JP2008241192A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2008241192A
JP2008241192A JP2007084738A JP2007084738A JP2008241192A JP 2008241192 A JP2008241192 A JP 2008241192A JP 2007084738 A JP2007084738 A JP 2007084738A JP 2007084738 A JP2007084738 A JP 2007084738A JP 2008241192 A JP2008241192 A JP 2008241192A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
state
pressure
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007084738A
Other languages
Japanese (ja)
Other versions
JP4969287B2 (en
Inventor
Takuya Ito
拓也 伊藤
Fumitake Unezaki
史武 畝崎
Kazunori Murahata
一憲 村端
Yasushi Ogoshi
靖 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007084738A priority Critical patent/JP4969287B2/en
Publication of JP2008241192A publication Critical patent/JP2008241192A/en
Application granted granted Critical
Publication of JP4969287B2 publication Critical patent/JP4969287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device capable of cooling a high pressure liquid refrigerant in front of an expansion valve to a temperature not higher than the temperature of a low temperature two-phase refrigerant reduced to an intermediate pressure. <P>SOLUTION: A first sub-cooler 13 and a second sub-cooler 15 are provided between an air side heat exchanger 12 and a first expansion valve 18. The high pressure liquid refrigerant in front of the first expansion valve 18 cooled by the low temperature two-phase refrigerant reduced to the intermediate pressure by the first sub-cooler 13 can thereby be cooled by the low temperature two-phase refrigerant further reduced to low pressure by the second sub-cooler 18. Consequently, the high pressure liquid refrigerant in front of the first expansion valve 18 can be cooled to the temperature not higher than the temperature of the low temperature two-phase refrigerant reduced to the intermediate pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は冷凍サイクル装置に関し、特に冷凍サイクルの効率の向上に関するものである。   The present invention relates to a refrigeration cycle apparatus, and more particularly to improving the efficiency of a refrigeration cycle.

従来の冷凍サイクル装置としては、例えば「第2圧縮機(12)から吐出された冷媒は、四路切換弁(13)を通過して熱源側熱交換器(14)に流入し、熱媒体と対向流の状態で熱交換を行って凝縮し、高圧圧力の液冷媒(図2の点5)となる。熱源側熱交換器(14)を流出した高圧圧力の液冷媒は、第1膨張弁(15)で減圧され、中間圧力の二相冷媒(図2の点4’)となって気液分離器(16)に流入する。中間圧力の二相冷媒は、気液分離器(16)においてガス冷媒(図2の点3’)と液冷媒(図2の点5’)とに分離され、ガス冷媒はガス配管(19)を通じて第2圧縮機(12)に吸入される。一方、液冷媒は第2膨張弁(17)で減圧され、低圧圧力の二相冷媒(図2の点6)となる。上記低圧冷媒は、利用側熱交換器(18)において、所定の熱媒体と対向流の状態で熱交換を行って蒸発し、低圧圧力のガス冷媒となる(図2の点1)。」(例えば特許文献1参照)というものが提案されている。   As a conventional refrigeration cycle apparatus, for example, “the refrigerant discharged from the second compressor (12) passes through the four-way switching valve (13) and flows into the heat source side heat exchanger (14), Heat exchange is performed in the counterflow state to condense and become a high-pressure liquid refrigerant (point 5 in Fig. 2) The high-pressure liquid refrigerant flowing out of the heat source side heat exchanger (14) is the first expansion valve. The pressure is reduced at (15) and becomes a two-phase refrigerant (point 4 ′ in FIG. 2) at an intermediate pressure and flows into the gas-liquid separator (16). 2 is separated into a gas refrigerant (point 3 ′ in FIG. 2) and a liquid refrigerant (point 5 ′ in FIG. 2), and the gas refrigerant is sucked into the second compressor (12) through the gas pipe (19). The liquid refrigerant is depressurized by the second expansion valve (17) to become a low-pressure two-phase refrigerant (point 6 in Fig. 2), which is used in the utilization side heat exchanger (18) as a predetermined heat medium. Heat exchange in counterflow Evaporated, the gas refrigerant of low pressure (point of FIG. 1). "Has been proposed as that (for example, see Patent Document 1).

特開2000−161805号公報(段落番号0029〜0031、図1,2)JP 2000-161805 (paragraph numbers 0029 to 0031, FIGS. 1 and 2)

近年、冷凍サイクルの効率の向上を目的とした冷媒回路が用いられるようになった。特に、環境問題に鑑み、非共沸冷媒の特性を積極的に活用した冷媒回路も多く用いられている。非共沸冷媒を用いた冷凍サイクルの効率を向上させる方法として、蒸発器の熱交換効率を向上させる方法がある(例えば特許文献1参照)。
蒸発器の熱交換効率を向上させるためには、蒸発器入り口の低温低圧二相状態の冷媒をできるだけ液状に近づける必要がある。このためには、膨張弁で減圧される前の高圧液冷媒の温度をできるだけ低下させる必要がある。従来の方法は、膨張弁前の高圧液冷媒を、中間圧に減圧した低温二相冷媒で冷却していた。したがって、膨張弁前の高圧液冷媒を、中間圧に減圧した低温二相冷媒の温度以下に冷却できないという問題があった。
In recent years, refrigerant circuits aimed at improving the efficiency of the refrigeration cycle have been used. In particular, in view of environmental problems, many refrigerant circuits that actively utilize the characteristics of non-azeotropic refrigerants are also used. As a method for improving the efficiency of a refrigeration cycle using a non-azeotropic refrigerant, there is a method for improving the heat exchange efficiency of an evaporator (see, for example, Patent Document 1).
In order to improve the heat exchange efficiency of the evaporator, it is necessary to make the low-temperature low-pressure two-phase refrigerant at the inlet of the evaporator as close to liquid as possible. For this purpose, it is necessary to reduce the temperature of the high-pressure liquid refrigerant before being reduced by the expansion valve as much as possible. In the conventional method, the high-pressure liquid refrigerant before the expansion valve is cooled with a low-temperature two-phase refrigerant reduced to an intermediate pressure. Therefore, there is a problem that the high-pressure liquid refrigerant before the expansion valve cannot be cooled below the temperature of the low-temperature two-phase refrigerant reduced to the intermediate pressure.

この発明は上述のような課題を解決するためになされたものであり、膨張弁前の高圧液冷媒を、中間圧に減圧した低温二相冷媒の温度以下に冷却できる冷凍サイクル装置を得ることである。   The present invention has been made to solve the above-described problems, and by obtaining a refrigeration cycle apparatus capable of cooling the high-pressure liquid refrigerant before the expansion valve to a temperature equal to or lower than the temperature of the low-temperature two-phase refrigerant reduced to an intermediate pressure. is there.

この発明に係る冷凍サイクル装置は、圧縮機、凝縮器、第1の減圧装置及び蒸発器が順次接続した冷凍サイクル装置において、前記凝縮器と前記第1の減圧装置との間の冷媒を一部バイパスして、前記凝縮器と前記圧縮機内の圧縮室との間の冷媒に合流させる第1の副冷媒回路と、該第1の副冷媒回路に設けられた第2の減圧装置と、該第2の減圧装置で減圧された冷媒と、前記凝縮器と前記第1の減圧装置との間の冷媒とを熱交換する第1のサブクーラと、該第1のサブクーラと前記第1の減圧装置との間の冷媒を一部バイパスして、前記蒸発器と前記圧縮機との間の冷媒に合流させる第2の副冷媒回路と、該第2の副冷媒回路に設けられた第3の減圧装置と、該第3の減圧装置で減圧された冷媒と、前記第1のサブクーラと前記第1の減圧装置との間の冷媒とを熱交換する第2のサブクーラとを備えたものである。   In the refrigeration cycle apparatus according to the present invention, in the refrigeration cycle apparatus in which a compressor, a condenser, a first decompression device, and an evaporator are sequentially connected, a part of the refrigerant between the condenser and the first decompression device is provided. A first sub refrigerant circuit that bypasses and merges with the refrigerant between the condenser and the compression chamber in the compressor; a second decompression device provided in the first sub refrigerant circuit; A first subcooler for exchanging heat between the refrigerant decompressed by the second decompression device and the refrigerant between the condenser and the first decompression device; the first subcooler and the first decompression device; A second sub-refrigerant circuit that partially bypasses the refrigerant between the two and joins the refrigerant between the evaporator and the compressor, and a third decompressor provided in the second sub-refrigerant circuit The refrigerant decompressed by the third decompression device, the first subcooler, and the first reduction A refrigerant between the device is obtained and a second sub-cooler for exchanging heat.

この発明においては、凝縮器と第1の減圧装置との間に、第1のサブクーラと第2のサブクーラを備えたので、第1のサブクーラにおいて中間圧に減圧した低温二相冷媒によって冷却された第1の減圧装置前の高圧液冷媒を、さらに第2のサブクーラにおいて低圧に減圧した低温二相冷媒で冷却することができる。したがって、第1の減圧装置前の高圧液冷媒を、中間圧に減圧した低温二相冷媒の温度以下に冷却することができる。   In the present invention, since the first subcooler and the second subcooler are provided between the condenser and the first decompression device, the first subcooler is cooled by the low-temperature two-phase refrigerant decompressed to an intermediate pressure. The high-pressure liquid refrigerant before the first decompression device can be further cooled with the low-temperature two-phase refrigerant decompressed to a low pressure in the second subcooler. Therefore, the high-pressure liquid refrigerant before the first pressure reducing device can be cooled below the temperature of the low-temperature two-phase refrigerant reduced to the intermediate pressure.

実施の形態1.
図1は、この発明の実施の形態1における冷凍サイクル装置の冷媒回路である。冷凍サイクル装置は、本発明の圧縮機に相当するインジェクション圧縮機11、本発明の凝縮器に相当する空気側熱交換器12、第1のサブクーラ13、本発明の第2の減圧装置に相当する第2の膨張弁14、本発明の第1の副冷媒回路に相当するインジェクション回路100、第2のサブクーラ15、本発明の第3の減圧装置に相当する第3の膨張弁16、電磁弁17、第2の副冷媒回路101、本発明の第1の減圧装置に相当する第1の膨張弁18、及び本発明の蒸発器に相当する水側熱交換器19で構成されている。インジェクション圧縮機11は例えばスクロール形式であり、インジェクションポート11aを介して圧縮室内にインジェクション回路100から供給される冷媒をインジェクションすることが可能な構造となっている。第2の膨張弁14及び第1の膨張弁18は例えば開度を可変に制御することができる電子膨張弁である。第3の膨張弁16は例えば温度式膨張弁であり、水側熱交換器19を出た低圧ガス冷媒の温度を感温部16aで検出し、この検出温度に応じて弁の開度が制御される。空気側熱交換器12は、送風機等で送風される外気と熱交換する例えばフィンチューブ型熱交換器である。水側熱交換器は、所定の冷房領域(例えば、室内や列車の車両内等)の冷房に用いられる熱冷媒(例えば水等)と対向流の状態で熱交換する例えば二重管式の熱交換器である。この冷凍サイクル装置の冷媒としては、例えばR407C等の非共沸混合冷媒が用いられている。なお、R410A等の擬似共沸混合冷媒、又はR22等の単一冷媒等を用いることもできる。
Embodiment 1 FIG.
1 is a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. The refrigeration cycle apparatus corresponds to an injection compressor 11 corresponding to the compressor of the present invention, an air side heat exchanger 12 corresponding to the condenser of the present invention, a first subcooler 13, and a second decompression apparatus of the present invention. The second expansion valve 14, the injection circuit 100 corresponding to the first sub refrigerant circuit of the present invention, the second sub cooler 15, the third expansion valve 16 corresponding to the third pressure reducing device of the present invention, and the electromagnetic valve 17 , The second sub refrigerant circuit 101, the first expansion valve 18 corresponding to the first decompression device of the present invention, and the water side heat exchanger 19 corresponding to the evaporator of the present invention. The injection compressor 11 is of a scroll type, for example, and has a structure capable of injecting refrigerant supplied from the injection circuit 100 into the compression chamber via the injection port 11a. The second expansion valve 14 and the first expansion valve 18 are electronic expansion valves capable of variably controlling the opening, for example. The third expansion valve 16 is, for example, a temperature type expansion valve, and the temperature of the low-pressure gas refrigerant that has exited the water-side heat exchanger 19 is detected by the temperature sensing unit 16a, and the opening degree of the valve is controlled according to this detected temperature. Is done. The air-side heat exchanger 12 is, for example, a fin tube heat exchanger that exchanges heat with the outside air blown by a blower or the like. The water-side heat exchanger is, for example, a double-pipe type heat exchanger that exchanges heat in a counter-flow state with a thermal refrigerant (for example, water) used for cooling a predetermined cooling area (for example, indoors or inside a train vehicle). It is an exchanger. As the refrigerant of the refrigeration cycle apparatus, for example, a non-azeotropic refrigerant mixture such as R407C is used. A pseudo-azeotropic refrigerant mixture such as R410A or a single refrigerant such as R22 can also be used.

また、冷凍サイクル装置には、制御装置401、圧縮機容量検知手段402、及び温度センサ403が設けられている。温度センサ403は、冷凍サイクル装置の周囲の外気温度Tを計測する。圧縮機容量検知手段402は、インジェクション圧縮機11の容量Qを計測する。制御装置401は、温度センサ403が計測した外気温度T、圧縮機容量検知手段402が計測したインジェクション圧縮機11の容量Q、設定温度T0及びインジェクション圧縮機11の設定容量Q0等の情報を格納する格納手段を有している。また、格納手段に格納されている情報等に基づき、インジェクション圧縮機11の回転数、第2の膨張弁14及び第1の膨張弁18の開度、及び電磁弁17の開閉等を制御する制御手段を有している。なお、この格納手段は制御装置401の外部に設けられてもよい。   Further, the refrigeration cycle apparatus is provided with a control device 401, a compressor capacity detection means 402, and a temperature sensor 403. The temperature sensor 403 measures the outside air temperature T around the refrigeration cycle apparatus. The compressor capacity detection unit 402 measures the capacity Q of the injection compressor 11. The control device 401 stores information such as the outside air temperature T measured by the temperature sensor 403, the capacity Q of the injection compressor 11 measured by the compressor capacity detection means 402, the set temperature T0, and the set capacity Q0 of the injection compressor 11. It has a storage means. Control for controlling the rotation speed of the injection compressor 11, the opening degrees of the second expansion valve 14 and the first expansion valve 18, the opening and closing of the electromagnetic valve 17 and the like based on the information stored in the storage means. Have means. This storage means may be provided outside the control device 401.

始めに、本実施形態1の冷凍サイクル装置における冷凍サイクル動作について説明する。
図2は、本実施形態1の冷凍サイクル装置における冷凍サイクル動作を示すP−h線図の一例である。横軸は比エンタルピ[kJ/kg]、縦軸は冷媒圧力[MPa]となっている。図1及びこの図2を用いて冷凍サイクル動作について以下説明する。
First, the refrigeration cycle operation in the refrigeration cycle apparatus of the first embodiment will be described.
FIG. 2 is an example of a Ph diagram illustrating the refrigeration cycle operation in the refrigeration cycle apparatus of the first embodiment. The horizontal axis represents specific enthalpy [kJ / kg], and the vertical axis represents refrigerant pressure [MPa]. The refrigeration cycle operation will be described below with reference to FIG. 1 and FIG.

インジェクション圧縮機11から吐出された高温高圧のガス冷媒(状態1)は、空気側熱交換器12へ流入する。その後、空気側熱交換器12において外気に放熱しながら凝縮液化し、高圧液冷媒(状態2)となる。空気側熱交換器12を出た高圧液冷媒は第1のサブクーラ13へ流入する。高圧液冷媒(状態2)は第1のサブクーラ13で、インジェクション回路100に分岐され第2の膨張弁14で中間圧に減圧され低温となった冷媒と熱交換し、冷却される(状態3)。第1のサブクーラ13を出た高圧液冷媒は、その一部がインジェクション回路100に分岐され、主流は第2のサブクーラ15へ流入する。高圧液冷媒(状態3)は第2のサブクーラ15で、第2の副冷媒回路101に分岐され第3の膨張弁16で低圧に減圧され低温となった冷媒と熱交換し、冷却される(状態4)。第2のサブクーラ15を出た高圧液冷媒は、その一部が第2の副冷媒回路101に分岐され、主流は第1の膨張弁18へ流入する。高圧液冷媒(状態4)は、第1の膨張弁18で減圧され、低圧二相状態となり(状態5)、水側熱交換器19へ流入する。水側熱交換器19では、水側熱交換器19の二重管の一方を冷媒流れ方向と対向して流れる熱冷媒(例えば水等)から吸熱し、蒸発して低圧ガス冷媒となる(状態6)。その後、第2の副冷媒回路101の低圧ガス冷媒(状態11)と合流し(状態12)、インジェクション圧縮機11に吸入される。   The high-temperature and high-pressure gas refrigerant (state 1) discharged from the injection compressor 11 flows into the air-side heat exchanger 12. Thereafter, the air-side heat exchanger 12 is condensed and liquefied while dissipating heat to the outside air to become a high-pressure liquid refrigerant (state 2). The high-pressure liquid refrigerant that has exited the air-side heat exchanger 12 flows into the first subcooler 13. The high-pressure liquid refrigerant (state 2) is cooled by the first subcooler 13 by branching to the injection circuit 100 and reducing the intermediate pressure by the second expansion valve 14 to a low temperature refrigerant (state 3). . A part of the high-pressure liquid refrigerant that has exited the first subcooler 13 is branched into the injection circuit 100, and the main flow flows into the second subcooler 15. The high-pressure liquid refrigerant (state 3) is cooled by the second sub-cooler 15 by branching to the second sub-refrigerant circuit 101, reducing the pressure to a low pressure by the third expansion valve 16 and reducing the temperature to a low temperature ( State 4). A part of the high-pressure liquid refrigerant that has exited the second subcooler 15 is branched into the second sub-refrigerant circuit 101, and the main flow flows into the first expansion valve 18. The high-pressure liquid refrigerant (state 4) is depressurized by the first expansion valve 18, enters a low-pressure two-phase state (state 5), and flows into the water-side heat exchanger 19. In the water-side heat exchanger 19, one of the double pipes of the water-side heat exchanger 19 absorbs heat from a thermal refrigerant (for example, water) that flows opposite to the refrigerant flow direction and evaporates into a low-pressure gas refrigerant (state) 6). Thereafter, it merges with the low-pressure gas refrigerant (state 11) of the second sub refrigerant circuit 101 (state 12) and is sucked into the injection compressor 11.

一方、インジェクション回路100に分岐された冷媒(状態3)は、第2の膨張弁14で中間圧まで減圧されて低温の二相冷媒となり(状態7)、第1のサブクーラ13へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態8)。その後、インジェクションポート11aを介してインジェクション圧縮機11にインジェクションされる。インジェクション圧縮機11では、低圧ガス冷媒(状態12)を吸入し、昇圧する過程で、インジェクション回路100よりインジェクションされる冷媒(状態8)を吸引し、それぞれを合流させる(状態9)。その後、高圧まで昇圧され吐出される(状態1)。   On the other hand, the refrigerant branched to the injection circuit 100 (state 3) is reduced to an intermediate pressure by the second expansion valve 14 to become a low-temperature two-phase refrigerant (state 7), flows into the first subcooler 13 and flows into the main stream. To increase the specific enthalpy (state 8). Thereafter, it is injected into the injection compressor 11 via the injection port 11a. In the injection compressor 11, in the process of sucking and increasing the pressure of the low-pressure gas refrigerant (state 12), the refrigerant (state 8) injected from the injection circuit 100 is sucked and joined (state 9). Thereafter, the pressure is increased to a high pressure and discharged (state 1).

また、第2の副冷媒回路101に分岐された冷媒(状態4)は、第3の膨張弁16で低圧まで減圧されて低温の二相冷媒となり(状態10)、第2のサブクーラ15へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態11)。その後、第2の副冷媒回路101を介して水側熱交換器19を出た低圧ガス冷媒(状態6)と合流し(状態12)、インジェクション圧縮機11に吸入される。   The refrigerant branched to the second sub refrigerant circuit 101 (state 4) is decompressed to a low pressure by the third expansion valve 16 to become a low-temperature two-phase refrigerant (state 10), and flows into the second subcooler 15. Then, it is heated by the mainstream high-pressure liquid refrigerant to increase the specific enthalpy (state 11). After that, the low-pressure gas refrigerant (state 6) exiting the water-side heat exchanger 19 is joined via the second sub refrigerant circuit 101 (state 6) and sucked into the injection compressor 11.

なお、本実施形態1では、第3の膨張弁16で減圧された冷媒の圧力(状態10)は第1の膨張弁18で減圧された冷媒の圧力(状態5)よりも小さくなっているが、これはあくまでも一例である。これら圧力の大小関係は、インジェクション圧縮機11の容量、第3の膨張弁16の開度設定、冷凍サイクル装置の周囲の外気温度、冷房領域(例えば、室内や列車の車両内等)の温度、又はユーザーが希望する冷房領域の希望温度等の条件に応じて変化する。   In the first embodiment, the pressure of the refrigerant decompressed by the third expansion valve 16 (state 10) is smaller than the pressure of the refrigerant decompressed by the first expansion valve 18 (state 5). This is just an example. These pressures are related to the capacity of the injection compressor 11, the opening of the third expansion valve 16, the outside air temperature around the refrigeration cycle device, the temperature of the cooling region (for example, indoors or inside a train vehicle), Or it changes according to conditions, such as the desired temperature of the cooling area | region which a user desires.

冷凍サイクル装置の運転条件によって、空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量が変化する。例えば、冷房領域(例えば、室内や列車の車両内等)の温度が低い場合や冷房領域の希望温度が高い場合、熱媒体(例えば水等)と冷房領域の空気との熱交換は少ない。そのため、冷媒と熱交換するために水側熱交換器19内に流入する熱媒体の温度は低いままである。このとき、水側熱交換器19内での冷媒と熱媒体の熱交換は少ないので、インジェクション圧縮機11の容量は小さくなる。したがって、空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量は少なくなる。また、例えば、冷凍サイクル装置の周囲の外気温度Tが低い場合、空気側熱交換器12で外気と熱交換する冷媒の過冷却度は大きくなる。そのため、冷媒の冷凍能力が大きくなるので、インジェクション圧縮機11の容量は小さくなる。したがって、空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量は少なくなる。   The amount of refrigerant flowing between the air-side heat exchanger 12 and the first expansion valve 18 varies depending on the operating conditions of the refrigeration cycle apparatus. For example, when the temperature in the cooling area (for example, indoors or in a train vehicle) is low or the desired temperature in the cooling area is high, heat exchange between the heat medium (for example, water) and the air in the cooling area is small. Therefore, the temperature of the heat medium flowing into the water-side heat exchanger 19 for heat exchange with the refrigerant remains low. At this time, since the heat exchange between the refrigerant and the heat medium in the water-side heat exchanger 19 is small, the capacity of the injection compressor 11 is reduced. Therefore, the amount of refrigerant flowing between the air side heat exchanger 12 and the first expansion valve 18 is reduced. For example, when the outside air temperature T around the refrigeration cycle apparatus is low, the degree of supercooling of the refrigerant that exchanges heat with the outside air in the air-side heat exchanger 12 increases. Therefore, since the refrigerant refrigerating capacity is increased, the capacity of the injection compressor 11 is reduced. Therefore, the amount of refrigerant flowing between the air side heat exchanger 12 and the first expansion valve 18 is reduced.

空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量が少なくなると、第2の副冷媒回路101を流れる冷媒量も少なくなり、第3の膨張弁16を作動するために必要な冷媒量が得られなくなる。また、水側熱交換器19に流れる冷媒量も少なくなり、冷凍サイクル装置の運転が不安定となる可能性がある。第3の膨張弁16を作動するために必要な冷媒量が得られなくなった場合、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断し、すべての冷媒を水側熱交換器19に流すことにより、冷凍サイクル装置の運転の安定化を図ることができる。   When the amount of refrigerant flowing between the air-side heat exchanger 12 and the first expansion valve 18 decreases, the amount of refrigerant flowing through the second sub refrigerant circuit 101 also decreases, and the third expansion valve 16 is operated. The necessary amount of refrigerant cannot be obtained. Further, the amount of refrigerant flowing in the water-side heat exchanger 19 is also reduced, and the operation of the refrigeration cycle apparatus may become unstable. When the amount of refrigerant necessary for operating the third expansion valve 16 cannot be obtained, the solenoid valve 17 is closed to block the flow of the refrigerant into the second sub refrigerant circuit 101, and all the refrigerant is removed from the water side. By flowing through the heat exchanger 19, the operation of the refrigeration cycle apparatus can be stabilized.

図3は、本実施形態1における電磁弁17の制御フローチャートである。制御装置401の格納手段には、あらかじめ設定温度T0及びインジェクション圧縮機11の設定容量Q0が格納されている。圧縮機容量検知手段402で計測されたインジェクション圧縮機11の容量Qが設定容量Q0以下、又は温度センサ403で計測された外気温度Tが設定温度T0以下になった場合、第3の膨張弁16を作動するために必要な冷媒量が第2の副冷媒回路101に流れないと判断して、制御装置401は電磁弁17の開閉を制御する。   FIG. 3 is a control flowchart of the solenoid valve 17 in the first embodiment. The storage means of the control device 401 stores a preset temperature T0 and a preset capacity Q0 of the injection compressor 11 in advance. When the capacity Q of the injection compressor 11 measured by the compressor capacity detecting means 402 is equal to or less than the set capacity Q0 or the outside air temperature T measured by the temperature sensor 403 is equal to or less than the set temperature T0, the third expansion valve 16 The control device 401 controls opening and closing of the electromagnetic valve 17 by determining that the amount of refrigerant necessary for operating the refrigerant does not flow into the second sub refrigerant circuit 101.

ステップS201では、インジェクション圧縮機11の容量Qと設定容量Q0とを比較する。インジェクション圧縮機11の容量Qが設定容量Q0よりも大きいときは、ステップS202へ進む。インジェクション圧縮機11の容量Qが設定容量Q0よりも小さいときは、ステップS204へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS201に戻る。ステップS202では、外気温度Tと設定温度T0とを比較する。外気温度Tが設定温度T0よりも高いときは、ステップS203へ進み、電磁弁17を開く。その後、ステップS201に戻る。外気温度Tが設定温度T0よりも低いときは、ステップS204へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS201に戻る。   In step S201, the capacity Q of the injection compressor 11 is compared with the set capacity Q0. When the capacity Q of the injection compressor 11 is larger than the set capacity Q0, the process proceeds to step S202. When the capacity Q of the injection compressor 11 is smaller than the set capacity Q0, the process proceeds to step S204, where the electromagnetic valve 17 is closed to block the flow of refrigerant into the second sub refrigerant circuit 101. Thereafter, the process returns to step S201. In step S202, the outside air temperature T is compared with the set temperature T0. When the outside air temperature T is higher than the set temperature T0, the process proceeds to step S203, and the electromagnetic valve 17 is opened. Thereafter, the process returns to step S201. When the outside air temperature T is lower than the set temperature T0, the process proceeds to step S204, where the electromagnetic valve 17 is closed to block the flow of refrigerant into the second sub refrigerant circuit 101. Thereafter, the process returns to step S201.

このように構成された冷凍サイクル装置においては、第1のサブクーラ13において中間圧に減圧した低温二相冷媒によって冷却された高圧液冷媒を、さらに第2のサブクーラ15において低圧に減圧した低温二相冷媒で冷却することができる。このため、第1の膨張弁18で減圧された水側熱交換器19入り口の低圧二相冷媒はより液状に近づくので、水側熱交換器19内でのエンタルピ差(状態5−6間)をより大きくできる。したがって、水側熱交換器19の熱交換効率、つまり冷凍サイクル装置の効率をより向上できる。   In the refrigeration cycle apparatus configured as described above, the high-pressure liquid refrigerant cooled by the low-temperature two-phase refrigerant reduced to the intermediate pressure in the first subcooler 13 is further reduced to the low-pressure two-phase in the second subcooler 15. It can be cooled with a refrigerant. For this reason, since the low-pressure two-phase refrigerant at the inlet of the water-side heat exchanger 19 decompressed by the first expansion valve 18 becomes closer to liquid, the enthalpy difference in the water-side heat exchanger 19 (between states 5-6) Can be made larger. Therefore, the heat exchange efficiency of the water side heat exchanger 19, that is, the efficiency of the refrigeration cycle apparatus can be further improved.

また、空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量が少ないときは、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断し、すべての冷媒を水側熱交換器19に流すので、冷凍サイクル装置の運転の安定化を図ることができる。   When the amount of refrigerant flowing between the air-side heat exchanger 12 and the first expansion valve 18 is small, the solenoid valve 17 is closed to block the refrigerant from flowing into the second sub refrigerant circuit 101, and all Since the refrigerant is passed through the water-side heat exchanger 19, the operation of the refrigeration cycle apparatus can be stabilized.

なお、本実施形態1では水側熱交換器19が蒸発器となる冷房運転時について説明してきたが、空気側熱交換器12と水側熱交換器19の配置を入れ替えた暖房運転時においても同様の効果が得られる。つまり、第1のサブクーラ13において中間圧に減圧した低温二相冷媒によって冷却された高圧液冷媒を、さらに第2のサブクーラ15において低圧に減圧した低温二相冷媒で冷却することができるので、第1の膨張弁18で減圧された空気側熱交換器12入り口の低圧二相冷媒はより液状に近づき、空気側熱交換器12内でのエンタルピ差を大きくすることができる。このため、空気側熱交換器12の吸熱能力が向上し、冷凍サイクル装置の効率を向上できる。   In the first embodiment, the cooling operation when the water-side heat exchanger 19 serves as an evaporator has been described. However, even during the heating operation in which the arrangement of the air-side heat exchanger 12 and the water-side heat exchanger 19 is changed. Similar effects can be obtained. That is, the high-pressure liquid refrigerant cooled by the low-temperature two-phase refrigerant reduced to the intermediate pressure in the first subcooler 13 can be further cooled by the low-temperature two-phase refrigerant reduced to the low pressure in the second subcooler 15. The low-pressure two-phase refrigerant at the inlet of the air-side heat exchanger 12 decompressed by the one expansion valve 18 becomes closer to a liquid state, and the enthalpy difference in the air-side heat exchanger 12 can be increased. For this reason, the heat absorption capacity of the air-side heat exchanger 12 is improved, and the efficiency of the refrigeration cycle apparatus can be improved.

また、水側熱交換器19と第1の膨張弁18との間を流れる冷媒量が少ないときは、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断し、すべての冷媒を空気側熱交換器12に流すので、冷凍サイクル装置の運転の安定化を図ることができる。   When the amount of refrigerant flowing between the water-side heat exchanger 19 and the first expansion valve 18 is small, the solenoid valve 17 is closed to block the refrigerant from flowing into the second sub refrigerant circuit 101, and all Since the refrigerant is passed through the air-side heat exchanger 12, the operation of the refrigeration cycle apparatus can be stabilized.

実施の形態2.
実施形態1では、冷房運転(又は暖房運転)を行う冷凍サイクル装置について説明してきたが、実施形態1の冷媒回路に四方弁及び逆止弁を設けることにより、本発明の効果を生かした冷暖房運転可能な冷凍サイクル装置を提供することができる。なお、本実施形態2において、特に記述しない項目については実施の形態1と同様とし、同一機能については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In the first embodiment, the refrigeration cycle apparatus that performs the cooling operation (or heating operation) has been described. However, by providing the refrigerant circuit of the first embodiment with the four-way valve and the check valve, the cooling / heating operation that takes advantage of the effects of the present invention. A possible refrigeration cycle apparatus can be provided. In the second embodiment, items not particularly described are the same as those in the first embodiment, and the same functions are described using the same reference numerals.

図4は、この発明の実施の形態2における冷凍サイクル装置の冷媒回路である。実施形態1の冷媒回路に対し、四方弁20、逆止弁ユニット21、及び逆止弁ユニット22が設けられている。四方弁20は、インジェクション圧縮機11の冷媒吐出側に設けられている。逆止弁ユニット21は、空気側熱交換器12から第1のサブクーラ13への冷媒流れを許容する逆止弁21a及び水側熱交換器19から第1のサブクーラ13への冷媒流れを許容する逆止弁21bから構成されている。また、逆止弁ユニット22は、第1の膨張弁18から水側熱交換器19への冷媒流れを許容する逆止弁22a及び第1の膨張弁18から空気側熱交換器12への冷媒流れを許容する逆止弁22bから構成されている。   FIG. 4 is a refrigerant circuit of the refrigeration cycle apparatus in Embodiment 2 of the present invention. A four-way valve 20, a check valve unit 21, and a check valve unit 22 are provided for the refrigerant circuit of the first embodiment. The four-way valve 20 is provided on the refrigerant discharge side of the injection compressor 11. The check valve unit 21 allows the refrigerant flow from the air side heat exchanger 12 to the first subcooler 13 and allows the refrigerant flow from the water side heat exchanger 19 to the first subcooler 13. It consists of a check valve 21b. The check valve unit 22 includes a check valve 22a that allows a refrigerant flow from the first expansion valve 18 to the water-side heat exchanger 19 and a refrigerant from the first expansion valve 18 to the air-side heat exchanger 12. It consists of a check valve 22b that allows flow.

始めに、図4及び図2を用いて、本実施形態2の冷凍サイクル装置における冷房運転時の冷凍サイクル動作について説明する。冷房運転時には、四方弁20の冷媒流路は図4の実線方向となる。インジェクション圧縮機11から吐出された高温高圧のガス冷媒(状態1)は、四方弁20を経て空気側熱交換器12へ流入する。その後、空気側熱交換器12において外気に放熱しながら凝縮液化し、高圧液冷媒(状態2)となる。空気側熱交換器12を出た高圧液冷媒は、逆止弁21aを経て第1のサブクーラ13へ流入する。高圧液冷媒(状態2)は第1のサブクーラ13で、インジェクション回路100に分岐され第2の膨張弁14で中間圧に減圧され低温となった冷媒と熱交換し、冷却される(状態3)。第1のサブクーラ13を出た高圧液冷媒は、その一部がインジェクション回路100に分岐され、主流は第2のサブクーラ15へ流入する。高圧液冷媒(状態3)は第2のサブクーラ15で、第2の副冷媒回路101に分岐され第3の膨張弁16で低圧に減圧され低温となった冷媒と熱交換し、冷却される(状態4)。第2のサブクーラ15を出た高圧液冷媒は、その一部が第2の副冷媒回路101に分岐され、主流は第1の膨張弁18へ流入する。高圧液冷媒(状態4)は、第1の膨張弁18で減圧され、低圧二相状態となり(状態5)、逆止弁22aを経て水側熱交換器19へ流入する。水側熱交換器19では、水側熱交換器19内の二重管の一方を冷媒流れ方向と対向して流れる熱冷媒(例えば水等)から吸熱し、蒸発して低圧ガス冷媒となる(状態6)。その後、第2の副冷媒回路101の低圧ガス冷媒(状態11)と合流し(状態12)、インジェクション圧縮機11に吸入される。   First, the refrigeration cycle operation during the cooling operation in the refrigeration cycle apparatus of the second embodiment will be described with reference to FIGS. 4 and 2. During the cooling operation, the refrigerant flow path of the four-way valve 20 is in the direction of the solid line in FIG. The high-temperature and high-pressure gas refrigerant (state 1) discharged from the injection compressor 11 flows into the air-side heat exchanger 12 through the four-way valve 20. Thereafter, the air-side heat exchanger 12 is condensed and liquefied while dissipating heat to the outside air to become a high-pressure liquid refrigerant (state 2). The high-pressure liquid refrigerant that has exited the air-side heat exchanger 12 flows into the first subcooler 13 through the check valve 21a. The high-pressure liquid refrigerant (state 2) is cooled by the first subcooler 13 by branching to the injection circuit 100 and reducing the intermediate pressure by the second expansion valve 14 to a low temperature refrigerant (state 3). . A part of the high-pressure liquid refrigerant that has exited the first subcooler 13 is branched into the injection circuit 100, and the main flow flows into the second subcooler 15. The high-pressure liquid refrigerant (state 3) is cooled by the second sub-cooler 15 by branching to the second sub-refrigerant circuit 101, reducing the pressure to a low pressure by the third expansion valve 16 and reducing the temperature to a low temperature ( State 4). A part of the high-pressure liquid refrigerant that has exited the second subcooler 15 is branched into the second sub-refrigerant circuit 101, and the main flow flows into the first expansion valve 18. The high-pressure liquid refrigerant (state 4) is depressurized by the first expansion valve 18, enters a low-pressure two-phase state (state 5), and flows into the water-side heat exchanger 19 through the check valve 22a. In the water-side heat exchanger 19, one of the double pipes in the water-side heat exchanger 19 absorbs heat from a thermal refrigerant (for example, water) that flows opposite to the refrigerant flow direction and evaporates to become a low-pressure gas refrigerant ( State 6). Thereafter, it merges with the low-pressure gas refrigerant (state 11) of the second sub refrigerant circuit 101 (state 12) and is sucked into the injection compressor 11.

一方、インジェクション回路100に分岐された冷媒(状態3)は、第2の膨張弁14で中間圧まで減圧されて低温の二相冷媒となり(状態7)、第1のサブクーラ13へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態8)。その後、インジェクションポート11aを介してインジェクション圧縮機11にインジェクションされる。インジェクション圧縮機11では、低圧ガス冷媒(状態12)を吸入し、昇圧する過程で、インジェクション回路100よりインジェクションされる冷媒(状態8)を吸引し、それぞれを合流させる(状態9)。その後、高圧まで昇圧され吐出される(状態1)。   On the other hand, the refrigerant branched to the injection circuit 100 (state 3) is reduced to an intermediate pressure by the second expansion valve 14 to become a low-temperature two-phase refrigerant (state 7), flows into the first subcooler 13 and flows into the main stream. To increase the specific enthalpy (state 8). Thereafter, it is injected into the injection compressor 11 via the injection port 11a. In the injection compressor 11, in the process of sucking and increasing the pressure of the low-pressure gas refrigerant (state 12), the refrigerant (state 8) injected from the injection circuit 100 is sucked and joined (state 9). Thereafter, the pressure is increased to a high pressure and discharged (state 1).

また、第2の副冷媒回路101に分岐された冷媒(状態4)は、第3の膨張弁16で低圧まで減圧されて低温の二相冷媒となり(状態10)、第2のサブクーラ15へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態11)。その後、第2の副冷媒回路101を介して水側熱交換器19を出た低圧ガス冷媒(状態6)と合流し(状態12)、インジェクション圧縮機11に吸入される。   The refrigerant branched to the second sub refrigerant circuit 101 (state 4) is decompressed to a low pressure by the third expansion valve 16 to become a low-temperature two-phase refrigerant (state 10), and flows into the second subcooler 15. Then, it is heated by the mainstream high-pressure liquid refrigerant to increase the specific enthalpy (state 11). After that, the low-pressure gas refrigerant (state 6) exiting the water-side heat exchanger 19 is joined via the second sub refrigerant circuit 101 (state 6) and sucked into the injection compressor 11.

続いて、図4及び図2を用いて、本実施形態2の冷凍サイクル装置における暖房運転時の冷凍サイクル動作について説明する。厳密には、冷房運転時のP−h線図と暖房運転時のP−h線図では、各状態(状態1〜12)での冷媒圧力[MPa]や比エンタルピ[kJ/kg]の値は異なる。しかし、冷房運転時及び暖房運転時のP−h線図はほぼ同一形状となるため、図2を参照して以下暖房運転時の冷凍サイクル動作について説明する。暖房運転時には、四方弁20の冷媒流路は図4の破線方向となる。インジェクション圧縮機11から吐出された高温高圧のガス冷媒(状態1)は、四方弁20を経て水側熱交換器19へ流入する。水側熱交換器19では、水側熱交換器19内の二重管の一方を冷媒流れ方向と対向して流れる熱冷媒(例えば水等)に放熱し、凝縮液化し、高圧液冷媒(状態2)となる。水側熱交換器19を出た高圧液冷媒は、逆止弁21bを経て第1のサブクーラ13へ流入する。高圧液冷媒(状態2)は第1のサブクーラ13で、インジェクション回路100に分岐され第2の膨張弁14で中間圧に減圧され低温となった冷媒と熱交換し、冷却される(状態3)。第1のサブクーラ13を出た高圧液冷媒は、その一部がインジェクション回路100に分岐され、主流は第2のサブクーラ15へ流入する。高圧液冷媒(状態3)は第2のサブクーラ15で、第2の副冷媒回路101に分岐され第3の膨張弁16で低圧に減圧され低温となった冷媒と熱交換し、冷却される(状態4)。第2のサブクーラ15を出た高圧液冷媒は、その一部が第2の副冷媒回路101に分岐され、主流は第1の膨張弁18へ流入する。高圧液冷媒(状態4)は、第1の膨張弁18で減圧され、低圧二相状態となり(状態5)、逆止弁22bを経て空気側熱交換器12へ流入する。空気側熱交換器12では、低圧二相状態の冷媒は外気から吸熱しながら蒸発して低圧ガス冷媒となる(状態6)。その後、第2の副冷媒回路101の低圧ガス冷媒(状態11)と合流し(状態12)、インジェクション圧縮機11に吸入される。   Then, the refrigerating cycle operation | movement at the time of the heating operation in the refrigerating cycle apparatus of this Embodiment 2 is demonstrated using FIG.4 and FIG.2. Strictly speaking, the values of the refrigerant pressure [MPa] and the specific enthalpy [kJ / kg] in each state (states 1 to 12) in the Ph diagram during the cooling operation and the Ph diagram during the heating operation. Is different. However, since the Ph diagrams during the cooling operation and the heating operation have substantially the same shape, the refrigeration cycle operation during the heating operation will be described below with reference to FIG. During the heating operation, the refrigerant flow path of the four-way valve 20 is in the direction of the broken line in FIG. The high-temperature and high-pressure gas refrigerant (state 1) discharged from the injection compressor 11 flows into the water-side heat exchanger 19 through the four-way valve 20. In the water-side heat exchanger 19, one of the double pipes in the water-side heat exchanger 19 dissipates heat to a thermal refrigerant (for example, water) that flows opposite to the refrigerant flow direction, condenses and liquefies, and a high-pressure liquid refrigerant (state 2). The high-pressure liquid refrigerant that has exited the water-side heat exchanger 19 flows into the first subcooler 13 through the check valve 21b. The high-pressure liquid refrigerant (state 2) is cooled by the first subcooler 13 by branching to the injection circuit 100 and exchanging heat with the refrigerant having the low pressure reduced to the intermediate pressure by the second expansion valve 14 (state 3). . A part of the high-pressure liquid refrigerant that has exited the first subcooler 13 is branched into the injection circuit 100, and the main flow flows into the second subcooler 15. The high-pressure liquid refrigerant (state 3) is cooled by the second sub-cooler 15 by branching to the second sub-refrigerant circuit 101, reducing the pressure to a low pressure by the third expansion valve 16 and reducing the temperature to a low temperature ( State 4). A part of the high-pressure liquid refrigerant that has exited the second subcooler 15 is branched into the second sub-refrigerant circuit 101, and the main flow flows into the first expansion valve 18. The high-pressure liquid refrigerant (state 4) is depressurized by the first expansion valve 18, enters a low-pressure two-phase state (state 5), and flows into the air-side heat exchanger 12 through the check valve 22b. In the air-side heat exchanger 12, the low-pressure two-phase refrigerant evaporates while absorbing heat from the outside air to become a low-pressure gas refrigerant (state 6). Thereafter, it merges with the low-pressure gas refrigerant (state 11) of the second sub refrigerant circuit 101 (state 12), and is sucked into the injection compressor 11.

一方、インジェクション回路100に分岐された冷媒(状態3)は、第2の膨張弁14で中間圧まで減圧されて低温の二相冷媒となり(状態7)、第1のサブクーラ13へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態8)。その後、インジェクションポート11aを介してインジェクション圧縮機11にインジェクションされる。インジェクション圧縮機11では、低圧ガス冷媒(状態12)を吸入し、昇圧する過程で、インジェクション回路100よりインジェクションされる冷媒(状態8)を吸引し、それぞれを合流させる(状態9)。その後、高圧まで昇圧され吐出される(状態1)。   On the other hand, the refrigerant branched to the injection circuit 100 (state 3) is reduced to an intermediate pressure by the second expansion valve 14 to become a low-temperature two-phase refrigerant (state 7), flows into the first subcooler 13 and flows into the main stream. To increase the specific enthalpy (state 8). Thereafter, it is injected into the injection compressor 11 via the injection port 11a. In the injection compressor 11, in the process of sucking and increasing the pressure of the low-pressure gas refrigerant (state 12), the refrigerant (state 8) injected from the injection circuit 100 is sucked and joined (state 9). Thereafter, the pressure is increased to a high pressure and discharged (state 1).

また、第2の副冷媒回路101に分岐された冷媒(状態4)は、第3の膨張弁16で低圧まで減圧されて低温の二相冷媒となり(状態10)、第2のサブクーラ15へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態11)。その後、第2の副冷媒回路101を介して空気側熱交換器12を出た低圧ガス冷媒(状態6)と合流し(状態12)、インジェクション圧縮機11に吸入される。   The refrigerant branched to the second sub refrigerant circuit 101 (state 4) is decompressed to a low pressure by the third expansion valve 16 to become a low-temperature two-phase refrigerant (state 10), and flows into the second subcooler 15. Then, it is heated by the mainstream high-pressure liquid refrigerant to increase the specific enthalpy (state 11). Thereafter, the low-pressure gas refrigerant (state 6) that has exited the air-side heat exchanger 12 via the second sub-refrigerant circuit 101 (state 12) is merged (state 12) and is sucked into the injection compressor 11.

図5は、本実施形態2における電磁弁17の制御フローチャートである。冷房運転時と暖房運転時では設定温度及びインジェクション圧縮機11の設定容量が異なる。このため、制御装置401の格納手段には、あらかじめ冷房運転時の設定温度T0及び設定容量Q0、暖房運転時の設定温度T1及び設定容量Q1がそれぞれ格納されている。冷房運転時においては、圧縮機容量検知手段402で計測されたインジェクション圧縮機11の容量Qが設定容量Q0以下、又は温度センサ403で計測された外気温度Tが設定温度T0以下になった場合、第3の膨張弁16を作動するために必要な冷媒量が第2の副冷媒回路101に流れないと判断して、制御装置401は電磁弁17の開閉を制御する。また、暖房運転時においては、圧縮機容量検知手段402で計測されたインジェクション圧縮機11の容量Qが設定容量Q1以下、又は温度センサ403で計測された外気温度Tが設定温度T1以下になった場合、第3の膨張弁16を作動するために必要な冷媒量が第2の副冷媒回路101に流れないと判断して、制御装置401は電磁弁17の開閉を制御する。   FIG. 5 is a control flowchart of the electromagnetic valve 17 in the second embodiment. The set temperature and the set capacity of the injection compressor 11 are different between the cooling operation and the heating operation. Therefore, the storage means of the control device 401 stores in advance the set temperature T0 and set capacity Q0 during cooling operation, and the set temperature T1 and set capacity Q1 during heating operation, respectively. During cooling operation, when the capacity Q of the injection compressor 11 measured by the compressor capacity detecting means 402 is equal to or lower than the set capacity Q0, or the outside air temperature T measured by the temperature sensor 403 is equal to or lower than the set temperature T0, The control device 401 controls the opening and closing of the electromagnetic valve 17 by determining that the amount of refrigerant necessary for operating the third expansion valve 16 does not flow into the second sub refrigerant circuit 101. Further, during the heating operation, the capacity Q of the injection compressor 11 measured by the compressor capacity detecting means 402 is not more than the set capacity Q1, or the outside air temperature T measured by the temperature sensor 403 is not more than the set temperature T1. In this case, it is determined that the amount of refrigerant necessary for operating the third expansion valve 16 does not flow into the second sub refrigerant circuit 101, and the control device 401 controls the opening and closing of the electromagnetic valve 17.

ステップS501では、冷房運転か暖房運転かを判定する。冷房運転ならばステップS502へ進み、暖房運転ならばステップS506へ進む。冷房運転時、ステップS502では、インジェクション圧縮機11の容量Qと冷房運転時の設定容量Q0とを比較する。インジェクション圧縮機11の容量Qが冷房運転時の設定容量Q0よりも大きいときは、ステップS503へ進む。インジェクション圧縮機11の容量Qが冷房運転時の設定容量Q0よりも小さいときは、ステップS505へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS501に戻る。ステップS503では、外気温度Tと冷房運転時の設定温度T0とを比較する。外気温度Tが冷房運転時の設定温度T0よりも高いときは、ステップS504へ進み、電磁弁17を開く。その後、ステップS501に戻る。外気温度Tが冷房運転時の設定温度T0よりも低いときは、ステップS505へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS501に戻る。   In step S501, it is determined whether the operation is cooling or heating. If it is a cooling operation, the process proceeds to step S502, and if it is a heating operation, the process proceeds to step S506. During the cooling operation, in step S502, the capacity Q of the injection compressor 11 is compared with the set capacity Q0 during the cooling operation. When the capacity Q of the injection compressor 11 is larger than the set capacity Q0 during the cooling operation, the process proceeds to step S503. When the capacity Q of the injection compressor 11 is smaller than the set capacity Q0 during the cooling operation, the process proceeds to step S505, where the electromagnetic valve 17 is closed to block the refrigerant from flowing into the second sub refrigerant circuit 101. Thereafter, the process returns to step S501. In step S503, the outside air temperature T is compared with the set temperature T0 during the cooling operation. When the outside air temperature T is higher than the set temperature T0 during the cooling operation, the process proceeds to step S504, and the solenoid valve 17 is opened. Thereafter, the process returns to step S501. When the outside air temperature T is lower than the set temperature T0 during the cooling operation, the process proceeds to step S505, where the solenoid valve 17 is closed to block the refrigerant from flowing into the second sub refrigerant circuit 101. Thereafter, the process returns to step S501.

暖房運転時、ステップS506では、インジェクション圧縮機11の容量Qと暖房運転時の設定容量Q1とを比較する。インジェクション圧縮機11の容量Qが暖房運転時の設定容量Q1よりも大きいときは、ステップS507へ進む。インジェクション圧縮機11の容量Qが暖房運転時の設定容量Q1よりも小さいときは、ステップS509へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS501に戻る。ステップS503では、外気温度Tと暖房運転時の設定温度T1とを比較する。外気温度Tが暖房運転時の設定温度T0よりも高いときは、ステップS508へ進み、電磁弁17を開く。その後、ステップS501に戻る。外気温度Tが暖房運転時の設定温度T1よりも低いときは、ステップS509へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS501に戻る。   During the heating operation, in step S506, the capacity Q of the injection compressor 11 is compared with the set capacity Q1 during the heating operation. When the capacity Q of the injection compressor 11 is larger than the set capacity Q1 during the heating operation, the process proceeds to step S507. When the capacity Q of the injection compressor 11 is smaller than the set capacity Q1 during the heating operation, the process proceeds to step S509, where the electromagnetic valve 17 is closed and the refrigerant flow into the second sub refrigerant circuit 101 is blocked. Thereafter, the process returns to step S501. In step S503, the outside air temperature T is compared with the set temperature T1 during heating operation. When the outside air temperature T is higher than the set temperature T0 during the heating operation, the process proceeds to step S508, and the solenoid valve 17 is opened. Thereafter, the process returns to step S501. When the outside air temperature T is lower than the set temperature T1 during the heating operation, the process proceeds to step S509, where the electromagnetic valve 17 is closed to block the refrigerant from flowing into the second sub refrigerant circuit 101. Thereafter, the process returns to step S501.

このように構成された冷凍サイクル装置においては、四方弁20を切り替えることにより、冷房運転時は、第1のサブクーラ13において中間圧に減圧した低温二相冷媒によって冷却された高圧液冷媒を、さらに第2のサブクーラ15において低圧に減圧した低温二相冷媒で冷却することができる。このため、第1の膨張弁18で減圧された水側熱交換器19入り口の低圧二相冷媒はより液状に近づくので、水側熱交換器19内でのエンタルピ差(状態5−6間)をより大きくできる。したがって、水側熱交換器19の熱交換効率、つまり冷凍サイクル装置の効率をより向上できる。   In the refrigeration cycle apparatus configured as described above, by switching the four-way valve 20, during the cooling operation, the high-pressure liquid refrigerant cooled by the low-temperature two-phase refrigerant reduced to the intermediate pressure in the first subcooler 13 is further The second subcooler 15 can be cooled with a low-temperature two-phase refrigerant decompressed to a low pressure. For this reason, since the low-pressure two-phase refrigerant at the inlet of the water-side heat exchanger 19 decompressed by the first expansion valve 18 becomes closer to liquid, the enthalpy difference in the water-side heat exchanger 19 (between states 5-6) Can be made larger. Therefore, the heat exchange efficiency of the water side heat exchanger 19, that is, the efficiency of the refrigeration cycle apparatus can be further improved.

また、空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量が少ないときは、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断し、すべての冷媒を水側熱交換器19に流すので、冷凍サイクル装置の運転の安定化を図ることができる。   When the amount of refrigerant flowing between the air-side heat exchanger 12 and the first expansion valve 18 is small, the solenoid valve 17 is closed to block the refrigerant from flowing into the second sub refrigerant circuit 101, and all Since the refrigerant is passed through the water-side heat exchanger 19, the operation of the refrigeration cycle apparatus can be stabilized.

暖房運転時においては、第1のサブクーラ13において中間圧に減圧した低温二相冷媒によって冷却された高圧液冷媒を、さらに第2のサブクーラ15において低圧に減圧した低温二相冷媒で冷却することができるので、第1の膨張弁18で減圧された空気側熱交換器12入り口の低圧二相冷媒はより液状に近づき、空気側熱交換器12内でのエンタルピ差を大きくすることができる。このため、空気側熱交換器12の吸熱能力が向上し、冷凍サイクル装置の効率を向上できる。   During the heating operation, the high-pressure liquid refrigerant cooled by the low-temperature two-phase refrigerant reduced to the intermediate pressure in the first subcooler 13 may be further cooled by the low-temperature two-phase refrigerant reduced to the low pressure in the second subcooler 15. Therefore, the low-pressure two-phase refrigerant at the inlet of the air-side heat exchanger 12 reduced in pressure by the first expansion valve 18 becomes closer to a liquid state, and the enthalpy difference in the air-side heat exchanger 12 can be increased. For this reason, the heat absorption capacity of the air-side heat exchanger 12 is improved, and the efficiency of the refrigeration cycle apparatus can be improved.

また、水側熱交換器19と第1の膨張弁18との間を流れる冷媒量が少ないときは、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断し、すべての冷媒を空気側熱交換器12に流すので、冷凍サイクル装置の運転の安定化を図ることができる。   When the amount of refrigerant flowing between the water-side heat exchanger 19 and the first expansion valve 18 is small, the solenoid valve 17 is closed to block the refrigerant from flowing into the second sub refrigerant circuit 101, and all Since the refrigerant is passed through the air-side heat exchanger 12, the operation of the refrigeration cycle apparatus can be stabilized.

この発明の実施の形態1を示す冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device showing Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍サイクル装置の冷凍サイクル動作を示すP−h線図の一例である。It is an example of the Ph diagram which shows the refrigerating cycle operation | movement of the refrigerating-cycle apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す電磁弁17の制御フローチャートである。It is a control flowchart of the solenoid valve 17 which shows Embodiment 1 of this invention. この発明の実施の形態2を示す冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating-cycle apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2を示す冷凍サイクル装置の冷凍サイクル動作を示すP−h線図の一例である。It is an example of the Ph diagram which shows the refrigerating cycle operation | movement of the refrigerating-cycle apparatus which shows Embodiment 2 of this invention.

符号の説明Explanation of symbols

11 インジェクション圧縮機、11a インジェクションポート、12 空気側熱交換器、13 第1のサブクーラ、14 第2の膨張弁、15 第2のサブクーラ、16 第3の膨張弁、16a 感温部、17 電磁弁、18 第1の膨張弁、19 水側熱交換器、20 四方弁、21 逆止弁ユニット、21a,21b 逆止弁、22 逆止弁ユニット、22a,22b 逆止弁、100 インジェクション回路、101 第2の副冷媒回路、401 制御装置、402 圧縮機容量検知手段、403 温度センサ、Q 容量、Q0 設定容量(冷房運転時)、Q1 設定容量(暖房運転時)、T 外気温度、T0 設定温度(冷房運転時)、T1 設定温度(暖房運転時)。   DESCRIPTION OF SYMBOLS 11 Injection compressor, 11a injection port, 12 Air side heat exchanger, 13 1st subcooler, 14 2nd expansion valve, 15 2nd subcooler, 16 3rd expansion valve, 16a Temperature sensing part, 17 Solenoid valve , 18 First expansion valve, 19 Water side heat exchanger, 20 Four-way valve, 21 Check valve unit, 21a, 21b Check valve, 22 Check valve unit, 22a, 22b Check valve, 100 Injection circuit, 101 Second sub refrigerant circuit, 401 controller, 402 compressor capacity detection means, 403 temperature sensor, Q capacity, Q0 set capacity (during cooling operation), Q1 set capacity (during heating operation), T outside air temperature, T0 set temperature (At the time of cooling operation), T1 set temperature (at the time of heating operation).

Claims (3)

圧縮機、凝縮器、第1の減圧装置及び蒸発器が順次接続された冷凍サイクル装置において、
前記凝縮器と前記第1の減圧装置との間の冷媒を一部バイパスして、前記蒸発器と前記圧縮機内の圧縮室との間の冷媒に合流させる第1の副冷媒回路と、
該第1の副冷媒回路に設けられた第2の減圧装置と、
該第2の減圧装置で減圧された冷媒と、前記凝縮器と前記第1の減圧装置との間の冷媒とを熱交換する第1のサブクーラと、
該第1のサブクーラと前記第1の減圧装置との間の冷媒を一部バイパスして、前記蒸発器と前記圧縮機との間の冷媒に合流させる第2の副冷媒回路と、
該第2の副冷媒回路に設けられた第3の減圧装置と、
該第3の減圧装置で減圧された冷媒と、前記第1のサブクーラと前記第1の減圧装置との間の冷媒とを熱交換する第2のサブクーラと、
を備えたことを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus in which the compressor, the condenser, the first pressure reducing device, and the evaporator are sequentially connected,
A first sub refrigerant circuit that bypasses a part of the refrigerant between the condenser and the first pressure reducing device and joins the refrigerant between the evaporator and the compression chamber in the compressor;
A second decompression device provided in the first sub refrigerant circuit;
A first subcooler for exchanging heat between the refrigerant decompressed by the second decompression device and the refrigerant between the condenser and the first decompression device;
A second sub refrigerant circuit that partially bypasses the refrigerant between the first subcooler and the first pressure reducing device and joins the refrigerant between the evaporator and the compressor;
A third decompression device provided in the second sub refrigerant circuit;
A second subcooler for exchanging heat between the refrigerant decompressed by the third decompressor and the refrigerant between the first subcooler and the first decompressor;
A refrigeration cycle apparatus comprising:
前記第3の減圧装置で減圧された冷媒は、
前記第2の減圧装置で減圧された冷媒と比較して低圧であることを特徴とする請求項1に記載の冷凍サイクル装置。
The refrigerant decompressed by the third decompression device is
2. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus has a lower pressure than the refrigerant decompressed by the second decompression apparatus.
前記第2の副冷媒回路において、前記第3の減圧装置の冷媒流れ上流側に電磁弁を備えたことを特徴とする請求項1又は請求項2に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1 or 2, wherein in the second sub refrigerant circuit, an electromagnetic valve is provided on the upstream side of the refrigerant flow of the third decompression device.
JP2007084738A 2007-03-28 2007-03-28 Refrigeration cycle equipment Active JP4969287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084738A JP4969287B2 (en) 2007-03-28 2007-03-28 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084738A JP4969287B2 (en) 2007-03-28 2007-03-28 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2008241192A true JP2008241192A (en) 2008-10-09
JP4969287B2 JP4969287B2 (en) 2012-07-04

Family

ID=39912757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084738A Active JP4969287B2 (en) 2007-03-28 2007-03-28 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4969287B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052884A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Refrigerating air conditioner
KR101382084B1 (en) * 2011-09-07 2014-04-04 엘지전자 주식회사 An air conditioner
WO2016092943A1 (en) * 2014-12-12 2016-06-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン) リミテッド Air-conditioning device
JP2018136121A (en) * 2018-06-05 2018-08-30 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN111141050A (en) * 2020-01-21 2020-05-12 天津商业大学 Injection supercharging step supercooling transcritical CO2System and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159826A (en) * 1992-11-24 1994-06-07 Hitachi Ltd Multistage compression refrigerating apparatus
JPH09152195A (en) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd Refrigerating apparatus
JP2003279169A (en) * 2002-03-25 2003-10-02 Mitsubishi Electric Corp Refrigerating plant
JP2005083609A (en) * 2003-09-05 2005-03-31 Daikin Ind Ltd Refrigeration unit
JP2005315506A (en) * 2004-04-28 2005-11-10 Kobe Steel Ltd Two-stage screw refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159826A (en) * 1992-11-24 1994-06-07 Hitachi Ltd Multistage compression refrigerating apparatus
JPH09152195A (en) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd Refrigerating apparatus
JP2003279169A (en) * 2002-03-25 2003-10-02 Mitsubishi Electric Corp Refrigerating plant
JP2005083609A (en) * 2003-09-05 2005-03-31 Daikin Ind Ltd Refrigeration unit
JP2005315506A (en) * 2004-04-28 2005-11-10 Kobe Steel Ltd Two-stage screw refrigerator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052884A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Refrigerating air conditioner
KR101382084B1 (en) * 2011-09-07 2014-04-04 엘지전자 주식회사 An air conditioner
WO2016092943A1 (en) * 2014-12-12 2016-06-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン) リミテッド Air-conditioning device
JP2016114263A (en) * 2014-12-12 2016-06-23 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
CN107003048A (en) * 2014-12-12 2017-08-01 江森自控日立空调技术(香港)有限公司 Air conditioner
EP3232139A4 (en) * 2014-12-12 2018-08-15 Hitachi-Johnson Controls Air Conditioning, Inc. Air-conditioning device
CN107003048B (en) * 2014-12-12 2019-07-16 日立江森自控空调有限公司 Air conditioner
US10386081B2 (en) 2014-12-12 2019-08-20 Hitachi-Johnson Controls Air Conditioning, Inc. Air-conditioning device
JP2018136121A (en) * 2018-06-05 2018-08-30 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN111141050A (en) * 2020-01-21 2020-05-12 天津商业大学 Injection supercharging step supercooling transcritical CO2System and application
CN111141050B (en) * 2020-01-21 2024-03-26 天津商业大学 Injection supercharging cascade supercooling transcritical CO 2 System and application

Also Published As

Publication number Publication date
JP4969287B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
JP5968534B2 (en) Air conditioner
JP4781390B2 (en) Refrigeration cycle equipment
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP2011052884A (en) Refrigerating air conditioner
WO2007110908A9 (en) Refrigeration air conditioning device
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
JP2007240025A (en) Refrigerating device
JP2006112708A (en) Refrigerating air conditioner
JP4462435B2 (en) Refrigeration equipment
WO2015140951A1 (en) Air conditioner
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP4969287B2 (en) Refrigeration cycle equipment
JP4442237B2 (en) Air conditioner
JP2007139257A (en) Refrigeration device
JP2018021730A (en) Refrigeration cycle device
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP4767340B2 (en) Heat pump control device
JP2010002112A (en) Refrigerating device
JP5659909B2 (en) Heat pump equipment
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
JP2013053849A (en) Heat pump device, and outdoor unit thereof
JP2009293887A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250