JP4781390B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4781390B2
JP4781390B2 JP2008122875A JP2008122875A JP4781390B2 JP 4781390 B2 JP4781390 B2 JP 4781390B2 JP 2008122875 A JP2008122875 A JP 2008122875A JP 2008122875 A JP2008122875 A JP 2008122875A JP 4781390 B2 JP4781390 B2 JP 4781390B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
ejector
compressor
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008122875A
Other languages
Japanese (ja)
Other versions
JP2009270785A (en
Inventor
正則 青木
多佳志 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008122875A priority Critical patent/JP4781390B2/en
Publication of JP2009270785A publication Critical patent/JP2009270785A/en
Application granted granted Critical
Publication of JP4781390B2 publication Critical patent/JP4781390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、冷凍サイクル装置に関し、特に膨張損失を低減するためにエジェクタが組み込まれた冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus in which an ejector is incorporated to reduce expansion loss.

従来の冷凍サイクル装置として、例えば「圧縮機、凝縮器、過冷却熱交換器、膨張装置、蒸発器、エゼクタを順次連結するとともに、一端が凝縮器と膨張装置管間に接続されるとともに、他端がエゼクタのエゼクタ駆動ノズルの入口側に接続されるバイパス通路を設け、蒸発器の出口側を前記エゼクタの吸引部に接続しかつ、デフューザの出口側を過冷却熱交換器を介して圧縮機の吸込み側に接続し、バイパス通路の冷媒により過冷却熱交換器の冷媒を冷却する。」というものが提案されている(例えば、特許文献1参照)。   As a conventional refrigeration cycle device, for example, “a compressor, a condenser, a supercooling heat exchanger, an expansion device, an evaporator, and an ejector are sequentially connected, and one end is connected between the condenser and the expansion device pipe, Provided with a bypass passage whose end is connected to the inlet side of the ejector drive nozzle of the ejector, the outlet side of the evaporator is connected to the suction part of the ejector, and the outlet side of the diffuser is connected to the compressor via the supercooling heat exchanger The refrigerant of the supercooling heat exchanger is cooled by the refrigerant in the bypass passage. "(For example, see Patent Document 1).

特開2007−78318号公報(要約、図1)JP 2007-78318 A (summary, FIG. 1)

しかし、従来の冷凍サイクル装置には以下のような問題点があった。
まず、上記の特許文献1の従来例のように、エジェクタが組み込まれた冷凍サイクル装置においては、各構成部品の配置方法によってエジェクタによる効率改善効果も変わるため、考慮する必要があった。また、減圧手段に電子膨張弁を使用する場合には入口の冷媒状態により流量特性も変化するため、冷凍サイクルの安定性の観点から入口冷媒状態についても考慮する必要があった。
However, the conventional refrigeration cycle apparatus has the following problems.
First, in the refrigeration cycle apparatus in which the ejector is incorporated as in the conventional example of Patent Document 1 described above, the efficiency improvement effect by the ejector varies depending on the arrangement method of each component, and thus it is necessary to consider. In addition, when an electronic expansion valve is used as the pressure reducing means, the flow rate characteristic also changes depending on the refrigerant state at the inlet, and therefore it is necessary to consider the inlet refrigerant state from the viewpoint of the stability of the refrigeration cycle.

本発明は、以上の課題に鑑み、運転状態によらず安定した運転が可能であり、またエジェクタによる効率改善効果も高く、さらに経年劣化による詰まり等にも対応した信頼性の高い冷凍サイクル装置を得ることを目的とする。   In view of the above problems, the present invention provides a highly reliable refrigeration cycle apparatus that is capable of stable operation regardless of the operation state, has a high efficiency improvement effect by the ejector, and also supports clogging due to aging. The purpose is to obtain.

本発明に係る冷凍サイクル装置は、圧縮機、流路切替手段、熱源側熱交換器、第1の減圧装置、第1の内部熱交換器、第2の減圧装置、利用側熱交換器及びエジェクタを備え、これらが流路切替手段による切り替えにより暖房運転又は冷房運転に対応して所定の順次で環状に接続される冷媒回路を備えた冷凍サイクル装置であって、前記利用側熱交換器と前記第2の減圧装置との間から分岐し、逆止弁を備えた第1の分岐路と、前記熱源側熱交換器と前記第1の減圧装置との間から分岐し、逆止弁を備えた第2の分岐路とを備え、前記第1の分岐路の逆止弁の出側配管と前記第2の分岐路の逆止弁の出側配管とは合流して前記エジェクタの駆動ノズルの入り口側に接続され、暖房運転時には前記第1の分岐路から前記エジェクタの駆動ノズルに冷媒が供給され、冷房運転時には前記第2の分岐路から前記エジェクタの駆動ノズルに冷媒が供給され、前記第1の内部熱交換器は、前記エジェクタの昇圧部から圧縮機の吸入口に流れる冷媒と、前記第1の減圧装置と前記第2の減圧装置との間を流れる冷媒とを熱交換するものである。 A refrigeration cycle apparatus according to the present invention includes a compressor, a flow path switching unit, a heat source side heat exchanger, a first pressure reducing device, a first internal heat exchanger, a second pressure reducing device, a use side heat exchanger, and an ejector. These are refrigeration cycle apparatuses including a refrigerant circuit that is connected in a predetermined sequential annular manner corresponding to heating operation or cooling operation by switching by the flow path switching means, and the use side heat exchanger and the above Branching from between the second decompression device and branching from between the first branch path provided with a check valve and between the heat source side heat exchanger and the first decompression device, comprising a check valve A second branch path, and the outlet pipe of the check valve of the first branch path and the outlet pipe of the check valve of the second branch path merge to form a drive nozzle of the ejector. Connected to the entrance side, the heater drive nozzle of the ejector from the first branch path during heating operation Refrigerant is supplied, the refrigerant is supplied to the drive nozzle of the ejector from the second branch path during the cooling operation, the first internal heat exchanger, the refrigerant flowing through the suction port of the compressor from the booster section of the ejector And heat exchange between the refrigerant flowing between the first decompression device and the second decompression device.

本発明に係る冷凍サイクル装置によれば、上記のように第1の分岐路及び第2の分岐路を備え、第1の内部熱交換器が、エジェクタの昇圧部から圧縮機の吸入口に流れる冷媒と、第1の減圧装置と第2の減圧装置との間を流れる冷媒とを熱交換するようにしており、このため、運転条件や熱源側熱交換器又は利用側熱交換器の運転状態によらず冷凍サイクルにおける膨張損失を低減し、効率の向上が図れ、さらに経年劣化による異物による詰まりに対しても運転を継続できる信頼性の高い冷凍サイクル装置を提供することができる。   The refrigeration cycle apparatus according to the present invention includes the first branch path and the second branch path as described above, and the first internal heat exchanger flows from the booster of the ejector to the suction port of the compressor. Heat is exchanged between the refrigerant and the refrigerant flowing between the first decompression device and the second decompression device. For this reason, the operation conditions and the operation state of the heat source side heat exchanger or the use side heat exchanger are exchanged. Regardless of this, an expansion loss in the refrigeration cycle can be reduced, efficiency can be improved, and a highly reliable refrigeration cycle apparatus capable of continuing operation against clogging due to foreign matter due to deterioration over time can be provided.

実施の形態1.
以下、本発明の実施の形態1について説明する。
図1は、本実施形態1に係る冷凍サイクル装置の冷媒回路図である。図1に示されるように、この冷凍サイクル装置は、室外機1と室内機2とから構成されている。室外機1内には、圧縮機3、四方弁4、熱源側熱交換器である室外熱交換器11、第1の減圧装置である第1膨張弁10、第1内部熱交換器14、第2の減圧装置である第2膨張弁8、エジェクタ12、エジェクタ12の駆動ノズル12a入口側に流通するバイパス回路を開閉する電磁弁13、及び冷媒の流れを一方向に規制する逆止弁15が搭載されている。圧縮機3は、例えばインバータにより回転数が制御され容量制御されるタイプのものである。第1膨張弁10及び第2膨張弁8は、開度が可変に制御される電子膨張弁である。室外熱交換器11は、ファン(図示せず)などで送風される外気と熱交換する。エジェクタ12は、駆動ノズル12a、吸引部(低圧冷媒吸引口)12b、混合部12c及びデフューザ(昇圧部)12dから構成されている。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below.
FIG. 1 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to the first embodiment. As shown in FIG. 1, the refrigeration cycle apparatus includes an outdoor unit 1 and an indoor unit 2. In the outdoor unit 1, there are a compressor 3, a four-way valve 4, an outdoor heat exchanger 11 that is a heat source side heat exchanger, a first expansion valve 10 that is a first pressure reducing device, a first internal heat exchanger 14, A second expansion valve 8, which is a decompression device 2, an ejector 12, an electromagnetic valve 13 that opens and closes a bypass circuit that circulates on the inlet side of the drive nozzle 12a of the ejector 12, and a check valve 15 that restricts the flow of refrigerant in one direction. It is installed. The compressor 3 is of a type in which the number of revolutions is controlled by an inverter, for example, and the capacity is controlled. The first expansion valve 10 and the second expansion valve 8 are electronic expansion valves whose opening degree is variably controlled. The outdoor heat exchanger 11 exchanges heat with the outside air blown by a fan (not shown) or the like. The ejector 12 includes a drive nozzle 12a, a suction unit (low pressure refrigerant suction port) 12b, a mixing unit 12c, and a diffuser (pressure increase unit) 12d.

室内機2内には、利用側熱交換器である室内熱交換器6が搭載されている。ガス管5及び液管7は、室外機1と室内機2を接続する接続配管である。なお、図中矢印は冷媒の流れを示す。また、冷凍サイクル装置の冷媒としては例えばHFC系の混合冷媒であるR410Aが用いられる。   Inside the indoor unit 2, an indoor heat exchanger 6 that is a use side heat exchanger is mounted. The gas pipe 5 and the liquid pipe 7 are connection pipes that connect the outdoor unit 1 and the indoor unit 2. In addition, the arrow in a figure shows the flow of a refrigerant | coolant. As the refrigerant of the refrigeration cycle apparatus, for example, R410A, which is an HFC mixed refrigerant, is used.

室外機1内には、室内熱交換器6と第2膨張弁8との間から分岐する第1分岐路16及び室外熱交換器11と第1膨張弁10の間から分岐する第2分岐路17が設けられており、この第1分岐路16と第2分岐路17とは途中で合流した後電磁弁13を介して、エジェクタ12の駆動ノズル12a入口側と接続される。第1分岐路16及び第2分岐路17にはそれぞれ逆止弁15が設けられており、このため、冷媒の流れはエジェクタ12の駆動ノズル12aに向かう一方向となる。さらに蒸発器(冷房時:室内熱交換器6、暖房時:室外熱交換器11)から四方弁4を経て流れる冷媒をエジェクタ12の吸引部12bに供給し、エジェクタ12のデフューザ12dの出口側は第1内部熱交換器14を介して圧縮機3の吸入側に接続される。   In the outdoor unit 1, a first branch 16 that branches from between the indoor heat exchanger 6 and the second expansion valve 8 and a second branch that branches from between the outdoor heat exchanger 11 and the first expansion valve 10. 17 is provided, and the first branch path 16 and the second branch path 17 are joined on the way and then connected to the drive nozzle 12a inlet side of the ejector 12 via the electromagnetic valve 13. A check valve 15 is provided in each of the first branch path 16 and the second branch path 17, so that the flow of the refrigerant is in one direction toward the drive nozzle 12 a of the ejector 12. Further, the refrigerant flowing through the four-way valve 4 from the evaporator (cooling: indoor heat exchanger 6, heating: outdoor heat exchanger 11) is supplied to the suction portion 12b of the ejector 12, and the outlet side of the diffuser 12d of the ejector 12 is It is connected to the suction side of the compressor 3 via the first internal heat exchanger 14.

また、室外機1内には計測制御装置22、及び各温度センサ18a、18b、18c、18d、18e、18fが設置されている。温度センサ18aが圧縮機3吐出側、温度センサ18bが圧縮機3吸入側、温度センサ18cが室外熱交換器11中間部の冷媒流路上、温度センサ18dが室外熱交換器11と第1膨張弁10の間、温度センサ18eがエジェクタ12のデフューザ12dの出口側と第1内部熱交換器14との間に設けられ、それぞれ設置場所の冷媒温度を計測する。また温度センサ18fは室外機1周囲の外気温度を計測する。   In the outdoor unit 1, a measurement control device 22 and temperature sensors 18a, 18b, 18c, 18d, 18e, and 18f are installed. The temperature sensor 18a is on the discharge side of the compressor 3, the temperature sensor 18b is on the suction side of the compressor 3, the temperature sensor 18c is on the refrigerant flow path in the middle of the outdoor heat exchanger 11, and the temperature sensor 18d is on the outdoor heat exchanger 11 and the first expansion valve. 10, the temperature sensor 18e is provided between the outlet side of the diffuser 12d of the ejector 12 and the first internal heat exchanger 14, and measures the refrigerant temperature at the installation location. The temperature sensor 18f measures the outside air temperature around the outdoor unit 1.

また、室内機2内には温度センサ18g、18h、18iが設置されており、温度センサ18gは室内熱交換器6中間部の冷媒流路上、温度センサ18hは室内熱交換器6と液管7の間に設けられており、それぞれ設置場所での冷媒温度を計測する。温度センサ18iは室内熱交換器6に吸気される空気温度を計測する。なお、負荷となる熱媒体が水など他の媒体である場合には温度センサ18iはその媒体の流入温度を計測する。   In the indoor unit 2, temperature sensors 18g, 18h, and 18i are installed. The temperature sensor 18g is on the refrigerant flow path in the middle of the indoor heat exchanger 6, and the temperature sensor 18h is the indoor heat exchanger 6 and the liquid pipe 7. The temperature of the refrigerant at each installation location is measured. The temperature sensor 18 i measures the temperature of the air taken into the indoor heat exchanger 6. When the heat medium serving as a load is another medium such as water, the temperature sensor 18i measures the inflow temperature of the medium.

温度センサ18c、18gはそれぞれ熱交換器中間で気液二相状態となっている冷媒温度を検知することにより、高低圧の冷媒飽和温度を検知することができる。なお、以下の説明において温度センサ18a〜18iを総称するときには温度センサ18という。   The temperature sensors 18c and 18g can detect the refrigerant saturation temperature at high and low pressure by detecting the refrigerant temperature in the gas-liquid two-phase state in the middle of the heat exchanger. In the following description, the temperature sensors 18a to 18i are collectively referred to as the temperature sensor 18.

また、計測制御装置22は、マイクロコンピュータ等から構成されており、室外機1及び室内機2内の温度センサ18の計測情報や、冷凍サイクル装置使用者から指示される運転情報を取り込んで、それら情報に基づいて、圧縮機3の運転方法、四方弁4の流路切り換え、室外熱交換器11のファン送風量、各膨張弁8、9の開度などを制御する。   The measurement control device 22 is configured by a microcomputer or the like, and takes in measurement information of the temperature sensor 18 in the outdoor unit 1 and the indoor unit 2 and operation information instructed by a refrigeration cycle apparatus user. Based on the information, the operation method of the compressor 3, the flow path switching of the four-way valve 4, the fan air flow rate of the outdoor heat exchanger 11, the opening degree of each expansion valve 8, 9 are controlled.

次に、この冷凍サイクル装置の運転動作を説明する。
図2は、図1の冷凍サイクル装置の運転状況を表したP−h線図であり、上記の図1の冷媒回路及び図2のP−h線図を参照しながら動作説明をする。
運転状態としてまず暖房運転を例に説明を行う。
暖房運転時には、四方弁4の流路は図1の実線方向に設定され、圧縮機3、四方弁4、室内熱交換器6、第2膨張弁8、第1内部熱交換器14、第1膨張弁10、室外熱交換器11、四方弁4、及びエジェクタ12(吸引部12b−デフューザ12d)が環状に接続された冷媒回路が形成される。
暖房運転時は、圧縮機3から吐出された高温高圧のガス冷媒(図2点1)は凝縮器として作用する室内熱交換器6に流入し、ここで放熱しながら凝縮液化し、高圧低温の冷媒となる(図2点2)。室内熱交換器6を出た冷媒は第2膨張弁8で減圧された後(図2点3)、第1内部熱交換器14に流れて低圧冷媒と熱交換を行い冷却された後(図2点4)、第1膨張弁10にて減圧された後(図2点5)、蒸発器として作用する室外熱交換器11に流れその出口に至る(図2点6)。
Next, the operation of the refrigeration cycle apparatus will be described.
FIG. 2 is a Ph diagram showing the operating state of the refrigeration cycle apparatus of FIG. 1, and the operation will be described with reference to the refrigerant circuit of FIG. 1 and the Ph diagram of FIG.
First, a heating operation will be described as an example of the operation state.
During the heating operation, the flow path of the four-way valve 4 is set in the direction of the solid line in FIG. 1, and the compressor 3, the four-way valve 4, the indoor heat exchanger 6, the second expansion valve 8, the first internal heat exchanger 14, and the first A refrigerant circuit is formed in which the expansion valve 10, the outdoor heat exchanger 11, the four-way valve 4, and the ejector 12 (suction unit 12b-diffuser 12d) are connected in an annular shape.
During the heating operation, the high-temperature and high-pressure gas refrigerant (point 1 in FIG. 2) discharged from the compressor 3 flows into the indoor heat exchanger 6 acting as a condenser, where it condenses and liquefies while dissipating heat. It becomes a refrigerant (point 2 in FIG. 2). After the refrigerant exiting the indoor heat exchanger 6 is depressurized by the second expansion valve 8 (point 3 in FIG. 2), it flows into the first internal heat exchanger 14 and is cooled by exchanging heat with the low-pressure refrigerant (FIG. 2). 2 point 4), after being depressurized by the first expansion valve 10 (FIG. 2 point 5), it flows to the outdoor heat exchanger 11 acting as an evaporator and reaches its outlet (point 6 in FIG. 2).

一方、室内熱交換器6を出た冷媒(図2点2)の一部は、第2膨張弁8で減圧される前に第1分岐路16から電磁弁13を介してエジェクタ12の駆動ノズル12a入口側に流入し、速度を得て減圧され(図2点7)、室外熱交換器11から流出しエジェクタ12の吸引部12bに導かれた冷媒(図2点6)を吸引する。エジェクタ12の駆動ノズル12aから流出した冷媒とエジェクタ12の吸引部12bから吸引された冷媒は、エジェクタ12の混合部12cで混合され(図2点8)、エジェクタ12のデフューザ12dで昇圧される(図2点9)。その後、内部熱交換器14で加熱され気化された後(図2点10)、圧縮機3の吸入に戻る。   On the other hand, a part of the refrigerant (point 2 in FIG. 2) exiting the indoor heat exchanger 6 is driven from the first branch passage 16 through the electromagnetic valve 13 before being decompressed by the second expansion valve 8, and the drive nozzle of the ejector 12. The refrigerant flows into the inlet side of 12a and is decompressed at a speed (point 7 in FIG. 2), and flows out from the outdoor heat exchanger 11 and sucks the refrigerant (point 6 in FIG. 2) guided to the suction part 12b of the ejector 12. The refrigerant flowing out from the drive nozzle 12a of the ejector 12 and the refrigerant sucked from the suction part 12b of the ejector 12 are mixed by the mixing part 12c of the ejector 12 (point 8 in FIG. 2), and the pressure is increased by the diffuser 12d of the ejector 12 ( FIG. 2 point 9). Thereafter, after being heated and vaporized by the internal heat exchanger 14 (point 10 in FIG. 2), the process returns to the suction of the compressor 3.

次に、この冷凍サイクル装置の冷房運転時の動作を説明する。なお、冷房運転の運転状況を表すP−h線図は暖房運転時とほぼ同じになり、どちらの運転モードでも同様の運転を実現できるため、上記の図2を参照しながら説明する。
冷房運転時は、四方弁4の流路は図1の波線方向に設定され、圧縮機3、四方弁4、室外熱交換器11、第1膨張弁10、第1内部熱交換器14、第2膨張弁8、室内熱交換器6、四方弁4、エジェクタ12(吸引部12b−デフューザ12d)が環状に接続された冷媒回路が形成される。
冷房運転時には、圧縮機3から吐出された高温高圧のガス冷媒(図2点1)は凝縮器として作用する室外熱交換器11に流入し、ここで放熱しながら凝縮液化し、高圧低温の冷媒となる(図2点2)。室外熱交換器11を出た冷媒は第1膨張弁10で減圧された後(図2点3)、内部熱交換器14に流れて低圧冷媒と熱交換を行い冷却された後(図2点4)、第2膨張弁8にて減圧された後(図2点5)、蒸発器として作用する室内熱交換器6に流れその出口に至る(図2点6)。
Next, the operation of the refrigeration cycle apparatus during the cooling operation will be described. Note that the Ph diagram representing the operating state of the cooling operation is substantially the same as that in the heating operation, and the same operation can be realized in either operation mode, and thus will be described with reference to FIG.
During the cooling operation, the flow path of the four-way valve 4 is set in the direction of the wavy line in FIG. 1, and the compressor 3, the four-way valve 4, the outdoor heat exchanger 11, the first expansion valve 10, the first internal heat exchanger 14, the first A refrigerant circuit is formed in which the two expansion valve 8, the indoor heat exchanger 6, the four-way valve 4, and the ejector 12 (suction part 12b-diffuser 12d) are connected in an annular shape.
During the cooling operation, the high-temperature and high-pressure gas refrigerant (point 1 in FIG. 2) discharged from the compressor 3 flows into the outdoor heat exchanger 11 acting as a condenser, where it condenses and liquefies while dissipating heat, and the high-pressure and low-temperature refrigerant. (Point 2 in FIG. 2). After the refrigerant exiting the outdoor heat exchanger 11 is depressurized by the first expansion valve 10 (point 3 in FIG. 2), it flows to the internal heat exchanger 14 and is cooled by exchanging heat with the low-pressure refrigerant (point in FIG. 2). 4) After being depressurized by the second expansion valve 8 (point 5 in FIG. 2), it flows into the indoor heat exchanger 6 acting as an evaporator and reaches its outlet (point 6 in FIG. 2).

一方、室外熱交換器11を出た冷媒(図2点2)の一部は、第1膨張弁10に流れる前に第2分岐路17から電磁弁13を介してエジェクタ12の駆動ノズル12a入口側に流入し、速度を得て減圧され(図2点7)、室内熱交換器6から流出しエジェクタ12の吸引部12bに導かれた冷媒(図2点6)を吸引する。エジェクタ12の駆動ノズル12aから流出した冷媒とエジェクタ12の吸引部12bから吸引された冷媒は、エジェクタ12の混合部12cで混合され(図2点8)、エジェクタ12のデフューザ12dで昇圧される(図2点9)。その後、第1内部熱交換器14で加熱され気化された後(図2点10)、圧縮機3の吸入に戻る。   On the other hand, a part of the refrigerant (point 2 in FIG. 2) exiting the outdoor heat exchanger 11 enters the drive nozzle 12a of the ejector 12 through the electromagnetic valve 13 from the second branch path 17 before flowing into the first expansion valve 10. Then, the refrigerant is decompressed by obtaining a speed (point 7 in FIG. 2), and the refrigerant (point 6 in FIG. 2) flowing out from the indoor heat exchanger 6 and guided to the suction part 12b of the ejector 12 is sucked. The refrigerant flowing out from the drive nozzle 12a of the ejector 12 and the refrigerant sucked from the suction part 12b of the ejector 12 are mixed by the mixing part 12c of the ejector 12 (point 8 in FIG. 2), and the pressure is increased by the diffuser 12d of the ejector 12 ( FIG. 2 point 9). Then, after being heated and vaporized by the first internal heat exchanger 14 (point 10 in FIG. 2), the process returns to the suction of the compressor 3.

次に、この冷凍サイクル装置の運転制御動作について説明する。
まず、暖房運転時の制御動作について説明する。
暖房運転時には、圧縮機3の容量、第1膨張弁10の開度、第2膨張弁8の開度がそれぞれ初期値に設定される。そして以降運転状態に応じた各アクチュエータは以下のように制御される。
圧縮機3の容量は、基本的に室内機2の温度センサ18iで計測される空気温度が、冷凍空調装置使用者が設定する温度になるように制御される。従って、空気温度が設定温度より大きく低下している場合には、圧縮機3の容量は増加され、空気温度が設定温度に近接している場合には、圧縮機3の容量はそのまま維持され、空気温度が設定温度より高くなる場合には圧縮機3の容量は低下される。起動時等の高圧及び低圧の差が小さい、いわゆる低圧縮比運転の状態では、エジェクタ12での動力回収効果が十分得られないため電磁弁13は閉じており、温度センサ18gで検知される凝縮温度を飽和温度として求められる凝縮圧力と、温度センサ18cで検知される蒸発温度を飽和温度として求められる蒸発圧力との差が十分大きくなり、エジェクタ12での動力回収効果が得られると判断される場合には、電磁弁13を開き、エジェクタ12の駆動ノズル12a入口側に冷媒を流す。
Next, the operation control operation of this refrigeration cycle apparatus will be described.
First, the control operation during the heating operation will be described.
During the heating operation, the capacity of the compressor 3, the opening of the first expansion valve 10, and the opening of the second expansion valve 8 are set to initial values. Thereafter, each actuator according to the operating state is controlled as follows.
The capacity of the compressor 3 is basically controlled so that the air temperature measured by the temperature sensor 18 i of the indoor unit 2 becomes a temperature set by the user of the refrigeration air conditioner. Therefore, when the air temperature is greatly lower than the set temperature, the capacity of the compressor 3 is increased. When the air temperature is close to the set temperature, the capacity of the compressor 3 is maintained as it is. When the air temperature becomes higher than the set temperature, the capacity of the compressor 3 is reduced. In a so-called low compression ratio operation state where the difference between the high pressure and the low pressure is small at the time of startup or the like, the electromagnetic valve 13 is closed because the power recovery effect at the ejector 12 is not sufficiently obtained, and the condensation detected by the temperature sensor 18g. The difference between the condensation pressure obtained using the temperature as the saturation temperature and the evaporation pressure obtained using the evaporation temperature detected by the temperature sensor 18c as the saturation temperature is sufficiently large, and it is determined that the power recovery effect in the ejector 12 can be obtained. In that case, the solenoid valve 13 is opened, and the refrigerant is allowed to flow to the drive nozzle 12a inlet side of the ejector 12.

各膨張弁8、10の制御は、以下のように行われる。
まず、第2膨張弁8は、温度センサ18gで検知される高圧冷媒の飽和温度と温度センサ18hで検知される室内熱交換器6出口温度との差温で得られる室内熱交換器6出口の冷媒過冷却度SCが予め設定された目標値、例えば5℃になるように制御される。冷媒過冷却度SCが目標値より大きい場合には、第2膨張弁8の開度は大きく、冷媒過冷却度SCが目標値より小さい場合には、第2膨張弁8の開度は小さく制御される。
The control of each expansion valve 8, 10 is performed as follows.
First, the second expansion valve 8 is provided at the outlet of the indoor heat exchanger 6 obtained by the difference between the saturation temperature of the high-pressure refrigerant detected by the temperature sensor 18g and the outlet temperature of the indoor heat exchanger 6 detected by the temperature sensor 18h. The refrigerant supercooling degree SC is controlled to be a preset target value, for example, 5 ° C. When the refrigerant supercooling degree SC is larger than the target value, the opening degree of the second expansion valve 8 is large, and when the refrigerant subcooling degree SC is smaller than the target value, the opening degree of the second expansion valve 8 is controlled to be small. Is done.

次に、第1膨張弁10は、温度センサ18bで検知される圧縮機3吸入温度と温度センサ18eで検知される低圧冷媒の飽和温度との差温で検知される圧縮機3吸入の冷媒過熱度SHが予め設定された目標値、例えば5℃になるように制御される。冷媒過熱度SHが目標値より大きい場合には、第1膨張弁10の開度は大きく、冷媒過熱度SHが目標値より小さい場合には、第1膨張弁10の開度は小さく制御される。   Next, the first expansion valve 10 has the refrigerant 3 superheated by the compressor 3 detected by the temperature difference between the compressor 3 suction temperature detected by the temperature sensor 18b and the saturation temperature of the low-pressure refrigerant detected by the temperature sensor 18e. The degree SH is controlled to be a preset target value, for example, 5 ° C. When the refrigerant superheat degree SH is larger than the target value, the opening degree of the first expansion valve 10 is large, and when the refrigerant superheat degree SH is smaller than the target value, the opening degree of the first expansion valve 10 is controlled to be small. .

次に、冷房運転時の制御動作について説明する。
冷房運転時には、まず圧縮機3の容量、第1膨張弁10の開度、第2膨張弁8の開度がそれぞれ初期値に設定される。そして以降運転状態に応じた各アクチュエータは以下のように制御される。
圧縮機3の容量は、基本的に室内機2の温度センサ18iで計測される空気温度が、冷凍空調装置使用者が設定する温度になるように制御される。従って、空気温度が設定温度より大きく上昇している場合には、圧縮機3の容量は増加され、空気温度が設定温度に近接している場合には、圧縮機3の容量はそのまま維持され、空気温度が設定温度より低くなる場合には圧縮機3の容量は低下される。電磁弁13の制御は、暖房運転時と同様であり、冷房運転時には凝縮温度の検知に温度センサ18cを、蒸発温度の検知には温度センサ18gをそれぞれ利用する。
Next, the control operation during the cooling operation will be described.
During the cooling operation, first, the capacity of the compressor 3, the opening of the first expansion valve 10, and the opening of the second expansion valve 8 are set to initial values. Thereafter, each actuator according to the operating state is controlled as follows.
The capacity of the compressor 3 is basically controlled so that the air temperature measured by the temperature sensor 18 i of the indoor unit 2 becomes a temperature set by the user of the refrigeration air conditioner. Therefore, when the air temperature is higher than the set temperature, the capacity of the compressor 3 is increased. When the air temperature is close to the set temperature, the capacity of the compressor 3 is maintained as it is. When the air temperature becomes lower than the set temperature, the capacity of the compressor 3 is reduced. The control of the solenoid valve 13 is the same as in the heating operation, and the temperature sensor 18c is used for detecting the condensation temperature and the temperature sensor 18g is used for detecting the evaporation temperature during the cooling operation.

各膨張弁10、8の制御は以下のように行われる。
まず、第1膨張弁10は、温度センサ18cで検知される高圧冷媒の飽和温度と温度センサ18dで検知される室外熱交換器11出口温度との差温で得られる室外熱交換器11出口の冷媒過冷却度SCが予め設定された目標値、例えば5℃になるように制御される。冷媒過冷却度SCが目標値より大きい場合には、第1膨張弁10の開度は大きく、冷媒過冷却度SCが目標値より小さい場合には、第1膨張弁10の開度は小さく制御される。
The expansion valves 10 and 8 are controlled as follows.
First, the first expansion valve 10 is provided at the outlet of the outdoor heat exchanger 11 obtained by the difference between the saturation temperature of the high-pressure refrigerant detected by the temperature sensor 18c and the outlet temperature of the outdoor heat exchanger 11 detected by the temperature sensor 18d. The refrigerant supercooling degree SC is controlled to be a preset target value, for example, 5 ° C. When the refrigerant supercooling degree SC is larger than the target value, the opening degree of the first expansion valve 10 is large, and when the refrigerant subcooling degree SC is smaller than the target value, the opening degree of the first expansion valve 10 is controlled to be small. Is done.

次に、第2膨張弁8は、温度センサ18bで検知される圧縮機3吸入温度と温度センサ18eで検知される低圧冷媒の飽和温度との差温で検知される圧縮機3吸入の冷媒過熱度SHが予め設定された目標値、例えば5℃になるように制御される。冷媒過熱度SHが目標値より大きい場合には、第2膨張弁8の開度は大きく、冷媒過熱度SHが目標値より小さい場合には、第2膨張弁8の開度は小さく制御される。   Next, the second expansion valve 8 is connected to the compressor 3 suction refrigerant detected by the temperature difference between the compressor 3 suction temperature detected by the temperature sensor 18b and the saturation temperature of the low-pressure refrigerant detected by the temperature sensor 18e. The degree SH is controlled to be a preset target value, for example, 5 ° C. When the refrigerant superheat degree SH is larger than the target value, the opening degree of the second expansion valve 8 is large, and when the refrigerant superheat degree SH is smaller than the target value, the opening degree of the second expansion valve 8 is controlled to be small. .

次に、本実施の形態の回路構成及び制御によって実現される作用効果について説明する。なお、本実施の形態に係る冷凍サイクル装置の構成では、冷暖いずれの運転でも同様の運転を行えるので、以下、特に暖房運転について説明する。
本実施の形態に係る冷凍サイクル装置においては、エジェクタ12により昇圧された冷媒を圧縮機3に吸引することで、通常の回路に比べ圧縮機3における圧縮仕事量が低減し、冷凍サイクルの高効率化が図れる。エジェクタ12による冷凍サイクルの効率改善効果をより高めるためには、エジェクタ12のデフューザ12dでの昇圧量を多くする必要があり、そのためにはエジェクタ12の駆動ノズル12aでの膨張動力回収量を増やす必要がある。そのためにはエジェクタ12の駆動ノズル12a入口側の流入する冷媒のエンタルピをなるべく高い状態にした方が良く、そのためには室内熱交換器6出口の冷媒過冷却度SCをなるべく小さくした方が良い。またエジェクタ12の駆動ノズル12aでの減圧量が大きい方が良く、そのためにはエジェクタ12の駆動ノズル12a入口側での冷媒の圧力が高い方が良い。
Next, functions and effects realized by the circuit configuration and control of the present embodiment will be described. Note that, in the configuration of the refrigeration cycle apparatus according to the present embodiment, the same operation can be performed in both the cooling and heating operations, and therefore the heating operation will be particularly described below.
In the refrigeration cycle apparatus according to the present embodiment, the refrigerant boosted by the ejector 12 is sucked into the compressor 3, so that the amount of compression work in the compressor 3 is reduced compared to a normal circuit, and the refrigeration cycle has high efficiency. Can be achieved. In order to further increase the efficiency improvement effect of the refrigeration cycle by the ejector 12, it is necessary to increase the amount of pressure increase in the diffuser 12d of the ejector 12, and for that purpose, it is necessary to increase the amount of expansion power recovered from the drive nozzle 12a of the ejector 12 There is. For this purpose, it is better to make the enthalpy of the refrigerant flowing into the drive nozzle 12a inlet side of the ejector 12 as high as possible, and for that purpose, it is better to make the refrigerant subcooling degree SC at the outlet of the indoor heat exchanger 6 as small as possible. Further, it is preferable that the amount of pressure reduction at the drive nozzle 12a of the ejector 12 is large, and for that purpose, the pressure of the refrigerant at the inlet side of the drive nozzle 12a of the ejector 12 is preferably high.

一方で蒸発器(暖房時:室外熱交換器11)での熱交換量を増加させるためには蒸発器入口の冷媒エンタルピをなるべく小さくした方が良く、そのためには室内熱交換器6出口の冷媒過冷却度SCを大きくする必要があるが、これは上述のとおりエジェクタ12の効率改善効果を得るためには相反する条件となる。   On the other hand, in order to increase the amount of heat exchange in the evaporator (heating: outdoor heat exchanger 11), it is better to reduce the refrigerant enthalpy at the evaporator inlet as much as possible. For this purpose, the refrigerant at the outlet of the indoor heat exchanger 6 is better. Although it is necessary to increase the degree of supercooling SC, this is a contradictory condition for obtaining the efficiency improvement effect of the ejector 12 as described above.

そこで、本実施の形態のような構成にすることで、まず第2膨張弁8で室内熱交換器6出口の冷媒過冷却度SCを適正に小さく制御し、電磁弁13を開くことでエジェクタ12の駆動ノズル12a入口側の流入する冷媒のエンタルピをなるべく大きく、圧力も高い状態で保つことができる。その後、第1内部熱交換器14で低圧冷媒と熱交換を行い過冷却度を大きくすることで、室外熱交換器11入り口冷媒エンタルピを小さくすることができる。また第1膨張弁10により室外熱交換器11へ流れる冷媒流量を適正に制御し、エジェクタ12のデフューザ12d流出後の二相冷媒を第1内部熱交換器14を介して熱交換を行い、気化した後に圧縮機3の吸入に戻すことで、圧縮機3への液バックを防止できる。このようにエジェクタ12による効率改善効果を高めながら信頼性の高い冷凍サイクルを得ることができる。   Therefore, by adopting the configuration as in the present embodiment, first, the second expansion valve 8 controls the refrigerant supercooling degree SC at the outlet of the indoor heat exchanger 6 to be appropriately small, and the electromagnetic valve 13 is opened to open the ejector 12. The enthalpy of the refrigerant flowing in at the inlet side of the drive nozzle 12a can be kept as large as possible and the pressure can be kept high. Then, the refrigerant | coolant enthalpy at the entrance of the outdoor heat exchanger 11 can be reduced by exchanging heat with the low-pressure refrigerant in the first internal heat exchanger 14 to increase the degree of supercooling. Further, the flow rate of the refrigerant flowing to the outdoor heat exchanger 11 is appropriately controlled by the first expansion valve 10, and the two-phase refrigerant after flowing out of the diffuser 12d of the ejector 12 is heat-exchanged via the first internal heat exchanger 14 to be vaporized. After that, the liquid back to the compressor 3 can be prevented by returning to the suction of the compressor 3. Thus, a highly reliable refrigeration cycle can be obtained while enhancing the efficiency improvement effect of the ejector 12.

また、上記のように本実施の形態によれば、二つの膨張弁(減圧手段)8、10を有することで冷房運転及び暖房運転いずれの場合も同様の効率改善効果を得られる。従って運転状態に因らずにエジェクタ12による冷凍サイクル効率改善効果を高めることができる。   In addition, according to the present embodiment as described above, by having the two expansion valves (decompression means) 8 and 10, the same efficiency improvement effect can be obtained in both the cooling operation and the heating operation. Therefore, the effect of improving the refrigeration cycle efficiency by the ejector 12 can be enhanced regardless of the operating state.

さらに冷媒の流れの一部のみをエジェクタ12の駆動ノズル12aを流すことで、経年劣化や過熱運転により圧縮機3の潤滑用冷凍機油等の劣化により発生するスラッジにより、エジェクタ12の駆動ノズル12aで最も流路が狭まる喉部で詰まりが発生した場合でであっても、冷凍サイクル装置の運転は継続することができるため、エジェクタ搭載の冷凍サイクル装置の経年劣化に対する信頼性を高めることができる。   Furthermore, only a part of the refrigerant flow is caused to flow through the drive nozzle 12a of the ejector 12, so that sludge generated due to aging deterioration or deterioration of the refrigerating machine oil for the compressor 3 due to overheating operation causes the drive nozzle 12a of the ejector 12 to drive. Even when the clogging occurs in the throat where the flow path is narrowest, the operation of the refrigeration cycle apparatus can be continued, so that the reliability of the refrigeration cycle apparatus equipped with an ejector against aging can be improved.

実施の形態2.
以下本発明の実施の形態2を図3に示す。
図3は実施の形態2に係る冷凍サイクル装置の冷媒回路図である。上記の実施の形態1の第1内部熱交換器14の代わりに、室外機1内に内部熱交換機能付き中圧レシーバ(以下、中圧レシーバという)9が設けられ、その内部に圧縮機3吸入配管が貫通している。この貫通部分の冷媒と中圧レシーバ9内の冷媒とが熱交換可能な構成となっており、上記の実施の形態1の第1内部熱交換器14(図1)と同じ機能を実現している。このため、本実施の形態2の運転状況を表すP−h線図である図4は、上記の実施の形態1のP−h線図である図2と同様な特性になっている。
Embodiment 2. FIG.
A second embodiment of the present invention is shown in FIG.
FIG. 3 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to the second embodiment. Instead of the first internal heat exchanger 14 of the first embodiment, an intermediate pressure receiver (hereinafter, referred to as an intermediate pressure receiver) 9 with an internal heat exchange function is provided in the outdoor unit 1, and the compressor 3 is provided therein. The suction pipe penetrates. The refrigerant in the penetrating portion and the refrigerant in the intermediate pressure receiver 9 are configured to exchange heat, and realize the same function as the first internal heat exchanger 14 (FIG. 1) of the first embodiment. Yes. For this reason, FIG. 4 which is a Ph diagram representing the driving situation of the second embodiment has the same characteristics as FIG. 2 which is the Ph diagram of the first embodiment.

本実施の形態における作用効果は、中圧レシーバ9を除き、上記の実施の形態1と同じであるので、その部分については説明を省略する。
中圧レシーバ9では、暖房運転時には第2膨張弁8出口の気液二相冷媒が流入し、中圧レシーバ9内で冷却され液となって流出する。冷房運転時には第1膨張弁10を出た気液二相冷媒が流入し、中圧レシーバ9内で冷却され液となって流出する。中圧レシーバ9内での熱交換は、主に気液二相冷媒のうちガス冷媒が吸入配管と触れて凝縮液化して熱交換される。従って、中圧レシーバ9内に滞留する液冷媒量が少ないほど、ガス冷媒と吸入配管が接触する面積が多くなり、熱交換量は増加する。逆に、中圧レシーバ9内に滞留する液冷媒量が多いと、ガス冷媒と吸入配管が接触する面積が少なくなり、熱交換量は減少する。
Since the operational effects in the present embodiment are the same as those in the first embodiment except for the intermediate pressure receiver 9, the description thereof is omitted.
In the intermediate pressure receiver 9, the gas-liquid two-phase refrigerant at the outlet of the second expansion valve 8 flows in during the heating operation, and is cooled in the intermediate pressure receiver 9 and flows out as liquid. During the cooling operation, the gas-liquid two-phase refrigerant that has exited the first expansion valve 10 flows in, cools in the intermediate pressure receiver 9, and flows out as liquid. The heat exchange in the intermediate pressure receiver 9 is mainly performed by exchanging the gas refrigerant out of the gas-liquid two-phase refrigerant into contact with the suction pipe to be condensed and liquefied. Therefore, the smaller the amount of liquid refrigerant staying in the intermediate pressure receiver 9, the more the area where the gas refrigerant and the suction pipe are in contact with each other, and the amount of heat exchange increases. On the contrary, when the amount of liquid refrigerant staying in the intermediate pressure receiver 9 is large, the area where the gas refrigerant and the suction pipe are in contact with each other decreases, and the amount of heat exchange decreases.

冷媒回路にこのような中圧レシーバ9を備えることにより以下の効果が得られる。
まず、中圧レシーバ9出口の冷媒は液となるので、暖房運転時に第1膨張弁10に流入する冷媒は、必ず液冷媒となるので、第1膨張弁10の流量特性が安定し、制御安定性が確保され、安定した装置運転を行うことができる。
By providing such a medium pressure receiver 9 in the refrigerant circuit, the following effects can be obtained.
First, since the refrigerant at the outlet of the intermediate pressure receiver 9 is liquid, the refrigerant flowing into the first expansion valve 10 during the heating operation is necessarily liquid refrigerant, so that the flow rate characteristic of the first expansion valve 10 is stable and the control is stable. Performance is ensured, and stable device operation can be performed.

また中圧レシーバ9内で熱交換を行うことで装置運転そのものが安定するという効果もある。例えば低圧側の状態が変動し、蒸発器である室外熱交換器11出口の冷媒過熱度が大きくなった場合には、中圧レシーバ9内での熱交換の際の温度差が減少するため、熱交換量が減少し、ガス冷媒が凝縮されにくくなるので、中圧レシーバ9内のガス冷媒量が増加し、液冷媒量が減少する。減少した分の液冷媒量は、室外熱交換器11に移動し、室外熱交換器11内の液冷媒量が増加することから、室外熱交換器11出口の冷媒過熱度が大きくなることが抑制され、装置の運転変動が抑制される。逆に、低圧側の状態が変動し、蒸発器である室外熱交換器11出口の冷媒過熱度が小さくなった場合には、中圧レシーバ9内での熱交換の際の温度差が増加するため、熱交換量が増加し、ガス冷媒が凝縮され易くなるので、中圧レシーバ9内のガス冷媒量が減少し、液冷媒量が増加する。この分の液冷媒量は、室外熱交換器11から移動することになり、室外熱交換器11内の液冷媒量が減少することから、室外熱交換器11出口の冷媒過熱度が小さくなることが抑制され、装置の運転変動が抑制される。
この過熱度変動を抑制する作用も、中圧レシーバ9内で熱交換を行うことにより、運転状態変動に伴う熱交換量変動が自律的に発生することによって生じている。
Further, the heat exchange in the intermediate pressure receiver 9 has an effect that the operation of the apparatus itself is stabilized. For example, when the state on the low pressure side fluctuates and the refrigerant superheat degree at the outlet of the outdoor heat exchanger 11 as an evaporator increases, the temperature difference during heat exchange in the intermediate pressure receiver 9 decreases. Since the amount of heat exchange decreases and the gas refrigerant is less likely to be condensed, the amount of gas refrigerant in the intermediate pressure receiver 9 increases and the amount of liquid refrigerant decreases. The reduced amount of liquid refrigerant moves to the outdoor heat exchanger 11 and the amount of liquid refrigerant in the outdoor heat exchanger 11 increases, so that the refrigerant superheat degree at the outlet of the outdoor heat exchanger 11 is prevented from increasing. Thus, fluctuations in the operation of the apparatus are suppressed. On the other hand, when the state on the low pressure side fluctuates and the refrigerant superheat degree at the outlet of the outdoor heat exchanger 11 as an evaporator becomes small, the temperature difference during heat exchange in the intermediate pressure receiver 9 increases. Therefore, the amount of heat exchange increases and the gas refrigerant is easily condensed, so that the amount of gas refrigerant in the intermediate pressure receiver 9 decreases and the amount of liquid refrigerant increases. This amount of liquid refrigerant moves from the outdoor heat exchanger 11, and the amount of liquid refrigerant in the outdoor heat exchanger 11 decreases, so that the degree of refrigerant superheat at the outlet of the outdoor heat exchanger 11 decreases. Is suppressed, and fluctuations in the operation of the apparatus are suppressed.
The action of suppressing the fluctuation in superheat degree is also caused by the fact that the heat exchange amount fluctuation accompanying the fluctuation of the operation state is autonomously generated by performing heat exchange in the intermediate pressure receiver 9.

以上のように、上記の実施の形態1の内部熱交換器14での熱交換を、本実施の形態2では中圧レシーバ9で行うようにしたことで、装置の運転変動が起きても、自律的な熱交換量変動により変動を抑制し、装置の運転を安定的に行うことができるため、運転状態に因らずにエジェクタ12による冷凍サイクル効率改善効果を安定して発揮することができる。   As described above, the heat exchange in the internal heat exchanger 14 of the first embodiment is performed by the intermediate pressure receiver 9 in the second embodiment, so that even if the operation fluctuation of the apparatus occurs, Since the fluctuation can be suppressed by the autonomous fluctuation of heat exchange amount and the apparatus can be operated stably, the effect of improving the refrigeration cycle efficiency by the ejector 12 can be stably exhibited regardless of the operation state. .

実施の形態3.
以下本発明の実施の形態3を図5に示す。
図5は実施の形態3に係る冷凍サイクル装置の冷媒回路図である。本実施の形態の冷凍サイクル装置は、第1膨張弁10と第2膨張弁8の間の冷媒を一部バイパスし、圧縮機3内の圧縮室にインジェクションするインジェクション回路21を備え、インジェクション回路21には、第3減圧装置である第3膨張弁19、及び第3膨張弁19で減圧された冷媒と第1膨張弁10と第2膨張弁8との間の冷媒とを熱交換する第2内部熱交換器20を備えている点が、上記の実施の形態1と相違する。
Embodiment 3 FIG.
A third embodiment of the present invention is shown in FIG.
FIG. 5 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 3. The refrigeration cycle apparatus of the present embodiment includes an injection circuit 21 that partially bypasses the refrigerant between the first expansion valve 10 and the second expansion valve 8 and injects the refrigerant into the compression chamber in the compressor 3. The third expansion valve 19 that is the third decompression device, and the second refrigerant that exchanges heat between the refrigerant decompressed by the third expansion valve 19 and the refrigerant between the first expansion valve 10 and the second expansion valve 8. The point provided with the internal heat exchanger 20 is different from the first embodiment.

次に、この冷凍サイクル装置の運転動作について説明する。
まず暖房運転時の動作について説明する。
図6は図5の冷凍サイクル装置の暖房運転時の運転状況を表したP−h線図であり、上記の図5の冷媒回路及び図6のP−h線図を参照しながら動作説明をする。
暖房運転時には、四方弁4の流路は図5の実線方向に設定される。そして圧縮機3から吐出された高温高圧のガス冷媒(図6点1)は四方弁4を経て室外機1を流出しガス管5を経て室内機2に流入する。そして室内熱交換器6に流入し、凝縮器として作用する室内熱交換器6で放熱しながら凝縮液化し高圧低温の液冷媒となり(図6点2)、冷媒から放熱された熱を負荷側の空気や水などの負荷側媒体に与えることで暖房を行う。室内熱交換器6を出た高圧低温の冷媒は液管7を経由して、室外機1に流入した後で、一部の冷媒が第1分岐路16で分岐した後に第2膨張弁8で若干減圧され(図6点3)、第1内部熱交換器14で圧縮機3吸入の低温の冷媒に熱を与え冷却される(図6点4)。そして、インジェクション回路21に一部冷媒をバイパスした後で、第2内部熱交換器20で、インジェクション回路21にバイパスされ、第3膨張弁19で減圧され低温となった冷媒と熱交換し、さらに冷却される(図6点5)。その後、冷媒は第1膨張弁10で低圧まで減圧され二相冷媒となり(図6点6)、その後、蒸発器として作用する室外熱交換器11に流入し、そこで吸熱し蒸発し、ガス化される(図6点7)。
Next, the operation of the refrigeration cycle apparatus will be described.
First, the operation during heating operation will be described.
FIG. 6 is a Ph diagram showing the operating condition of the refrigeration cycle apparatus of FIG. 5 during heating operation, and the operation will be described with reference to the refrigerant circuit of FIG. 5 and the Ph diagram of FIG. To do.
During the heating operation, the flow path of the four-way valve 4 is set in the direction of the solid line in FIG. The high-temperature and high-pressure gas refrigerant (point 1 in FIG. 6) discharged from the compressor 3 flows out of the outdoor unit 1 through the four-way valve 4 and flows into the indoor unit 2 through the gas pipe 5. Then, it flows into the indoor heat exchanger 6 and condenses and liquefies while radiating heat in the indoor heat exchanger 6 acting as a condenser to become a high-pressure and low-temperature liquid refrigerant (point 2 in FIG. 6), and the heat radiated from the refrigerant is transferred to the load side Heating is performed by giving it to a load-side medium such as air or water. After the high-pressure and low-temperature refrigerant exiting the indoor heat exchanger 6 flows into the outdoor unit 1 via the liquid pipe 7, a part of the refrigerant branches off at the first branch passage 16 and then passes through the second expansion valve 8. The pressure is slightly reduced (point 3 in FIG. 6), and the first internal heat exchanger 14 heats and cools the low-temperature refrigerant sucked by the compressor 3 (point 4 in FIG. 6). Then, after partially bypassing the refrigerant to the injection circuit 21, the second internal heat exchanger 20 bypasses the injection circuit 21 and exchanges heat with the refrigerant that has been depressurized by the third expansion valve 19 to a low temperature. It is cooled (point 5 in FIG. 6). Thereafter, the refrigerant is depressurized to a low pressure by the first expansion valve 10 to become a two-phase refrigerant (point 6 in FIG. 6), and then flows into the outdoor heat exchanger 11 acting as an evaporator, where it absorbs heat and evaporates to be gasified. (Point 7 in FIG. 6).

一方、室外機1に流入した冷媒(図6点2)の一部は、第2膨張弁8で減圧される前に第1分岐路16から電磁弁13を介してエジェクタ12の駆動ノズル12a入口側に流入し、速度を得て減圧され(図6点8)、室外熱交換器11から流出しエジェクタ12の吸引部12bに導かれた冷媒(図6点7)を吸引する。エジェクタ12の駆動ノズル12aから流出した冷媒とエジェクタ12吸引部12bから吸引された冷媒は、エジェクタ12の混合部12cで混合され(図6点9)、エジェクタ12のデフューザ12dで昇圧される(図6点10)。その後、第1内部熱交換器14で加熱され気化した後(図6点11)、圧縮機3の吸入に戻る。   On the other hand, a part of the refrigerant (point 2 in FIG. 6) flowing into the outdoor unit 1 enters the drive nozzle 12a of the ejector 12 from the first branch passage 16 through the electromagnetic valve 13 before being depressurized by the second expansion valve 8. The refrigerant flows into the side, gains speed and is depressurized (point 8 in FIG. 6), and flows out from the outdoor heat exchanger 11 and sucks the refrigerant (point 7 in FIG. 6) guided to the suction part 12b of the ejector 12. The refrigerant flowing out from the drive nozzle 12a of the ejector 12 and the refrigerant sucked from the ejector 12 suction part 12b are mixed by the mixing part 12c of the ejector 12 (point 9 in FIG. 6), and the pressure is increased by the diffuser 12d of the ejector 12 (FIG. 6). 6 points 10). Thereafter, after being heated and vaporized by the first internal heat exchanger 14 (11 in FIG. 6), the process returns to the suction of the compressor 3.

また、インジェクション回路21にバイパスされた冷媒は、第3膨張弁19で中間圧まで減圧され、低温の二相冷媒となり(図6点12)、その後、第2内部熱交換器20で高圧冷媒と熱交換し加熱され(図6点13)、圧縮機3の圧力室にインジェクションされる。圧縮機3内部では、吸入された冷媒(図6点11)が中間圧まで圧縮、加熱された(図6点14)後で、インジェクションされる冷媒と合流し、温度低下した後で(図6点15)、高圧まで圧縮され吐出される(図6点1)。   The refrigerant bypassed to the injection circuit 21 is decompressed to the intermediate pressure by the third expansion valve 19 to become a low-temperature two-phase refrigerant (point 12 in FIG. 6), and then the second internal heat exchanger 20 and the high-pressure refrigerant. Heat is exchanged and heated (point 13 in FIG. 6) and injected into the pressure chamber of the compressor 3. Inside the compressor 3, after the sucked refrigerant (point 11 in FIG. 6) is compressed and heated to an intermediate pressure (point 14 in FIG. 6), it merges with the refrigerant to be injected and after the temperature drops (FIG. 6). Point 15), compressed to high pressure and discharged (point 1 in FIG. 6).

次に、冷房運転時の動作について説明する。
図7は図5の冷凍サイクル装置の冷房運転時の運転状況を表したP−h線図であり、上記の図5の冷媒回路及び図7のP−h線図を参照しながら動作説明をする。
冷房運転時には、四方弁4の流路は図5の波線方向に設定される。そして圧縮機3から吐出された高温高圧のガス冷媒(図7点1)は四方弁4を経て凝縮器として作用する室外熱交換器11に流入し、ここで放熱しながら凝縮液化し、高圧低温の冷媒となる(図7点2)。室外熱交換器11を出た冷媒は第1膨張弁10で若干減圧された後で(図7点3)、第2内部熱交換器20で、インジェクション回路21を流れる低温の冷媒と熱交換し冷却され(図7点4)、ここで一部冷媒をインジェクション回路21にバイパスした後、引き続き第1内部熱交換器14で、圧縮機3に吸入される冷媒と熱交換し冷却される(図7点5)。その後、第2膨張弁8で低圧まで減圧され二相冷媒となった後で(図7点6)、室外機1を流出し、液管7を経て室内機2に流入する。そして、蒸発器として作用する室内熱交換器6に流入し、そこで吸熱し、蒸発ガス化(図7点7)しながら室内機2側の空気や水などの負荷側媒体に冷熱を供給する。
Next, operation during cooling operation will be described.
FIG. 7 is a Ph diagram showing the operating state of the refrigeration cycle apparatus of FIG. 5 during the cooling operation, and the operation will be described with reference to the refrigerant circuit of FIG. 5 and the Ph diagram of FIG. To do.
During the cooling operation, the flow path of the four-way valve 4 is set in the direction of the broken line in FIG. Then, the high-temperature and high-pressure gas refrigerant (point 1 in FIG. 7) discharged from the compressor 3 flows into the outdoor heat exchanger 11 acting as a condenser through the four-way valve 4, where it condenses and liquefies while radiating heat. (Point 2 in FIG. 7). The refrigerant leaving the outdoor heat exchanger 11 is slightly decompressed by the first expansion valve 10 (point 3 in FIG. 7), and then exchanges heat with the low-temperature refrigerant flowing through the injection circuit 21 by the second internal heat exchanger 20. After being cooled (point 4 in FIG. 7) and partially bypassing the refrigerant to the injection circuit 21, the first internal heat exchanger 14 continues to exchange heat with the refrigerant sucked into the compressor 3 and is cooled (FIG. 7). 7 points 5). Thereafter, the pressure is reduced to a low pressure by the second expansion valve 8 to become a two-phase refrigerant (point 6 in FIG. 7), and then flows out of the outdoor unit 1 and flows into the indoor unit 2 through the liquid pipe 7. Then, it flows into the indoor heat exchanger 6 acting as an evaporator, absorbs heat therein, and supplies cold heat to a load side medium such as air or water on the indoor unit 2 side while evaporating gas (7 in FIG. 7).

一方、第2内部熱交換器20で、インジェクション回路21を流れる低温の冷媒と熱交換し冷却された冷媒(図7点4)の一部は、インジェクション回路21にバイパスされ、第3膨張弁19で中間圧まで減圧され、低温の二相冷媒となり(図7点12)、その後、第2内部熱交換器20で高圧冷媒と熱交換し加熱され(図7点13)、圧縮機3の圧力室にインジェクションされる。圧縮機3内部では、吸入された冷媒(図7点11)が中間圧まで圧縮、加熱された(図7点14)後で、インジェクションされる冷媒と合流し、温度低下した後で(図7点15)、高圧まで圧縮され吐出される(図7点1)。   On the other hand, a part of the refrigerant (point 4 in FIG. 7) cooled by exchanging heat with the low-temperature refrigerant flowing through the injection circuit 21 in the second internal heat exchanger 20 is bypassed by the injection circuit 21, and the third expansion valve 19. The pressure is reduced to an intermediate pressure to become a low-temperature two-phase refrigerant (point 12 in FIG. 7), and then heat-exchanged with the high-pressure refrigerant in the second internal heat exchanger 20 and heated (point 13 in FIG. 7). It is injected into the room. Inside the compressor 3, after the sucked refrigerant (point 11 in FIG. 7) is compressed and heated to an intermediate pressure (point 14 in FIG. 7), it merges with the refrigerant to be injected and after the temperature drops (FIG. 7). Point 15), compressed to a high pressure and discharged (point 1 in FIG. 7).

また、室外熱交換器11を出た高圧低温の冷媒(図7点2)の一部は、第2分岐路17から電磁弁13を介してエジェクタ12の駆動ノズル12a入口側に流入し、速度を得て減圧され(図7点8)、室内熱交換器6から流出しエジェクタ12の吸引部12bに導かれた冷媒(図7点7)を吸引する。エジェクタ12の駆動ノズル12aから流出した冷媒とエジェクタ12の吸引部12bから吸引された冷媒は、エジェクタ12の混合部12cで混合され(図7点9)、エジェクタ12のデフューザ12dで昇圧される(図7点10)。その後、第1内部熱交換器14で加熱されて気化された後(図7点11)、圧縮機3の吸入に戻る。冷房運転時のP−h線図は暖房運転時とほぼ同一になり、どちらの運転モードでも同様の運転を実現できる。   Further, a part of the high-pressure and low-temperature refrigerant (point 2 in FIG. 7) exiting the outdoor heat exchanger 11 flows into the drive nozzle 12a inlet side of the ejector 12 through the electromagnetic valve 13 from the second branch path 17, and the speed Then, the pressure is reduced (point 8 in FIG. 7), and the refrigerant (point 7 in FIG. 7) flowing out from the indoor heat exchanger 6 and guided to the suction part 12b of the ejector 12 is sucked. The refrigerant flowing out from the drive nozzle 12a of the ejector 12 and the refrigerant sucked from the suction part 12b of the ejector 12 are mixed by the mixing part 12c of the ejector 12 (point 9 in FIG. 7), and the pressure is increased by the diffuser 12d of the ejector 12 ( FIG. 7 point 10). Then, after being heated and vaporized by the first internal heat exchanger 14 (11 in FIG. 7), the process returns to the suction of the compressor 3. The Ph diagram during cooling operation is substantially the same as during heating operation, and the same operation can be realized in either operation mode.

次に、この冷凍サイクル装置の運転制御動作について説明する。
本冷媒回路における各アクチュエータ動作は、インジェクション回路21を除いて実施の形態1と同じであるため、インジェクション回路21に設置されている第3膨張弁19の動作について説明する。
まず暖房運転時の制御動作について図6に基づいて説明する。
第3膨張弁19は温度センサ18aで検知される圧縮機3の吐出温度が予め設定された目標値、例えば90℃になるように制御される。第3膨張弁19の開度を変化させた時の冷媒状態変化は以下のようになる。第3膨張弁19の開度が大きくなると、インジェクション回路21に流れる冷媒流量が増加する。第2内部熱交換器20での熱交換量はインジェクション回路21の流量によって、大きく変化しないので、インジェクション回路21に流れる冷媒流量が増加すると、第2内部熱交換器20でのインジェクション回路21側の冷媒エンタルピ差(図6点12→13の差)は小さくなり、インジェクションされる冷媒エンタルピ(図6点13)は低下する。従って、インジェクションされた冷媒が合流後の冷媒エンタルピ(図6点15)も低下し、結果、圧縮機3の吐出冷媒のエンタルピ(図6点1)も低下し、圧縮機3の吐出温度は低下する。逆に第3膨張弁19の開度が小さくなると、圧縮機3の吐出冷媒のエンタルピは上昇し、圧縮機3の吐出温度は上昇する。従って、第3膨張弁19の開度制御は、圧縮機3の吐出温度が目標値より高い場合には、第3膨張弁19の開度を大きく制御し、逆に吐出温度が目標値より低い場合には第3膨張弁19の開度を小さく制御する。
Next, the operation control operation of this refrigeration cycle apparatus will be described.
Since each actuator operation in the refrigerant circuit is the same as that of the first embodiment except for the injection circuit 21, the operation of the third expansion valve 19 installed in the injection circuit 21 will be described.
First, the control operation during the heating operation will be described with reference to FIG.
The third expansion valve 19 is controlled so that the discharge temperature of the compressor 3 detected by the temperature sensor 18a becomes a preset target value, for example, 90 ° C. The refrigerant state change when the opening degree of the third expansion valve 19 is changed is as follows. When the opening degree of the third expansion valve 19 increases, the flow rate of the refrigerant flowing through the injection circuit 21 increases. The amount of heat exchange in the second internal heat exchanger 20 does not change greatly depending on the flow rate of the injection circuit 21. Therefore, when the flow rate of refrigerant flowing in the injection circuit 21 increases, the heat exchange amount on the injection circuit 21 side in the second internal heat exchanger 20 is increased. The refrigerant enthalpy difference (difference between points 12 and 13 in FIG. 6) becomes small, and the refrigerant enthalpy (point 13 in FIG. 6) to be injected decreases. Accordingly, the refrigerant enthalpy (point 15 in FIG. 6) after the injected refrigerant merges also decreases, and as a result, the enthalpy (point 1 in FIG. 6) of the refrigerant discharged from the compressor 3 also decreases, and the discharge temperature of the compressor 3 decreases. To do. Conversely, when the opening degree of the third expansion valve 19 decreases, the enthalpy of the refrigerant discharged from the compressor 3 increases and the discharge temperature of the compressor 3 increases. Therefore, the opening degree control of the third expansion valve 19 controls the opening degree of the third expansion valve 19 largely when the discharge temperature of the compressor 3 is higher than the target value, and conversely the discharge temperature is lower than the target value. In this case, the opening degree of the third expansion valve 19 is controlled to be small.

冷房運転時の制御動作について図7に基づいて説明する。
冷房運転は、上記の暖房運転の場合と同様にインジェクション回路21を除いて上記の実施の形態1と同じであるため、インジェクション回路21に設置されている第3膨張弁19の動作について説明する。
第3膨張弁19は、温度センサ18aで検知される圧縮機3の吐出温度が予め設定された目標値、例えば90℃になるように制御される。第3膨張弁19の開度を変化させた時の冷媒状態変化は暖房運転時と同様であり、圧縮機3の吐出温度が目標値より高い場合には、第3膨張弁19の開度を大きく制御し、逆に吐出温度が目標値より低い場合には第3膨張弁19の開度を小さく制御する。
The control operation during the cooling operation will be described with reference to FIG.
Since the cooling operation is the same as that of the first embodiment except for the injection circuit 21 as in the case of the heating operation, the operation of the third expansion valve 19 installed in the injection circuit 21 will be described.
The third expansion valve 19 is controlled so that the discharge temperature of the compressor 3 detected by the temperature sensor 18a becomes a preset target value, for example, 90 ° C. The refrigerant state change when the opening degree of the third expansion valve 19 is changed is the same as that during the heating operation. When the discharge temperature of the compressor 3 is higher than the target value, the opening degree of the third expansion valve 19 is changed. When the discharge temperature is lower than the target value, the opening degree of the third expansion valve 19 is controlled to be small.

次に、本実施の形態の回路構成及び制御によって実現される作用効果について説明する。本冷凍サイクル装置の構成では、冷暖いずれの運転でも同様の運転を行えるので、以下特に暖房運転について説明する。
本冷凍サイクル装置の回路構成はいわゆるエジェクタ回路にインジェクション回路21を追加した形となっている。即ち、凝縮器(暖房運転時:室内熱交換器6)を出た後で中間圧まで減圧された冷媒を圧縮機3にインジェクションする構成となっている。エジェクタ12を搭載した冷凍サイクルにおいては、エジェクタ12の駆動ノズル12aで回収した膨張動力に応じて駆動ノズル12aでの昇圧量が決まり、サイクルの効率改善効果が決まることとなる。したがって駆動ノズル12aでの入口出口冷媒圧力差が大きいほど、すなわち高圧縮比運転になるほど、効率改善効果が大きくなる。しかしながら、一方で高圧縮比運転となる場合には、例えば暖房運転においては室外空気温度が0℃以下の低外気条件となった場合には、蒸発圧力の低下による冷媒循環量の低下や圧縮機吐出冷媒温度が過昇となり、十分暖房能力を発揮できない、あるいは運転そのものが継続できなくなり、エジェクタ12の効率改善効果が得られない状態となる。しかしながら、本冷凍サイクル装置の構成とすることで、インジェクションを行うことで圧縮機3吐出温度の低下、凝縮器(暖房運転時:室内熱交換器6)への冷媒循環量の増加によるエジェクタ駆動流の確保が行えるため、エジェクタ12のサイクル効率改善効果を十分に発揮されることとなる。
Next, functions and effects realized by the circuit configuration and control of the present embodiment will be described. In the configuration of the present refrigeration cycle apparatus, the same operation can be performed in any of the cooling and heating operations, and therefore the heating operation will be particularly described below.
The circuit configuration of the refrigeration cycle apparatus is such that an injection circuit 21 is added to a so-called ejector circuit. That is, the refrigerant that has been discharged from the condenser (during heating operation: the indoor heat exchanger 6) and then decompressed to an intermediate pressure is injected into the compressor 3. In the refrigeration cycle in which the ejector 12 is mounted, the pressure increase amount at the drive nozzle 12a is determined according to the expansion power recovered by the drive nozzle 12a of the ejector 12, and the effect of improving the cycle efficiency is determined. Therefore, the greater the difference in inlet / outlet refrigerant pressure at the drive nozzle 12a, that is, the higher the compression ratio operation, the greater the efficiency improvement effect. However, on the other hand, when the high compression ratio operation is performed, for example, in the heating operation, when the outdoor air temperature is a low outdoor air condition of 0 ° C. or less, the refrigerant circulation amount is reduced due to the decrease in the evaporation pressure or the compressor The discharged refrigerant temperature becomes excessively high, and the heating capacity cannot be sufficiently exhibited, or the operation itself cannot be continued, and the efficiency improvement effect of the ejector 12 cannot be obtained. However, by adopting the configuration of this refrigeration cycle apparatus, ejector-driven flow due to a decrease in the discharge temperature of the compressor 3 due to injection and an increase in the amount of refrigerant circulation to the condenser (heating operation: indoor heat exchanger 6) Therefore, the effect of improving the cycle efficiency of the ejector 12 is sufficiently exhibited.

さらに本実施の形態のように、インジェクション回路21中に第2内部熱交換器20を設けることで、インジェクション冷媒を高乾き度の二相冷媒とすることができ、液冷媒でインジェクションを行う場合に比べインジェクション冷媒のエンタルピを高くできるため、その分圧縮機3の圧縮仕事を低減でき、サイクルの高効率化が図れる。一方、第2内部熱交換器20により蒸発器に流入する冷媒エンタルピが低下し、蒸発器での冷媒エンタルピ差が増大する。従って冷房運転時においても、冷房能力が増加する。   Furthermore, when the second internal heat exchanger 20 is provided in the injection circuit 21 as in the present embodiment, the injection refrigerant can be a two-phase refrigerant with a high degree of dryness, and the liquid refrigerant is used for injection. In comparison, since the enthalpy of the injection refrigerant can be increased, the compression work of the compressor 3 can be reduced correspondingly, and the efficiency of the cycle can be improved. On the other hand, the refrigerant enthalpy flowing into the evaporator is reduced by the second internal heat exchanger 20, and the refrigerant enthalpy difference in the evaporator is increased. Therefore, the cooling capacity increases even during the cooling operation.

実施の形態4.
本発明の実施の形態4を図8に示す。図8は実施の形態4における冷凍サイクル装置の冷媒回路図であり、エジェクタ12を搭載することによりサイクルの高率化を図っている。図8のような構成とすることで、例えば寒冷地向けの暖房機や給湯機のように特に暖房運転の効率改善を目的とする場合には、上記の実施の形態1に比べ回路の簡素化ができ安価に実現することができる。即ち、実施の形態4の冷媒回路は、図1の冷媒回路との対比においては、第2分岐路17及び第2膨張弁8が省略された構成になっており、暖房運転時においてエジェクタ12の機能が発揮されるように構成されている。
Embodiment 4 FIG.
A fourth embodiment of the present invention is shown in FIG. FIG. 8 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to the fourth embodiment. By mounting the ejector 12, the cycle rate is increased. With the configuration as shown in FIG. 8, for example, when the purpose is to improve the efficiency of the heating operation, such as a heater or a water heater for a cold region, the circuit is simplified compared to the first embodiment. Can be realized at low cost. That is, the refrigerant circuit of the fourth embodiment has a configuration in which the second branch passage 17 and the second expansion valve 8 are omitted in comparison with the refrigerant circuit of FIG. It is comprised so that a function may be exhibited.

この冷凍サイクル装置の暖房運転時の動作について説明する。
図9は、図8の冷媒回路の暖房運転時の運転状況を表したP−h線図であり、上記の図8の冷媒回路及び図9のP−h線図を参照しながら動作説明をする。
暖房運転時には、圧縮機3から吐出された高温高圧のガス冷媒(図9点1)は凝縮器として作用する室内熱交換器6に流入し、ここで放熱しながら凝縮液化し、高圧低温の冷媒となる(図9点2)。室内熱交換器6を出た冷媒は第1内部熱交換器14に流れて低圧冷媒と熱交換を行い冷却された後(図9点3)、第1膨張弁10にて減圧された後(図9点4)、蒸発器として作用する室外熱交換器11に流れその出口に至る(図9点5)。
An operation during heating operation of the refrigeration cycle apparatus will be described.
FIG. 9 is a Ph diagram showing an operation state during heating operation of the refrigerant circuit of FIG. 8, and an explanation of the operation is given with reference to the refrigerant circuit of FIG. 8 and the Ph diagram of FIG. 9. To do.
During the heating operation, the high-temperature and high-pressure gas refrigerant (point 1 in FIG. 9) discharged from the compressor 3 flows into the indoor heat exchanger 6 acting as a condenser, where it condenses and liquefies while dissipating heat, and the high-pressure and low-temperature refrigerant. (Point 2 in FIG. 9). The refrigerant that has exited the indoor heat exchanger 6 flows into the first internal heat exchanger 14 and is cooled by exchanging heat with the low-pressure refrigerant (point 3 in FIG. 9) and then decompressed by the first expansion valve 10 ( The point 4 in FIG. 9) flows to the outdoor heat exchanger 11 acting as an evaporator and reaches the outlet (point 5 in FIG. 9).

一方、室内熱交換器6を出た冷媒(図9点2)の一部は、第1分岐路(バイパス回路)16から電磁弁13を介してエジェクタ12の駆動ノズル12a入口側に流入し、速度を得て減圧され(図9点6)、室外熱交換器11から流出しエジェクタ12の吸引部12bに導かれた冷媒(図9点5)を吸引する。エジェクタ12の駆動ノズル12aから流出した冷媒とエジェクタ12の吸引部12bから吸引された冷媒は、エジェクタ12の混合部12cで混合され(図9点7)、エジェクタ12のデフューザ12dで昇圧される(図9点8)。その後、内部熱交換器14で加熱され気化された後(図9点9)、圧縮機3の吸入に戻る。   On the other hand, a part of the refrigerant (point 2 in FIG. 9) exiting the indoor heat exchanger 6 flows from the first branch path (bypass circuit) 16 to the inlet side of the drive nozzle 12a of the ejector 12 through the electromagnetic valve 13, The pressure is reduced at the speed (point 6 in FIG. 9), and the refrigerant (point 5 in FIG. 9) flowing out from the outdoor heat exchanger 11 and guided to the suction part 12b of the ejector 12 is sucked. The refrigerant flowing out from the drive nozzle 12a of the ejector 12 and the refrigerant sucked from the suction part 12b of the ejector 12 are mixed by the mixing part 12c of the ejector 12 (point 7 in FIG. 9), and the pressure is increased by the diffuser 12d of the ejector 12 ( FIG. 9 point 8). Then, after being heated and vaporized by the internal heat exchanger 14 (point 9 in FIG. 9), the process returns to the suction of the compressor 3.

実施の形態5.
本発明の実施の形態5を図10に示す。
図10は実施の形態5における冷凍サイクル装置の冷媒回路図であり、エジェクタ12を搭載してサイクルの高率化を図り、さらにインジェクション回路21を搭載している。図10のような構成とすることで、暖房運転の効率改善を目的とする場合には、実施の形態3に比べ回路の簡素化ができ安価に実現することができる。また図10に示す配置とすることで、暖房運転時、エジェクタ12への第1分岐路16が第2内部熱交換器20の上流にあるため、内部熱交換器20で過冷却が付く前の、エンタルピの高い状態の冷媒をエジェクタ12に流せるため、エジェクタ12の効率改善効果を高く保てる。
Embodiment 5 FIG.
A fifth embodiment of the present invention is shown in FIG.
FIG. 10 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to the fifth embodiment. The ejector 12 is mounted to increase the cycle rate, and the injection circuit 21 is further mounted. With the configuration as shown in FIG. 10, when the purpose is to improve the efficiency of the heating operation, the circuit can be simplified compared to the third embodiment, and can be realized at a low cost. In the arrangement shown in FIG. 10, the first branch path 16 to the ejector 12 is upstream of the second internal heat exchanger 20 during heating operation. Since the refrigerant having a high enthalpy can flow through the ejector 12, the efficiency improvement effect of the ejector 12 can be kept high.

この冷凍サイクル装置の暖房運転時の運転動作について説明する。
図11は、図10の冷媒回路の暖房運転時の運転状況を表したP−h線図であり、上記の図10の冷媒回路及び図11のP−h線図を参照しながら動作説明をする。
圧縮機3から吐出された高温高圧のガス冷媒(図11点1)は四方弁4を経て室外機1を流出しガス管5を経て室内機2に流入する。そして室内熱交換器6に流入し、凝縮器として作用する室内熱交換器6で放熱しながら凝縮液化し高圧低温の液冷媒となり(図11点2)、冷媒から放熱された熱を負荷側の空気や水などの負荷側媒体に与えることで暖房を行う。室内熱交換器6を出た高圧低温の冷媒は液管7を経由して、室外機1に流入した後で、一部の冷媒を第1分岐路16にバイパスして後に第2内部熱交換器20でインジェクション回路21の冷媒に熱を与えて冷却され(図11点3)、更に、一部の冷媒をインジェクション回路21にバイパスした後に、第1内部熱交換器14で圧縮機3吸入の低温の冷媒に熱を与え冷却される(図11点4)。その後、冷媒は第1膨張弁10で低圧まで減圧され二相冷媒となり(図11点5)、その後、蒸発器として作用する室外熱交換器11に流入し、そこで吸熱し蒸発し、ガス化される(図11点6)。
The operation of the refrigeration cycle apparatus during heating operation will be described.
FIG. 11 is a Ph diagram showing an operation state during heating operation of the refrigerant circuit of FIG. 10, and the operation is described with reference to the refrigerant circuit of FIG. 10 and the Ph diagram of FIG. 11. To do.
The high-temperature and high-pressure gas refrigerant (point 1 in FIG. 11) discharged from the compressor 3 flows out of the outdoor unit 1 through the four-way valve 4 and flows into the indoor unit 2 through the gas pipe 5. Then, it flows into the indoor heat exchanger 6 and condenses and liquefies while dissipating heat in the indoor heat exchanger 6 acting as a condenser to become a high-pressure and low-temperature liquid refrigerant (point 2 in FIG. 11). Heating is performed by giving it to a load-side medium such as air or water. The high-pressure and low-temperature refrigerant that has exited the indoor heat exchanger 6 flows into the outdoor unit 1 via the liquid pipe 7, and then bypasses a part of the refrigerant to the first branching path 16 before the second internal heat exchange. The refrigerant in the injection circuit 21 is cooled by applying heat to the injection circuit 21 (point 3 in FIG. 11), and after a part of the refrigerant is bypassed to the injection circuit 21, the first internal heat exchanger 14 Heat is applied to the low-temperature refrigerant to cool it (point 4 in FIG. 11). Thereafter, the refrigerant is depressurized to a low pressure by the first expansion valve 10 to become a two-phase refrigerant (point 5 in FIG. 11), and then flows into the outdoor heat exchanger 11 acting as an evaporator, where it absorbs heat, evaporates, and is gasified. (Point 6 in FIG. 11).

一方、室外機1に流入した冷媒(図11点2)の一部は、第1分岐路16から電磁弁13を介してエジェクタ12の駆動ノズル12a入口側に流入し、速度を得て減圧され(図11点7)、室外熱交換器11から流出しエジェクタ12の吸引部12bに導かれた冷媒(図11点6)を吸引する。エジェクタ12の駆動ノズル12aから流出した冷媒とエジェクタ12吸引部12bから吸引された冷媒は、エジェクタ12の混合部12cで混合され(図11点8)、エジェクタ12のデフューザ12dで昇圧される(図11点9)。その後、第1内部熱交換器14で加熱され気化した後(図11点10)、圧縮機3の吸入に戻る。   On the other hand, a part of the refrigerant (point 2 in FIG. 11) flowing into the outdoor unit 1 flows into the drive nozzle 12a inlet side of the ejector 12 through the electromagnetic valve 13 from the first branch path 16, and is decompressed to obtain speed. (FIG. 11 point 7), the refrigerant | coolant (FIG. 11 point 6) which flowed out of the outdoor heat exchanger 11 and was guide | induced to the suction part 12b of the ejector 12 is attracted | sucked. The refrigerant flowing out from the drive nozzle 12a of the ejector 12 and the refrigerant sucked from the ejector 12 suction unit 12b are mixed by the mixing unit 12c of the ejector 12 (point 8 in FIG. 11), and the pressure is increased by the diffuser 12d of the ejector 12 (FIG. 11). 11 points 9). Then, after being heated and vaporized by the first internal heat exchanger 14 (point 10 in FIG. 11), the process returns to the suction of the compressor 3.

また、インジェクション回路21にバイパスされた冷媒は、第3膨張弁19で中間圧まで減圧され、低温の二相冷媒となり(図11点11)、その後、第2内部熱交換器20で高圧冷媒と熱交換し加熱され(図11点12)、圧縮機3の圧力室にインジェクションされる。圧縮機3内部では、吸入された冷媒(図11点10)が中間圧まで圧縮、加熱された(図11点13)後で、インジェクションされる冷媒と合流し、温度低下した後で(図11点14)、高圧まで圧縮され吐出される(図11点1)。   The refrigerant bypassed to the injection circuit 21 is decompressed to the intermediate pressure by the third expansion valve 19 to become a low-temperature two-phase refrigerant (point 11 in FIG. 11), and then the high-pressure refrigerant is converted into the second internal heat exchanger 20. Heat is exchanged and heated (point 12 in FIG. 11) and injected into the pressure chamber of the compressor 3. Inside the compressor 3, after the sucked refrigerant (point 10 in FIG. 11) is compressed and heated to an intermediate pressure (point 13 in FIG. 11), it merges with the refrigerant to be injected and after the temperature drops (FIG. 11). Point 14), compressed to high pressure and discharged (point 1 in FIG. 11).

実施の形態6.
本発明の実施の形態6を図12に示す。
図12は実施の形態6における冷凍サイクル装置の冷媒回路図であり、エジェクタ12を搭載してサイクルの高率化を図り、さらにインジェクション回路21を搭載している。図12のような構成とすることで、第1内部熱交換器14前後に膨張弁を設けることで、エジェクタ12の駆動部に流入する冷媒の状態と、蒸発器を通りエジェクタ吸引口に流れる冷媒量を個別に制御可能となるため、実施の形態5と比較してサイクル運転状態によらず常に最適な状態に制御することが可能となり、エジェクタの改善効果を得ることができる。
Embodiment 6 FIG.
A sixth embodiment of the present invention is shown in FIG.
FIG. 12 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 6. The ejector 12 is mounted to increase the cycle rate, and the injection circuit 21 is further mounted. With the configuration as shown in FIG. 12, by providing expansion valves before and after the first internal heat exchanger 14, the state of the refrigerant flowing into the drive unit of the ejector 12, and the refrigerant flowing through the evaporator to the ejector suction port Since the amount can be individually controlled, it becomes possible to always control to the optimum state regardless of the cycle operation state as compared with the fifth embodiment, and the improvement effect of the ejector can be obtained.

この冷凍サイクル装置の暖房運転時の運転動作について説明する。
図13は、図12の冷媒回路の暖房運転時の運転状況を表したP−h線図であり、上記の図12の冷媒回路及び図13のP−h線図を参照しながら動作説明をする。なお、本実施の形態6においては、上記のように図10の冷媒回路との対比においては第2膨張弁8を設けた点が相違しており、図13のP−h線図は図11のP−h線図に対しては第2膨張弁8以降の特性が相違している。
圧縮機3から吐出された高温高圧のガス冷媒(図13点1)は四方弁4を経て室外機1を流出しガス管5を経て室内機2に流入する。そして室内熱交換器6に流入し、凝縮器として作用する室内熱交換器6で放熱しながら凝縮液化し高圧低温の液冷媒となり(図13点2)、冷媒から放熱された熱を負荷側の空気や水などの負荷側媒体に与えることで暖房を行う。室内熱交換器6を出た高圧低温の冷媒は液管7を経由して、室外機1に流入した後で、一部の冷媒を第1分岐路16にバイパスして後に第2内部熱交換器20でインジェクション回路21の冷媒に熱を与えて冷却され(図13点3)、更に、一部の冷媒をインジェクション回路21にバイパスした後に、第2膨張弁8により減圧され(図13点4)、第1内部熱交換器14で圧縮機3吸入の低温の冷媒に熱を与え冷却される(図13点5)。その後、冷媒は第1膨張弁10で低圧まで減圧され二相冷媒となり(図13点6)、その後、蒸発器として作用する室外熱交換器11に流入し、そこで吸熱し蒸発し、ガス化される(図13点7)。
The operation of the refrigeration cycle apparatus during heating operation will be described.
FIG. 13 is a Ph diagram showing the operation status during the heating operation of the refrigerant circuit of FIG. 12, and the operation will be described with reference to the refrigerant circuit of FIG. 12 and the Ph diagram of FIG. To do. The sixth embodiment is different from the refrigerant circuit of FIG. 10 in that the second expansion valve 8 is provided as described above, and the Ph diagram of FIG. The characteristic after the second expansion valve 8 is different from the Ph diagram of FIG.
The high-temperature and high-pressure gas refrigerant (point 1 in FIG. 13) discharged from the compressor 3 flows out of the outdoor unit 1 through the four-way valve 4 and flows into the indoor unit 2 through the gas pipe 5. Then, it flows into the indoor heat exchanger 6 and condenses and liquefies while dissipating heat in the indoor heat exchanger 6 acting as a condenser to become a high-pressure and low-temperature liquid refrigerant (point 2 in FIG. 13). Heating is performed by giving it to a load-side medium such as air or water. The high-pressure and low-temperature refrigerant that has exited the indoor heat exchanger 6 flows into the outdoor unit 1 via the liquid pipe 7, and then bypasses a part of the refrigerant to the first branching path 16 before the second internal heat exchange. Heat is supplied to the refrigerant in the injection circuit 21 by the vessel 20 to be cooled (point 3 in FIG. 13), and after a part of the refrigerant is bypassed to the injection circuit 21, the pressure is reduced by the second expansion valve 8 (point 4 in FIG. 13). ), The first internal heat exchanger 14 heats and cools the low-temperature refrigerant sucked by the compressor 3 (point 5 in FIG. 13). Thereafter, the refrigerant is depressurized to a low pressure by the first expansion valve 10 to become a two-phase refrigerant (point 6 in FIG. 13), and then flows into the outdoor heat exchanger 11 acting as an evaporator, where it absorbs heat, evaporates, and is gasified. (Point 7 in FIG. 13).

一方、室外機1に流入した冷媒(図13点2)の一部は、第1分岐路16から電磁弁13を介してエジェクタ12の駆動ノズル12a入口側に流入し、速度を得て減圧され(図13点8)、室外熱交換器11から流出しエジェクタ12の吸引部12bに導かれた冷媒(図13点7)を吸引する。エジェクタ12の駆動ノズル12aから流出した冷媒とエジェクタ12の吸引部12bから吸引された冷媒は、エジェクタ12の混合部12cで混合され(図13点9)、エジェクタ12のデフューザ12dで昇圧される(図13点10)。その後、第1内部熱交換器14で加熱され気化した後(図13点11)、圧縮機3の吸入に戻る。   On the other hand, a part of the refrigerant (point 2 in FIG. 13) flowing into the outdoor unit 1 flows into the drive nozzle 12a inlet side of the ejector 12 from the first branch path 16 through the electromagnetic valve 13, and is decompressed with speed. (Point 8 in FIG. 13), the refrigerant (point 7 in FIG. 13) flowing out of the outdoor heat exchanger 11 and guided to the suction part 12b of the ejector 12 is sucked. The refrigerant flowing out from the drive nozzle 12a of the ejector 12 and the refrigerant sucked from the suction part 12b of the ejector 12 are mixed by the mixing part 12c of the ejector 12 (point 9 in FIG. 13), and the pressure is increased by the diffuser 12d of the ejector 12 ( FIG. 13 point 10). Thereafter, after being heated and vaporized by the first internal heat exchanger 14 (11 in FIG. 13), the process returns to the suction of the compressor 3.

また、インジェクション回路21にバイパスされた冷媒は、第3膨張弁19で中間圧まで減圧され、低温の二相冷媒となり(図13点12)、その後、第2内部熱交換器20で高圧冷媒と熱交換し加熱され(図13点13)、圧縮機3の圧力室にインジェクションされる。圧縮機3内部では、吸入された冷媒(図13点11)が中間圧まで圧縮、加熱された(図13点14)後で、インジェクションされる冷媒と合流し、温度低下した後で(図13点15)、高圧まで圧縮され吐出される(図13点1)。   Further, the refrigerant bypassed to the injection circuit 21 is decompressed to the intermediate pressure by the third expansion valve 19 and becomes a low-temperature two-phase refrigerant (point 12 in FIG. 13), and then the high-pressure refrigerant is converted by the second internal heat exchanger 20. Heat is exchanged and heated (13 in FIG. 13) and injected into the pressure chamber of the compressor 3. Inside the compressor 3, after the sucked refrigerant (point 11 in FIG. 13) is compressed and heated to an intermediate pressure (point 14 in FIG. 13), it merges with the refrigerant to be injected and the temperature drops (FIG. 13). Point 15), compressed to high pressure and discharged (point 1 in FIG. 13).

実施の形態7.
なお、冷凍サイクル装置の冷媒としては、R410Aに限るものではなく、他の冷媒、HFC系冷媒であるR134aやR404A、R407C、自然冷媒であるCO2、HC系冷媒、アンモニア、空気、水などに用いることができる。
Embodiment 7 FIG.
The refrigerant of the refrigeration cycle apparatus is not limited to R410A, but is used for other refrigerants, HFC refrigerants R134a and R404A, R407C, natural refrigerants CO2, HC refrigerants, ammonia, air, water, and the like. be able to.

また、上記の実施の形態1〜実施の形態6に係る冷凍サイクル装置においては、室外機1にエジェクタ12等が搭載されており、例えば室外機の故障等により既存の冷凍サイクル装置の変更を行う場合には、室外機1のみを変更し室内機2や延長配管は流用しても、室内機2の形態によらず同様にエジェクタ12の改善効果を得ることができ、高効率な運転を実現することができる。   In the refrigeration cycle apparatus according to Embodiments 1 to 6, the outdoor unit 1 includes the ejector 12 and the like, and the existing refrigeration cycle apparatus is changed due to, for example, a failure of the outdoor unit. In this case, even if only the outdoor unit 1 is changed and the indoor unit 2 and the extension pipe are diverted, the improvement effect of the ejector 12 can be obtained in the same manner regardless of the form of the indoor unit 2, and high-efficiency operation is realized. can do.

また、上記の実施の形態3〜実施の形態6においては、第1内部熱交換器14を使用した例について説明したが、これを上記の実施の形態2の中圧レシーバ9に置き換えてもよい。   Moreover, in said Embodiment 3-Embodiment 6, although the example using the 1st internal heat exchanger 14 was demonstrated, you may replace this with the intermediate pressure receiver 9 of said Embodiment 2. FIG. .

本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍サイクル装置の運転状況を表したP−h線図である。It is a Ph diagram showing the operating condition of the refrigerating cycle device concerning Embodiment 1 of the present invention. 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 2 of the present invention. 本発明の実施の形態2に係る冷凍サイクル装置の運転状況を表したP−h線図である。It is a Ph diagram showing the operating condition of the refrigerating cycle device concerning Embodiment 2 of the present invention. 本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 3 of the present invention. 本発明の実施の形態3に係る冷凍サイクル装置の暖房運転状況を表したP−h線図である。It is a Ph diagram showing the heating operation situation of the refrigerating cycle device concerning Embodiment 3 of the present invention. 本発明の実施の形態3に係る冷凍サイクル装置の冷房運転状況を表したP−h線図である。It is a Ph diagram showing the cooling operation situation of the refrigerating cycle device concerning Embodiment 3 of the present invention. 本発明の実施の形態4に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 4 of the present invention. 本発明の実施の形態4に係る冷凍サイクル装置の運転状況を表したP−h線図である。It is a Ph diagram showing the operating condition of the refrigerating cycle device concerning Embodiment 4 of the present invention. 本発明の実施の形態5に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 5 of the present invention. 本発明の実施の形態5に係る冷凍サイクル装置の運転状況を表したP−h線図である。It is a Ph diagram showing the operating condition of the refrigerating cycle device concerning Embodiment 5 of the present invention. 本発明の実施の形態6に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 6 of the present invention. 本発明の実施の形態6に係る冷凍サイクル装置の運転状況を表したP−h線図である。It is a Ph diagram showing the operating condition of the refrigerating cycle device concerning Embodiment 6 of the present invention.

符号の説明Explanation of symbols

1 室外機、2 室内機、3 圧縮機、4 四方弁、5 ガス管、6 室内熱交換器、7 液管、8 第2膨張弁、9 内部熱交換機能付き中圧レシーバ、10 第1膨張弁、11 室外熱交換器、12 エジェクタ、13 電磁弁、14 第1内部熱交換器、15 逆止弁、16 第1分岐路、17 第2分岐路、18 温度センサ、19 第3膨張弁、20 第2内部熱交換器、21 インジェクション回路、22 計測制御装置。   DESCRIPTION OF SYMBOLS 1 Outdoor unit, 2 Indoor unit, 3 Compressor, 4 Four way valve, 5 Gas pipe, 6 Indoor heat exchanger, 7 Liquid pipe, 8 2nd expansion valve, 9 Medium pressure receiver with internal heat exchange function, 10 1st expansion Valve, 11 Outdoor heat exchanger, 12 Ejector, 13 Solenoid valve, 14 First internal heat exchanger, 15 Check valve, 16 First branch, 17 Second branch, 18 Temperature sensor, 19 Third expansion valve, 20 2nd internal heat exchanger, 21 injection circuit, 22 measurement control apparatus.

Claims (8)

圧縮機、流路切替手段、熱源側熱交換器、第1の減圧装置、第1の内部熱交換器、第2の減圧装置、利用側熱交換器及びエジェクタを備え、これらが流路切替手段による切り替えにより暖房運転又は冷房運転に対応して所定の順次で環状に接続される冷媒回路を備えた冷凍サイクル装置であって、
前記利用側熱交換器と前記第2の減圧装置との間から分岐し、逆止弁を備えた第1の分岐路と、
前記熱源側熱交換器と前記第1の減圧装置との間から分岐し、逆止弁を備えた第2の分岐路と
を備え、
前記第1の分岐路の逆止弁の出側配管と前記第2の分岐路の逆止弁の出側配管とは合流して前記エジェクタの駆動ノズルの入り口側に接続され、暖房運転時には前記第1の分岐路から前記エジェクタの駆動ノズルに冷媒が供給され、冷房運転時には前記第2の分岐路から前記エジェクタの駆動ノズルに冷媒が供給され、
前記第1の内部熱交換器は、前記エジェクタの昇圧部から圧縮機の吸入口に流れる冷媒と、前記第1の減圧装置と前記第2の減圧装置との間を流れる冷媒とを熱交換する
ことを特徴とする冷凍サイクル装置。
A compressor, a flow path switching means, a heat source side heat exchanger, a first pressure reducing device, a first internal heat exchanger, a second pressure reducing device, a use side heat exchanger, and an ejector, which are flow path switching means A refrigeration cycle apparatus comprising a refrigerant circuit that is connected in a predetermined sequential annular manner corresponding to heating operation or cooling operation by switching according to
A first branch path branched from between the use side heat exchanger and the second pressure reducing device, and provided with a check valve ;
Branching between the heat source side heat exchanger and the first pressure reducing device, and a second branch path provided with a check valve ,
The outlet side piping of the check valve of the first branch path and the outlet side piping of the check valve of the second branch path are joined and connected to the inlet side of the drive nozzle of the ejector, and during heating operation, Refrigerant is supplied from the first branch path to the drive nozzle of the ejector, and during cooling operation, refrigerant is supplied from the second branch path to the drive nozzle of the ejector,
The first internal heat exchanger exchanges heat between the refrigerant flowing from the pressure raising unit of the ejector to the suction port of the compressor and the refrigerant flowing between the first pressure reducing device and the second pressure reducing device. A refrigeration cycle apparatus characterized by that.
前記第1の内部熱交換器は、前記第1の減圧装置と前記第2の減圧装置との間に設けられたレシーバーを備え、該レシーバー内の冷媒と前記エジェクタの昇圧部から圧縮機の吸入口に流れる冷媒とを熱交換する
ことを特徴とする請求項1記載の冷凍サイクル装置。
The first internal heat exchanger includes a receiver provided between the first decompression device and the second decompression device, and sucks the compressor from the refrigerant in the receiver and the booster of the ejector. The refrigeration cycle apparatus according to claim 1, wherein heat exchange is performed with the refrigerant flowing in the mouth.
前記利用側熱交換器と前記熱源側熱交換器との間の冷媒を分岐し、前記圧縮機内の圧縮室にインジェクションするインジェクション回路
を備えたことを特徴とする請求項1又は2記載の冷凍サイクル装置。
The refrigeration cycle according to claim 1, further comprising an injection circuit that branches a refrigerant between the use side heat exchanger and the heat source side heat exchanger and injects the refrigerant into a compression chamber in the compressor. apparatus.
前記インジェクション回路は、第3の減圧装置、及び該第3の減圧装置で減圧された冷媒と、前記第1減圧装置と前記第2の減圧装置との間の冷媒とを熱交換する第2の内部熱交換器を
備えたことを特徴とする請求項3記載の冷凍サイクル装置。
The injection circuit heat-exchanges the third decompression device, the refrigerant decompressed by the third decompression device, and the refrigerant between the first decompression device and the second decompression device. The refrigeration cycle apparatus according to claim 3, further comprising an internal heat exchanger.
圧縮機、流路切替手段、熱源側熱交換器、第1の減圧装置、第1の内部熱交換器、利用側熱交換器及びエジェクタを備え、これらが流路切替手段による切り替えにより暖房運転又は冷房運転に対応して所定の順次で環状に接続される冷媒回路を備えた冷凍サイクル装置であって、
前記利用側熱交換器と前記第1の内部熱交換器との間から分岐し、前記エジェクタの駆動ノズルに冷媒が流通する第1の分岐路と、
前記利用側熱交換器と前記第1の減圧装置との間の冷媒を分岐し、前記圧縮機内の圧縮室にインジェクションするインジェクション回路と、
を備え、
前記第1の内部熱交換器は、前記エジェクタの昇圧部から圧縮機の吸入口に流れる冷媒と、前記第1の減圧装置を流れる冷媒とを熱交換し、
前記インジェクション回路は、第3の減圧装置、及び該第3の減圧装置で減圧された冷媒と前記利用側熱交換器と前記第1の減圧装置との間の冷媒とを熱交換する第2の内部熱交換器を備え、
前記インジェクション回路の分岐点、前記第2の内部熱交換器及び前記第1の内部熱交換器を、前記第1分岐路の分岐点と前記第1の減圧装置との間に配置し、
前記第1の分岐路の分岐点を、前記利用側熱交換器と前記第2の内部熱交換器との間に設け、当該分岐点が暖房運転時に前記第2の内部熱交換器の上流側になるようにしたことを特徴とする冷凍サイクル装置。
A compressor, a flow path switching means, a heat source side heat exchanger, a first pressure reducing device, a first internal heat exchanger, a use side heat exchanger, and an ejector, which are operated by heating by switching by the flow path switching means or A refrigeration cycle apparatus including a refrigerant circuit that is connected in a predetermined annular manner corresponding to a cooling operation,
A first branch path branched from between the use side heat exchanger and the first internal heat exchanger, and a refrigerant flows through a drive nozzle of the ejector;
An injection circuit for branching the refrigerant between the use side heat exchanger and the first pressure reducing device and injecting the refrigerant into a compression chamber in the compressor ;
With
The first internal heat exchanger exchanges heat between the refrigerant flowing from the booster of the ejector to the suction port of the compressor and the refrigerant flowing through the first decompression device ,
The injection circuit is configured to exchange heat between a third decompression device and the refrigerant decompressed by the third decompression device and the refrigerant between the use-side heat exchanger and the first decompression device. With internal heat exchanger,
A branch point of the injection circuit, the second internal heat exchanger and the first internal heat exchanger are disposed between the branch point of the first branch path and the first pressure reducing device;
A branch point of the first branch path is provided between the use side heat exchanger and the second internal heat exchanger, and the branch point is upstream of the second internal heat exchanger during heating operation. refrigerating cycle apparatus characterized by was set to.
前記第1の内部熱交換器は、前記利用側熱交換器と前記第1の減圧装置との間に設けられたレシーバーを備え、該レシーバー内の冷媒と前記エジェクタの昇圧部から圧縮機の吸入口に流れる冷媒とを熱交換する
ことを特徴とする請求項5記載の冷凍サイクル装置。
The first internal heat exchanger includes a receiver provided between the use-side heat exchanger and the first pressure reducing device, and sucks the compressor from the refrigerant in the receiver and the pressure booster of the ejector. 6. The refrigeration cycle apparatus according to claim 5, wherein heat exchange is performed with the refrigerant flowing through the mouth.
暖房運転時に前記利用側熱交換器から前記第1の内部熱交換器に流れる冷媒の流れ方向に対し、前記第1の内部熱交換器の直前に第2の減圧装置
を備えたことを特徴とする請求項5又は6に記載の冷凍サイクル装置。
A second decompression device is provided immediately before the first internal heat exchanger with respect to the flow direction of the refrigerant flowing from the use side heat exchanger to the first internal heat exchanger during heating operation. The refrigeration cycle apparatus according to claim 5 or 6 .
前記熱源側熱交換器を搭載する室外機に、前記エジェクタを搭載した
ことを特徴とする請求項1〜の何れかに記載の冷凍サイクル装置。
The refrigeration cycle apparatus according to any one of claims 1 to 7 , wherein the ejector is mounted on an outdoor unit on which the heat source side heat exchanger is mounted.
JP2008122875A 2008-05-09 2008-05-09 Refrigeration cycle equipment Active JP4781390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008122875A JP4781390B2 (en) 2008-05-09 2008-05-09 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008122875A JP4781390B2 (en) 2008-05-09 2008-05-09 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2009270785A JP2009270785A (en) 2009-11-19
JP4781390B2 true JP4781390B2 (en) 2011-09-28

Family

ID=41437500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122875A Active JP4781390B2 (en) 2008-05-09 2008-05-09 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4781390B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716027A (en) * 2014-07-24 2017-05-24 开利公司 Heat pump with ejector
CN108603700A (en) * 2015-10-16 2018-09-28 三星电子株式会社 Conditioner, the injector wherein used and the method for controlling conditioner
US11781791B2 (en) 2018-09-10 2023-10-10 Carrier Corporation Ejector heat pump operation

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359231B2 (en) * 2008-12-03 2013-12-04 株式会社デンソー Ejector refrigeration cycle
JP5334905B2 (en) * 2010-03-31 2013-11-06 三菱電機株式会社 Refrigeration cycle equipment
CN101852509B (en) * 2010-05-21 2011-11-09 北京中科华誉能源技术发展有限责任公司 Flooded water-source heat pump unit with refrigerant side cold and heat reversion
JP5516162B2 (en) * 2010-07-09 2014-06-11 株式会社デンソー Refrigeration cycle apparatus and control method thereof
CN101949611B (en) * 2010-10-19 2012-09-26 河南科技大学 Low-grade heat energy auxiliary-drive composite low-temperature refrigerating system
KR101497813B1 (en) * 2013-06-27 2015-03-04 한국교통대학교산학협력단 Vapor injection heat pump system
KR101581395B1 (en) * 2014-05-16 2015-12-30 우양에이치씨(주) Heatpump system using Booster and Method for operating the Heatpump system
CN104089424B (en) * 2014-07-04 2017-01-11 珠海格力电器股份有限公司 Injection refrigeration cycle device
JP6350108B2 (en) * 2014-08-21 2018-07-04 株式会社デンソー Ejector and ejector refrigeration cycle
CN104964476B (en) * 2015-07-15 2018-02-06 重庆美的通用制冷设备有限公司 Air-Cooled Heat Pump Unit
CN106556083B (en) * 2016-11-21 2019-02-26 青岛海信日立空调系统有限公司 A kind of multi-online air-conditioning system having injector and its control method
CN108224838A (en) * 2017-12-27 2018-06-29 青岛海尔空调电子有限公司 Air-conditioner system
JP7114079B2 (en) * 2018-03-30 2022-08-08 満夫 山田 Cooling device with power generation function
US20240068724A1 (en) * 2022-08-24 2024-02-29 Daikin Comfort Technologies Manufacturing, L.P. Systems and methods for heat pump systems
WO2024121882A1 (en) * 2022-12-05 2024-06-13 三菱電機株式会社 Heat pump system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3900976B2 (en) * 2002-03-06 2007-04-04 三菱電機株式会社 Air conditioner and method of operating air conditioner
JP4626380B2 (en) * 2005-04-27 2011-02-09 アイシン精機株式会社 Internal combustion engine driven heat pump air conditioner
JP4704167B2 (en) * 2005-09-16 2011-06-15 東芝キヤリア株式会社 Refrigeration cycle equipment
JP2007101159A (en) * 2005-10-07 2007-04-19 Denso Corp Ejector type refrigerating cycle
JP2008020152A (en) * 2006-07-14 2008-01-31 Matsushita Electric Ind Co Ltd Heat pump device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716027A (en) * 2014-07-24 2017-05-24 开利公司 Heat pump with ejector
CN106716027B (en) * 2014-07-24 2020-07-10 开利公司 Heat pump with ejector
CN108603700A (en) * 2015-10-16 2018-09-28 三星电子株式会社 Conditioner, the injector wherein used and the method for controlling conditioner
CN108603700B (en) * 2015-10-16 2021-05-18 三星电子株式会社 Air conditioner, ejector used therein, and method of controlling air conditioner
US11573035B2 (en) 2015-10-16 2023-02-07 Samsung Electronics Co., Ltd. Air conditioning device, ejector used therein, and method for controlling air conditioning device
US11781791B2 (en) 2018-09-10 2023-10-10 Carrier Corporation Ejector heat pump operation

Also Published As

Publication number Publication date
JP2009270785A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP4781390B2 (en) Refrigeration cycle equipment
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
JP4899489B2 (en) Refrigeration equipment
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
JP4974714B2 (en) Water heater
JP4459776B2 (en) Heat pump device and outdoor unit of heat pump device
KR101201062B1 (en) Refrigeration device
JP4906894B2 (en) Heat pump device and outdoor unit of heat pump device
JP4375171B2 (en) Refrigeration equipment
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
WO2007110908A9 (en) Refrigeration air conditioning device
US20100180612A1 (en) Refrigeration device
JP5264874B2 (en) Refrigeration equipment
WO2015140951A1 (en) Air conditioner
JP2010164257A (en) Refrigerating cycle device and method of controlling the refrigerating cycle device
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
WO2017175299A1 (en) Refrigeration cycle device
JP2009257706A (en) Refrigerating apparatus
JP5659908B2 (en) Heat pump equipment
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP4767340B2 (en) Heat pump control device
CN111919073B (en) Refrigerating device
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4781390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250