge side of the compressor 1 detected by the pressure sensor 11, and the saturated liquid temperature and the thermistor 21 detect the saturated liquid temperature. The degree of supercooling on the outlet side of the supercooling heat exchanger 3 is calculated from the refrigerant temperature difference on the outlet side of the supercooling heat exchanger 3. Further, the control device 10 compares the calculated degree of supercooling with a first predetermined value (for example, 5 ° C.), and when there is a difference from the predetermined value, the electronic device is adjusted so that the degree of supercooling becomes 5 ° C. The opening degree of the expansion valve 4 is controlled.

冷凍空調装置の冷媒としてはR410Aが用いられている。この冷凍空調装置の設計圧力は、基準凝縮温度65℃として4.17MPaで設計されている。すなわち、設計圧力の観点から冷凍サイクルの最高凝縮温度は65℃である。例えば、凝縮器2の出口水温を60℃とするためには凝縮器2を効率よく使用し、凝縮温度を65℃以下で使用する必要がある。   R410A is used as the refrigerant of the refrigeration air conditioner. The design pressure of this refrigeration air conditioner is designed to be 4.17 MPa with a standard condensation temperature of 65 ° C. That is, the maximum condensation temperature of the refrigeration cycle is 65 ° C. from the viewpoint of design pressure. For example, in order to set the outlet water temperature of the condenser 2 to 60 ° C., it is necessary to use the condenser 2 efficiently and to use the condensation temperature at 65 ° C. or less.

次に、実施の形態1の動作について説明する。
圧縮機1により圧縮された高圧蒸気冷媒は、凝縮器2で凝縮され、高圧気液二相冷媒となって過冷却熱交換器3に流入する。その高圧気液二相冷媒は、過冷却熱交換器3内で蒸発器5に入る前の低圧気液二相冷媒により冷却され、過冷却液の状態となって電子式膨張弁4に流入する。その高圧の過冷却液冷媒は、電子式膨張弁4内で減圧され、低圧気液二相冷媒となって過冷却熱交換器3に流入し、凝縮器2からの高圧気液二相冷媒を冷却しながら蒸発器5に流れる。蒸発器5に流入した低圧気液二相冷媒は、空気と熱交換されて低圧蒸気冷媒となり、圧縮機1に吸入されて再び圧縮される。
Next, the operation of the first embodiment will be described.
The high-pressure vapor refrigerant compressed by the compressor 1 is condensed in the condenser 2 and flows into the supercooling heat exchanger 3 as a high-pressure gas-liquid two-phase refrigerant. The high-pressure gas-liquid two-phase refrigerant is cooled by the low-pressure gas-liquid two-phase refrigerant before entering the evaporator 5 in the supercooling heat exchanger 3 and flows into the electronic expansion valve 4 in a supercooled liquid state. . The high-pressure supercooled liquid refrigerant is depressurized in the electronic expansion valve 4, becomes a low-pressure gas-liquid two-phase refrigerant, flows into the supercooling heat exchanger 3, and the high-pressure gas-liquid two-phase refrigerant from the condenser 2 is It flows into the evaporator 5 while cooling. The low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 5 exchanges heat with air to become a low-pressure vapor refrigerant, and is sucked into the compressor 1 and compressed again.

一方、制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の高圧蒸気冷媒の圧力を読み込んで飽和液温度を演算する。さらに、制御装置10は、サーミスタ21により検出された過冷却熱交換器3の出口側の過冷却液状態の冷媒温度を読み込んで、先に演算した飽和液温度とその冷媒温度の差から過冷却熱交換器3の出口側の過冷却度を算出する。そして、制御装置10は、算出した過冷却度と第1の所定値である5℃とを比較し、その第1の所定値との差があるときは過冷却度が5℃になるように電子式膨張弁4の開度を制御する。例えば、制御装置10は、算出した過冷却度が5℃よりも低いときは、過冷却度が5℃まで上がるように電子式膨張弁4の開度を小さくし、過冷却度が5℃よりも高いときは、過冷却度が5℃まで下がるように電子式膨張弁4の開度を大きくする。   On the other hand, the control device 10 reads the pressure of the high-pressure vapor refrigerant on the discharge side of the compressor 1 detected by the pressure sensor 11 and calculates the saturated liquid temperature. Further, the control device 10 reads the refrigerant temperature in the supercooled liquid state on the outlet side of the supercooling heat exchanger 3 detected by the thermistor 21, and performs supercooling from the previously calculated saturated liquid temperature and the difference between the refrigerant temperatures. The degree of supercooling on the outlet side of the heat exchanger 3 is calculated. Then, the control device 10 compares the calculated degree of supercooling with the first predetermined value of 5 ° C., and if there is a difference between the first predetermined value, the degree of supercooling is 5 ° C. The opening degree of the electronic expansion valve 4 is controlled. For example, when the calculated degree of supercooling is lower than 5 ° C., the control device 10 reduces the degree of opening of the electronic expansion valve 4 so that the degree of supercooling rises to 5 ° C., and the degree of supercooling exceeds 5 ° C. Is higher, the opening degree of the electronic expansion valve 4 is increased so that the degree of supercooling is lowered to 5 ° C.

ここで、実施の形態1の冷凍空調装置を例えば空冷式ヒートポンプチラーに適用した場合について説明する。
従来の空冷式ヒートポンプチラーでの暖房運転範囲は、外気温度−15℃〜25℃、出口水温25℃〜55℃、能力制御範囲10〜100%が一般的であったが、実施の形態1を適用した空冷式ヒートポンプチラーでは、外気温度や能力制御範囲は同じで、出口水温を25℃〜60℃まで拡大することが可能となる。これは、外気温度や出口水温、能力が変化した場合、凝縮器2や過冷却熱交換器3での熱交換量も変化し、従来の空冷式ヒートポンプチラーでは常に凝縮器2の出口側の高圧気液二相冷媒を飽和液状態にし、常に過冷却熱交換器3の出口側の冷媒を所定の過冷却度に維持することは困難であった。
Here, the case where the refrigeration air conditioner of Embodiment 1 is applied to, for example, an air-cooled heat pump chiller will be described.
The heating operation range in the conventional air-cooled heat pump chiller is generally an outside air temperature of −15 ° C. to 25 ° C., an outlet water temperature of 25 ° C. to 55 ° C., and a capacity control range of 10 to 100%. In the applied air-cooled heat pump chiller, the outside air temperature and the capability control range are the same, and the outlet water temperature can be expanded to 25 ° C to 60 ° C. This is because when the outside air temperature, the outlet water temperature, and the capacity change, the heat exchange amount in the condenser 2 and the supercooling heat exchanger 3 also changes. It has been difficult to keep the gas-liquid two-phase refrigerant in a saturated liquid state and always maintain the refrigerant on the outlet side of the supercooling heat exchanger 3 at a predetermined supercooling degree.

実施の形態1を適用した空冷式ヒートポンプチラーでは、制御装置10により、過冷却熱交換器3から流出される冷媒の過冷却度が常に5℃となるように電子式膨張弁4の開度を制御している。そのため、電子式膨張弁4を通過する冷媒は、運転条件や負荷条件が変化しても常に過冷却液の状態を維持でき、その結果、凝縮器2の出口側も飽和液状態あるいは高圧気液二相状態を維持することができる。そのため、出口温度の上限を従来の55℃から60℃まで拡大することができる。   In the air-cooled heat pump chiller to which the first embodiment is applied, the opening degree of the electronic expansion valve 4 is controlled by the control device 10 so that the degree of supercooling of the refrigerant flowing out of the supercooling heat exchanger 3 is always 5 ° C. I have control. Therefore, the refrigerant passing through the electronic expansion valve 4 can always maintain the supercooled liquid state even when the operating conditions and load conditions change. As a result, the outlet side of the condenser 2 is also in the saturated liquid state or the high-pressure gas-liquid state. A two-phase state can be maintained. Therefore, the upper limit of outlet temperature can be expanded from the conventional 55 degreeC to 60 degreeC.

以上のように実施の形態1においては、過冷却熱交換器3を凝縮器2の出口側に設け、蒸発器5の入口側の低圧気液二相冷媒により凝縮器2から過冷却熱交換器3に流入する高圧気液二相冷媒を冷却する。さらに、過冷却熱交換器3の出口側の過冷却度が常に5℃となるように電子式膨張弁4の開度を制御している。その結果、どのような運転条件や負荷条件であっても凝縮器2の出口側の冷媒を高圧気液二相状態とし、かつ電子式膨張弁4の入口側の冷媒を過冷却液状態とすることができる。そのため、凝縮器2の出口水温が60℃である高温給湯運転においても、凝縮器2の出口側の冷媒が高圧気液二相状態であり、凝縮器2内には伝熱特性の悪い過冷却液が存在しない状態となっている。従って、凝縮圧力を低くすることができ、従来の出口水温の上限55℃に対してその上限温度の拡大が可能となり、また、凝縮圧力を低くすることができるので効率のよい運転が可能となる。   As described above, in Embodiment 1, the supercooling heat exchanger 3 is provided on the outlet side of the condenser 2, and the supercooling heat exchanger is removed from the condenser 2 by the low-pressure gas-liquid two-phase refrigerant on the inlet side of the evaporator 5. The high-pressure gas-liquid two-phase refrigerant flowing into 3 is cooled. Further, the opening degree of the electronic expansion valve 4 is controlled so that the degree of supercooling on the outlet side of the supercooling heat exchanger 3 is always 5 ° C. As a result, the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state and the refrigerant on the inlet side of the electronic expansion valve 4 is in a supercooled liquid state under any operating conditions or load conditions. be able to. Therefore, even in a high-temperature hot water supply operation in which the outlet water temperature of the condenser 2 is 60 ° C., the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state, and the condenser 2 has supercooling with poor heat transfer characteristics. There is no liquid. Therefore, the condensing pressure can be lowered, the upper limit temperature can be increased with respect to the conventional upper limit of the outlet water temperature of 55 ° C., and the condensing pressure can be lowered, so that an efficient operation is possible. .

さらに、制御装置10により過冷却熱交換器3から流出する冷媒の過冷却度が常に5℃となるように電子式膨張弁4の開度を制御しているので、電子式膨張弁4を通過する冷媒は、運転条件や負荷条件が変化しても常に過冷却液の状態を維持できる。そのため、冷凍サイクルの安定性が向上し、また、冷媒の流動音の発生や異常振動の発生も無く、騒音の小さな冷凍空調装置を実現できる。   Furthermore, since the opening degree of the electronic expansion valve 4 is controlled by the control device 10 so that the degree of supercooling of the refrigerant flowing out of the supercooling heat exchanger 3 is always 5 ° C., the electronic expansion valve 4 passes through. The refrigerant to be maintained can always maintain the state of the supercooled liquid even if the operating condition or the load condition changes. Therefore, the stability of the refrigeration cycle is improved, and there is no generation of refrigerant flow noise or abnormal vibration, and a refrigeration air conditioner with low noise can be realized.

なお、実施の形態1では、冷媒としてR410Aを使用した場合の例を示したが、これに限定されるものではない。例えば標準沸点の比較的高いR134aを用いることにより同じ凝縮圧力でも凝縮温度を高くすることができ、凝縮器2の出口水温を例えば80℃により高くすることが可能となる。   In the first embodiment, an example in which R410A is used as the refrigerant is shown, but the present invention is not limited to this. For example, by using R134a having a relatively high normal boiling point, the condensation temperature can be increased even at the same condensation pressure, and the outlet water temperature of the condenser 2 can be increased to, for example, 80 ° C.

また、冷媒としてHFO−1234fy(2,3,3,3−テトラフルオロプロペン)やHFO−1234ze(1,3,3,3テトラフルオロペンタン)を用いてもよい。さらに、HFO−1234fyとR134aやR125、R32、R152aなどの冷媒との混合冷媒であってもよい。これらのHFO冷媒およびその混合冷媒は、地球温暖化係数が小さく、地球環境にやさしい冷凍空調装置を提供することができる。   Further, HFO-1234fy (2,3,3,3-tetrafluoropropene) or HFO-1234ze (1,3,3,3 tetrafluoropentane) may be used as the refrigerant. Furthermore, a mixed refrigerant of HFO-1234fy and a refrigerant such as R134a, R125, R32, R152a may be used. These HFO refrigerants and mixed refrigerants thereof can provide a refrigeration air conditioner that has a low global warming potential and is friendly to the global environment.

実施の形態2.
図2は本発明の実施の形態2に係る冷凍空調装置を示す冷媒回路の構成図である。
図2において、冷凍空調装置の冷凍サイクル装置31は、圧縮機1、凝縮器2、第1減圧装置である電子式膨張弁4、蒸発器5が冷媒配管により順次に接続されて構成されている。凝縮器2と電子式膨張弁4との間には、凝縮器2からの冷媒(高圧気液二相冷媒)を低温冷媒(低圧蒸気冷媒)と熱交換して冷却する過冷却熱交換器3が設けられている。
Embodiment 2. FIG.
FIG. 2 is a configuration diagram of a refrigerant circuit showing a refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
In FIG. 2, a refrigeration cycle device 31 of a refrigeration air conditioner is configured by sequentially connecting a compressor 1, a condenser 2, an electronic expansion valve 4 as a first decompression device, and an evaporator 5 through a refrigerant pipe. . Between the condenser 2 and the electronic expansion valve 4, a supercooling heat exchanger 3 that cools the refrigerant (high-pressure gas-liquid two-phase refrigerant) from the condenser 2 by exchanging heat with the low-temperature refrigerant (low-pressure vapor refrigerant). Is provided.

前述の凝縮器2および過冷却熱交換器3はプレート式熱交換器からなり、蒸発器5はプレートフィンアンドチューブ熱交換器からなっている。過冷却熱交換器3は、蒸発器5を出て圧縮機1に入る前の低圧蒸気冷媒により凝縮器2からの高圧気液二相冷媒を冷却するように構成されている。   The condenser 2 and the supercooling heat exchanger 3 described above are plate heat exchangers, and the evaporator 5 is a plate fin and tube heat exchanger. The supercooling heat exchanger 3 is configured to cool the high-pressure gas-liquid two-phase refrigerant from the condenser 2 with the low-pressure vapor refrigerant before leaving the evaporator 5 and entering the compressor 1.

圧縮機1と凝縮器2の間の冷媒配管には、圧縮機1から吐出される冷媒の圧力(高圧気液二相冷媒の圧力)を検出する圧力センサー11が取り付けられ、過冷却熱交換器3の出口側の冷媒配管には、過冷却熱交換器3から流出される冷媒の温度を検出するサーミスタ21(第1冷媒温度検出手段)が取り付けられている。   A pressure sensor 11 that detects the pressure of the refrigerant discharged from the compressor 1 (pressure of the high-pressure gas-liquid two-phase refrigerant) is attached to the refrigerant pipe between the compressor 1 and the condenser 2, and is a supercooling heat exchanger. A thermistor 21 (first refrigerant temperature detecting means) for detecting the temperature of the refrigerant flowing out from the supercooling heat exchanger 3 is attached to the refrigerant pipe on the outlet side of the No. 3 outlet.

制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の冷媒圧力から飽和液温度を演算し、その飽和液温度とサーミスタ21により検出された過冷却熱交換器3の出口側の冷媒温度の差から過冷却熱交換器3の出口側の過冷却度を算出する。さらに、制御装置10は、算出した過冷却度と第1の所定値(5℃)とを比較し、その所定値との差があるときは過冷却度が5℃となるように電子式膨張弁4の開度を制御する。   The control device 10 calculates the saturated liquid temperature from the refrigerant pressure on the discharge side of the compressor 1 detected by the pressure sensor 11, and outputs the saturated liquid temperature and the outlet side of the supercooling heat exchanger 3 detected by the thermistor 21. The degree of supercooling on the outlet side of the supercooling heat exchanger 3 is calculated from the difference in refrigerant temperature. Further, the control device 10 compares the calculated degree of supercooling with a first predetermined value (5 ° C.), and if there is a difference between the predetermined value, the electronic expansion is performed so that the degree of supercooling becomes 5 ° C. The opening degree of the valve 4 is controlled.

次に、実施の形態2の動作について説明する。
圧縮機1により圧縮された高圧蒸気冷媒は、凝縮器2で凝縮され、高圧気液二相冷媒となって過冷却熱交換器3に流入する。その高圧気液二相冷媒は、過冷却熱交換器3内で蒸発器5から出た低圧蒸気冷媒により冷却され、高圧の過冷却液の状態となって電子式膨張弁4に流入する。その高圧の過冷却液冷媒は、電子式膨張弁4内で減圧され、低圧気液二相冷媒となって蒸発器5に流入し、空気と熱交換されて低圧蒸気冷媒となる。その低圧蒸気冷媒は、過冷却熱交換器3に入って凝縮器2からの高圧気液二相冷媒を冷却し、圧縮機1に吸入されて再び圧縮機1により圧縮される。
Next, the operation of the second embodiment will be described.
The high-pressure vapor refrigerant compressed by the compressor 1 is condensed in the condenser 2 and flows into the supercooling heat exchanger 3 as a high-pressure gas-liquid two-phase refrigerant. The high-pressure gas-liquid two-phase refrigerant is cooled by the low-pressure vapor refrigerant discharged from the evaporator 5 in the supercooling heat exchanger 3 and flows into the electronic expansion valve 4 in a high-pressure supercooled liquid state. The high-pressure supercooled liquid refrigerant is depressurized in the electronic expansion valve 4, becomes a low-pressure gas-liquid two-phase refrigerant, flows into the evaporator 5, and exchanges heat with air to become a low-pressure vapor refrigerant. The low-pressure vapor refrigerant enters the supercooling heat exchanger 3, cools the high-pressure gas-liquid two-phase refrigerant from the condenser 2, is sucked into the compressor 1, and is compressed again by the compressor 1.

一方、制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の高圧蒸気冷媒の圧力を読み込んで飽和液温度を演算する。さらに、制御装置10は、サーミスタ21により検出された過冷却熱交換器3の出口側の過冷却液状態の冷媒温度を読み込んで、先に演算した飽和液温度とその冷媒温度の差から過冷却熱交換器3の出口側の過冷却度を算出する。そして、制御装置10は、算出した過冷却度と第1の所定値である5℃とを比較し、その第1の所定値との差があるときは過冷却度が5℃となるように電子式膨張弁4の開度を制御する。例えば、制御装置10は、算出した過冷却度が5℃よりも低いときは、過冷却度が5℃まで上がるように電子式膨張弁4の開度を小さくし、過冷却度が5℃よりも高いときは、過冷却度が5℃まで下がるように電子式膨張弁4の開度を大きくする。   On the other hand, the control device 10 reads the pressure of the high-pressure vapor refrigerant on the discharge side of the compressor 1 detected by the pressure sensor 11 and calculates the saturated liquid temperature. Further, the control device 10 reads the refrigerant temperature in the supercooled liquid state on the outlet side of the supercooling heat exchanger 3 detected by the thermistor 21, and performs supercooling from the previously calculated saturated liquid temperature and the difference between the refrigerant temperatures. The degree of supercooling on the outlet side of the heat exchanger 3 is calculated. Then, the control device 10 compares the calculated degree of supercooling with the first predetermined value of 5 ° C., and when there is a difference from the first predetermined value, the degree of supercooling is 5 ° C. The opening degree of the electronic expansion valve 4 is controlled. For example, when the calculated degree of supercooling is lower than 5 ° C., the control device 10 reduces the degree of opening of the electronic expansion valve 4 so that the degree of supercooling rises to 5 ° C., and the degree of supercooling exceeds 5 ° C. Is higher, the opening degree of the electronic expansion valve 4 is increased so that the degree of supercooling is lowered to 5 ° C.

以上のように実施の形態2によれば、過冷却熱交換器3を凝縮器2の出口側に設け、蒸発器5の出口側の低圧蒸気冷媒により凝縮器2の出口側の高圧気液二相冷媒を冷却する。さらに、過冷却熱交換器3の出口側の過冷却度が常に5℃となるように電子式膨張弁4の開度を制御している。その結果、どのような運転条件や負荷条件であっても凝縮器2の出口側の冷媒は高圧気液二相状態とし、かつ電子式膨張弁4の入口側の冷媒を過冷却液状態とすることができる。そのため、凝縮器2の出口水温が60℃である高温給湯運転においても、凝縮器2の出口側の冷媒が高圧気液二相状態であり、凝縮器2内には伝熱特性の悪い過冷却液が存在しない状態となっている。従って、凝縮圧力を低くすることができ、従来の出口水温の上限55℃に対してその上限温度の拡大が可能となり、また、凝縮圧力を低くできるので効率のよい運転が可能となる。   As described above, according to Embodiment 2, the supercooling heat exchanger 3 is provided on the outlet side of the condenser 2, and the high-pressure gas-liquid two on the outlet side of the condenser 2 by the low-pressure vapor refrigerant on the outlet side of the evaporator 5. Cool the phase refrigerant. Further, the opening degree of the electronic expansion valve 4 is controlled so that the degree of supercooling on the outlet side of the supercooling heat exchanger 3 is always 5 ° C. As a result, the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state and the refrigerant on the inlet side of the electronic expansion valve 4 is in a supercooled liquid state under any operating conditions or load conditions. be able to. Therefore, even in a high-temperature hot water supply operation in which the outlet water temperature of the condenser 2 is 60 ° C., the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state, and the condenser 2 has supercooling with poor heat transfer characteristics. There is no liquid. Therefore, the condensing pressure can be lowered, the upper limit temperature can be increased with respect to the conventional upper limit of the outlet water temperature of 55 ° C., and the condensing pressure can be lowered, so that an efficient operation is possible.

さらに、制御装置10により過冷却熱交換器3の出口側の冷媒の過冷却度が常に5℃となるように電子式膨張弁4の開度を制御しているので、電子式膨張弁4を通過する冷媒は、運転条件や負荷条件が変化しても常に過冷却液の状態を維持できる。そのため、冷凍サイクルの安定性が向上し、また、冷媒の流動音の発生や異常振動の発生も無く、騒音の小さな冷凍空調装置を実現できる。   Furthermore, since the opening degree of the electronic expansion valve 4 is controlled by the control device 10 so that the degree of supercooling of the refrigerant on the outlet side of the supercooling heat exchanger 3 is always 5 ° C., the electronic expansion valve 4 is The refrigerant that passes through can always maintain the state of the supercooled liquid even if the operating conditions and load conditions change. Therefore, the stability of the refrigeration cycle is improved, and there is no generation of refrigerant flow noise or abnormal vibration, and a refrigeration air conditioner with low noise can be realized.

実施の形態3.
図3は本発明の実施の形態3に係る冷凍空調装置を示す冷媒回路の構成図である。
図3において、冷凍空調装置の冷凍サイクル装置31は、圧縮機1、凝縮器2、第1減圧装置である第1電子式膨張弁4、蒸発器5が冷媒配管により順次に接続されて構成されている。また、冷凍サイクル装置には、凝縮器2と第1電子式膨張弁4との間に凝縮器2からの冷媒(高圧気液二相冷媒)を低温冷媒(低圧気液二相冷媒)と熱交換して冷却する過冷却熱交換器3が設けられている。さらに、第1電子式膨張弁4と過冷却熱交換器3との間に挿入された冷媒配管から過冷却熱交換器3を介して圧縮機1の吸入側に第2電子式膨張弁6(第2減圧装置)を介してバイパスするバイパス配管7が設けられている。
Embodiment 3 FIG.
FIG. 3 is a configuration diagram of a refrigerant circuit showing a refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
In FIG. 3, a refrigeration cycle device 31 of a refrigeration air conditioner is configured by sequentially connecting a compressor 1, a condenser 2, a first electronic expansion valve 4 as a first decompression device, and an evaporator 5 through a refrigerant pipe. ing. Further, in the refrigeration cycle apparatus, the refrigerant (high pressure gas-liquid two-phase refrigerant) from the condenser 2 is heated between the condenser 2 and the first electronic expansion valve 4 and the low-temperature refrigerant (low-pressure gas-liquid two-phase refrigerant) and heat. A supercooling heat exchanger 3 that replaces and cools is provided. Further, a second electronic expansion valve 6 (from the refrigerant pipe inserted between the first electronic expansion valve 4 and the supercooling heat exchanger 3 to the suction side of the compressor 1 through the supercooling heat exchanger 3 ( A bypass pipe 7 is provided for bypassing via a second decompression device.

凝縮器2および過冷却熱交換器3はプレート式熱交換器からなり、蒸発器5はプレートフィンアンドチューブ熱交換器からなっている。過冷却熱交換器3は、第2電子式膨張弁6で減圧された低圧気液二相冷媒により凝縮器2からの高圧気液二相冷媒を冷却するように構成されている。過冷却熱交換器3を出た第2電子式膨張弁6からの低圧気液二相冷媒は、バイパス配管7を通って圧縮機1の吸入側へ導入される。   The condenser 2 and the subcooling heat exchanger 3 are plate heat exchangers, and the evaporator 5 is a plate fin and tube heat exchanger. The supercooling heat exchanger 3 is configured to cool the high-pressure gas-liquid two-phase refrigerant from the condenser 2 with the low-pressure gas-liquid two-phase refrigerant decompressed by the second electronic expansion valve 6. The low-pressure gas-liquid two-phase refrigerant from the second electronic expansion valve 6 that has exited the supercooling heat exchanger 3 is introduced to the suction side of the compressor 1 through the bypass pipe 7.

圧縮機1と凝縮器2の間の冷媒配管には、圧縮機1の吐出側の冷媒圧力(高圧気液二相冷媒の圧力)を検出する圧力センサー11が取り付けられ、過冷却熱交換器3の出口側の冷媒配管には、過冷却熱交換器3の出口側の冷媒温度を検出するサーミスタ21(第1の冷媒温度検出手段)が取り付けられている。   A pressure sensor 11 for detecting the refrigerant pressure on the discharge side of the compressor 1 (pressure of the high-pressure gas-liquid two-phase refrigerant) is attached to the refrigerant pipe between the compressor 1 and the condenser 2, and the supercooling heat exchanger 3. The thermistor 21 (first refrigerant temperature detecting means) for detecting the refrigerant temperature on the outlet side of the supercooling heat exchanger 3 is attached to the refrigerant pipe on the outlet side of the refrigerant.

制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の冷媒圧力から飽和液温度を演算し、この飽和液温度とサーミスタ21により検出された過冷却熱交換器3の出口側の冷媒温度の差から過冷却熱交換器3の出口側の過冷却度を算出する。さらに、制御装置10は、算出した過冷却度と第1の所定値(5℃)とを比較し、その所定値との差があるときは過冷却度が5℃となるように第1電子式膨張弁4の開度を制御する。   The control device 10 calculates the saturated liquid temperature from the refrigerant pressure on the discharge side of the compressor 1 detected by the pressure sensor 11, and outputs the saturated liquid temperature and the outlet side of the supercooling heat exchanger 3 detected by the thermistor 21. The degree of supercooling on the outlet side of the supercooling heat exchanger 3 is calculated from the difference in refrigerant temperature. Further, the control device 10 compares the calculated degree of supercooling with a first predetermined value (5 ° C.), and if there is a difference between the predetermined value, the first electronic device is set so that the degree of supercooling becomes 5 ° C. The opening degree of the expansion valve 4 is controlled.

次に、実施の形態3の動作について説明する。
圧縮機1により圧縮された高圧蒸気冷媒は凝縮器2で凝縮され、高圧気液二相冷媒となって過冷却熱交換器3に流入する。その高圧気液二相冷媒は、過冷却熱交換器3内で第2電子式膨張弁6から出た低圧気液二相冷媒により冷却され、高圧の過冷却液の状態となって第1電子式膨張弁4に流入する。その高圧の過冷却液冷媒は、第1電子式膨張弁4内で減圧され、低圧気液二相冷媒となって蒸発器5に流入し、空気と熱交換されて低圧蒸気冷媒となる。その低圧蒸気冷媒は、圧縮機1に吸入され、再び圧縮機1により圧縮される。
Next, the operation of the third embodiment will be described.
The high-pressure vapor refrigerant compressed by the compressor 1 is condensed by the condenser 2 and becomes a high-pressure gas-liquid two-phase refrigerant and flows into the supercooling heat exchanger 3. The high-pressure gas-liquid two-phase refrigerant is cooled by the low-pressure gas-liquid two-phase refrigerant that has exited from the second electronic expansion valve 6 in the supercooling heat exchanger 3, and becomes a high-pressure supercooled liquid state to form the first electrons. Flows into the expansion valve 4. The high-pressure supercooled liquid refrigerant is depressurized in the first electronic expansion valve 4, becomes a low-pressure gas-liquid two-phase refrigerant, flows into the evaporator 5, and exchanges heat with air to become a low-pressure vapor refrigerant. The low-pressure vapor refrigerant is sucked into the compressor 1 and compressed again by the compressor 1.

また、過冷却熱交換器3を出た高圧の過冷却液冷媒の一部は、第2電子式膨張弁6により低圧まで減圧され、低圧気液二相冷媒となって過冷却熱交換器3に流入し、凝縮器2からの高圧気液二相冷媒と熱交換する。その過冷却熱交換器3を介した低圧気液二相冷媒は、バイパス配管7を通って蒸発器4を出た低圧蒸気冷媒と合流して圧縮機1に吸入され、再び圧縮機1により圧縮される。   A part of the high-pressure supercooled liquid refrigerant exiting the supercooling heat exchanger 3 is depressurized to a low pressure by the second electronic expansion valve 6 to become a low-pressure gas-liquid two-phase refrigerant, and the supercooling heat exchanger 3. To exchange heat with the high-pressure gas-liquid two-phase refrigerant from the condenser 2. The low-pressure gas-liquid two-phase refrigerant that has passed through the supercooling heat exchanger 3 merges with the low-pressure vapor refrigerant that has exited the evaporator 4 through the bypass pipe 7 and is sucked into the compressor 1 and compressed again by the compressor 1. Is done.

一方、制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の高圧蒸気冷媒の圧力を読み込んで飽和液温度を演算する。さらに、制御装置10は、サーミスタ21により検出された過冷却熱交換器3の出口側の過冷却液状態の冷媒温度を読み込んで、先に演算した飽和液温度とその冷媒温度の差から過冷却熱交換器3の出口側の過冷却度を算出する。そして、制御装置10は、算出した過冷却度と第1の所定値である5℃とを比較し、その第1の所定値との差があるときは過冷却度が5℃となるように第1電子式膨張弁4の開度を制御する。例えば、制御装置10は、算出した過冷却度が5℃よりも低いときは、過冷却度が5℃まで上がるように第1電子式膨張弁4の開度を小さくし、過冷却度が5℃よりも高いときは、過冷却度が5℃まで下がるように第1電子式膨張弁4の開度を大きくする。   On the other hand, the control device 10 reads the pressure of the high-pressure vapor refrigerant on the discharge side of the compressor 1 detected by the pressure sensor 11 and calculates the saturated liquid temperature. Further, the control device 10 reads the refrigerant temperature in the supercooled liquid state on the outlet side of the supercooling heat exchanger 3 detected by the thermistor 21, and performs supercooling from the previously calculated saturated liquid temperature and the difference between the refrigerant temperatures. The degree of supercooling on the outlet side of the heat exchanger 3 is calculated. Then, the control device 10 compares the calculated degree of supercooling with the first predetermined value of 5 ° C., and when there is a difference from the first predetermined value, the degree of supercooling is 5 ° C. The opening degree of the first electronic expansion valve 4 is controlled. For example, when the calculated degree of supercooling is lower than 5 ° C., the control device 10 reduces the opening degree of the first electronic expansion valve 4 so that the degree of supercooling increases to 5 ° C., and the degree of supercooling is 5 When it is higher than ° C., the opening degree of the first electronic expansion valve 4 is increased so that the degree of supercooling is lowered to 5 ° C.

以上のように実施の形態3によれば、過冷却熱交換器3を凝縮器2の出口側に設け、過冷却熱交換器3を出た冷媒の一部が減圧された低圧気液二相冷媒により凝縮器2からの高圧気液二相冷媒を冷却する。さらに、過冷却熱交換器3の出口側の過冷却度が常に5℃となるように第1電子式膨張弁4の開度を制御している。その結果、どのような運転条件や負荷条件であっても凝縮器2の出口側の冷媒は高圧気液二相状態とし、かつ第1電子式膨張弁4の入口側の冷媒を過冷却液状態とすることができる。そのため、凝縮器2の出口水温が60℃である高温給湯運転においても、凝縮器2の出口側の冷媒が高圧気液二相状態であり、凝縮器2内には伝熱特性の悪い過冷却液が存在しない状態となっている。従って、凝縮圧力を低くすることができ、従来の出口水温の上限55℃に対してその上限温度の拡大が可能となり、また、凝縮圧力を低くできるので効率のよい運転が可能となる。   As described above, according to the third embodiment, the supercooling heat exchanger 3 is provided on the outlet side of the condenser 2, and the low-pressure gas-liquid two-phase in which a part of the refrigerant exiting the supercooling heat exchanger 3 is decompressed. The high-pressure gas-liquid two-phase refrigerant from the condenser 2 is cooled by the refrigerant. Further, the opening degree of the first electronic expansion valve 4 is controlled so that the degree of supercooling on the outlet side of the supercooling heat exchanger 3 is always 5 ° C. As a result, the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state and the refrigerant on the inlet side of the first electronic expansion valve 4 is in a supercooled liquid state under any operating condition or load condition. It can be. Therefore, even in a high-temperature hot water supply operation in which the outlet water temperature of the condenser 2 is 60 ° C., the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state, and the condenser 2 has supercooling with poor heat transfer characteristics. There is no liquid. Therefore, the condensing pressure can be lowered, the upper limit temperature can be increased with respect to the conventional upper limit of the outlet water temperature of 55 ° C., and the condensing pressure can be lowered, so that an efficient operation is possible.

また、制御装置10により過冷却熱交換器3の出口側の冷媒の過冷却度を常に5℃となるように第1電子式膨張弁4の開度を制御しているので、第1電子式膨張弁4を通過する冷媒は、運転条件や負荷条件が変化しても常に過冷却液の状態を維持できる。そのため、冷凍サイクルの安定性が向上し、また、冷媒流動音の発生や異常振動の発生も無く、騒音の小さな冷凍空調装置を実現できる。   Further, since the opening degree of the first electronic expansion valve 4 is controlled by the control device 10 so that the degree of supercooling of the refrigerant on the outlet side of the supercooling heat exchanger 3 is always 5 ° C., the first electronic type The refrigerant passing through the expansion valve 4 can always maintain the state of the supercooled liquid even if the operation condition or load condition changes. Therefore, the stability of the refrigeration cycle is improved, and there is no generation of refrigerant flow noise or abnormal vibration, and a refrigeration air conditioner with low noise can be realized.

さらに、過冷却熱交換器3の低圧冷媒としては過冷却熱交換器3を出た高圧の過冷却液冷媒の一部を減圧した低圧気液二相冷媒を使用している。そのため、凝縮器2を出た高圧気液二相冷媒の一部を減圧して用いる場合と比べ、第2電子式膨張弁6の入口側の冷媒を確実に液状態とすることができる。また、過冷却熱交換器3の熱交換量を確実に確保することができ、過冷却熱交換器3の過冷却度を確実に制御することができる。また、第2電子式膨張弁6の入口側の冷媒を確実に液冷媒とすることができるので、第2電子式膨張弁6での冷凍サイクルの安定性が向上し、また、冷媒流動音や異常振動の発生も無く、信頼性の高い冷凍空調装置を提供できる。   Further, as the low-pressure refrigerant of the supercooling heat exchanger 3, a low-pressure gas-liquid two-phase refrigerant obtained by decompressing a part of the high-pressure supercooled liquid refrigerant that has exited the supercooling heat exchanger 3 is used. Therefore, the refrigerant on the inlet side of the second electronic expansion valve 6 can be surely brought into a liquid state as compared with a case where a part of the high-pressure gas-liquid two-phase refrigerant that has exited the condenser 2 is decompressed. Moreover, the heat exchange amount of the supercooling heat exchanger 3 can be ensured reliably, and the supercooling degree of the supercooling heat exchanger 3 can be controlled reliably. In addition, since the refrigerant on the inlet side of the second electronic expansion valve 6 can be reliably used as a liquid refrigerant, the stability of the refrigeration cycle in the second electronic expansion valve 6 is improved, and the refrigerant flow noise and There is no occurrence of abnormal vibration, and a highly reliable refrigeration air conditioner can be provided.

なお、実施の形態3では、常に過冷却熱交換器3に低温冷媒を供給する例について説明したが、これに限定されるものではない。例えば、凝縮圧力が所定値よりも高くなった場合や凝縮器2の出口水温が所定値よりも大きくなったときに、第2電子式膨張弁6を開くようにしてもよい。その場合、過冷却熱交換器3に低圧気液二相冷媒を流し、凝縮器2の出口側の冷媒が高圧気液二相状態となるようにする。   In addition, in Embodiment 3, although the example which always supplies a low-temperature refrigerant | coolant to the supercooling heat exchanger 3 was demonstrated, it is not limited to this. For example, the second electronic expansion valve 6 may be opened when the condensing pressure becomes higher than a predetermined value or when the outlet water temperature of the condenser 2 becomes higher than a predetermined value. In that case, a low-pressure gas-liquid two-phase refrigerant is caused to flow through the supercooling heat exchanger 3 so that the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state.

実施の形態4.
図4は本発明の実施の形態4に係る冷凍空調装置を示す冷媒回路の構成図である。
図4において、冷凍空調装置の冷凍サイクル装置31は、圧縮機1、凝縮器2、第1減圧装置である第1電子式膨張弁4、蒸発器5が冷媒配管により順次に接続されて構成されている。また、冷凍サイクル装置には、凝縮器2と第1電子式膨張弁4との間に凝縮器2からの冷媒(高圧気液二相冷媒)を低温冷媒(中間圧気液二相冷媒)と熱交換して冷却する過冷却熱交換器3が設けられている。さらに、第1電子式膨張弁4と過冷却熱交換器3との間に挿入された冷媒配管から過冷却熱交換器3を介して圧縮機1内の中間圧室に第2電子式膨張弁6(第2減圧装置)を介してバイパスするバイパス配管7が設けられている。その第2電子式膨張弁6は弁が開閉可能になっている。
Embodiment 4 FIG.
FIG. 4 is a configuration diagram of a refrigerant circuit showing a refrigerating and air-conditioning apparatus according to Embodiment 4 of the present invention.
In FIG. 4, a refrigeration cycle device 31 of a refrigeration air conditioner is configured by sequentially connecting a compressor 1, a condenser 2, a first electronic expansion valve 4 as a first pressure reducing device, and an evaporator 5 through a refrigerant pipe. ing. Further, in the refrigeration cycle apparatus, the refrigerant (high pressure gas-liquid two-phase refrigerant) from the condenser 2 is heated between the condenser 2 and the first electronic expansion valve 4 and the low-temperature refrigerant (intermediate pressure gas-liquid two-phase refrigerant) and heat. A supercooling heat exchanger 3 that replaces and cools is provided. Further, a second electronic expansion valve is connected from the refrigerant pipe inserted between the first electronic expansion valve 4 and the supercooling heat exchanger 3 to the intermediate pressure chamber in the compressor 1 via the supercooling heat exchanger 3. A bypass pipe 7 for bypassing via 6 (second decompression device) is provided. The second electronic expansion valve 6 can be opened and closed.

凝縮器2は、例えばプレート式熱交換器からなり、暖房時に、流入される水を凝縮冷媒により加熱し、例えば60℃の高温の水にして供給する。蒸発器5は、例えばプレートフィンアンドチューブ熱交換器からなり空気と熱交換する。過冷却熱交換器3は、例えばプレート式熱交換器からなり、第2電子式膨張弁6により減圧された中間圧気液二相冷媒により凝縮器2からの高圧気液二相冷媒を冷却するように構成されている。過冷却熱交換器3を出た中間圧気液二相冷媒は、バイパス配管7を通って圧縮機1内の中間圧室へ導入される。   The condenser 2 is composed of, for example, a plate heat exchanger, and heats inflowed water with a condensed refrigerant during heating, and supplies the water as, for example, high-temperature water of 60 ° C. The evaporator 5 is composed of, for example, a plate fin and tube heat exchanger, and exchanges heat with air. The supercooling heat exchanger 3 includes, for example, a plate heat exchanger, and cools the high-pressure gas-liquid two-phase refrigerant from the condenser 2 by the intermediate-pressure gas-liquid two-phase refrigerant decompressed by the second electronic expansion valve 6. It is configured. The intermediate-pressure gas-liquid two-phase refrigerant exiting the supercooling heat exchanger 3 is introduced into the intermediate pressure chamber in the compressor 1 through the bypass pipe 7.

圧縮機1と凝縮器2の間の冷媒配管には、圧縮機1の吐出側の冷媒圧力(高圧気液二相冷媒の圧力)を検出する圧力センサー11が取り付けられ、過冷却熱交換器3の出口側の冷媒配管には、過冷却熱交換器3の出口側の冷媒温度を検出するサーミスタ21(第1冷媒温度検出手段)が取り付けられている。   A pressure sensor 11 for detecting the refrigerant pressure on the discharge side of the compressor 1 (pressure of the high-pressure gas-liquid two-phase refrigerant) is attached to the refrigerant pipe between the compressor 1 and the condenser 2, and the supercooling heat exchanger 3. The thermistor 21 (first refrigerant temperature detecting means) for detecting the refrigerant temperature on the outlet side of the supercooling heat exchanger 3 is attached to the refrigerant pipe on the outlet side of the refrigerant.

実施の形態4における制御装置10は、第1電子式膨張弁4の開度を制御する他に、前述した第2電子式膨張弁6の開閉を圧縮機1の吐出側の冷媒圧力に基づいて制御するようになっている。   In addition to controlling the opening degree of the first electronic expansion valve 4, the control device 10 in the fourth embodiment opens and closes the second electronic expansion valve 6 based on the refrigerant pressure on the discharge side of the compressor 1. It comes to control.

次に、実施の形態4の動作について説明する。
圧縮機1により圧縮された高圧蒸気冷媒は、凝縮器2で凝縮され、高圧気液二相冷媒となって過冷却熱交換器3に流入する。その気液二相冷媒は、過冷却熱交換器3内で第2電子式膨張弁6を出た中間圧気液二相冷媒により冷却され、高圧の過冷却液の状態となって第1電子式膨張弁4に流入する。その高圧の過冷却液冷媒は、第1電子式膨張弁4内で減圧され、低圧気液二相冷媒となって蒸発器5に流入し、空気と熱交換されて低圧蒸気冷媒となる。その低圧蒸気冷媒は、圧縮機1に吸入され、再び圧縮機1により圧縮される。
Next, the operation of the fourth embodiment will be described.
The high-pressure vapor refrigerant compressed by the compressor 1 is condensed in the condenser 2 and flows into the supercooling heat exchanger 3 as a high-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant is cooled by the intermediate-pressure gas-liquid two-phase refrigerant that has exited the second electronic expansion valve 6 in the supercooling heat exchanger 3, and becomes a high-pressure supercooled liquid state. It flows into the expansion valve 4. The high-pressure supercooled liquid refrigerant is depressurized in the first electronic expansion valve 4, becomes a low-pressure gas-liquid two-phase refrigerant, flows into the evaporator 5, and exchanges heat with air to become a low-pressure vapor refrigerant. The low-pressure vapor refrigerant is sucked into the compressor 1 and compressed again by the compressor 1.

また、過冷却熱交換器5を出た高圧の過冷却液冷媒の一部は、第2電子式膨張弁6により中間圧まで減圧され、中間圧気液二相冷媒となって過冷却熱交換器3に流入し、凝縮器2からの高圧気液二相冷媒と熱交換する。その過冷却熱交換器3を介した中間圧気液二相冷媒は、バイパス配管7を通って圧縮機1内の中間圧室へ流入し、圧縮機1内で蒸発器5からの低圧蒸気冷媒と合流して再び圧縮機1により圧縮される。   Further, a part of the high-pressure supercooled liquid refrigerant exiting the supercooling heat exchanger 5 is decompressed to an intermediate pressure by the second electronic expansion valve 6 to become an intermediate-pressure gas-liquid two-phase refrigerant, and the supercooling heat exchanger 3 and exchanges heat with the high-pressure gas-liquid two-phase refrigerant from the condenser 2. The intermediate-pressure gas-liquid two-phase refrigerant via the supercooling heat exchanger 3 flows into the intermediate pressure chamber in the compressor 1 through the bypass pipe 7, and the low-pressure vapor refrigerant from the evaporator 5 in the compressor 1. It merges and is compressed again by the compressor 1.

一方、制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の高圧蒸気冷媒の圧力を読み込んで飽和液温度を演算する。さらに、制御装置10は、サーミスタ21により検出された過冷却熱交換器3の出口側の過冷却液状態の冷媒温度を読み込んで、先に演算した飽和液温度とその冷媒温度の差から過冷却熱交換器3の出口側の過冷却度を算出する。そして、制御装置10は、算出した過冷却度と第1の所定値である5℃とを比較し、その第1の所定値との差があるときは過冷却度が5℃となるように第1電子式膨張弁4の開度を制御する。例えば、制御装置10は、算出した過冷却度が5℃よりも低いときは、過冷却度が5℃まで上がるように第1電子式膨張弁4の開度を小さくし、過冷却度が5℃よりも高いときは、過冷却度が5℃まで下がるように第1電子式膨張弁4の開度を大きくする。   On the other hand, the control device 10 reads the pressure of the high-pressure vapor refrigerant on the discharge side of the compressor 1 detected by the pressure sensor 11 and calculates the saturated liquid temperature. Further, the control device 10 reads the refrigerant temperature in the supercooled liquid state on the outlet side of the supercooling heat exchanger 3 detected by the thermistor 21, and performs supercooling from the previously calculated saturated liquid temperature and the difference between the refrigerant temperatures. The degree of supercooling on the outlet side of the heat exchanger 3 is calculated. Then, the control device 10 compares the calculated degree of supercooling with the first predetermined value of 5 ° C., and when there is a difference from the first predetermined value, the degree of supercooling is 5 ° C. The opening degree of the first electronic expansion valve 4 is controlled. For example, when the calculated degree of supercooling is lower than 5 ° C., the control device 10 reduces the opening degree of the first electronic expansion valve 4 so that the degree of supercooling increases to 5 ° C., and the degree of supercooling is 5 When it is higher than ° C., the opening degree of the first electronic expansion valve 4 is increased so that the degree of supercooling is lowered to 5 ° C.

また、制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の冷媒圧力が第2の所定値、例えば3.5MPa以上かどうかを判定し、その冷媒圧力が3.5MPa以上のときは第2電子式膨張弁6を開く。この時、前述した中間圧気液二相冷媒が過冷却熱交換器3に流入する。また、圧縮機1の吐出側の圧力が3.5MPaより低いときは第2電子式膨張弁6を全閉とし、過冷却熱交換器3に中間圧気液二相冷媒が供給されないようにする。   Further, the control device 10 determines whether or not the refrigerant pressure on the discharge side of the compressor 1 detected by the pressure sensor 11 is a second predetermined value, for example, 3.5 MPa or more, and the refrigerant pressure is 3.5 MPa or more. When the second electronic expansion valve 6 is opened. At this time, the above-described intermediate-pressure gas-liquid two-phase refrigerant flows into the supercooling heat exchanger 3. When the pressure on the discharge side of the compressor 1 is lower than 3.5 MPa, the second electronic expansion valve 6 is fully closed so that the intermediate-pressure gas-liquid two-phase refrigerant is not supplied to the supercooling heat exchanger 3.

以上のように実施の形態4によれば、過冷却熱交換器3を凝縮器2の出口側に設け、過冷却熱交換器3を出た冷媒の一部が中間圧まで減圧された中間圧気液二相冷媒により凝縮器2からの高圧気液二相冷媒を冷却する。さらに、過冷却熱交換器3の出口側の過冷却度が常に5℃となるように第1電子式膨張弁4の開度を制御している。その結果、どのような運転条件や負荷条件であっても凝縮器2の出口側の冷媒は高圧気液二相状態とし、かつ第1電子式膨張弁4の入口側の冷媒を過冷却液状態とすることができる。そのため、凝縮器2の出口水温が60℃である高温給湯運転においても、凝縮器2の出口側の冷媒が高圧気液二相状態であり、凝縮器2内には伝熱特性の悪い過冷却液が存在しない状態となっている。従って、凝縮圧力を低くすることができ、従来の出口水温の上限55℃に対してその上限温度の拡大が可能となり、また、凝縮圧力を低くできるので効率のよい運転が可能となる。   As described above, according to the fourth embodiment, the intermediate pressure air in which the supercooling heat exchanger 3 is provided on the outlet side of the condenser 2 and a part of the refrigerant exiting the supercooling heat exchanger 3 is reduced to the intermediate pressure. The high-pressure gas-liquid two-phase refrigerant from the condenser 2 is cooled by the liquid two-phase refrigerant. Further, the opening degree of the first electronic expansion valve 4 is controlled so that the degree of supercooling on the outlet side of the supercooling heat exchanger 3 is always 5 ° C. As a result, the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state and the refrigerant on the inlet side of the first electronic expansion valve 4 is in a supercooled liquid state under any operating condition or load condition. It can be. Therefore, even in a high-temperature hot water supply operation in which the outlet water temperature of the condenser 2 is 60 ° C., the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state, and the condenser 2 has supercooling with poor heat transfer characteristics. There is no liquid. Therefore, the condensing pressure can be lowered, the upper limit temperature can be increased with respect to the conventional upper limit of the outlet water temperature of 55 ° C., and the condensing pressure can be lowered, so that an efficient operation is possible.

また、制御装置10により過冷却熱交換器3の出口側の冷媒の過冷却度を常に5℃となるように第1電子式膨張弁4の開度を制御しているので、第1電子式膨張弁4を通過する冷媒は、運転条件や負荷条件が変化しても常に過冷却液の状態を維持できる。そのため、冷凍サイクルの安定性が向上し、また、冷媒の流動音の発生や異常振動の発生も無く、騒音の小さな冷凍空調装置を実現できる。   Further, since the opening degree of the first electronic expansion valve 4 is controlled by the control device 10 so that the degree of supercooling of the refrigerant on the outlet side of the supercooling heat exchanger 3 is always 5 ° C., the first electronic type The refrigerant passing through the expansion valve 4 can always maintain the state of the supercooled liquid even if the operation condition or load condition changes. Therefore, the stability of the refrigeration cycle is improved, and there is no generation of refrigerant flow noise or abnormal vibration, and a refrigeration air conditioner with low noise can be realized.

さらに、過冷却熱交換器3の中間圧冷媒としては過冷却熱交換器3を出た高圧の過冷却液冷媒の一部を中間圧まで減圧した中間圧気液二相冷媒を使用している。そのため、凝縮器2を出た高圧気液二相冷媒の一部を減圧して用いる場合と比べ、第2電子式膨張弁6の入口側の冷媒を確実に液状態とすることができる。また、過冷却熱交換器3の熱交換量を確実に確保することができ、過冷却熱交換器3の過冷却度を確実に制御することができる。また、第2電子式膨張弁6の入口側の冷媒を確実に液冷媒とすることができるので、第2電子式膨張弁6での冷凍サイクルの安定性が向上し、また、冷媒の流動音や異常振動の発生も無く、信頼性の高い冷凍空調装置を提供できる。   Further, as the intermediate pressure refrigerant of the supercooling heat exchanger 3, an intermediate pressure gas-liquid two-phase refrigerant obtained by reducing a part of the high pressure supercooled liquid refrigerant exiting the supercooling heat exchanger 3 to an intermediate pressure is used. Therefore, the refrigerant on the inlet side of the second electronic expansion valve 6 can be surely brought into a liquid state as compared with a case where a part of the high-pressure gas-liquid two-phase refrigerant that has exited the condenser 2 is decompressed. Moreover, the heat exchange amount of the supercooling heat exchanger 3 can be ensured reliably, and the supercooling degree of the supercooling heat exchanger 3 can be controlled reliably. In addition, since the refrigerant on the inlet side of the second electronic expansion valve 6 can be reliably used as a liquid refrigerant, the stability of the refrigeration cycle in the second electronic expansion valve 6 is improved, and the flow noise of the refrigerant is increased. In addition, there is no occurrence of abnormal vibrations and a highly reliable refrigeration air conditioner can be provided.

また、制御装置10は凝縮圧力が第2の所定値(3.5MPa)以上となると第2電子式膨張弁6を開いて過冷却熱交換器3に中間圧気液二相冷媒を供給する。また、凝縮圧力が3.5MPa以下となると第2電子式膨張弁6を全閉にして過冷却熱交換器3に中間圧気液二相冷媒を供給しないように制御している。そのため、凝縮器2の出口水温が高く、凝縮圧力を低く抑える必要のある場合のみ過冷却熱交換器3に中間圧気液二相冷媒を供給し、凝縮器2の出口を高圧気液二相状態とすることができる。   Further, when the condensing pressure becomes equal to or higher than the second predetermined value (3.5 MPa), the control device 10 opens the second electronic expansion valve 6 and supplies the intermediate pressure gas-liquid two-phase refrigerant to the supercooling heat exchanger 3. Further, when the condensation pressure becomes 3.5 MPa or less, the second electronic expansion valve 6 is fully closed so that the intermediate-pressure gas-liquid two-phase refrigerant is not supplied to the supercooling heat exchanger 3. Therefore, the intermediate pressure gas-liquid two-phase refrigerant is supplied to the supercooling heat exchanger 3 only when the outlet water temperature of the condenser 2 is high and the condensation pressure needs to be kept low, and the outlet of the condenser 2 is in a high-pressure gas-liquid two-phase state. It can be.

なお、実施の形態4では、圧力センサー11により検出された圧縮機1の吐出側の冷媒圧力が3.5MPa以上のときに第2電子式膨張弁6を開くようにしたが、これに限定されるものではない。例えば、凝縮器2の出口水温が50℃以上となった場合に、第2電子式膨張弁6を開くようにし、その出口温度が50℃より低い場合には第2電子式膨張弁6を全閉とするようにしてもよい。また、出口水温の代わりに、出口水温の設定値により第2電子式膨張弁6の開閉を制御するようにしてもよい。   In the fourth embodiment, the second electronic expansion valve 6 is opened when the refrigerant pressure on the discharge side of the compressor 1 detected by the pressure sensor 11 is 3.5 MPa or more. However, the present invention is not limited to this. It is not something. For example, when the outlet water temperature of the condenser 2 is 50 ° C. or higher, the second electronic expansion valve 6 is opened, and when the outlet temperature is lower than 50 ° C., the second electronic expansion valve 6 is fully opened. It may be closed. Moreover, you may make it control opening / closing of the 2nd electronic expansion valve 6 with the set value of outlet water temperature instead of outlet water temperature.

実施の形態5.
図5は本発明の実施の形態5に係る冷凍空調装置を示す冷媒回路の構成図である。
図5において、冷凍空調装置の冷凍サイクル装置31は、圧縮機1、凝縮器2、第1減圧装置である第1電子式膨張弁4、蒸発器5が冷媒配管により順次に接続されて構成されている。また、冷凍サイクル装置には、凝縮器2と第1電子式膨張弁4との間に凝縮器2からの冷媒(高圧気液二相冷媒)を低温冷媒(中間圧気液二相冷媒)と熱交換して冷却する過冷却熱交換器3が設けられている。さらに、第1電子式膨張弁4と過冷却熱交換器3との間に挿入された冷媒配管から過冷却熱交換器3を介して圧縮機1内の中間圧室に第2電子式膨張弁6(第2減圧装置)を介してバイパスするバイパス配管7が設けられている。
Embodiment 5 FIG.
FIG. 5 is a configuration diagram of a refrigerant circuit showing a refrigerating and air-conditioning apparatus according to Embodiment 5 of the present invention.
In FIG. 5, a refrigeration cycle device 31 of a refrigeration air conditioner is configured by sequentially connecting a compressor 1, a condenser 2, a first electronic expansion valve 4, which is a first decompression device, and an evaporator 5 through a refrigerant pipe. ing. Further, in the refrigeration cycle apparatus, the refrigerant (high pressure gas-liquid two-phase refrigerant) from the condenser 2 is heated between the condenser 2 and the first electronic expansion valve 4 and the low-temperature refrigerant (intermediate pressure gas-liquid two-phase refrigerant) and heat. A supercooling heat exchanger 3 that replaces and cools is provided. Further, a second electronic expansion valve is connected from the refrigerant pipe inserted between the first electronic expansion valve 4 and the supercooling heat exchanger 3 to the intermediate pressure chamber in the compressor 1 via the supercooling heat exchanger 3. A bypass pipe 7 for bypassing via 6 (second decompression device) is provided.

凝縮器2は、例えばプレート式熱交換器からなり、暖房時に凝縮冷媒により水を加熱し、例えば60℃の高温の水にして供給する。蒸発器5は、例えばプレートフィンアンドチューブ熱交換器からなり空気と熱交換する。過冷却熱交換器3は、第2電子式膨張弁6により減圧された中間圧気液二相冷媒により凝縮器2からの高圧気液二相冷媒を冷却するように構成されている。過冷却熱交換器3を出た中間圧気液二相冷媒は、バイパス配管7を通って圧縮機1内の中間圧室へ導入される。   The condenser 2 is composed of, for example, a plate heat exchanger, and heats water with a condensed refrigerant during heating, and supplies the water as, for example, high-temperature water of 60 ° C. The evaporator 5 is composed of, for example, a plate fin and tube heat exchanger, and exchanges heat with air. The supercooling heat exchanger 3 is configured to cool the high-pressure gas-liquid two-phase refrigerant from the condenser 2 with the intermediate-pressure gas-liquid two-phase refrigerant decompressed by the second electronic expansion valve 6. The intermediate-pressure gas-liquid two-phase refrigerant exiting the supercooling heat exchanger 3 is introduced into the intermediate pressure chamber in the compressor 1 through the bypass pipe 7.

圧縮機1と凝縮器2の間の冷媒配管には、圧力センサー11の他に、圧縮機1から吐出された高圧蒸気冷媒の温度を検出するサーミスタ22が取り付けられている。なお、本実施の形態においては、図5に示すサーミスタ21を第1サーミスタ21(第1冷媒温度検出手段)とし、サーミスタ22を第2サーミスタ22(第2冷媒温度検出手段)とする。   In addition to the pressure sensor 11, a thermistor 22 that detects the temperature of the high-pressure vapor refrigerant discharged from the compressor 1 is attached to the refrigerant pipe between the compressor 1 and the condenser 2. In the present embodiment, the thermistor 21 shown in FIG. 5 is the first thermistor 21 (first refrigerant temperature detecting means), and the thermistor 22 is the second thermistor 22 (second refrigerant temperature detecting means).

実施の形態5における制御装置10は、第1電子式膨張弁4の開度を制御する他に、第2電子式膨張弁6の開度を圧縮機1の吐出側の冷媒圧力と第2サーミスタ22により検出された圧縮機1の吐出側の冷媒温度とに基づいて制御するようになっている。   In addition to controlling the opening degree of the first electronic expansion valve 4, the control device 10 according to the fifth embodiment determines the opening degree of the second electronic expansion valve 6 from the refrigerant pressure on the discharge side of the compressor 1 and the second thermistor. Control is performed based on the refrigerant temperature on the discharge side of the compressor 1 detected by the compressor 22.

次に、実施の形態5の動作について説明する。
圧縮機1により圧縮された高圧蒸気冷媒は、凝縮器2で凝縮され、高圧気液二相冷媒となって過冷却熱交換器3に流入する。その気液二相冷媒は、過冷却熱交換器3内で第2電子式膨張弁6を出た中間圧気液二相冷媒により冷却され、高圧の過冷却液の状態となって第1電子式膨張弁4に流入する。その高圧の過冷却液冷媒は、第1電子式膨張弁4内で減圧され、低圧気液二相冷媒となって蒸発器5に流入し、空気と熱交換されて蒸発し、低圧蒸気冷媒となる。その低圧蒸気冷媒は、圧縮機1に吸入され、再び圧縮機1により圧縮される。
Next, the operation of the fifth embodiment will be described.
The high-pressure vapor refrigerant compressed by the compressor 1 is condensed in the condenser 2 and flows into the supercooling heat exchanger 3 as a high-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant is cooled by the intermediate-pressure gas-liquid two-phase refrigerant that has exited the second electronic expansion valve 6 in the supercooling heat exchanger 3, and becomes a high-pressure supercooled liquid state. It flows into the expansion valve 4. The high-pressure supercooled liquid refrigerant is depressurized in the first electronic expansion valve 4, becomes a low-pressure gas-liquid two-phase refrigerant, flows into the evaporator 5, exchanges heat with air and evaporates, Become. The low-pressure vapor refrigerant is sucked into the compressor 1 and compressed again by the compressor 1.

また、過冷却熱交換器3を出た高圧の過冷却液冷媒の一部は、第2電子式膨張弁6により中間圧まで減圧され、中間圧気液二相冷媒となって過冷却熱交換器3に流入し、凝縮器2からの高圧気液二相冷媒と熱交換する。その過冷却熱交換器3を介した中間圧気液二相冷媒は、バイパス回路32のバイパス配管を通って圧縮機1内の中間圧室へ流入し、圧縮機1内で蒸発器5からの低圧蒸気冷媒と合流して再び圧縮機1により圧縮される。   A part of the high-pressure supercooled liquid refrigerant exiting the supercooling heat exchanger 3 is decompressed to an intermediate pressure by the second electronic expansion valve 6 to become an intermediate-pressure gas-liquid two-phase refrigerant and the supercooling heat exchanger. 3 and exchanges heat with the high-pressure gas-liquid two-phase refrigerant from the condenser 2. The intermediate-pressure gas-liquid two-phase refrigerant that has passed through the supercooling heat exchanger 3 flows into the intermediate pressure chamber in the compressor 1 through the bypass pipe of the bypass circuit 32, and the low pressure from the evaporator 5 in the compressor 1. It merges with the vapor refrigerant and is compressed again by the compressor 1.

一方、制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の高圧蒸気冷媒の圧力を読み込んで飽和液温度を演算する。さらに、制御装置10は、第1サーミスタ21により検出された過冷却熱交換器3の出口側の過冷却液状態の冷媒温度を読み込んで、先に演算した飽和液温度とその冷媒温度の差から過冷却熱交換器3の出口側の過冷却度を算出する。そして、制御装置10は、算出した過冷却度と第1の所定値である5℃とを比較し、その第1の所定値との差があるときは過冷却度が5℃となるように第1電子式膨張弁4の開度を制御する。例えば、制御装置10は、算出した過冷却度が5℃よりも低いときは、過冷却度が5℃まで上がるように第1電子式膨張弁4の開度を小さくし、過冷却度が5℃よりも高いときは、過冷却度が5℃まで下がるように第1電子式膨張弁4の開度を大きくする。   On the other hand, the control device 10 reads the pressure of the high-pressure vapor refrigerant on the discharge side of the compressor 1 detected by the pressure sensor 11 and calculates the saturated liquid temperature. Further, the control device 10 reads the refrigerant temperature in the supercooled liquid state on the outlet side of the supercooling heat exchanger 3 detected by the first thermistor 21 and calculates the difference between the previously calculated saturated liquid temperature and the refrigerant temperature. The degree of supercooling on the outlet side of the supercooling heat exchanger 3 is calculated. Then, the control device 10 compares the calculated degree of supercooling with the first predetermined value of 5 ° C., and when there is a difference from the first predetermined value, the degree of supercooling is 5 ° C. The opening degree of the first electronic expansion valve 4 is controlled. For example, when the calculated degree of supercooling is lower than 5 ° C., the control device 10 reduces the opening degree of the first electronic expansion valve 4 so that the degree of supercooling increases to 5 ° C., and the degree of supercooling is 5 When it is higher than ° C., the opening degree of the first electronic expansion valve 4 is increased so that the degree of supercooling is lowered to 5 ° C.

また、制御装置10は、圧力センサー11を介して読み込んだ高圧蒸気冷媒の圧力から飽和蒸気温度を演算する。次いで、制御装置10は、第2サーミスタ22により検出された圧縮機1の吐出側の冷媒温度を読み込んで、先に演算した飽和蒸気温度とその冷媒温度の差から圧縮機1の吐出側の冷媒過熱度を算出する。さらに、制御装置10は、算出した冷媒過熱度と第3の所定値である例えば20℃とを比較し、その第3の所定値との差があるときは冷媒過熱度が20℃となるように第2電子式膨張弁6の開度を制御する。例えば、制御装置10は、算出した冷媒過熱度が20℃よりも低いときは、冷媒過熱度が20℃まで上がるように第2電子式膨張弁6の開度を小さくし、冷媒過熱度が20℃よりも高いときは、冷媒過熱度が20℃まで下がるように第2電子式膨張弁6の開度を大きくする。   Further, the control device 10 calculates a saturated vapor temperature from the pressure of the high-pressure vapor refrigerant read through the pressure sensor 11. Next, the control device 10 reads the refrigerant temperature on the discharge side of the compressor 1 detected by the second thermistor 22, and determines the refrigerant on the discharge side of the compressor 1 from the difference between the previously calculated saturated vapor temperature and the refrigerant temperature. Calculate the degree of superheat. Furthermore, the control device 10 compares the calculated refrigerant superheat degree with a third predetermined value, for example, 20 ° C., and if there is a difference between the third predetermined value, the refrigerant superheat degree is set to 20 ° C. The opening degree of the second electronic expansion valve 6 is controlled. For example, when the calculated refrigerant superheat degree is lower than 20 ° C., the control device 10 reduces the opening degree of the second electronic expansion valve 6 so that the refrigerant superheat degree is increased to 20 ° C., and the refrigerant superheat degree is 20 ° C. When it is higher than ° C., the opening degree of the second electronic expansion valve 6 is increased so that the refrigerant superheat degree is lowered to 20 ° C.

以上のように実施の形態5によれば、過冷却熱交換器3を凝縮器2の出口側に設け、過冷却熱交換器3を出た冷媒の一部が中間圧まで減圧された中間圧気液二相冷媒により凝縮器2からの高圧気液二相冷媒を冷却する。さらに、過冷却熱交換器3の出口側の過冷却度が常に5℃となるように第1電子式膨張弁4の開度を制御している。その結果、どのような運転条件や負荷条件であっても凝縮器2の出口側の冷媒は高圧気液二相状態とし、かつ第1電子式膨張弁4の入口側の冷媒を過冷却液状態とすることができる。このため、凝縮器2の出口水温が60℃である高温給湯運転においても、凝縮器2の出口側の冷媒が高圧気液二相状態であり、凝縮器2内には伝熱特性の悪い過冷却液が存在しない状態となっている。従って、凝縮圧力を低くすることができ、従来の出口水温の上限55℃に対してその上限温度の拡大が可能となり、また、凝縮圧力を低くできるので効率のよい運転が可能となる。   As described above, according to the fifth embodiment, the intermediate pressure air in which the supercooling heat exchanger 3 is provided on the outlet side of the condenser 2 and a part of the refrigerant exiting the supercooling heat exchanger 3 is reduced to the intermediate pressure. The high-pressure gas-liquid two-phase refrigerant from the condenser 2 is cooled by the liquid two-phase refrigerant. Further, the opening degree of the first electronic expansion valve 4 is controlled so that the degree of supercooling on the outlet side of the supercooling heat exchanger 3 is always 5 ° C. As a result, the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state and the refrigerant on the inlet side of the first electronic expansion valve 4 is in a supercooled liquid state under any operating condition or load condition. It can be. For this reason, even in a high-temperature hot water supply operation in which the outlet water temperature of the condenser 2 is 60 ° C., the refrigerant on the outlet side of the condenser 2 is in a high-pressure gas-liquid two-phase state, and the condenser 2 has excessive heat transfer characteristics. There is no coolant. Therefore, the condensing pressure can be lowered, the upper limit temperature can be increased with respect to the conventional upper limit of the outlet water temperature of 55 ° C., and the condensing pressure can be lowered, so that an efficient operation is possible.

また、制御装置10により過冷却熱交換器5の出口側の冷媒の過冷却度を常に5℃となるように第1電子式膨張弁4の開度を制御しているので、第1電子式膨張弁4を通過する冷媒は、運転条件や負荷条件が変化しても常に過冷却液の状態を維持できる。そのため、冷凍サイクルの安定性が向上し、また、冷媒の流動音の発生や異常振動の発生も無く、騒音の小さな冷凍空調装置を実現できる。   Further, since the opening degree of the first electronic expansion valve 4 is controlled by the control device 10 so that the degree of supercooling of the refrigerant on the outlet side of the supercooling heat exchanger 5 is always 5 ° C., the first electronic type The refrigerant passing through the expansion valve 4 can always maintain the state of the supercooled liquid even if the operation condition or load condition changes. Therefore, the stability of the refrigeration cycle is improved, and there is no generation of refrigerant flow noise or abnormal vibration, and a refrigeration air conditioner with low noise can be realized.

さらに、制御装置10により圧縮機1の吐出側の冷媒過熱度が常に20℃となるように第2電子式膨張弁6の開度を制御しているので、圧縮機1の吐出側の冷媒過熱度が上昇しやすい高温給湯時に確実に圧縮機1の吐出側の冷媒過熱度を20℃に保つことが可能になる。そのため、圧縮機1や圧縮機1の潤滑油の温度上昇を抑制でき、信頼性の高い冷凍空調装置を提供できる。   Furthermore, since the opening degree of the second electronic expansion valve 6 is controlled by the control device 10 so that the refrigerant superheat degree on the discharge side of the compressor 1 is always 20 ° C., the refrigerant superheat on the discharge side of the compressor 1 is controlled. It is possible to reliably maintain the degree of refrigerant superheating on the discharge side of the compressor 1 at 20 ° C. during high-temperature hot water supply in which the temperature tends to rise. Therefore, the temperature rise of the lubricating oil of the compressor 1 or the compressor 1 can be suppressed, and a highly reliable refrigeration air conditioner can be provided.

実施の形態6.
図6は本発明の実施の形態6に係る冷凍空調装置を示す冷媒回路の構成図である。
図6において、冷凍空調装置の冷凍サイクル装置31は、圧縮機1、冷房運転と暖房運転を切り替える四方弁8、第1熱交換器2a、第1電子式膨張弁4(第1減圧装置)、第2熱交換器5a、アキュムレータ9が冷媒配管により順次に接続されて構成されている。また、冷凍サイクル装置には、第1熱交換器2aと第1電子式膨張弁4との間に第1熱交換器2aからの冷媒(高圧気液二相冷媒)を低温冷媒(中間圧気液二相冷媒)と熱交換して冷却する過冷却熱交換器3が設けられている。さらに、第1電子式膨張弁4と過冷却熱交換器3との間に挿入された冷媒配管から過冷却熱交換器3を介して圧縮機1内の中間圧室に第2電子式膨張弁6(第2減圧装置)を介してバイパスするバイパス配管7が設けられている。
Embodiment 6 FIG.
FIG. 6 is a configuration diagram of a refrigerant circuit showing a refrigerating and air-conditioning apparatus according to Embodiment 6 of the present invention.
In FIG. 6, a refrigeration cycle device 31 of a refrigeration air conditioner includes a compressor 1, a four-way valve 8 for switching between a cooling operation and a heating operation, a first heat exchanger 2a, a first electronic expansion valve 4 (first decompression device), The second heat exchanger 5a and the accumulator 9 are sequentially connected by a refrigerant pipe. Further, in the refrigeration cycle apparatus, the refrigerant (high-pressure gas-liquid two-phase refrigerant) from the first heat exchanger 2a is used as the low-temperature refrigerant (intermediate pressure gas-liquid) between the first heat exchanger 2a and the first electronic expansion valve 4. A supercooling heat exchanger 3 is provided for heat exchange with the two-phase refrigerant) and cooling. Further, a second electronic expansion valve is connected from the refrigerant pipe inserted between the first electronic expansion valve 4 and the supercooling heat exchanger 3 to the intermediate pressure chamber in the compressor 1 via the supercooling heat exchanger 3. A bypass pipe 7 for bypassing via 6 (second decompression device) is provided.

第1熱交換器2aは、例えばプレート式熱交換器からなり、暖房時に、流入する水を凝縮冷媒により加熱し、例えば60℃の高温の水にして供給する。第2熱交換器5aは、例えばプレートフィンアンドチューブ熱交換器からなり空気と熱交換する。過冷却熱交換器3は、例えばプレート式熱交換器からなり、第2電子式膨張弁6により減圧された中間圧気液二相冷媒により第1熱交換器2aからの高圧気液二相冷媒を冷却するように構成されている。過冷却熱交換器3を出た中間圧気液二相冷媒は、バイパス配管7を通って圧縮機1内の中間圧室へ導入される。   The 1st heat exchanger 2a consists of plate type heat exchangers, for example, heats inflowing water with a condensation refrigerant at the time of heating, and supplies it as hot water of 60 ° C, for example. The 2nd heat exchanger 5a consists of a plate fin and tube heat exchanger, for example, and heat-exchanges with air. The supercooling heat exchanger 3 is composed of, for example, a plate type heat exchanger, and the high pressure gas-liquid two-phase refrigerant from the first heat exchanger 2a is obtained by the intermediate-pressure gas-liquid two-phase refrigerant decompressed by the second electronic expansion valve 6. It is configured to cool. The intermediate-pressure gas-liquid two-phase refrigerant exiting the supercooling heat exchanger 3 is introduced into the intermediate pressure chamber in the compressor 1 through the bypass pipe 7.

過冷却熱交換器3の出口側の冷媒配管には、過冷却熱交換器3の出口側の冷媒温度を検出する第1サーミスタ21(第1冷媒温度検出手段)が取り付けられている。圧縮機1と四方弁7の間の冷媒配管には、圧縮機1の吐出側の冷媒圧力(高圧蒸気冷媒の圧力)を検出する圧力センサー11(冷媒圧力検出手段)と、圧縮機1から吐出された高圧蒸気冷媒の温度を検出する第2サーミスタ22(第2冷媒温度検出手段)とが取り付けられている。さらに、第1熱交換器2aと過冷却熱交換器3の間の冷媒配管には、第1熱交換器2aの出口側の冷媒温度を検出する第3サーミスタ23(第3冷媒温度検出手段)が取り付けられている。   A first thermistor 21 (first refrigerant temperature detecting means) for detecting the refrigerant temperature on the outlet side of the supercooling heat exchanger 3 is attached to the refrigerant pipe on the outlet side of the supercooling heat exchanger 3. The refrigerant pipe between the compressor 1 and the four-way valve 7 is discharged from the compressor 1 and a pressure sensor 11 (refrigerant pressure detecting means) that detects a refrigerant pressure (pressure of high-pressure vapor refrigerant) on the discharge side of the compressor 1. A second thermistor 22 (second refrigerant temperature detecting means) for detecting the temperature of the high-pressure vapor refrigerant is attached. Furthermore, the refrigerant | coolant piping between the 1st heat exchanger 2a and the supercooling heat exchanger 3 is equipped with the 3rd thermistor 23 (3rd refrigerant | coolant temperature detection means) which detects the refrigerant | coolant temperature of the exit side of the 1st heat exchanger 2a. Is attached.

実施の形態6における制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の冷媒圧力と第2サーミスタ22により検出された圧縮機1の吐出側の冷媒温度とに基づいて第2電子式膨張弁6の開度を制御する。また、制御装置10は、第2電子式膨張弁6が開いているとき、圧力センサー11の検出による冷媒圧力と第1サーミスタ21の検出による過冷却熱交換器3の出口側の冷媒温度とに基づいて第1電子式膨張弁4の開度を制御する。さらに、制御装置10は、第2電子式膨張弁6が閉じているとき、圧力センサー11の検出による冷媒圧力と第3サーミスタ23の検出による第1熱交換器2aの出口側の冷媒温度とに基づいて第1電子式膨張弁4の開度を制御する。   The control device 10 according to the sixth embodiment is based on the refrigerant pressure on the discharge side of the compressor 1 detected by the pressure sensor 11 and the refrigerant temperature on the discharge side of the compressor 1 detected by the second thermistor 22. The opening degree of the electronic expansion valve 6 is controlled. Further, when the second electronic expansion valve 6 is open, the control device 10 adjusts the refrigerant pressure detected by the pressure sensor 11 and the refrigerant temperature on the outlet side of the supercooling heat exchanger 3 detected by the first thermistor 21. Based on this, the opening degree of the first electronic expansion valve 4 is controlled. Further, when the second electronic expansion valve 6 is closed, the control device 10 determines the refrigerant pressure detected by the pressure sensor 11 and the refrigerant temperature on the outlet side of the first heat exchanger 2a detected by the third thermistor 23. Based on this, the opening degree of the first electronic expansion valve 4 is controlled.

次に、実施の形態6の動作について説明する。
暖房運転時、圧縮機1により圧縮された高圧蒸気冷媒は、四方弁7を通って第1熱交換器2aに流入し、第1熱交換器2aにより凝縮されて高圧気液二相冷媒となり、過冷却熱交換器3に流入する。その気液二相冷媒は、過冷却熱交換器3内で第2電子式膨張弁6を出た中間圧気液二相冷媒で冷却され、高圧の過冷却液の状態となって第1電子式膨張弁4に流入する。その高圧の過冷却液冷媒は、第1電子式膨張弁4内で減圧され、低圧気液二相冷媒となって第2熱交換器5aに流入し、空気と熱交換されて蒸発し、低圧蒸気冷媒となる。その低圧蒸気冷媒は、アキュムレータ9を通って圧縮機1に吸入され、再び圧縮される。
Next, the operation of the sixth embodiment will be described.
During the heating operation, the high-pressure vapor refrigerant compressed by the compressor 1 flows into the first heat exchanger 2a through the four-way valve 7, is condensed by the first heat exchanger 2a, and becomes a high-pressure gas-liquid two-phase refrigerant, It flows into the supercooling heat exchanger 3. The gas-liquid two-phase refrigerant is cooled by the intermediate-pressure gas-liquid two-phase refrigerant that has exited the second electronic expansion valve 6 in the supercooling heat exchanger 3, and becomes a high-pressure supercooled liquid state. It flows into the expansion valve 4. The high-pressure supercooled liquid refrigerant is depressurized in the first electronic expansion valve 4, becomes a low-pressure gas-liquid two-phase refrigerant, flows into the second heat exchanger 5 a, exchanges heat with air, and evaporates. It becomes a vapor refrigerant. The low-pressure vapor refrigerant is sucked into the compressor 1 through the accumulator 9 and compressed again.

また、過冷却熱交換器3を出た高圧過冷却液冷媒の一部は、第2電子式膨張弁6により中間圧まで減圧され、中間圧気液二相冷媒となって過冷却熱交換器3に流入し、第1熱交換器2aからの高圧気液二相冷媒と熱交換する。その過冷却熱交換器3を介した中間圧気液二相冷媒は、バイパス配管7を通って圧縮機1内の中間圧室へ流入し、圧縮機1内でアキュムレータ9からの低圧蒸気冷媒と合流して再び圧縮機1により圧縮される。   A part of the high-pressure supercooled liquid refrigerant that has exited the supercooling heat exchanger 3 is decompressed to an intermediate pressure by the second electronic expansion valve 6 and becomes an intermediate-pressure gas-liquid two-phase refrigerant. To exchange heat with the high-pressure gas-liquid two-phase refrigerant from the first heat exchanger 2a. The intermediate-pressure gas-liquid two-phase refrigerant via the supercooling heat exchanger 3 flows into the intermediate pressure chamber in the compressor 1 through the bypass pipe 7 and merges with the low-pressure vapor refrigerant from the accumulator 9 in the compressor 1. Then, it is compressed again by the compressor 1.

一方、制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の高圧蒸気冷媒の圧力を読み込んで飽和液温度を演算する。さらに、制御装置10は、第2サーミスタ22により検出された圧縮機1の吐出側の冷媒温度を読み込んで、先に演算した飽和蒸気温度とその冷媒温度の差から圧縮機1の吐出側の冷媒過熱度を算出する。そして、制御装置10は、算出した冷媒過熱度と第3の所定値である例えば20℃とを比較し、その第3の所定値との差があるときは冷媒過熱度が20℃となるように第2電子式膨張弁6の開度を制御する。例えば、制御装置10は、算出した冷媒過熱度が20℃よりも低いときは、冷媒過熱度が20℃まで上がるように第2電子式膨張弁6の開度を小さくし、冷媒過熱度が20℃よりも高いときは、冷媒過熱度が20℃まで下がるように第2電子式膨張弁6の開度を大きくする。   On the other hand, the control device 10 reads the pressure of the high-pressure vapor refrigerant on the discharge side of the compressor 1 detected by the pressure sensor 11 and calculates the saturated liquid temperature. Further, the control device 10 reads the refrigerant temperature on the discharge side of the compressor 1 detected by the second thermistor 22, and determines the refrigerant on the discharge side of the compressor 1 from the difference between the previously calculated saturated vapor temperature and the refrigerant temperature. Calculate the degree of superheat. Then, the control device 10 compares the calculated refrigerant superheat degree with a third predetermined value, for example, 20 ° C., and when there is a difference between the third predetermined value, the refrigerant superheat degree is set to 20 ° C. The opening degree of the second electronic expansion valve 6 is controlled. For example, when the calculated refrigerant superheat degree is lower than 20 ° C., the control device 10 reduces the opening degree of the second electronic expansion valve 6 so that the refrigerant superheat degree is increased to 20 ° C., and the refrigerant superheat degree is 20 ° C. When it is higher than ° C., the opening degree of the second electronic expansion valve 6 is increased so that the refrigerant superheat degree is lowered to 20 ° C.

また、制御装置10は、第2電子式膨張弁6が開いているとき、第1サーミスタ21により検出された過冷却熱交換器3の出口側の過冷却液状態の冷媒温度を読み込んで、先に演算した飽和液温度とその冷媒温度の差から過冷却熱交換器3の出口側の過冷却度を算出する。次いで、制御装置10は、算出した過冷却度と第1の所定値である5℃とを比較し、その過冷却度が5℃よりも低いときは、過冷却度が5℃まで上がるように第1電子式膨張弁4の開度を小さくする。また、制御装置10は、過冷却度が5℃よりも高いとき、過冷却度が5℃まで下がるように第1電子式膨張弁4の開度を大きくする。   Further, the control device 10 reads the refrigerant temperature in the supercooled liquid state on the outlet side of the supercooling heat exchanger 3 detected by the first thermistor 21 when the second electronic expansion valve 6 is open. The degree of supercooling on the outlet side of the supercooling heat exchanger 3 is calculated from the difference between the saturated liquid temperature calculated in step 1 and the refrigerant temperature. Next, the control device 10 compares the calculated degree of supercooling with the first predetermined value of 5 ° C., and when the degree of supercooling is lower than 5 ° C., the degree of supercooling is increased to 5 ° C. The opening degree of the first electronic expansion valve 4 is reduced. In addition, when the degree of supercooling is higher than 5 ° C., the control device 10 increases the opening degree of the first electronic expansion valve 4 so that the degree of supercooling decreases to 5 ° C.

さらに、制御装置10は、第2電子式膨張弁6が閉じているとき、第3サーミスタ23により検出された第1熱交換器2aの出口側の高圧気液二相冷媒の温度を読み込んで、先に演算した飽和液温度とその冷媒温度の差から第1熱交換器2aの出口側の過冷却度を算出する。次いで、制御装置10は、算出した過冷却度と第1の所定値である5℃とを比較し、その過冷却度が5℃よりも低いときは、前記と同様に第1電子式膨張弁4の開度を小さくする。また、制御装置10は、過冷却度が5℃よりも高いとき、前記と同様に第1電子式膨張弁4の開度を大きくする。   Further, the control device 10 reads the temperature of the high-pressure gas-liquid two-phase refrigerant on the outlet side of the first heat exchanger 2a detected by the third thermistor 23 when the second electronic expansion valve 6 is closed, The degree of supercooling on the outlet side of the first heat exchanger 2a is calculated from the difference between the previously calculated saturated liquid temperature and the refrigerant temperature. Next, the control device 10 compares the calculated degree of supercooling with the first predetermined value of 5 ° C., and when the degree of supercooling is lower than 5 ° C., the first electronic expansion valve is the same as described above. 4 is reduced. Further, when the degree of supercooling is higher than 5 ° C., the control device 10 increases the opening degree of the first electronic expansion valve 4 as described above.

なお、冷房運転時は、第1熱交換器2aが蒸発器として、第2熱交換器5aが凝縮器として動作するが、第2電子式膨張弁6を常に閉状態とし、過冷却熱交換器3では熱交換されないように制御している。   During the cooling operation, the first heat exchanger 2a operates as an evaporator and the second heat exchanger 5a operates as a condenser. However, the second electronic expansion valve 6 is always closed, and the supercooling heat exchanger is operated. 3 is controlled so as not to exchange heat.

以上のように実施の形態6によれば、過冷却熱交換器3を第1熱交換器2aの出口側に設け、過冷却熱交換器3を出た冷媒の一部を中間圧まで減圧した中間圧気液二相冷媒により第1熱交換器2aからの高圧気液二相冷媒を冷却する。さらに、過冷却熱交換器3の出口側の過冷却度が常に5℃となるように第1電子式膨張弁4の開度を制御している。その結果、どのような運転条件や負荷条件であっても第1熱交換器2aの出口側の冷媒は高圧気液二相状態とし、かつ第1電子式膨張弁4の入口側の冷媒を過冷却液状態とすることができる。このため、第1熱交換器2aの出口水温が60℃である高温給湯運転においても、第1熱交換器2aの出口側の冷媒が高圧気液二相状態であり、第1熱交換器2a内には伝熱特性の悪い過冷却液が存在しない状態となっている。従って、凝縮圧力を低くすることができ、従来の出口水温の上限55℃に対しその上限温度の拡大が可能となり、また、凝縮圧力を低くできるので効率のよい運転が可能となる。   As described above, according to the sixth embodiment, the supercooling heat exchanger 3 is provided on the outlet side of the first heat exchanger 2a, and a part of the refrigerant exiting the supercooling heat exchanger 3 is reduced to an intermediate pressure. The high-pressure gas-liquid two-phase refrigerant from the first heat exchanger 2a is cooled by the intermediate-pressure gas-liquid two-phase refrigerant. Further, the opening degree of the first electronic expansion valve 4 is controlled so that the degree of supercooling on the outlet side of the supercooling heat exchanger 3 is always 5 ° C. As a result, the refrigerant on the outlet side of the first heat exchanger 2a is in a high-pressure gas-liquid two-phase state and the refrigerant on the inlet side of the first electronic expansion valve 4 is excessively passed under any operating condition or load condition. It can be in a cooling liquid state. For this reason, even in the high temperature hot water supply operation in which the outlet water temperature of the first heat exchanger 2a is 60 ° C., the refrigerant on the outlet side of the first heat exchanger 2a is in a high-pressure gas-liquid two-phase state, and the first heat exchanger 2a There is no supercooled liquid with poor heat transfer characteristics inside. Therefore, the condensing pressure can be lowered, the upper limit temperature can be increased with respect to the conventional upper limit of the outlet water temperature of 55 ° C., and the condensing pressure can be lowered, so that an efficient operation is possible.

また、第2電子式膨張弁6の開閉状態により第1電子式膨張弁4の制御対象を変え、常に冷凍サイクルを最適な状態に制御している。第2電子式膨張弁6が全閉となり過冷却熱交換器3に中間圧気液二相冷媒が供給されない場合は、第1熱交換器2aを出た高圧気液二相冷媒が過冷却熱交換器3内で熱交換されずに通過する。その結果、過冷却熱交換器3を通過することによる圧力損失の分だけ圧力が低下する。第1熱交換器2aの出口側の過冷却度を正確に検知するためには、第1熱交換器2aの出口側の冷媒温度を使用する方が過冷却熱交換器3の出口側の冷媒温度を用いるよりも適切である。これにより、確実に冷凍サイクルを最適な状態に制御でき、効率が高く、また、液バックなどの発生のない、信頼性の高い冷凍空調装置を提供できる。   Moreover, the control object of the 1st electronic expansion valve 4 is changed with the opening / closing state of the 2nd electronic expansion valve 6, and the refrigerating cycle is always controlled to the optimal state. When the second electronic expansion valve 6 is fully closed and the intermediate-pressure gas-liquid two-phase refrigerant is not supplied to the supercooling heat exchanger 3, the high-pressure gas-liquid two-phase refrigerant exiting the first heat exchanger 2a is supercooling heat exchange. It passes through the vessel 3 without heat exchange. As a result, the pressure decreases by the amount of pressure loss due to passing through the supercooling heat exchanger 3. In order to accurately detect the degree of supercooling on the outlet side of the first heat exchanger 2a, it is preferable to use the refrigerant temperature on the outlet side of the first heat exchanger 2a. It is more appropriate than using temperature. As a result, it is possible to provide a highly reliable refrigeration air conditioner that can reliably control the refrigeration cycle to an optimum state, has high efficiency, and does not generate liquid back.

なお、実施の形態6では、第2電子式膨張弁6を圧縮機1の吐出側の冷媒過熱度によって制御する例について説明したが、これに限定されるものではない。例えば、圧縮機1の吐出側の冷媒温度により制御してもよい。すなわち、圧縮機1の吐出側の冷媒温度が110℃以下のときは第2電子式膨張弁6を全閉とし、その冷媒温度が110℃を超えるときは圧縮機1の吐出側の冷媒温度が110℃となるように第2電子式膨張弁6を制御する。   In the sixth embodiment, the example in which the second electronic expansion valve 6 is controlled by the refrigerant superheat degree on the discharge side of the compressor 1 has been described, but the present invention is not limited to this. For example, it may be controlled by the refrigerant temperature on the discharge side of the compressor 1. That is, when the refrigerant temperature on the discharge side of the compressor 1 is 110 ° C. or lower, the second electronic expansion valve 6 is fully closed, and when the refrigerant temperature exceeds 110 ° C., the refrigerant temperature on the discharge side of the compressor 1 is The second electronic expansion valve 6 is controlled to be 110 ° C.

実施の形態7.
図7は本発明の実施の形態7に係る冷凍空調装置を示す冷媒回路の構成図である。
図7において、実施の形態7の冷凍空調装置は、図6に示す実施の形態6と同様の冷凍サイクル装置31を備え、第1および第3サーミスタ21、23が取り外された構成となっている。制御装置10は、圧力センサー11(冷媒圧力検出手段)により検出された圧縮機1の吐出側の冷媒圧力とサーミスタ22(冷媒温度検出手段)により検出された圧縮機1の吐出側の冷媒温度とに基づいて第1電子式膨張弁4および第2電子式膨張弁6の開度をそれぞれ制御する。
Embodiment 7 FIG.
FIG. 7 is a configuration diagram of a refrigerant circuit showing a refrigerating and air-conditioning apparatus according to Embodiment 7 of the present invention.
In FIG. 7, the refrigeration / air conditioning apparatus of the seventh embodiment includes the same refrigeration cycle apparatus 31 as that of the sixth embodiment shown in FIG. 6, and the first and third thermistors 21 and 23 are removed. . The controller 10 detects the refrigerant pressure on the discharge side of the compressor 1 detected by the pressure sensor 11 (refrigerant pressure detection means) and the refrigerant temperature on the discharge side of the compressor 1 detected by the thermistor 22 (refrigerant temperature detection means). Based on this, the opening degree of the first electronic expansion valve 4 and the second electronic expansion valve 6 is controlled.

次に、実施の形態7の動作について説明する。
暖房運転時は、圧縮機1により圧縮された高圧蒸気冷媒は、四方弁8を通って第1熱交換器2aに流入し、第1熱交換器2aにより凝縮されて高圧気液二相冷媒となり、過冷却熱交換器3に流入する。その気液二相冷媒は、過冷却熱交換器3内で第2電子式膨張弁6を出た中間圧気液二相冷媒で冷却され、高圧の過冷却液の状態となって第1電子式膨張弁4に流入する。その高圧の過冷却液冷媒は、第1電子式膨張弁4内で減圧され、低圧気液二相冷媒となって第2熱交換器5aに流入し、空気と熱交換されて蒸発し、低圧蒸気冷媒となる。その低圧蒸気冷媒は、アキュムレータ9を通って圧縮機1に吸入され、再び圧縮される。
Next, the operation of the seventh embodiment will be described.
During the heating operation, the high-pressure vapor refrigerant compressed by the compressor 1 flows into the first heat exchanger 2a through the four-way valve 8, and is condensed by the first heat exchanger 2a to become a high-pressure gas-liquid two-phase refrigerant. Then, it flows into the supercooling heat exchanger 3. The gas-liquid two-phase refrigerant is cooled by the intermediate-pressure gas-liquid two-phase refrigerant that has exited the second electronic expansion valve 6 in the supercooling heat exchanger 3, and becomes a high-pressure supercooled liquid state. It flows into the expansion valve 4. The high-pressure supercooled liquid refrigerant is depressurized in the first electronic expansion valve 4, becomes a low-pressure gas-liquid two-phase refrigerant, flows into the second heat exchanger 5 a, exchanges heat with air, and evaporates. It becomes a vapor refrigerant. The low-pressure vapor refrigerant is sucked into the compressor 1 through the accumulator 9 and compressed again.

また、過冷却熱交換器3を出た高圧の過冷却液冷媒の一部は、第2電子式膨張弁6により中間圧まで減圧され、中間圧気液二相冷媒となって過冷却熱交換器3に流入し、第1熱交換器2aからの高圧気液二相冷媒と熱交換する。その過冷却熱交換器3を介した中間圧気液二相冷媒は、バイパス配管7を通って圧縮機1内の中間圧室へ流入し、圧縮機1内でアキュムレータ9からの低圧蒸気冷媒と合流して再び圧縮機1により圧縮される。   A part of the high-pressure supercooled liquid refrigerant exiting the supercooling heat exchanger 3 is decompressed to an intermediate pressure by the second electronic expansion valve 6 to become an intermediate-pressure gas-liquid two-phase refrigerant and the supercooling heat exchanger. 3 and exchanges heat with the high-pressure gas-liquid two-phase refrigerant from the first heat exchanger 2a. The intermediate-pressure gas-liquid two-phase refrigerant via the supercooling heat exchanger 3 flows into the intermediate pressure chamber in the compressor 1 through the bypass pipe 7 and merges with the low-pressure vapor refrigerant from the accumulator 9 in the compressor 1. Then, it is compressed again by the compressor 1.

一方、制御装置10は、圧力センサー11により検出された圧縮機1の吐出側の高圧蒸気冷媒の圧力を読み込んで飽和液温度を演算する。さらに、制御装置10は、サーミスタ22により検出された圧縮機1の吐出側の冷媒温度を読み込んで、先に演算した飽和蒸気温度とその冷媒温度の差から圧縮機1の吐出側の冷媒過熱度を算出する。そして、制御装置10は、算出した冷媒過熱度と第3の所定値である例えば20℃とを比較し、その第3の所定値との差があるときは冷媒過熱度が20℃となるように第2電子式膨張弁6の開度を制御する。例えば、制御装置10は、算出した冷媒過熱度が20℃よりも低いときは、冷媒過熱度が20℃まで上がるように第2電子式膨張弁6の開度を小さくし、冷媒過熱度が20℃よりも高いときは、冷媒過熱度が20℃まで下がるように第2電子式膨張弁6の開度を大きくする。   On the other hand, the control device 10 reads the pressure of the high-pressure vapor refrigerant on the discharge side of the compressor 1 detected by the pressure sensor 11 and calculates the saturated liquid temperature. Further, the control device 10 reads the refrigerant temperature on the discharge side of the compressor 1 detected by the thermistor 22, and determines the refrigerant superheat degree on the discharge side of the compressor 1 from the difference between the saturated vapor temperature calculated earlier and the refrigerant temperature. Is calculated. Then, the control device 10 compares the calculated refrigerant superheat degree with a third predetermined value, for example, 20 ° C., and when there is a difference between the third predetermined value, the refrigerant superheat degree is set to 20 ° C. The opening degree of the second electronic expansion valve 6 is controlled. For example, when the calculated refrigerant superheat degree is lower than 20 ° C., the control device 10 reduces the opening degree of the second electronic expansion valve 6 so that the refrigerant superheat degree is increased to 20 ° C., and the refrigerant superheat degree is 20 ° C. When it is higher than ° C., the opening degree of the second electronic expansion valve 6 is increased so that the refrigerant superheat degree is lowered to 20 ° C.

また、制御装置10は、先に演算した飽和液温度と第1熱交換器2aの出口水温との温度差が第4の所定値である例えば3℃となるように第1電子式膨張弁4の開度を制御する。例えば、制御装置10は、その温度差が3℃よりも低いときは、温度差が3℃になるように第1電子式膨張弁4の開度を小さくし、圧縮機1の吐出側の圧力が上がるようにする。また、制御装置10は、逆に飽和液温度と第1熱交換器2aの出口水温との温度差が3℃よりも高いときは、温度差が3℃になるように第1電子式膨張弁4の開度を大きくし、圧縮機1の吐出側の圧力を下げるようにする。   Further, the control device 10 controls the first electronic expansion valve 4 so that the temperature difference between the previously calculated saturated liquid temperature and the outlet water temperature of the first heat exchanger 2a is a fourth predetermined value, for example, 3 ° C. To control the opening degree. For example, when the temperature difference is lower than 3 ° C., the control device 10 reduces the opening of the first electronic expansion valve 4 so that the temperature difference becomes 3 ° C., and the pressure on the discharge side of the compressor 1 To go up. On the contrary, when the temperature difference between the saturated liquid temperature and the outlet water temperature of the first heat exchanger 2a is higher than 3 ° C., the control device 10 controls the first electronic expansion valve so that the temperature difference becomes 3 ° C. 4 is increased, and the pressure on the discharge side of the compressor 1 is decreased.

実施の形態7における冷凍空調装置では、圧力センサー11とサーミスタ22の2つのセンサーで第1電子式膨張弁4と第2電子式膨張弁6の開度を制御しており、前述した実施の形態6と比べセンサーの数を低減でき、冷凍空調装置の低コスト化が可能となる。   In the refrigerating and air-conditioning apparatus according to the seventh embodiment, the opening degree of the first electronic expansion valve 4 and the second electronic expansion valve 6 is controlled by two sensors, the pressure sensor 11 and the thermistor 22, and the above-described embodiment. Compared to 6, the number of sensors can be reduced, and the cost of the refrigeration air conditioner can be reduced.

1 圧縮機、2 凝縮器、2a 第1熱交換器、3 過冷却熱交換器、4 電子式膨張弁(第1電子式膨張弁)、5 蒸発器、5a 第2熱交換器、6 第2電子式膨張弁、
7 バイパス配管、8 四方弁、9 アキュムレータ、10 制御装置、11 圧力センサー、21 サーミスタ(第1サーミスタ)、22 第2サーミスタ(サーミスタ)、
23 第3サーミスタ、31 冷凍サイクル装置。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 2a 1st heat exchanger, 3 Supercooling heat exchanger, 4 Electronic expansion valve (1st electronic expansion valve), 5 Evaporator, 5a 2nd heat exchanger, 6 2nd Electronic expansion valve,
7 bypass piping, 8 four-way valve, 9 accumulator, 10 control device, 11 pressure sensor, 21 thermistor (first thermistor), 22 second thermistor (thermistor),
23 3rd thermistor, 31 refrigeration cycle apparatus.

Claims (8)

圧縮機、凝縮器、第1減圧装置、蒸発器が冷媒配管により順次に接続された冷凍サイクル装置と、
前記冷凍サイクル装置の凝縮器と第1減圧装置との間に挿入され前記凝縮器からの冷媒を低温冷媒と熱交換して冷却する過冷却熱交換器と、
前記圧縮機から吐出される冷媒の圧力を検出する冷媒圧力検出手段と、
前記過冷却熱交換器から流出される冷媒の温度を検出する第1冷媒温度検出手段と、
前記冷媒圧力検出手段により検出された冷媒の圧力と前記第1冷媒温度検出手段により検出された冷媒の温度とに基づいて前記過冷却熱交換器の過冷却度を演算し、その過冷却度が第1の所定値になるように前記第1減圧装置の開度を制御する制御装置と
を備えたことを特徴とする冷凍空調装置。
A refrigeration cycle apparatus in which a compressor, a condenser, a first decompressor, and an evaporator are sequentially connected by a refrigerant pipe;
A supercooling heat exchanger that is inserted between the condenser of the refrigeration cycle apparatus and the first decompression apparatus and cools the refrigerant from the condenser by exchanging heat with a low-temperature refrigerant;
Refrigerant pressure detection means for detecting the pressure of the refrigerant discharged from the compressor;
First refrigerant temperature detection means for detecting the temperature of the refrigerant flowing out of the supercooling heat exchanger;
Based on the refrigerant pressure detected by the refrigerant pressure detection means and the refrigerant temperature detected by the first refrigerant temperature detection means, the degree of supercooling of the supercooling heat exchanger is calculated, and the degree of subcooling is calculated. A refrigerating and air-conditioning apparatus comprising: a control device that controls an opening of the first pressure reducing device so as to be a first predetermined value.
前記過冷却熱交換器の低温冷媒として、前記第1減圧装置と前記蒸発器との間の低圧気液二相冷媒を用いることを特徴とする請求項1記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 1, wherein a low-pressure gas-liquid two-phase refrigerant between the first decompression device and the evaporator is used as the low-temperature refrigerant of the supercooling heat exchanger. 前記過冷却熱交換器の低温冷媒として、前記蒸発器と前記圧縮機との間の低圧蒸気冷媒を用いることを特徴とする請求項1記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 1, wherein a low-pressure vapor refrigerant between the evaporator and the compressor is used as the low-temperature refrigerant of the supercooling heat exchanger. 前記過冷却熱交換器と前記第1減圧装置との間に挿入された冷媒配管から前記過冷却熱交換器を介して前記圧縮機の吸入側に第2減圧装置を介してバイパスするバイパス配管を設け、
前記過冷却熱交換器の低温冷媒として、前記第2減圧装置から流出される低圧気液二相冷媒を用いることを特徴とする請求項1記載の冷凍空調装置。
A bypass pipe bypassing from the refrigerant pipe inserted between the supercooling heat exchanger and the first pressure reducing device to the suction side of the compressor via the second pressure reducing device via the supercooling heat exchanger Provided,
The refrigerating and air-conditioning apparatus according to claim 1, wherein a low-pressure gas-liquid two-phase refrigerant flowing out of the second decompression device is used as the low-temperature refrigerant of the supercooling heat exchanger.
前記過冷却熱交換器と前記第1減圧装置との間に挿入された冷媒配管から前記過冷却熱交換器を介して前記圧縮機内の中間圧力室に第2減圧装置を介してバイパスするバイパス配管を設け、
前記制御装置は、前記冷媒圧力検出手段により検出された冷媒の圧力と前記第1冷媒温度検出手段により検出された冷媒の温度とに基づいて前記過冷却熱交換器の過冷却度を演算し、その過冷却度が第1の所定値になるように前記第1減圧装置の開度を制御し、さらに、前記冷媒圧力検出手段により検出された冷媒の圧力と第2の所定値とを比較し、その冷媒の圧力が第2の所定値以上のときに前記第2減圧装置を開き、前記過冷却熱交換器に中間圧冷媒を低温冷媒として流入させることを特徴とする請求項1記載の冷凍空調装置。
Bypass piping bypassing from the refrigerant piping inserted between the supercooling heat exchanger and the first decompression device to the intermediate pressure chamber in the compressor via the second decompression device via the supercooling heat exchanger Provided,
The control device calculates the degree of supercooling of the supercooling heat exchanger based on the refrigerant pressure detected by the refrigerant pressure detecting means and the refrigerant temperature detected by the first refrigerant temperature detecting means, The opening degree of the first pressure reducing device is controlled so that the degree of supercooling becomes a first predetermined value, and the refrigerant pressure detected by the refrigerant pressure detecting means is compared with a second predetermined value. 2. The refrigeration according to claim 1, wherein when the pressure of the refrigerant is equal to or higher than a second predetermined value, the second pressure reducing device is opened, and the intermediate pressure refrigerant flows into the supercooling heat exchanger as a low-temperature refrigerant. Air conditioner.
圧縮機、凝縮器、第1減圧装置、蒸発器が冷媒配管により順次に接続された冷凍サイクル装置と、
前記冷凍サイクル装置の凝縮器と第1減圧装置との間に挿入され前記凝縮器からの冷媒を低温冷媒と熱交換して冷却する過冷却熱交換器と、
前記過冷却熱交換器と前記第1減圧装置との間に挿入された冷媒配管から前記過冷却熱交換器を介して前記圧縮機内の中間圧力室に第2減圧装置を介してバイパスするバイパス配管と、
前記圧縮機から吐出される冷媒の圧力を検出する冷媒圧力検出手段と、
前記過冷却熱交換器から流出される冷媒の温度を検出する第1冷媒温度検出手段と、
前記圧縮機の吐出側の冷媒の温度を検出する第2冷媒温度検出手段と、
前記冷媒圧力検出手段により検出された冷媒の圧力と前記第1冷媒温度検出手段により検出された冷媒の温度とに基づいて前記過冷却熱交換器の過冷却度を演算し、その過冷却度が第1の所定値になるように前記第1減圧装置の開度を制御し、さらに、前記冷媒圧力検出手段により検出された冷媒の圧力と前記第2冷媒温度検出手段により検出された冷媒の温度とに基づいて前記圧縮機の冷媒過熱度を演算し、その冷媒過熱度が第3の所定値以上になるように前記第2減圧装置の開度を制御する制御装置とを備え、
前記過冷却熱交換器に中間圧冷媒を低温冷媒として流入させることを特徴とする冷凍空調装置。
A refrigeration cycle apparatus in which a compressor, a condenser, a first decompressor, and an evaporator are sequentially connected by a refrigerant pipe;
A subcooling heat exchanger that is inserted between the condenser of the refrigeration cycle apparatus and the first decompression apparatus and cools the refrigerant from the condenser by exchanging heat with a low-temperature refrigerant;
Bypass piping bypassing from the refrigerant piping inserted between the supercooling heat exchanger and the first decompression device to the intermediate pressure chamber in the compressor via the second decompression device via the supercooling heat exchanger When,
Refrigerant pressure detection means for detecting the pressure of the refrigerant discharged from the compressor;
First refrigerant temperature detection means for detecting the temperature of the refrigerant flowing out of the supercooling heat exchanger;
Second refrigerant temperature detection means for detecting the temperature of the refrigerant on the discharge side of the compressor;
Based on the refrigerant pressure detected by the refrigerant pressure detection means and the refrigerant temperature detected by the first refrigerant temperature detection means, the degree of supercooling of the supercooling heat exchanger is calculated, and the degree of subcooling is calculated. The opening of the first pressure reducing device is controlled so as to be a first predetermined value, and the refrigerant pressure detected by the refrigerant pressure detecting means and the refrigerant temperature detected by the second refrigerant temperature detecting means. And a control device for controlling the degree of opening of the second pressure reducing device so that the refrigerant superheat degree is equal to or higher than a third predetermined value.
A refrigerating and air-conditioning apparatus, wherein an intermediate pressure refrigerant flows into the supercooling heat exchanger as a low-temperature refrigerant.
圧縮機、四方弁、第1熱交換器、第1減圧装置、第2熱交換器が冷媒配管により順次に接続された冷凍サイクル装置と、
前記冷凍サイクル装置の第1熱交換器と第1減圧装置との間に挿入され前記第1熱交換器からの冷媒を低温冷媒と熱交換して冷却する過冷却熱交換器と、
前記過冷却熱交換器と前記第1減圧装置との間に挿入された冷媒配管から前記過冷却熱交換器を介して前記圧縮機内の中間圧力室に第2減圧装置を介してバイパスするバイパス配管と、
前記圧縮機の吐出側の冷媒の圧力を検出する冷媒圧力検出手段と、
前記過冷却熱交換器の流出側の冷媒の温度を検出する第1冷媒温度検出手段と、
前記圧縮機の吐出側の冷媒の温度を検出する第2冷媒温度検出手段と、
前記第1熱交換器の流出側の冷媒の温度を検出する第3冷媒温度検出手段と、
前記冷媒圧力検出手段により検出された冷媒の圧力と前記第2冷媒温度検出手段により検出された冷媒の温度とに基づいて前記圧縮機の冷媒過熱度を演算し、その冷媒過熱度が第3の所定値になるように前記第2減圧装置の開度を制御し、さらに、前記冷媒圧力検出手段により検出された冷媒の圧力と前記第1冷媒温度検出手段により検出された冷媒の温度とに基づいて前記過冷却熱交換器の過冷却度を演算し、その過冷却度が第1の所定値になるように前記第1減圧装置の開度を制御する制御装置とを備え、
前記制御装置は、前記第2減圧装置が閉じているときに、前記冷媒圧力検出手段により検出された冷媒の圧力と前記第3冷媒温度検出手段により検出された冷媒の温度とに基づいて前記第1熱交換器の過冷却度を演算し、その過冷却度が第1の所定値になるように前記第1減圧装置の開度を制御し、
前記過冷却熱交換器に中間圧冷媒を低温冷媒として流入させることを特徴とする冷凍空調装置。
A refrigeration cycle apparatus in which a compressor, a four-way valve, a first heat exchanger, a first pressure reducing device, and a second heat exchanger are sequentially connected by refrigerant piping;
A supercooling heat exchanger that is inserted between the first heat exchanger and the first decompression device of the refrigeration cycle apparatus and cools the refrigerant from the first heat exchanger by exchanging heat with a low-temperature refrigerant;
Bypass piping bypassing from the refrigerant piping inserted between the supercooling heat exchanger and the first decompression device to the intermediate pressure chamber in the compressor via the second decompression device via the supercooling heat exchanger When,
Refrigerant pressure detection means for detecting the pressure of the refrigerant on the discharge side of the compressor;
First refrigerant temperature detection means for detecting the temperature of the refrigerant on the outflow side of the supercooling heat exchanger;
Second refrigerant temperature detection means for detecting the temperature of the refrigerant on the discharge side of the compressor;
Third refrigerant temperature detection means for detecting the temperature of the refrigerant on the outflow side of the first heat exchanger;
Based on the refrigerant pressure detected by the refrigerant pressure detection means and the refrigerant temperature detected by the second refrigerant temperature detection means, the refrigerant superheat degree of the compressor is calculated, and the refrigerant superheat degree is the third Based on the refrigerant pressure detected by the refrigerant pressure detecting means and the refrigerant temperature detected by the first refrigerant temperature detecting means, the opening degree of the second pressure reducing device is controlled to be a predetermined value. A control device for calculating the degree of supercooling of the supercooling heat exchanger and controlling the opening of the first pressure reducing device so that the degree of supercooling becomes a first predetermined value,
When the second pressure reducing device is closed, the control device is configured to control the first pressure based on the refrigerant pressure detected by the refrigerant pressure detection unit and the refrigerant temperature detected by the third refrigerant temperature detection unit. Calculating the degree of supercooling of one heat exchanger, and controlling the opening of the first pressure reducing device so that the degree of supercooling becomes a first predetermined value;
A refrigerating and air-conditioning apparatus, wherein an intermediate pressure refrigerant flows into the supercooling heat exchanger as a low-temperature refrigerant.
圧縮機、四方弁、第1熱交換器、第1減圧装置、第2熱交換器が冷媒配管により順次に接続された冷凍サイクル装置と、
前記冷凍サイクル装置の第1熱交換器と第1減圧装置との間に挿入され前記第1熱交換器からの冷媒を低温冷媒と熱交換して冷却する過冷却熱交換器と、
前記過冷却熱交換器と前記第1減圧装置との間に挿入された冷媒配管から前記過冷却熱交換器を介して前記圧縮機内の中間圧力室に第2減圧装置を介してバイパスするバイパス配管と、
前記圧縮機の吐出側の冷媒の圧力を検出する冷媒圧力検出手段と、
前記圧縮機の吐出側の冷媒の温度を検出する冷媒温度検出手段と、
前記冷媒圧力検出手段により検出された冷媒の圧力から飽和蒸気温度を演算し、その飽和蒸気温度が第4の所定値になるように前記第1減圧装置の開度を制御し、さらに、前記冷媒圧力検出手段により検出された冷媒の圧力と前記冷媒温度検出手段により検出された冷媒の温度とに基づいて前記圧縮機の冷媒過熱度を演算し、その冷媒過熱度が第3の所定値になるように前記第2減圧装置の開度を制御する制御装置とを備え、
前記過冷却熱交換器に中間圧冷媒を低温冷媒として流入させることを特徴とする冷凍空調装置。
A refrigeration cycle apparatus in which a compressor, a four-way valve, a first heat exchanger, a first pressure reducing device, and a second heat exchanger are sequentially connected by refrigerant piping;
A supercooling heat exchanger that is inserted between the first heat exchanger and the first decompression device of the refrigeration cycle apparatus and cools the refrigerant from the first heat exchanger by exchanging heat with a low-temperature refrigerant;
Bypass piping bypassing from the refrigerant piping inserted between the supercooling heat exchanger and the first decompression device to the intermediate pressure chamber in the compressor via the second decompression device via the supercooling heat exchanger When,
Refrigerant pressure detection means for detecting the pressure of the refrigerant on the discharge side of the compressor;
Refrigerant temperature detection means for detecting the temperature of the refrigerant on the discharge side of the compressor;
The saturation vapor temperature is calculated from the refrigerant pressure detected by the refrigerant pressure detection means, the opening of the first decompression device is controlled so that the saturation vapor temperature becomes a fourth predetermined value, and the refrigerant The refrigerant superheat degree of the compressor is calculated based on the refrigerant pressure detected by the pressure detection means and the refrigerant temperature detected by the refrigerant temperature detection means, and the refrigerant superheat degree becomes a third predetermined value. And a control device for controlling the opening of the second pressure reducing device,
A refrigerating and air-conditioning apparatus, wherein an intermediate pressure refrigerant flows into the supercooling heat exchanger as a low-temperature refrigerant.
JP2009201451A 2009-09-01 2009-09-01 Refrigeration air conditioner Active JP5452138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201451A JP5452138B2 (en) 2009-09-01 2009-09-01 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201451A JP5452138B2 (en) 2009-09-01 2009-09-01 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2011052884A true JP2011052884A (en) 2011-03-17
JP5452138B2 JP5452138B2 (en) 2014-03-26

Family

ID=43942074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201451A Active JP5452138B2 (en) 2009-09-01 2009-09-01 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP5452138B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162458A (en) * 2011-12-14 2013-06-19 童夏民 Application of low differential pressure cold cylinder circulation
JP2013134025A (en) * 2011-12-27 2013-07-08 Panasonic Corp Refrigeration cycle apparatus, and heat exchanger
WO2014132602A1 (en) * 2013-02-27 2014-09-04 株式会社デンソー Stacked heat exchanger
JP2014163639A (en) * 2013-02-27 2014-09-08 Denso Corp Lamination type heat exchanger
CN104122463A (en) * 2014-07-16 2014-10-29 珠海格力电器股份有限公司 Method and system for detecting electronic expansion valve
JPWO2013080244A1 (en) * 2011-11-29 2015-04-27 三菱電機株式会社 Refrigeration air conditioner
JP2016020760A (en) * 2014-07-14 2016-02-04 株式会社富士通ゼネラル Air conditioner
WO2016051646A1 (en) * 2014-09-29 2016-04-07 株式会社デンソー Ejector refrigeration cycle device
JP2016513749A (en) * 2013-03-15 2016-05-16 ハネウェル・インターナショナル・インコーポレーテッド Low GWP heat transfer composition
JPWO2016203624A1 (en) * 2015-06-18 2018-01-18 三菱電機株式会社 Refrigeration cycle equipment
CN108302839A (en) * 2017-12-29 2018-07-20 青岛海尔空调器有限总公司 Air-conditioner system
CN108375248A (en) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 Air-conditioner system
CN108375255A (en) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 Air-conditioner system
US10161687B2 (en) 2015-01-22 2018-12-25 Mitsubishi Electric Corporation Plate heat exchanger and heat pump outdoor unit
CN109579296A (en) * 2017-09-29 2019-04-05 青岛经济技术开发区海尔热水器有限公司 A kind of Teat pump boiler unit and its control method
WO2019124327A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Refrigeration cycle device
US10508835B2 (en) 2014-07-23 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2020188756A1 (en) * 2019-03-19 2020-09-24 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JPWO2019124327A1 (en) * 2017-12-18 2021-01-21 ダイキン工業株式会社 Refrigeration cycle equipment
WO2021131437A1 (en) * 2019-12-26 2021-07-01 株式会社デンソー Refrigerant cycle device
CN113790506A (en) * 2021-09-16 2021-12-14 珠海格力电器股份有限公司 Method for solving noise of air conditioner outdoor unit
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
WO2023047534A1 (en) * 2021-09-24 2023-03-30 三菱電機株式会社 Air conditioner, method for controlling air conditioner, and program
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
JP7458771B2 (en) 2019-12-19 2024-04-01 三菱重工サーマルシステムズ株式会社 Outdoor unit and air conditioner equipped with it

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074756A (en) * 1993-06-18 1995-01-10 Mitsubishi Electric Corp Air-conditioning device
JP2005121362A (en) * 2003-10-16 2005-05-12 Lg Electronics Inc Controller and method for controlling refrigerant temperature for air conditioner
JP2006275314A (en) * 2005-03-28 2006-10-12 Aisin Seiki Co Ltd Engine driving-type air conditioner
JP2008241069A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Air conditioning device
JP2008241192A (en) * 2007-03-28 2008-10-09 Mitsubishi Electric Corp Refrigerating cycle device
JP2008267653A (en) * 2007-04-18 2008-11-06 Daikin Ind Ltd Refrigerating device
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device
JP2009186121A (en) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp Heat pump water heater outdoor unit and heat pump water heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074756A (en) * 1993-06-18 1995-01-10 Mitsubishi Electric Corp Air-conditioning device
JP2005121362A (en) * 2003-10-16 2005-05-12 Lg Electronics Inc Controller and method for controlling refrigerant temperature for air conditioner
JP2006275314A (en) * 2005-03-28 2006-10-12 Aisin Seiki Co Ltd Engine driving-type air conditioner
JP2008241069A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Air conditioning device
JP2008241192A (en) * 2007-03-28 2008-10-09 Mitsubishi Electric Corp Refrigerating cycle device
JP2008267653A (en) * 2007-04-18 2008-11-06 Daikin Ind Ltd Refrigerating device
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device
JP2009186121A (en) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp Heat pump water heater outdoor unit and heat pump water heater

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013080244A1 (en) * 2011-11-29 2015-04-27 三菱電機株式会社 Refrigeration air conditioner
CN103162458A (en) * 2011-12-14 2013-06-19 童夏民 Application of low differential pressure cold cylinder circulation
JP2013134025A (en) * 2011-12-27 2013-07-08 Panasonic Corp Refrigeration cycle apparatus, and heat exchanger
WO2014132602A1 (en) * 2013-02-27 2014-09-04 株式会社デンソー Stacked heat exchanger
JP2014163639A (en) * 2013-02-27 2014-09-08 Denso Corp Lamination type heat exchanger
US10962307B2 (en) 2013-02-27 2021-03-30 Denso Corporation Stacked heat exchanger
JP2016513749A (en) * 2013-03-15 2016-05-16 ハネウェル・インターナショナル・インコーポレーテッド Low GWP heat transfer composition
JP2016020760A (en) * 2014-07-14 2016-02-04 株式会社富士通ゼネラル Air conditioner
CN104122463A (en) * 2014-07-16 2014-10-29 珠海格力电器股份有限公司 Method and system for detecting electronic expansion valve
US10508835B2 (en) 2014-07-23 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2016051646A1 (en) * 2014-09-29 2016-04-07 株式会社デンソー Ejector refrigeration cycle device
JP2016070544A (en) * 2014-09-29 2016-05-09 株式会社デンソー Ejector type refrigeration cycle
US10161687B2 (en) 2015-01-22 2018-12-25 Mitsubishi Electric Corporation Plate heat exchanger and heat pump outdoor unit
JPWO2016203624A1 (en) * 2015-06-18 2018-01-18 三菱電機株式会社 Refrigeration cycle equipment
CN109579296A (en) * 2017-09-29 2019-04-05 青岛经济技术开发区海尔热水器有限公司 A kind of Teat pump boiler unit and its control method
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
JPWO2019124327A1 (en) * 2017-12-18 2021-01-21 ダイキン工業株式会社 Refrigeration cycle equipment
WO2019124327A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Refrigeration cycle device
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
EP3734193A4 (en) * 2017-12-29 2021-02-24 Qingdao Haier Air Conditioner General Corp., Ltd. Air conditioner system
CN108302839A (en) * 2017-12-29 2018-07-20 青岛海尔空调器有限总公司 Air-conditioner system
WO2019128519A1 (en) * 2017-12-29 2019-07-04 青岛海尔空调器有限总公司 Air conditioner system
WO2019128518A1 (en) * 2017-12-29 2019-07-04 青岛海尔空调器有限总公司 Air conditioner system
CN108375255B (en) * 2017-12-29 2019-12-06 青岛海尔空调器有限总公司 Air conditioner system
CN108375248A (en) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 Air-conditioner system
JP2021508809A (en) * 2017-12-29 2021-03-11 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. Air conditioner system
CN108375255A (en) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 Air-conditioner system
EP3734192A4 (en) * 2017-12-29 2021-03-03 Qingdao Haier Air Conditioner General Corp., Ltd. Air conditioner system
WO2020188756A1 (en) * 2019-03-19 2020-09-24 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JPWO2020188756A1 (en) * 2019-03-19 2021-04-30 日立ジョンソンコントロールズ空調株式会社 Room air conditioner
JP7458771B2 (en) 2019-12-19 2024-04-01 三菱重工サーマルシステムズ株式会社 Outdoor unit and air conditioner equipped with it
WO2021131437A1 (en) * 2019-12-26 2021-07-01 株式会社デンソー Refrigerant cycle device
CN114793444A (en) * 2019-12-26 2022-07-26 株式会社电装 Refrigeration cycle device
CN114793444B (en) * 2019-12-26 2024-01-02 株式会社电装 Refrigeration cycle device
CN113790506A (en) * 2021-09-16 2021-12-14 珠海格力电器股份有限公司 Method for solving noise of air conditioner outdoor unit
WO2023047534A1 (en) * 2021-09-24 2023-03-30 三菱電機株式会社 Air conditioner, method for controlling air conditioner, and program

Also Published As

Publication number Publication date
JP5452138B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5452138B2 (en) Refrigeration air conditioner
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP6595205B2 (en) Refrigeration cycle equipment
CN102419024B (en) Refrigeration cycle apparatus and hot-water heating apparatus
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
WO2007110908A9 (en) Refrigeration air conditioning device
JP5355016B2 (en) Refrigeration equipment and heat source machine
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP2009243793A (en) Heat pump type hot water supply outdoor unit
JPWO2013080244A1 (en) Refrigeration air conditioner
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
JP5734031B2 (en) Refrigeration air conditioner
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
JP2008224135A (en) Refrigerating device
JP6080939B2 (en) Air conditioner
JPWO2016079834A1 (en) Air conditioner
JP4442237B2 (en) Air conditioner
JP2009257756A (en) Heat pump apparatus, and outdoor unit for heat pump apparatus
JP6758506B2 (en) Air conditioner
JP2014202385A (en) Refrigeration cycle device
JP6272364B2 (en) Refrigeration cycle equipment
JP2011099571A (en) Refrigerating cycle device and hot-water heating device using the same
JP2009250495A (en) Air conditioner
JP2005351537A (en) Refrigerating cycle system and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5452138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250