JP4704167B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4704167B2
JP4704167B2 JP2005270366A JP2005270366A JP4704167B2 JP 4704167 B2 JP4704167 B2 JP 4704167B2 JP 2005270366 A JP2005270366 A JP 2005270366A JP 2005270366 A JP2005270366 A JP 2005270366A JP 4704167 B2 JP4704167 B2 JP 4704167B2
Authority
JP
Japan
Prior art keywords
ejector
refrigerant
heat exchanger
refrigeration cycle
supercooling heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005270366A
Other languages
Japanese (ja)
Other versions
JP2007078318A (en
Inventor
武 望月
賢 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2005270366A priority Critical patent/JP4704167B2/en
Publication of JP2007078318A publication Critical patent/JP2007078318A/en
Application granted granted Critical
Publication of JP4704167B2 publication Critical patent/JP4704167B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は冷凍サイクル装置に係り、特に膨張損失を低減するエゼクタを組み込んだ冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus incorporating an ejector that reduces expansion loss.

近年、大気中の二酸化炭素量の増加による地球温暖化問題への対応が重要となっている。空気調和機や冷凍機などにおいても、効率の向上による消費エネルギーの低減化に対する要求が増加しつつあり、従来、それらに対する施策の一つとして、図9および図10に示すように、エゼクタを組み込むことによる冷凍サイクルの効率向上が検討されていた。   In recent years, it has become important to deal with the problem of global warming caused by an increase in the amount of carbon dioxide in the atmosphere. Even in air conditioners and refrigerators, demands for reducing energy consumption by improving efficiency are increasing. Conventionally, as shown in FIGS. 9 and 10, as shown in FIGS. Improvements in the efficiency of the refrigeration cycle have been studied.

図9に示す冷凍サイクル51は、第一の気液分離器52と圧縮機53のインジェクションポート間の圧力差を利用してエゼクタ54を駆動し、第一の気液分離器52より圧力の低い第二の気液分離器55から抽出された冷媒蒸気を吸入し昇圧させた後に圧縮機53に注入する。これにより、蒸発器56に流入する冷媒循環量が減少し、蒸発器56経路の圧力損失に伴う効率低下を防止しつつ、圧縮機53の入力を低減し、効率の向上を図っている。しかしながら、本方式では冷凍サイクルの効率低下の一因である膨張行程での膨張損失の大半は利用できず、結果的に効率向上への効果に限界があった。   The refrigeration cycle 51 shown in FIG. 9 uses the pressure difference between the first gas-liquid separator 52 and the injection port of the compressor 53 to drive the ejector 54 and has a lower pressure than the first gas-liquid separator 52. The refrigerant vapor extracted from the second gas-liquid separator 55 is sucked and pressurized, and then injected into the compressor 53. As a result, the refrigerant circulation amount flowing into the evaporator 56 is reduced, and the efficiency of the evaporator 56 is reduced while reducing the input due to the pressure loss of the evaporator 56 path, thereby improving the efficiency. However, in this method, most of the expansion loss in the expansion stroke, which is one cause of the efficiency reduction of the refrigeration cycle, cannot be used, and as a result, the effect on improving the efficiency is limited.

また図10に示す冷凍サイクル61は凝縮圧力と圧縮機吸込圧力の差を利用してエゼクタ64を駆動し、蒸発器66出口冷媒を吸引、昇圧することで膨張仕事量の回収と冷媒蒸気の圧縮を同時に行い圧縮機63の入力の低減を図っている。しかしながら、本方式では外気温度や空調温度等の使用条件の変化による膨張仕事量が低下した時や、蒸発器経路の圧力損失が増加した時などに冷媒の吸引量が低下し、効率の低下をきたすことがあった。   Further, the refrigeration cycle 61 shown in FIG. 10 drives the ejector 64 by utilizing the difference between the condensation pressure and the compressor suction pressure, and sucks and boosts the refrigerant at the outlet of the evaporator 66 to recover the expansion work and compress the refrigerant vapor. Are simultaneously performed to reduce the input of the compressor 63. However, with this method, when the work of expansion decreases due to changes in usage conditions such as outside temperature and air conditioning temperature, or when the pressure loss in the evaporator path increases, the refrigerant suction amount decreases and efficiency decreases. There was something to do.

なお、特許文献1及び特許文献2には、効率向上のために、エゼクタを組み込んだ冷凍サイクル装置の改良に関する提案がなされている。
特開2003−83620号公報 特開2004−108615号公報
In addition, in patent document 1 and patent document 2, the proposal regarding the improvement of the refrigerating-cycle apparatus incorporating an ejector is made | formed for efficiency improvement.
JP 2003-83620 A JP 2004-108615 A

本発明は上述した事情を考慮してなされたもので、運転条件や設置条件によらず、冷凍サイクルにおける膨張損失を低減して、効率向上を図ることができる冷凍サイクル装置を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a refrigeration cycle apparatus capable of reducing the expansion loss in the refrigeration cycle and improving the efficiency irrespective of operating conditions and installation conditions. And

上述した目的を達成するため、本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、過冷却熱交換器、膨張装置、蒸発器、エゼクタを順次連結するとともに、一端が前記凝縮器と前記膨張装置間に接続されるとともに、他端が前記エゼクタのエゼクタ駆動ノズルの入口側に接続されるバイパス通路を設け、前記蒸発器の出口側を前記エゼクタの吸引部に接続しかつ、エゼクタのデフューザの出口側を前記圧縮機の吸込み側に接続しかつ、前記バイパス通路に第二の膨張装置を設けるとともに、この第二の膨張装置出口側の冷媒を前記過冷却熱交換器の冷媒と熱交換した後、エゼクタの入口側に導くようにして、前記バイパス通路の冷媒により前記過冷却熱交換器の冷媒を冷却するようにしたことを特徴とする。
In order to achieve the above-described object, a refrigeration cycle apparatus according to the present invention sequentially connects a compressor, a condenser, a supercooling heat exchanger, an expansion device, an evaporator, and an ejector, and has one end connected to the condenser and the expansion. A bypass passage connected between the apparatuses and having the other end connected to the inlet side of the ejector drive nozzle of the ejector, the outlet side of the evaporator is connected to the suction portion of the ejector, and the diffuser of the ejector connect the outlet side to the suction side of the compressor and provided with a second expansion device in the bypass passage, the refrigerant in the second expansion device outlet and a refrigerant heat exchanger of the supercooling heat exchanger Thereafter, the refrigerant in the subcooling heat exchanger is cooled by the refrigerant in the bypass passage so as to be guided to the inlet side of the ejector .

本発明に係る冷凍サイクル装置によれば、運転条件や設置条件によらず、冷凍サイクルにおける膨張損失を低減して、効率向上を図ることができる冷凍サイクル装置を提供することができる。   According to the refrigeration cycle apparatus according to the present invention, it is possible to provide a refrigeration cycle apparatus capable of reducing the expansion loss in the refrigeration cycle and improving the efficiency irrespective of the operating conditions and the installation conditions.

以下、本発明の第1実施形態に係る冷凍サイクル装置について添付図面を参照して説明する。   Hereinafter, a refrigeration cycle apparatus according to a first embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の第1実施形態に係る冷凍サイクル装置の構成図である。   FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to the first embodiment of the present invention.

図1に示すように、本第1実施形態の冷凍サイクル装置1は、圧縮機2、凝縮器3、過冷却熱交換器4、膨張装置5、蒸発器6、エゼクタ7、過冷却熱交換器4、圧縮機2を冷媒通路8により順次サークル状に連結して構成される。   As shown in FIG. 1, the refrigeration cycle apparatus 1 of the first embodiment includes a compressor 2, a condenser 3, a supercooling heat exchanger 4, an expansion device 5, an evaporator 6, an ejector 7, and a supercooling heat exchanger. 4. The compressor 2 is configured to be sequentially connected in a circle by the refrigerant passage 8.

また、冷凍サイクル装置1には、バイパス通路9を設け、このバイパス通路9により、凝縮器3と膨張装置5間と、エゼクタ7のエゼクタ駆動ノズル7aの入口側を接続する。さらに、蒸発器6の出口側をエゼクタ7の吸引部7bに接続し、エゼクタ7のデフューザ7cの出口側を、過冷却熱交換器4を伝熱的に介して圧縮機2の吸込み側に接続する。なお、図中矢印は冷媒の流れを示す。   Further, the refrigeration cycle apparatus 1 is provided with a bypass passage 9, and the bypass passage 9 connects between the condenser 3 and the expansion device 5 and the inlet side of the ejector drive nozzle 7 a of the ejector 7. Further, the outlet side of the evaporator 6 is connected to the suction part 7b of the ejector 7, and the outlet side of the diffuser 7c of the ejector 7 is connected to the suction side of the compressor 2 through the supercooling heat exchanger 4 in a heat transfer manner. To do. In addition, the arrow in a figure shows the flow of a refrigerant | coolant.

図2は本第1実施形態の冷凍サイクル装置の冷凍サイクルを説明するためのモリエル線図(圧力−エンタルピ線図)であり、この図2に示された(1)から(10)の各点は図1に記載された冷凍空調装置の(1)から(10)の各点に対応し、各位置における圧力−エンタルピ状態を表わす。   FIG. 2 is a Mollier diagram (pressure-enthalpy diagram) for explaining the refrigeration cycle of the refrigeration cycle apparatus of the first embodiment. Each point of (1) to (10) shown in FIG. Corresponds to the points (1) to (10) of the refrigeration air conditioner described in FIG. 1, and represents the pressure-enthalpy state at each position.

すなわち、(1)は圧縮機2の出口部、(2)は凝縮器3の出口部、(3)は過冷却熱交換器4の出口部、(4)は蒸発器6の入口部、(5)は蒸発器6の出口部、(6)はエゼクタ7の吸引部7b、(7)はエゼクタ7の混合部、(8)はエゼクタ7のデフューザ7cの出口部、(9)は過冷却熱交換器4の冷却側の出口部、(10)はエゼクタ駆動ノズル7aの出口部である。   That is, (1) is the outlet of the compressor 2, (2) is the outlet of the condenser 3, (3) is the outlet of the supercooling heat exchanger 4, (4) is the inlet of the evaporator 6, ( 5) is an outlet portion of the evaporator 6, (6) is a suction portion 7b of the ejector 7, (7) is a mixing portion of the ejector 7, (8) is an outlet portion of the diffuser 7c of the ejector 7, and (9) is supercooled. An outlet part on the cooling side of the heat exchanger 4, (10) is an outlet part of the ejector drive nozzle 7a.

図1及び図2に示すように、上記のような構成を有する本第1実施形態の冷凍サイクル装置によれば、図中矢印で示すように、圧縮機2から吐出された高温高圧の冷媒例えばR410Aの蒸気は最も高い圧力とエンタルピを有し(図中点(1))、凝縮器3で凝縮されて液冷媒となり(図中点(2))、さらに過冷却熱交換器4にて冷却された後(図中点(3))、膨張装置5で減圧し(図中点(4))、蒸発器6に流入し(図中点(4))、蒸発器6で蒸発し蒸発器6の出口部に導出される(図中点(5))。   As shown in FIGS. 1 and 2, according to the refrigeration cycle apparatus of the first embodiment having the above-described configuration, as shown by arrows in the drawing, a high-temperature and high-pressure refrigerant discharged from the compressor 2, for example, The vapor of R410A has the highest pressure and enthalpy (point (1) in the figure), is condensed by the condenser 3 to become a liquid refrigerant (point (2) in the figure), and further cooled by the supercooling heat exchanger 4 (Point (3) in the figure), the pressure is reduced by the expansion device 5 (point (4) in the figure), flows into the evaporator 6 (point (4) in the figure), and evaporates in the evaporator 6 to evaporate. 6 to the exit portion (point (5) in the figure).

一方、凝縮器3の出口側(図中点(2))の冷媒の一部はエゼクタ駆動ノズル7aに流入し、速度を得、減圧され(図中点(10)、蒸発器6から流出しエゼクタ7の吸引部7bに導かれた冷媒(図中点(6))を吸引する。エゼクタ駆動ノズル7aから流出した冷媒とエゼクタ7の吸引部7bから吸引された冷媒は、エゼクタ7の混合部7dで混合され(図中点(7))、エゼクタ7のデフューザ7cでΔp1だけ昇圧される。エゼクタ7のデフューザ7cで昇圧された冷媒(図中点(8))は、過冷却熱交換器4の冷却側で加熱、気化された後(図中点(9))、圧縮機2に戻る。   On the other hand, a part of the refrigerant on the outlet side of the condenser 3 (point (2) in the figure) flows into the ejector drive nozzle 7a, obtains a speed, is reduced in pressure (point (10) in the figure, and flows out from the evaporator 6). The refrigerant (point (6) in the figure) guided to the suction section 7b of the ejector 7 is sucked in. The refrigerant flowing out from the ejector drive nozzle 7a and the refrigerant sucked from the suction section 7b in the ejector 7 are mixed in the ejector 7 mixing section. 7d (point (7) in the figure) and the pressure is increased by Δp1 by the diffuser 7c of the ejector 7. The refrigerant (point (8) in the figure) boosted by the diffuser 7c of the ejector 7 is a supercooling heat exchanger. After being heated and vaporized on the cooling side 4 (point (9) in the figure), the flow returns to the compressor 2.

一方、残りの冷媒は、このように低圧冷媒がエゼクタ7により昇圧された後、圧縮機2に吸引されるため、圧縮機2における圧縮仕事量が低減する。なお、冷凍サイクルに分離形空気調和機を想定して蒸発器出口からエゼクタ7の吸引部7bまでの間に相応する圧力損失を繰り込んでいる。   On the other hand, the remaining refrigerant is sucked into the compressor 2 after the low-pressure refrigerant has been boosted by the ejector 7 in this way, so that the amount of compression work in the compressor 2 is reduced. In addition, the pressure loss corresponding to the suction part 7b of the ejector 7 is carried in from the evaporator exit supposing the separation-type air conditioner in the refrigerating cycle.

上記のように、本実施形態によれば、運転条件や設置条件によらず、冷凍サイクルの膨張仕事量を効率良く回収し、圧縮仕事量の低減を図ることが可能な冷凍サイクルが実現される。   As described above, according to the present embodiment, a refrigeration cycle that can efficiently recover the expansion work of the refrigeration cycle and reduce the compression work regardless of the operating conditions and the installation conditions is realized. .

次に本発明の第2実施形態に係る冷凍サイクル装置について説明する。   Next, a refrigeration cycle apparatus according to a second embodiment of the present invention will be described.

第1実施形態は過冷却熱交換器がエゼクタ出口側の冷媒と熱交換するのに対して、本第2実施形態は過冷却熱交換器が第二の膨張装置を備えたバイパス通路の冷媒と熱交換する。   In the first embodiment, the supercooling heat exchanger exchanges heat with the refrigerant on the ejector outlet side, whereas in the second embodiment, the supercooling heat exchanger includes a refrigerant in the bypass passage provided with the second expansion device. Exchange heat.

例えば、図3に示すように、第2実施形態の冷凍サイクル装置11では、バイパス通路19を設け、このバイパス通路19により、凝縮器3と第一の膨張装置5A間と、エゼクタ7のエゼクタ駆動ノズル7aの入口側を接続する。バイパス通路19には、第二の膨張装置5Bが設けられ、さらに、バイパス通路19の冷媒により過冷却熱交換器4の冷媒と熱交換するようになっている。なお、他の構成は図1に示す冷凍サイクル装置と異ならないので、同一符号を付して説明は省略する。   For example, as shown in FIG. 3, in the refrigeration cycle apparatus 11 of the second embodiment, a bypass passage 19 is provided, and by this bypass passage 19, the ejector is driven between the condenser 3 and the first expansion device 5 </ b> A and the ejector 7. The inlet side of the nozzle 7a is connected. The bypass passage 19 is provided with a second expansion device 5 </ b> B, and is further configured to exchange heat with the refrigerant of the supercooling heat exchanger 4 by the refrigerant of the bypass passage 19. In addition, since another structure is not different from the refrigerating cycle apparatus shown in FIG. 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

従って、圧縮機2から吐出された冷媒蒸気を凝縮器3で凝縮させ、一部の冷媒は第二の膨張装置5Bで減圧され過冷却熱交換器4の冷媒を冷却した後、エゼクタ駆動ノズル7aに流入し、蒸発器6から流出した冷媒を吸引しつつ圧縮し、残りの冷媒は過冷却熱交換器4にて冷却された後、第一の膨張装置5Aで減圧され蒸発器6に流入する。これにより、中間圧力で過冷却熱交換器を冷却した冷媒が、低圧圧力に減圧する膨張仕事量を回収し、蒸発器出口冷媒を昇圧することで圧縮機入力を低減することができる。   Accordingly, the refrigerant vapor discharged from the compressor 2 is condensed by the condenser 3, and after a part of the refrigerant is decompressed by the second expansion device 5B and the refrigerant of the supercooling heat exchanger 4 is cooled, the ejector drive nozzle 7a The refrigerant flowing in the evaporator 6 is compressed while sucking out the refrigerant flowing out of the evaporator 6, and the remaining refrigerant is cooled by the supercooling heat exchanger 4, then depressurized by the first expansion device 5 </ b> A and flows into the evaporator 6. . Thereby, the refrigerant | coolant which cooled the supercooling heat exchanger with the intermediate pressure collect | recovers the expansion work which decompresses to a low pressure, and can reduce a compressor input by pressurizing an evaporator exit refrigerant | coolant.

なお、本実施例では過冷却熱交換器に流入する冷媒を凝縮器出口から分岐させているが、過冷却熱交換器の出口側から分岐させてもよい。   In the present embodiment, the refrigerant flowing into the supercooling heat exchanger is branched from the condenser outlet, but may be branched from the outlet side of the supercooling heat exchanger.

また、本発明の第3実施形態に係る冷凍サイクル装置について説明する。   A refrigeration cycle apparatus according to the third embodiment of the present invention will be described.

本第3実施形態は、第2実施形態に第1実施形態を付加したもの、すなわち、第2実施形態と同様に第一の過冷却熱交換器が第二の膨張装置を備えたバイパス通路の冷媒と熱交換しかつ、第1実施形態と同様に第二の過冷却熱交換器がエゼクタの出口側と圧縮機の吸込み側に接続する冷媒通路の冷媒と熱交換する。   The third embodiment is obtained by adding the first embodiment to the second embodiment, that is, a bypass passage in which the first supercooling heat exchanger includes the second expansion device as in the second embodiment. Similarly to the first embodiment, the second supercooling heat exchanger exchanges heat with the refrigerant in the refrigerant passage connected to the outlet side of the ejector and the suction side of the compressor.

例えば、図4に示すように、第3実施形態の冷凍サイクル装置21では、一端が凝縮器3と第一の膨張装置5A間に接続され、他端がエゼクタ7のエゼクタ駆動ノズル7aの入口側に接続されたバイパス通路19には、第二の膨張装置5Bが設けられ、さらに、バイパス通路19の冷媒と第一の過冷却熱交換器4Aの冷媒とを熱交換するようになっており、また、冷媒通路8により、エゼクタ7のデフューザ7cの出口側と圧縮機2の吸込み側に接続され、デフューザ7cの出口側の冷媒は第二の過冷却熱交換器4Bの冷媒と熱交換し、さらに、エゼクタ7の吸引部7bは蒸発器6に接続される。   For example, as shown in FIG. 4, in the refrigeration cycle apparatus 21 of the third embodiment, one end is connected between the condenser 3 and the first expansion device 5A, and the other end is the inlet side of the ejector drive nozzle 7a of the ejector 7. The bypass passage 19 connected to the second expansion device 5B is provided to further exchange heat between the refrigerant in the bypass passage 19 and the refrigerant in the first subcooling heat exchanger 4A. Further, the refrigerant passage 8 is connected to the outlet side of the diffuser 7c of the ejector 7 and the suction side of the compressor 2, and the refrigerant on the outlet side of the diffuser 7c exchanges heat with the refrigerant of the second supercooling heat exchanger 4B. Further, the suction part 7 b of the ejector 7 is connected to the evaporator 6.

従って、第二の過冷却熱交換器を付加し、エゼクタ出口側の冷媒で冷却する。これにより、エゼクタ出口の冷媒の状態が気液二相の状態となり、圧縮機への液戻りが生じることを防止すると同時に過冷却量の増加を図ることで、蒸発器の冷媒循環量を低減し、圧力損失によるロスを低下させ効率の向上を図ることができる。また、本第3実施形態では、過冷却熱交換器の冷却温度を複数とし、それぞれの過冷却熱交換器で加熱された中間圧力の冷媒で対応するエゼクタを駆動することで、膨張仕事量を効率良く回収することができる。   Therefore, a second supercooling heat exchanger is added and cooled by the refrigerant on the ejector outlet side. As a result, the state of the refrigerant at the ejector outlet becomes a gas-liquid two-phase state, preventing liquid from returning to the compressor, and at the same time increasing the amount of supercooling, thereby reducing the amount of refrigerant circulating in the evaporator. Thus, loss due to pressure loss can be reduced and efficiency can be improved. Moreover, in this 3rd Embodiment, the cooling temperature of a subcooling heat exchanger is made into multiple, and an expansion work is driven by driving the corresponding ejector with the refrigerant | coolant of the intermediate pressure heated with each subcooling heat exchanger. It can be recovered efficiently.

また、本発明の第4実施形態に係る冷凍サイクル装置について説明する。   A refrigeration cycle apparatus according to a fourth embodiment of the present invention will be described.

本第4実施形態は、第3実施形態のエゼクタの吸込口と蒸発器6間に第二のエゼクタを設ける。   In the fourth embodiment, a second ejector is provided between the suction port of the ejector of the third embodiment and the evaporator 6.

例えば、図5に示すように、第4実施形態の冷凍サイクル装置31では、第3実施形態と同様に接続された第一のエゼクタ7Aの吸引部7Abには、一端が凝縮器3と第一の膨張装置5A間に接続された第二のバイパス通路19Bにエゼクタ駆動ノズル7Baが接続された第二のエゼクタ7Bが接続され、この第二のエゼクタ7B吸引部7Bbには、蒸発器6の出口側が接続されている。   For example, as shown in FIG. 5, in the refrigeration cycle apparatus 31 of the fourth embodiment, one end of the suction unit 7Ab of the first ejector 7A connected in the same manner as the third embodiment is connected to the condenser 3 and the first The second ejector 7B, to which the ejector drive nozzle 7Ba is connected, is connected to the second bypass passage 19B connected between the expansion devices 5A, and the outlet of the evaporator 6 is connected to the second ejector 7B suction part 7Bb. The side is connected.

図6は本第4実施形態の冷凍サイクル装置の冷凍サイクルを説明するためのモリエル線図(圧力−エンタルピ線図)であり、この図6に示された(11)から(24)の各点は図5に記載された冷凍空調装置の(11)から(24)の各点に対応し、各位置における圧力−エンタルピ状態を表わす。   FIG. 6 is a Mollier diagram (pressure-enthalpy diagram) for explaining the refrigeration cycle of the refrigeration cycle apparatus of the fourth embodiment. Each point of (11) to (24) shown in FIG. Corresponds to the points (11) to (24) of the refrigeration air conditioner described in FIG. 5 and represents the pressure-enthalpy state at each position.

すなわち、(11)は圧縮機2の出口部、(12)は凝縮器3の出口部、(13)は第一の過冷却熱交換器4Aの出口部、(14)は第二の過冷却熱交換器4Bの出口部、(15)は蒸発器6の入口部、(16)は蒸発器6の出口部、(17)は第二のエゼクタ7Bの吸引部7Bb、(18)は第二のエゼクタ7Bのデフューザ7Bcの出口部、(19)は第一のエゼクタ7Aのデフューザ7Acの出口部、(20)は第二の過冷却熱交換器4Bの冷却側の出口部、(21)は第二のエゼクタ7Bのエゼクタ駆動ノズル7Baの出口部、(22)は第二の膨張装置5Bの出口部、(23)は第一の過冷却熱交換器4Aの冷却側の出口部、(24)は第一のエゼクタ7Aのエゼクタ駆動ノズル7Aaの出口部である。   That is, (11) is the outlet of the compressor 2, (12) is the outlet of the condenser 3, (13) is the outlet of the first subcooling heat exchanger 4A, and (14) is the second subcooling. The outlet part of the heat exchanger 4B, (15) is the inlet part of the evaporator 6, (16) is the outlet part of the evaporator 6, (17) is the suction part 7Bb of the second ejector 7B, and (18) is the second part. (19) is the outlet of the diffuser 7Ac of the first ejector 7A, (20) is the outlet of the cooling side of the second supercooling heat exchanger 4B, and (21) is the outlet of the diffuser 7Bc of the ejector 7B. The outlet part of the ejector driving nozzle 7Ba of the second ejector 7B, (22) the outlet part of the second expansion device 5B, (23) the outlet part on the cooling side of the first subcooling heat exchanger 4A, (24 ) Is the outlet of the ejector drive nozzle 7Aa of the first ejector 7A.

従って、図6に示す本第4実施形態による冷凍サイクルの状態図からもわかるように、第一のエゼクタ7Aによる昇圧Δp2と第二のエゼクタ7Bによる昇圧Δp3の両方の昇圧が得られ、図2示す第1実施形態の冷凍サイクルの状態図と比較すると、エゼクタによる昇圧量が増加し圧縮仕事量のさらなる低減が図られ、膨張仕事量の回収量がさらに増加し効率の向上が図られる。また、図7に、本第4実施形態、エゼクタを搭載した冷凍サイクルの従来例、エゼクタを搭載しない冷凍サイクルのガス圧力損失−COP比較結果を示す。図7からもわかるように、図10に示す従来のエゼクタサイクルでは、蒸発器出口配管の圧力損失が増加すると効率が著しく低下し、通常の冷凍サイクルより悪化する領域が存在するが、本第4実施形態のエゼクタサイクルでは、全領域に渡り通常の冷凍サイクルより効率が上昇する。なお、図7に示す比較は、特定の運転条件での効率比較結果であり、凝縮温度の低下や蒸発温度の上昇などにより、エゼクタでの回収可能仕事量が低減した場合には、より低い圧力損失で従来のエゼクタサイクルの効率が低下することとなる。   Accordingly, as can be seen from the state diagram of the refrigeration cycle according to the fourth embodiment shown in FIG. 6, both the boost Δp2 by the first ejector 7A and the boost Δp3 by the second ejector 7B are obtained. Compared with the state diagram of the refrigeration cycle of the first embodiment shown, the amount of pressurization by the ejector is increased, the compression work is further reduced, the recovery of the expansion work is further increased, and the efficiency is improved. FIG. 7 shows a gas pressure loss-COP comparison result of the fourth embodiment, a conventional example of a refrigeration cycle equipped with an ejector, and a refrigeration cycle not equipped with an ejector. As can be seen from FIG. 7, in the conventional ejector cycle shown in FIG. 10, when the pressure loss of the evaporator outlet pipe increases, the efficiency is remarkably lowered, and there is a region that is worse than the normal refrigeration cycle. In the ejector cycle of the embodiment, the efficiency is higher than that of a normal refrigeration cycle over the entire region. The comparison shown in FIG. 7 is an efficiency comparison result under specific operating conditions. When the recoverable work amount in the ejector is reduced due to a decrease in the condensation temperature or an increase in the evaporation temperature, a lower pressure is obtained. The loss reduces the efficiency of the conventional ejector cycle.

また、本発明の第5実施形態に係る冷凍サイクル装置について説明する。   In addition, a refrigeration cycle apparatus according to a fifth embodiment of the present invention will be described.

本第5実施形態は、第4実施形態に第三の過冷却熱交換器を付加するとともに、一端が凝縮器と膨張装置間に接続され、他端が圧縮機の吸込み側に接続されかつ、第三の膨張装置を備えた第二のバイパス通路を設け、第三の過冷却熱交換器と熱交換させる。   The fifth embodiment adds a third supercooling heat exchanger to the fourth embodiment, one end is connected between the condenser and the expansion device, the other end is connected to the suction side of the compressor, and A second bypass passage having a third expansion device is provided to exchange heat with the third supercooling heat exchanger.

例えば、図8に示すように、第5実施形態の冷凍サイクル装置41では、一端が凝縮器3と第一の膨張装置5A間に接続され、他端が圧縮機2の吸込み側に接続されかつ、第三の膨張装置5Cを備えた第三のバイパス通路19Cを設け、第三の過冷却熱交換器5Cと熱交換させる。   For example, as shown in FIG. 8, in the refrigeration cycle apparatus 41 of the fifth embodiment, one end is connected between the condenser 3 and the first expansion device 5A, and the other end is connected to the suction side of the compressor 2 and The third bypass passage 19C provided with the third expansion device 5C is provided to exchange heat with the third supercooling heat exchanger 5C.

これにより、過冷却量をさらに増加させ、冷凍サイクルの効率を高めることができる。   Thereby, the amount of supercooling can be further increased and the efficiency of the refrigeration cycle can be increased.

なお、上記各実施形態において、冷凍サイクル構成では、冷却若しくは加熱の一方のみの構成を示しているが、四方弁などを適宜組込み可逆サイクルとして構成することが可能である。また、エゼクタや過冷却熱交換器などの各構成要素は便宜上個別に図示しているが、冷凍サイクル機能が同一であれば、一体化などにより構成の簡素化を図ることも可能である。   In each of the above embodiments, only one of cooling or heating is shown in the refrigeration cycle configuration, but a four-way valve or the like can be appropriately configured as a reversible cycle. Moreover, although each component, such as an ejector and a supercooling heat exchanger, is individually illustrated for convenience, if the refrigeration cycle function is the same, the configuration can be simplified by integration or the like.

本発明の第1実施形態に係る冷凍サイクル装置の構成図。The block diagram of the refrigerating-cycle apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る冷凍サイクル装置のモリエル線図。The Mollier diagram of the refrigerating cycle device concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る冷凍サイクル装置の構成図。The block diagram of the refrigerating-cycle apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る冷凍サイクル装置の構成図。The block diagram of the refrigerating-cycle apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る冷凍サイクル装置の構成図。The block diagram of the refrigerating-cycle apparatus which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る冷凍サイクル装置のモリエル線図。The Mollier diagram of the refrigerating cycle device concerning a 4th embodiment of the present invention. 本発明の第4実施形態に係る冷凍サイクル装置のガス圧力損失−COP線図。The gas pressure loss-COP diagram of the refrigerating cycle device concerning a 4th embodiment of the present invention. 本発明の第5実施形態に係る冷凍サイクル装置の構成図。The block diagram of the refrigerating-cycle apparatus which concerns on 5th Embodiment of this invention. 従来の冷凍サイクル装置の構成図。The block diagram of the conventional refrigeration cycle apparatus. 従来の冷凍サイクル装置の構成図。The block diagram of the conventional refrigeration cycle apparatus.

符号の説明Explanation of symbols

1…冷凍サイクル装置、2…圧縮機、3…凝縮器、4…過冷却熱交換器、5…膨張装置、6…蒸発器、7…エゼクタ、7a…エゼクタ駆動ノズル、7b…吸込口、7c…デフューザ、8…冷媒通路、9…バイパス通路。   DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle apparatus, 2 ... Compressor, 3 ... Condenser, 4 ... Supercooling heat exchanger, 5 ... Expansion device, 6 ... Evaporator, 7 ... Ejector, 7a ... Ejector drive nozzle, 7b ... Suction port, 7c ... diffuser, 8 ... refrigerant passage, 9 ... bypass passage.

Claims (2)

圧縮機、凝縮器、過冷却熱交換器、膨張装置、蒸発器、エゼクタを順次連結するとともに、一端が前記凝縮器と前記膨張装置間に接続されるとともに、他端が前記エゼクタのエゼクタ駆動ノズルの入口側に接続されるバイパス通路を設け、前記蒸発器の出口側を前記エゼクタの吸引部に接続しかつ、エゼクタのデフューザの出口側を前記圧縮機の吸込み側に接続しかつ、前記バイパス通路に第二の膨張装置を設けるとともに、この第二の膨張装置出口側の冷媒を前記過冷却熱交換器の冷媒と熱交換した後、エゼクタの入口側に導くようにして、前記バイパス通路の冷媒により前記過冷却熱交換器の冷媒を冷却するようにしたことを特徴とする冷凍サイクル装置。 A compressor, a condenser, a supercooling heat exchanger, an expansion device, an evaporator, and an ejector are sequentially connected, and one end is connected between the condenser and the expansion device, and the other end is an ejector drive nozzle of the ejector. a bypass passage is provided which is connected to the inlet side, connect connect vital outlet side of the evaporator to the suction portion of the ejector, the outlet side of the diffuser of the ejector to the suction side of the compressor and of the bypass passage The second expansion device is provided with the refrigerant in the bypass passage so that the refrigerant on the outlet side of the second expansion device is exchanged with the refrigerant of the supercooling heat exchanger and then guided to the inlet side of the ejector. The refrigerant of the supercooling heat exchanger is cooled by the refrigeration cycle apparatus characterized by the above. 前記過冷却熱交換器と膨張装置間に第二の過冷却熱交換器を設け、エゼクタ出口側の冷媒を前記第二の過冷却熱交換器の冷媒と熱交換した後、圧縮機の吸込み側に導くようにしたことを特徴とする請求項記載の冷凍サイクル装置。 A second supercooling heat exchanger is provided between the supercooling heat exchanger and the expansion device, and the refrigerant on the ejector outlet side exchanges heat with the refrigerant of the second supercooling heat exchanger, and then the suction side of the compressor 2. The refrigeration cycle apparatus according to claim 1, wherein
JP2005270366A 2005-09-16 2005-09-16 Refrigeration cycle equipment Expired - Fee Related JP4704167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270366A JP4704167B2 (en) 2005-09-16 2005-09-16 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270366A JP4704167B2 (en) 2005-09-16 2005-09-16 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2007078318A JP2007078318A (en) 2007-03-29
JP4704167B2 true JP4704167B2 (en) 2011-06-15

Family

ID=37938820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270366A Expired - Fee Related JP4704167B2 (en) 2005-09-16 2005-09-16 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4704167B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971877B2 (en) * 2006-08-28 2012-07-11 カルソニックカンセイ株式会社 Refrigeration cycle
JP4501984B2 (en) 2007-10-03 2010-07-14 株式会社デンソー Ejector refrigeration cycle
JP4781390B2 (en) * 2008-05-09 2011-09-28 三菱電機株式会社 Refrigeration cycle equipment
WO2010086954A1 (en) * 2009-01-27 2010-08-05 三菱電機株式会社 Air conditioner and method of returning refrigerating machine oil
KR101743296B1 (en) * 2010-12-06 2017-06-02 엘지전자 주식회사 A refrigerant system
JP5792585B2 (en) * 2011-10-18 2015-10-14 サンデンホールディングス株式会社 Refrigerator, refrigerated showcase and vending machine
JP5482767B2 (en) 2011-11-17 2014-05-07 株式会社デンソー Ejector refrigeration cycle
JP5805567B2 (en) * 2012-03-23 2015-11-04 サンデンホールディングス株式会社 Refrigeration cycle and refrigeration showcase
JP5871681B2 (en) * 2012-03-23 2016-03-01 サンデンホールディングス株式会社 Refrigeration cycle and refrigeration showcase
JP2013200056A (en) * 2012-03-23 2013-10-03 Sanden Corp Refrigerating cycle and refrigerating showcase
JP2014190562A (en) * 2013-03-26 2014-10-06 Sanden Corp Refrigeration cycle and cooling device
CN108224838A (en) * 2017-12-27 2018-06-29 青岛海尔空调电子有限公司 Air-conditioner system
CN110701810A (en) * 2019-10-29 2020-01-17 中机国能炼化工程有限公司 Injection supercharging two-stage series connection supercooling double-temperature-zone refrigerating system and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018735A (en) * 1998-06-23 2000-01-18 Kobe Steel Ltd Refrigerating machine
JP2001153473A (en) * 1999-12-02 2001-06-08 Mitsubishi Electric Corp Refrigerating plant
JP2003320838A (en) * 2002-04-26 2003-11-11 Denso Corp Vehicle air conditioner
JP2006505763A (en) * 2002-11-11 2006-02-16 ボルテックス エアコン Cooling system with bypass subcooling and component size deoptimization
JP2007003171A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector operated cycle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018735A (en) * 1998-06-23 2000-01-18 Kobe Steel Ltd Refrigerating machine
JP2001153473A (en) * 1999-12-02 2001-06-08 Mitsubishi Electric Corp Refrigerating plant
JP2003320838A (en) * 2002-04-26 2003-11-11 Denso Corp Vehicle air conditioner
JP2006505763A (en) * 2002-11-11 2006-02-16 ボルテックス エアコン Cooling system with bypass subcooling and component size deoptimization
JP2007003171A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector operated cycle

Also Published As

Publication number Publication date
JP2007078318A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4704167B2 (en) Refrigeration cycle equipment
US7320228B2 (en) Refrigerant cycle apparatus
EP2381180B1 (en) Heat pump type hot water supply apparatus
JP4069733B2 (en) Air conditioner
KR101003228B1 (en) Refrigeration system
CN100390475C (en) Air-conditioner with a dual-refrigerant circuit
US20100058781A1 (en) Refrigerant system with economizer, intercooler and multi-stage compressor
EP1628088A2 (en) Refrigerant cycle apparatus
JP5049889B2 (en) Refrigeration equipment
JP5018724B2 (en) Ejector refrigeration cycle
JP2009270745A (en) Refrigerating system
WO2013140990A1 (en) Refrigeration cycle and refrigeration showcase
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP2019015434A (en) Air conditioner
JP2011214753A (en) Refrigerating device
JP4442237B2 (en) Air conditioner
KR101044464B1 (en) Refrigeration device
JP5659908B2 (en) Heat pump equipment
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device
JP2001056156A (en) Air conditioning apparatus
US7555915B2 (en) Air conditioner
JP4326004B2 (en) Air conditioner
JP2009243880A (en) Heat pump device and outdoor unit of heat pump device
JP2006232145A (en) Air-conditioner for vehicle
KR100770594B1 (en) Air conditioner for Heating and Cooling in one

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4704167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees