JP2001153473A - Refrigerating plant - Google Patents

Refrigerating plant

Info

Publication number
JP2001153473A
JP2001153473A JP34281899A JP34281899A JP2001153473A JP 2001153473 A JP2001153473 A JP 2001153473A JP 34281899 A JP34281899 A JP 34281899A JP 34281899 A JP34281899 A JP 34281899A JP 2001153473 A JP2001153473 A JP 2001153473A
Authority
JP
Japan
Prior art keywords
medium
flow path
pressure
cooling
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34281899A
Other languages
Japanese (ja)
Other versions
JP4277397B2 (en
Inventor
Shinichi Wakamoto
慎一 若本
Taijo Murakami
泰城 村上
Hiroyuki Morimoto
裕之 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP34281899A priority Critical patent/JP4277397B2/en
Publication of JP2001153473A publication Critical patent/JP2001153473A/en
Application granted granted Critical
Publication of JP4277397B2 publication Critical patent/JP4277397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized inexpensive refrigerating plant which can be operated easily with high efficiency while the state of the unit is controlled in such a way that the energy loss is reduced by reducing the pressure loss of a medium without using any expensive high-accuracy medium control equip ment. SOLUTION: The refrigerating plant is provided with a by-pass flow passage which is branched from a main flow passage in a system composed of a compressor, a condenser, an evaporator, and pipelines connecting them. A pressure reducing means which reduces the pressure of the medium flowing through the by-pass passage and a driving means which drives the medium are installed to the by-pass flow passage and a joining means which joins the medium flowing through the by-pass flow passage to the medium flowing through the main flow passage, a pressure raising means which raises the pressure of the joined medium, and a cooling means which cools the joined medium are installed to the main passage. Since a highly efficient cooling cycle which is reduced in energy loss can be realized by means of the above-mentioned means, the purpose can be accomplished.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ビルや住宅の空
調、食品の貯蔵や加工などのための冷凍冷蔵に用いる冷
凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus used for freezing and refrigeration for air conditioning of buildings and houses, storage and processing of foods, and the like.

【0002】[0002]

【従来の技術】図14は、従来の冷凍装置の系統図であ
る。図において、1は、冷凍装置であり、圧縮機2、凝
縮器3、流量制御手段4、および蒸発器5が、配管6に
よって順次、接続されて構成されている。上記圧縮機2
は、配管内を流れる媒体を圧縮し、吐出する。また、上
記凝縮器3は、外気などと熱交換させることによって媒
体を凝縮、即ち液化させるものである。上記流量制御手
段4は、一般的に、配管6よりもさらに細い管径をもつ
毛細管や、主として円錐形の弁体をもつ弁の開き度合い
を変化させて流量を制御する膨張弁が用いられる。上記
蒸発器5は、配管内の媒体を空気や水などと熱交換させ
て蒸気に変化させるものである。
FIG. 14 is a system diagram of a conventional refrigeration system. In the figure, reference numeral 1 denotes a refrigerating apparatus, which is configured by connecting a compressor 2, a condenser 3, a flow control means 4, and an evaporator 5 in sequence with a pipe 6. The above compressor 2
Compresses and discharges the medium flowing in the pipe. The condenser 3 condenses, that is, liquefies the medium by exchanging heat with the outside air or the like. Generally, the flow rate control means 4 is a capillary tube having a smaller diameter than the pipe 6, or an expansion valve which mainly controls the flow rate by changing the degree of opening of a valve having a conical valve body. The evaporator 5 changes the medium in the pipe into steam by exchanging heat with air, water, or the like.

【0003】次に動作について説明する。図15は、従
来装置において配管中を流れる媒体の状態変化を示す圧
力−エンタルピー線図である。図中の点線1は、配管内
を流れる媒体の飽和液線を示し、点線2は、飽和蒸気線
を示す。媒体は、飽和液線の左側で液体状態に、飽和蒸
気線の右側で蒸気に、また、飽和液線と飽和蒸気線の間
では蒸気と液体が混ざった湿り蒸気になる。一方、図中
の実線部分が媒体の状態変化を示す圧力−エンタルピー
線図であり、実線は状態を通る等エンタルピー
線、実線’は状態を通る等エントロピー線であ
る。
Next, the operation will be described. FIG. 15 is a pressure-enthalpy diagram showing a state change of a medium flowing in a pipe in a conventional apparatus. A dotted line 1 in the drawing indicates a saturated liquid line of the medium flowing in the pipe, and a dotted line 2 indicates a saturated vapor line. The medium is in a liquid state on the left side of the saturated liquid line, becomes vapor on the right side of the saturated vapor line, and becomes a wet vapor in which the vapor and the liquid are mixed between the saturated liquid lines. On the other hand, a solid line portion in the figure is a pressure-enthalpy diagram showing a state change of the medium, a solid line is an isenthalpy line passing through the state, and a solid line 'is an isentropy line passing through the state.

【0004】図15において、は、圧縮機から吐出さ
れた媒体の状態を示すもので、圧縮された媒体は高温高
圧の蒸気となっている。蒸気となった媒体が凝縮器を通
ると外気と熱交換して凝縮し、高温高圧の液体に変化
する。次いで、液体となった媒体は、流量制御手段4で
断熱膨張して低温低圧の湿り蒸気になる。さらに、蒸
発器5を通って空気や水と熱交換して蒸発し、低温低圧
の蒸気に変化する。低温低圧の蒸気となった媒体は
再び圧縮機2に送られて高温高圧の蒸気となる冷凍サ
イクルが繰り返される。
FIG. 15 shows the state of the medium discharged from the compressor, and the compressed medium is high-temperature and high-pressure steam. When the vaporized medium passes through the condenser, it exchanges heat with the outside air and condenses, transforming into a high-temperature, high-pressure liquid. Next, the liquid medium is adiabatically expanded by the flow rate control means 4 to become low-temperature and low-pressure wet steam. Further, it passes through the evaporator 5 and exchanges heat with air or water to evaporate, and changes into low-temperature and low-pressure steam. The medium that has become low-temperature and low-pressure steam is sent to the compressor 2 again, and the refrigeration cycle of high-temperature and high-pressure steam is repeated.

【0005】ところで、理想的な状態変化である等エン
トロピー変化による減圧を実現できる場合、凝縮器で高
温高圧の液体に変化した媒体は、エントロピーが増大
することなく低温低圧の湿り蒸気'に変化する。この
場合、装置の冷却能力は状態と状態’におけるエン
タルピー差であり、上記の等エンタルピー変化にお
ける冷却能力よりも大きくなる。
[0005] If the pressure can be reduced by an isentropic change, which is an ideal state change, the medium that has been changed to a high-temperature and high-pressure liquid in the condenser changes to a low-temperature and low-pressure wet steam without increasing entropy. . In this case, the cooling capacity of the device is the enthalpy difference between the state and the state ', and is larger than the cooling capacity in the above-mentioned isenthalpy change.

【0006】しかしながら、上記流量制御手段4は、上
述したように、一般に、細い管径をもつ毛細管や弁の開
閉度調整で制御する膨張弁などが用いられている。毛細
管を利用した制御では、高温高圧の液体となった媒体は
毛細管を流れる際の圧力損失によって減圧し、液体の一
部が毛細管の途中から蒸発しながら増速し、大きな圧損
を生じて低温低圧の湿り蒸気に変化する。このように高
速で流れる際の圧損は不可逆変化をともなうため、媒体
が持つエネルギーの一部’を失う上記のような
等エンタルピー変化になる。また、膨張弁を用いた冷凍
装置の場合も弁を通過する際に生じる衝撃波によって媒
体が持つエネルギーの一部’を失う等エンタルピー
変化となり、媒体の蒸発によって得られる冷却能力
は、やはり、状態と状態におけるエンタルピー差で
ある。
However, as described above, the flow control means 4 generally employs a capillary tube having a small pipe diameter, an expansion valve controlled by adjusting the opening / closing degree of the valve, and the like. In control using a capillary, the medium that has become a high-temperature, high-pressure liquid is depressurized by the pressure loss when flowing through the capillary, and a portion of the liquid evaporates from the middle of the capillary while increasing in speed, causing a large pressure loss and causing a low pressure and low pressure. Turns into wet steam. Since the pressure loss when flowing at such a high speed is accompanied by an irreversible change, the above-mentioned isenthalpy change in which a part of the energy of the medium is lost. Also, in the case of a refrigeration system using an expansion valve, a shock wave generated when passing through the valve causes an enthalpy change such as losing a part of the energy of the medium, and the cooling capacity obtained by evaporation of the medium also depends on the state. It is the enthalpy difference in the state.

【0007】また、例えば、空気調和・衛生工学会論文
集No.70、1998に記載される冷凍装置が検討さ
れている。これは上記圧縮機、凝縮器および蒸発器が設
置された従来の冷凍装置に、新たに速度上昇ノズル、低
圧室、混合室および圧力回復させるディフューザからな
るエジェクタおよび気液分離器を備えたものである。凝
縮器から出た高温高圧の蒸気となった媒体は、上記エジ
ェクタと気液分離器の働きによって、圧力回復するとと
もに、理想的な等エントロピー変化になり、大きな冷却
能力で運転できる。しかしながら、この従来装置では、
結局、気液分離器や新たな機器を装備する装置構成にな
って、大型化したり、コストが高くなったり、高精度な
流量制御が必要となるなどの問題があった。
[0007] For example, for example, the Transactions of the Society of Air Conditioning and Sanitary Engineers No. 70, 1998 are being considered. This is a conventional refrigeration system in which the above-mentioned compressor, condenser and evaporator are installed, which is newly provided with a speed-up nozzle, a low-pressure chamber, a mixing chamber, and an ejector including a diffuser for recovering pressure and a gas-liquid separator. is there. The medium which has become a high-temperature and high-pressure vapor from the condenser is recovered in pressure by the action of the ejector and the gas-liquid separator, and has an ideal isentropic change, and can be operated with a large cooling capacity. However, in this conventional device,
Eventually, the apparatus configuration is equipped with a gas-liquid separator and new equipment, and there are problems such as an increase in size, an increase in cost, and a need for precise flow control.

【0008】[0008]

【発明が解決しようとする課題】従来の冷凍装置では、
凝縮器から流出する高温高圧の冷媒がバルブなどで流量
制御される際に圧力損失を起こしたり、衝撃波の発生に
よって減圧されたりするために、本来、蒸発器で得られ
る冷却能力が低下し、冷凍装置全体の冷却効率を極めて
悪くしている問題があった。また、この改善のために、
従来、気液分離器などが使用されていたが、これではコ
ストが高くなったり、高精度な流量制御が必要になり問
題があった。
SUMMARY OF THE INVENTION In a conventional refrigeration system,
When the flow rate of the high-temperature, high-pressure refrigerant flowing out of the condenser is controlled by a valve or the like, a pressure loss occurs, or the pressure is reduced by the generation of a shock wave. There is a problem that the cooling efficiency of the entire apparatus is extremely deteriorated. Also, for this improvement,
Conventionally, a gas-liquid separator or the like has been used. However, this has a problem in that the cost is increased and high-precision flow control is required.

【0009】この発明は、これら従来の問題点を解消す
るためのもので、高コストで高精度な媒体制御機器を用
いることなく媒体の圧力損失を低減し、廉価で、かつ容
易に高効率な冷却サイクルで運転できる冷凍装置を提供
するものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve these conventional problems, and it is possible to reduce the pressure loss of a medium without using a high-cost and high-precision medium control device, and to obtain an inexpensive, easily and highly efficient medium. An object of the present invention is to provide a refrigeration apparatus that can be operated in a cooling cycle.

【0010】[0010]

【課題を解決するための手段】本発明において、第1の
構成による冷凍装置は、圧縮機、凝縮器、蒸発器および
これらを順次接続する配管を備えた冷凍装置において、
凝縮器から出た媒体の流路をメイン流路と分岐するバイ
パス流路を設け、上記バイパス流路にはバイパス流路の
媒体を減圧する減圧手段および上記媒体を駆動させる駆
動手段を設け、上記メイン流路にはメイン流路の媒体と
バイパス流路の媒体を合流させる合流手段、合流後のメ
イン流路の媒体を昇圧させる昇圧手段および上記メイン
流路の媒体を冷却させる冷却手段を設置したものであ
る。
According to the present invention, there is provided a refrigeration apparatus according to the first configuration, which comprises a compressor, a condenser, an evaporator, and a pipe for sequentially connecting these components.
A bypass flow path that branches the flow path of the medium out of the condenser from the main flow path is provided; the bypass flow path is provided with a decompression unit that depressurizes the medium in the bypass flow path and a driving unit that drives the medium; The main flow path is provided with a merging means for merging the medium in the main flow path and the medium in the bypass flow path, a pressure increasing means for increasing the pressure of the medium in the main flow path after the merging, and a cooling means for cooling the medium in the main flow path. Things.

【0011】本発明の第2の構成による冷凍装置は、上
記第1の構成による冷凍装置において、メイン流路の媒
体を冷却させる冷却手段として、バイパス流路の媒体と
熱交換を行う熱交換器を設置したものである。
A refrigeration apparatus according to a second configuration of the present invention is the refrigeration apparatus according to the first configuration, wherein the heat exchanger that exchanges heat with the medium in the bypass flow path is used as cooling means for cooling the medium in the main flow path. Is installed.

【0012】本発明の第3の構成による冷凍装置は、上
記第1の構成による冷凍装置において、メイン流路の媒
体を冷却させる冷却手段を、駆動手段、合流手段および
昇圧手段の設置位置よりも上流側に設置したものであ
る。
According to a third aspect of the present invention, in the refrigerating apparatus according to the first aspect, the cooling means for cooling the medium in the main flow path is located at a position lower than the installation positions of the driving means, the merging means and the pressure increasing means. It is installed on the upstream side.

【0013】本発明の第4の構成による冷却装置は、上
記第1の構成による冷凍装置において、メイン流路の媒
体を冷却させる冷却手段を、駆動手段、合流手段および
昇圧手段の設置位置よりも下流側に設置したものであ
る。
According to a fourth aspect of the present invention, in the refrigeration apparatus according to the first aspect, the cooling means for cooling the medium in the main flow path is located at a position lower than the installation positions of the driving means, the merging means and the pressure increasing means. It is installed on the downstream side.

【0014】本発明の第5の構成による冷凍装置は、上
記第1の構成による冷凍装置において、冷却手段とし
て、外気と熱交換を行う第2の蒸発器をバイパス流路に
設け、バイパス流路の媒体を外気と熱交換した後にメイ
ン流路の媒体と合流させるようにしたものである。
According to a fifth aspect of the present invention, there is provided a refrigeration apparatus according to the first aspect, wherein a second evaporator for performing heat exchange with outside air is provided in the bypass flow path as cooling means. After exchanging heat with the outside air, the medium is merged with the medium in the main flow path.

【0015】本発明の第6の構成による冷凍装置は、上
記第1の構成による冷凍装置において、上記駆動手段と
上記合流手段とが、隘路およびバイパスからの媒体の合
流口を備えた構造体としたものである。
A refrigeration apparatus according to a sixth aspect of the present invention is the refrigeration apparatus according to the first aspect, wherein the driving means and the confluence means comprise a structure having a confluence for a medium from a bottleneck and a bypass. It was done.

【0016】本発明の第7の構成による冷凍装置は、上
記第1の構成による冷凍装置において、上記配管内の媒
体の温度および圧力を測定する手段を設け、上記測定値
から媒体の制御パラメータである過冷却度、飽和温度、
または過熱度を算出する過冷却度算出手段、飽和温度算
出手段、または過熱度算出手段を設け、上記制御パラメ
ータに応じて、減圧手段、駆動手段、合流手段、昇圧手
段、または圧縮機を制御するものである。
A refrigeration apparatus according to a seventh aspect of the present invention is the refrigeration apparatus according to the first aspect, further comprising means for measuring a temperature and a pressure of the medium in the pipe, and using a control parameter of the medium based on the measured value. A certain degree of supercooling, saturation temperature,
Alternatively, a supercooling degree calculating means, a saturation temperature calculating means, or a superheating degree calculating means for calculating the degree of superheating is provided, and the pressure reducing means, the driving means, the merging means, the pressure increasing means, or the compressor are controlled in accordance with the control parameters. Things.

【0017】本発明の第8の構成による冷凍装置は、圧
縮機、凝縮器、蒸発器およびこれらを順次接続する配管
を備え、凝縮器と蒸発器が流路切換弁によって動作切換
えされるものにおいて、上記凝縮器と蒸発器の間に設け
られる流路に、上記バイパス流路、上記減圧手段、上記
駆動手段、上記合流手段および上記昇圧手段からなる媒
体制御装置を設置したものである。
A refrigeration apparatus according to an eighth aspect of the present invention is provided with a compressor, a condenser, an evaporator and a pipe for sequentially connecting the compressor and the evaporator, and the operation of the condenser and the evaporator is switched by a flow path switching valve. A medium control device including the bypass flow path, the pressure reducing means, the driving means, the merging means, and the pressure increasing means is provided in a flow path provided between the condenser and the evaporator.

【0018】[0018]

【発明の実施の形態】実施の形態1.以下、本発明に係
る冷凍装置の実施の形態1について説明する。図1は、
実施の形態1による冷凍装置の系統図を示したものであ
る。図において、1は本発明による冷凍装置であり、2
は通常、配管内を流れる媒体を圧縮し、吐出する圧縮
機、3は外気などと熱交換させることによって蒸気状態
にある媒体を凝縮して液化させる凝縮器、5は空気や水
などと熱交換させて媒体を蒸気に変化させる蒸発器であ
り、配管6によって順次、接続されて構成されている。
また、図に示すように、上記凝縮器3と上記蒸発器5の
間には、本発明による媒体制御装置500が配管6で接
続されて設置されている。上記媒体制御装置500は、
上記凝縮器3から流出する媒体の流量、圧力、温度また
は状態を制御するためのもので、この装置500には上
記凝縮器3から吐出する媒体のメイン流路301から分
岐するバイパス流路302が設置されている。上記バイ
パス流路302にはこのバイパス流路302を流れる媒
体を減圧する減圧手段303、およびこのバイパス流路
302の媒体を駆動する駆動手段201が設置されてい
る。また、上記メイン流路301には、上記バイパス流
路302を流れる媒体と上記メイン流路301を流れる
媒体とを合流させる合流手段202、合流後のメイン流
路の媒体を昇圧させる昇圧手段203が設置された媒体
制御手段200、および上記メイン流路301を流れる
媒体を冷却させる冷却手段304が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, Embodiment 1 of a refrigeration apparatus according to the present invention will be described. FIG.
1 shows a system diagram of a refrigeration apparatus according to Embodiment 1. FIG. In the figure, reference numeral 1 denotes a refrigeration apparatus according to the present invention;
Is a compressor that compresses and discharges a medium flowing in a pipe, a condenser 3 condenses and liquefies a medium in a vapor state by exchanging heat with the outside air, and a heat exchanger 5 exchanges heat with air or water. This is an evaporator that changes the medium into steam, and is sequentially connected by a pipe 6.
Further, as shown in the figure, a medium control device 500 according to the present invention is connected and installed between the condenser 3 and the evaporator 5 by a pipe 6. The medium control device 500 includes:
For controlling the flow rate, pressure, temperature or state of the medium flowing out of the condenser 3, the apparatus 500 includes a bypass flow path 302 branched from a main flow path 301 of the medium discharged from the condenser 3. is set up. The bypass passage 302 is provided with a decompression unit 303 for reducing the pressure of the medium flowing through the bypass passage 302 and a driving unit 201 for driving the medium in the bypass passage 302. In the main flow path 301, a confluent means 202 for converging a medium flowing in the bypass flow path 302 and a medium flowing in the main flow path 301, and a pressure increasing means 203 for pressurizing the medium in the main flow path after merging are provided. A provided medium control means 200 and a cooling means 304 for cooling the medium flowing through the main flow path 301 are provided.

【0019】次に、本実施の形態による冷凍装置の動作
について説明する。図2は、本発明の冷凍装置による動
作を示す圧力−エンタルピー線図である。図2に示すよ
うに圧縮機2で圧縮された媒体は高温高圧の蒸気とな
り、次いで凝縮器3において空気と熱交換して凝縮し、
圧力を保った状態で液体に変化する。この液化した媒
体は、メイン流路301、およびメイン流路301と
分岐したバイパス流路302に分かれて流れる。バイパ
ス流路302を流れる一部の媒体は、減圧手段303
を通る際に断熱膨張し、減圧されて低温低圧の湿り蒸気
’に変化し、その後、冷却手段304において、メイ
ン流路301を通り媒体制御手段200から流出する媒
体と熱交換し、加熱されて過熱蒸気’に変化する。上
記冷却手段304を通ったバイパス流路の媒体は、バイ
パス流路に設けた駆動手段201に駆動され、媒体制御
手段200内に引込まれて状態’になる。一方、凝縮
器3からメイン流路301側へ流れる残りの媒体は、
媒体制御手段200へ供給され、この中で増速しながら
等エントロピー変化に近い状態で減圧されて湿り蒸気状
態に変化する。このメイン流路を流れる媒体は、合
流手段202において、前述のバイパス流路から媒体制
御手段200内に引込まれたバイパス流路の媒体’と
合流して状態になり、さらに、昇圧手段203におい
て、等エントロピー変化に近い状態で昇圧されて状態
に変化する。圧力回復した媒体は、その後、冷却手段3
04でバイパス流路を流れる媒体と熱交換し、冷却され
て状態となり、蒸発器5において、空気や水などと熱
交換し、低温低圧の蒸気状態に変化した後、再び圧縮
機2に送られる。このようにして上記の冷却サイクルが
繰り返される。
Next, the operation of the refrigeration apparatus according to this embodiment will be described. FIG. 2 is a pressure-enthalpy diagram showing the operation of the refrigeration apparatus of the present invention. As shown in FIG. 2, the medium compressed by the compressor 2 becomes high-temperature and high-pressure steam, and then condenses by exchanging heat with air in the condenser 3.
It changes to liquid while maintaining pressure. The liquefied medium flows through the main flow path 301 and the bypass flow path 302 branched from the main flow path 301. Part of the medium flowing through the bypass channel 302 is
Adiabatic expansion when passing through, the pressure is reduced to change into low-temperature and low-pressure wet steam ', and then the cooling means 304 exchanges heat with the medium flowing out of the medium control means 200 through the main flow path 301 and is heated. Turns into 'superheated steam'. The medium in the bypass passage that has passed through the cooling unit 304 is driven by the driving unit 201 provided in the bypass passage, and is drawn into the medium control unit 200 to be in the state ′. On the other hand, the remaining medium flowing from the condenser 3 toward the main flow path 301 is
The medium is supplied to the medium control means 200, and the pressure is reduced in a state close to the isentropic change while increasing the speed in the medium control means 200 to change to a wet steam state. The medium flowing through the main flow path merges with the medium ′ of the bypass flow path drawn into the medium control means 200 from the bypass flow path at the merging means 202, and becomes a state. The pressure is increased in a state close to the isentropic change and changes to a state. The pressure-recovered medium is then supplied to the cooling means 3
In 04, the heat exchange with the medium flowing in the bypass flow path is performed, and the medium is cooled and exchanged with air and water in the evaporator 5 to change to a low-temperature and low-pressure vapor state and then sent to the compressor 2 again. . Thus, the above cooling cycle is repeated.

【0020】以上説明したように、本発明の実施の形態
1によれば、媒体制御装置500を設けたことにより、
メイン流路を流れる媒体が状態から状態のように圧
損の少ないほぼ理想的なエネルギー変換をする冷却サイ
クルを容易に実現できる。したがって、装置の冷却能力
が向上し、エネルギー損失の少ない高効率な運転が可能
となる。
As described above, according to the first embodiment of the present invention, by providing the medium control device 500,
It is possible to easily realize a cooling cycle in which the medium flowing in the main flow path performs almost ideal energy conversion with little pressure loss as in the state. Therefore, the cooling capacity of the device is improved, and high-efficiency operation with less energy loss is possible.

【0021】実施の形態2.次に、本発明の実施の形態
2による冷凍装置について説明する。本発明は図1に示
した系統図において、メイン流路を流れる媒体を冷却さ
せる冷却手段304として、バイパス流路の媒体と熱交
換を行う熱交換器を用いた冷凍装置である。このように
冷却手段として熱交換器を設置したことにより、上記実
施の形態1と同様に、ほぼ理想的なエネルギー変換をす
る冷却サイクルを容易に実現できる。
Embodiment 2 FIG. Next, a refrigeration apparatus according to Embodiment 2 of the present invention will be described. The present invention is a refrigerating apparatus using a heat exchanger for exchanging heat with a medium in a bypass flow path as a cooling unit 304 for cooling a medium flowing in a main flow path in the system diagram shown in FIG. By providing the heat exchanger as the cooling means in this way, it is possible to easily realize a cooling cycle for performing almost ideal energy conversion as in the first embodiment.

【0022】実施の形態3.次に、本発明の実施の形態
3による冷凍装置について説明する。図3は、本発明の
実施の形態3による装置の系統図である。図3におい
て、32はメイン流路の媒体を冷却するための熱交換器
であり、駆動手段、合流手段および昇圧手段を設置した
媒体制御手段200の設置位置よりも上流側に設置され
ている。また、31はバイパス流路を流れる媒体の減圧
手段としての流量調整バルブであり、バイパス配管30
によって上記熱交換器32および媒体制御手段200に
順次、接続されている。
Embodiment 3 FIG. Next, a refrigeration apparatus according to Embodiment 3 of the present invention will be described. FIG. 3 is a system diagram of an apparatus according to Embodiment 3 of the present invention. In FIG. 3, reference numeral 32 denotes a heat exchanger for cooling the medium in the main flow passage, which is installed upstream of the installation position of the medium control means 200 in which the driving means, the merging means and the pressure increasing means are installed. Reference numeral 31 denotes a flow control valve as a means for reducing the pressure of the medium flowing through the bypass flow passage.
To the heat exchanger 32 and the medium control means 200 sequentially.

【0023】次に、本実施の形態による冷凍装置の動作
について説明する。図4は、本発明の冷凍装置による動
作を示す圧力−エンタルピー線図である。図4に示すよ
うに圧縮機2で圧縮された媒体は高温高圧の蒸気とな
り、凝縮器3で空気と熱交換して凝縮し、高温高圧の液
体’に変化する。この液化した媒体’は、メイン流
路301、およびメイン流路301と分岐したバイパス
流路302に分かれて流れる。バイパス流路302を流
れる一部の媒体’は、減圧手段である流量調整バルブ
31において断熱膨張し、減圧されて低温低圧の湿り蒸
気状態’に変化した後、熱交換器32においてメイン
流路301を流れる媒体と熱交換し、加熱されて過熱蒸
気状態’に変化する。上記熱交換器32を通ったバイ
パス流路の媒体は、媒体制御手段200内に引込まれて
状態’になる。一方、凝縮器3からメイン流路301
側へ流れる残りの媒体’は、上記熱交換器32で冷却
されて状態になる。その後、媒体制御手段200へ供
給され、この中で等エントロピー変化に近い状態で減圧
されて湿り蒸気状態に変化する。このメイン流路を流
れる媒体は、バイパス流路から媒体制御手段200内
に引込まれたバイパス流路の媒体’と合流して状態
になり、さらに、等エントロピー変化に近い状態で昇圧
されて状態に変化する。その後、媒体は蒸発器5にお
いて、空気や水などと熱交換し、低温低圧の蒸気状態
に変化した後、再び圧縮機2に送られて高温高圧の蒸気
となり、上記の冷却サイクルが繰り返される。
Next, the operation of the refrigeration apparatus according to this embodiment will be described. FIG. 4 is a pressure-enthalpy diagram showing the operation of the refrigeration apparatus of the present invention. As shown in FIG. 4, the medium compressed by the compressor 2 becomes high-temperature and high-pressure vapor, which is condensed by exchanging heat with the air in the condenser 3 and changes into a high-temperature and high-pressure liquid '. This liquefied medium ′ flows separately into the main flow path 301 and a bypass flow path 302 branched from the main flow path 301. A part of the medium ′ flowing through the bypass flow path 302 is adiabatically expanded in the flow rate control valve 31 which is a pressure reducing means, is depressurized and changes to a low-temperature low-pressure wet steam state ′. Heat exchange with the flowing medium, and is heated to change to a superheated steam state. The medium in the bypass passage passing through the heat exchanger 32 is drawn into the medium control means 200 to be in the state '. On the other hand, the main flow path 301 from the condenser 3
The remaining medium ′ flowing to the side is cooled by the heat exchanger 32 and becomes a state. Thereafter, the medium is supplied to the medium control means 200, in which the pressure is reduced in a state close to the isentropic change, and the medium changes to a wet vapor state. The medium flowing in the main flow path merges with the medium ′ of the bypass flow path drawn into the medium control means 200 from the bypass flow path, enters a state, and is further pressurized in a state close to an isentropic change. Change. Thereafter, the medium exchanges heat with air, water, or the like in the evaporator 5 to change to a low-temperature low-pressure steam state, and is then sent to the compressor 2 again to become high-temperature high-pressure steam, and the above-described cooling cycle is repeated.

【0024】このように冷却手段を、駆動手段、合流手
段および昇圧手段よりも上流側に設置した場合において
も、バイパス流路の媒体の圧力、すなわち温度をメイン
流路の媒体の温度よりも低くでき、熱交換器32の設置
によって媒体の過冷却度を大きくできるために、やは
り、エネルギー損失の少ない冷却能力の高い高効率な運
転が可能となる。
Even when the cooling means is installed on the upstream side of the driving means, the merging means and the pressure increasing means, the pressure of the medium in the bypass passage, that is, the temperature, is lower than the temperature of the medium in the main passage. Since the degree of supercooling of the medium can be increased by installing the heat exchanger 32, high-efficiency operation with low energy loss and high cooling capacity is also possible.

【0025】実施の形態4.次に、本発明の実施の形態
4について説明する。図5は、本発明の実施の形態4に
よる冷凍装置を示す系統図である。図において、18は
冷却手段としてバイパス流路に設置した熱交換器であ
り、駆動手段、合流手段および昇圧手段であるエジェク
タ10の下流側に設置されている。17は流量調整バル
ブ、16はバイパス配管である。また、エジェクタ10
は前述の媒体制御手段200と同様の機能を持つエジェ
クタであり、ケーシング11内にメイン流路の媒体の流
速を加速させるノズル12、バイパス流路の媒体を駆動
して引き込む低圧室13、メイン流路の媒体とバイパス
流路の媒体を合流させる合流室14およびメイン流路の
媒体を昇圧させるディフューザ15から構成されてい
る。
Embodiment 4 Next, a fourth embodiment of the present invention will be described. FIG. 5 is a system diagram showing a refrigeration apparatus according to Embodiment 4 of the present invention. In the figure, reference numeral 18 denotes a heat exchanger provided in a bypass flow path as a cooling means, and is provided downstream of the ejector 10 which is a driving means, a merging means, and a pressure increasing means. 17 is a flow control valve, and 16 is a bypass pipe. Also, the ejector 10
Numeral denotes an ejector having the same function as that of the medium control means 200 described above. The ejector has a nozzle 12 for accelerating the flow rate of the medium in the main flow path, a low-pressure chamber 13 for driving and drawing the medium in the bypass flow path, and a main flow path. It is composed of a merging chamber 14 for joining the medium in the passage and the medium in the bypass passage, and a diffuser 15 for increasing the pressure in the medium in the main passage.

【0026】このように熱交換器18を駆動手段、合流
手段および昇圧手段の設置位置よりも下流側のバイパス
流路に設置して、媒体制御手段である上記エジェクタか
ら流出するメイン流路の媒体を効率よく冷却することに
より、理想的な等エントロピー変化の状態に制御でき
る。そのため、やはり冷却能力の高い高効率な運転が可
能となる。
As described above, the heat exchanger 18 is installed in the bypass flow path downstream of the installation positions of the driving means, the merging means, and the pressure increasing means, and the medium in the main flow path flowing out of the ejector, which is the medium control means. Can be controlled to an ideal isentropic change. Therefore, high-efficiency operation with a high cooling capacity is also possible.

【0027】実施の形態5.次に、本発明の実施の形態
5による冷凍装置について説明する。図6に本発明の冷
却装置の系統図を示した。図において、36はバイパス
流路に設置された第2の蒸発器であり、蒸発器5で冷却
された水または空気とバイパス流路から流出する媒体と
熱交換して気化させるものである。このようにバイパス
流路に第2の蒸発器を設置し、熱交換を行って媒体を気
化させた後にメイン流路の媒体と合流させるようにした
ことにより、やはり媒体をエネルギー損失の少ない理想
的な状態に制御できる。そのため、冷却効率の高い運転
が可能となる。
Embodiment 5 FIG. Next, a refrigeration apparatus according to Embodiment 5 of the present invention will be described. FIG. 6 shows a system diagram of the cooling device of the present invention. In the figure, reference numeral 36 denotes a second evaporator provided in the bypass flow path, which exchanges heat between water or air cooled by the evaporator 5 and a medium flowing out of the bypass flow path to vaporize. In this way, the second evaporator is installed in the bypass flow path, the medium is vaporized by performing heat exchange, and then the medium is merged with the medium in the main flow path. Control. Therefore, operation with high cooling efficiency becomes possible.

【0028】実施の形態6.図7、図8および図9は、
本発明の実施の形態6による冷凍装置の媒体制御手段部
の拡大図である。図7に示した装置は、媒体制御手段2
00に、バイパス流路からの媒体を合流させるための合
流口305を備えた先細末広ノズルが使用され、メイン
流路301に設置したものである。図8は、媒体制御手
段200として、内部を流れる媒体の流路を絞る隘路を
持つオリフィスを使用し、バイパス流路からの媒体を合
流させるための合流口305を備えたものである。ま
た、図9は、媒体制御手段200に、膨張弁を使用した
ものであり、41はケーシング、42は弁体、43は弁
座、44は上記弁体42を駆動する弁駆動装置、45は
メイン流路からの媒体を膨張弁に流入させる流入管、5
0はメイン流路の媒体を膨張弁から流出させるテーパー
を付けた流出管、305はバイパス流路からの媒体を合
流させるための合流口である。上記膨張弁は、弁体42
と弁座43の隙間の面積を弁駆動装置44で調整するこ
とにより媒体の流量を制御している。
Embodiment 6 FIG. 7, 8, and 9 show:
FIG. 16 is an enlarged view of a medium control unit of a refrigeration apparatus according to Embodiment 6 of the present invention. The apparatus shown in FIG.
At 00, a tapered divergent nozzle provided with a converging port 305 for merging the medium from the bypass flow path is used, and is installed in the main flow path 301. FIG. 8 shows a configuration in which an orifice having a narrow path for narrowing the flow path of the medium flowing inside is used as the medium control means 200, and the medium control means 200 is provided with a merge port 305 for merging the medium from the bypass flow path. FIG. 9 shows an example in which an expansion valve is used for the medium control means 200, 41 is a casing, 42 is a valve body, 43 is a valve seat, 44 is a valve driving device for driving the valve body 42, and 45 is a valve driving device. An inflow pipe for allowing the medium from the main flow path to flow into the expansion valve, 5
Reference numeral 0 denotes a tapered outflow pipe for allowing the medium in the main flow path to flow out of the expansion valve, and reference numeral 305 denotes a junction for merging the medium from the bypass flow path. The expansion valve includes a valve element 42.
The flow rate of the medium is controlled by adjusting the area of the gap between the valve seat 43 and the valve driving device 44.

【0029】このようにバイパス流路の媒体を駆動させ
る駆動手段と、バイパス流路の媒体とメイン流路の媒体
を合流させる合流手段とが、少なくとも媒体が流れる流
路の断面積を小さくするするよう絞り込まれた隘路およ
びバイパスからの媒体の合流口を備えた構造体にするこ
とにより、媒体のエネルギー損失が少ない理想的な状態
制御ができ、効率的な運転ができる。
As described above, the driving means for driving the medium in the bypass flow path and the joining means for joining the medium in the bypass flow path and the medium in the main flow path reduce at least the cross-sectional area of the flow path through which the medium flows. By providing a structure having a narrowed narrow passage and a junction of the medium from the bypass, ideal state control with small energy loss of the medium can be performed, and efficient operation can be performed.

【0030】実施の形態7.図10は、本発明の実施の
形態7による冷凍装置の系統図である。図10におい
て、100は媒体の温度を測定する温度測定器、101
は媒体の圧力を測定する圧力測定器で、冷却手段304
と媒体制御装置200の間のメイン流路301に設置さ
れている。また、102は飽和温度算出手段、103は
過冷却度算出手段であり、算出された過冷却度に応じて
バイパス流路に設けた減圧手段303に信号を送ってバ
イパス流路の媒体の流量を制御している。図11は、本
発明の実施の形態7による同様な冷凍装置の系統図であ
り、温度測定器100および圧力測定器101により測
定された媒体の温度と圧力から飽和温度算出手段102
および過冷却度算出手段103により求められる過冷却
度に応じて膨張弁の弁駆動装置44に信号を送ってメイ
ン流路の媒体の流量を制御している。
Embodiment 7 FIG. 10 is a system diagram of a refrigeration apparatus according to Embodiment 7 of the present invention. In FIG. 10, reference numeral 100 denotes a temperature measuring device for measuring the temperature of a medium;
Is a pressure measuring device for measuring the pressure of the medium,
It is installed in the main flow path 301 between the media control device 200 and the medium control device 200. Also, reference numeral 102 denotes a saturation temperature calculating means, and 103 denotes a supercooling degree calculating means, which sends a signal to a depressurizing means 303 provided in the bypass flow path in accordance with the calculated supercooling degree to thereby adjust the flow rate of the medium in the bypass flow path. Controlling. FIG. 11 is a system diagram of a similar refrigeration apparatus according to Embodiment 7 of the present invention, and includes a saturation temperature calculating means 102 based on a medium temperature and a pressure measured by a temperature measuring device 100 and a pressure measuring device 101.
A signal is sent to the valve drive device 44 of the expansion valve according to the degree of supercooling calculated by the degree of supercooling calculation means 103 to control the flow rate of the medium in the main flow path.

【0031】上記実施の形態7のように構成することに
よって、やはり、媒体をエネルギー損失の少ない理想的
な状態に制御できる。上記実施例では、過冷却度を算出
して制御する場合について説明したが、上記温度測定器
および圧力測定器を蒸発器と圧縮機の間に設置し、圧縮
機に入る前の媒体の過熱度を算出して減圧手段または媒
体制御手段を制御してもよい。また、熱交換器から媒体
制御手段に至るバイパス配管内の媒体の温度、圧力を測
定して過熱度を算出し、その過熱度に応じて減圧手段ま
たは媒体制御手段を制御してもよい。さらに、上記制御
パラメータの信号を圧縮機に送って制御しても同様の効
果が得られる。
With the configuration as in the seventh embodiment, the medium can be controlled to an ideal state with little energy loss. In the above embodiment, the case where the degree of supercooling is calculated and controlled is described. However, the temperature measuring device and the pressure measuring device are installed between the evaporator and the compressor, and the degree of superheating of the medium before entering the compressor. May be calculated to control the pressure reducing means or the medium control means. Further, the degree of superheat may be calculated by measuring the temperature and pressure of the medium in the bypass pipe from the heat exchanger to the medium control means, and the pressure reducing means or the medium control means may be controlled in accordance with the degree of superheat. Further, the same effect can be obtained by transmitting the control parameter signal to the compressor for control.

【0032】実施の形態8.図12に実施の形態8によ
る冷凍装置の系統図を示す。図12に示した冷凍装置1
は、圧縮機2、凝縮器3、蒸発器5およびこれらを順次
接続する配管6を備え、上記凝縮器3と上記蒸発器5が
流路切換弁400によって動作切換えされるものであ
り、上記凝縮器3と上記蒸発器5の間に設けられる流路
に、実施の形態1で説明した上記バイパス流路、上記減
圧手段、上記駆動手段、上記合流手段および上記昇圧手
段からなる媒体制御装置500を設置したものである。
Embodiment 8 FIG. FIG. 12 shows a system diagram of a refrigeration apparatus according to the eighth embodiment. Refrigeration apparatus 1 shown in FIG.
The compressor includes a compressor 2, a condenser 3, an evaporator 5, and a pipe 6 for sequentially connecting the compressor 2, the condenser 3 and the evaporator 5, the operation of which is switched by a flow path switching valve 400. In the flow path provided between the vessel 3 and the evaporator 5, the medium control device 500 including the bypass flow path, the pressure reducing means, the driving means, the merging means, and the pressure increasing means described in the first embodiment is provided. It was installed.

【0033】次に実施の形態8による冷凍装置の動作に
ついて説明する。図12に示したように、圧縮機2で圧
縮されて高温高圧の蒸気となった媒体は、一方の流路切
換弁400を通って凝縮器3に流入し、ここで凝縮され
て液体に変化する。上記凝縮器3から吐出した媒体は、
もう一方の流路切換弁400を通って、上記凝縮器3と
上記蒸発器5の間の流路に設置した媒体制御装置500
に流入する。上記媒体制御装置500に流入した媒体
は、その中で前述したようにエネルギー損失の少ない状
態に制御されて低温低圧の湿り蒸気状態に変化し、蒸発
器5に送られて蒸発器5の中で外気や水と熱交換して低
温低圧の蒸気に変化する。その後、流路切換弁400を
通って再び圧縮機2に送られ、同じサイクルが繰り返さ
れる。上記凝縮器3が室外に、蒸発器5が室内に設置さ
れて、冷房運転が行われる場合、以上説明したように、
媒体は上記蒸発器5で室内の空気を効率的に冷却でき
る。一方、上記装置で暖房運転を行う場合には、流路切
換弁400によって流路を切換え、圧縮機2から流出す
る媒体を蒸発器5へ流入させ、上記蒸発器5から流出す
る媒体を、もう一方の流路切換弁400を切換えて媒体
制御装置500へ流れるようにし、さらに、上記媒体制
御装置500から出る媒体を、上記媒体制御装置500
の下流側に設置した流路切換弁400を切換えて凝縮器
3へ送り込むことによって、効率的な暖房運転ができ
る。上記装置によれば、流路切換弁を切換えるだけで配
管内を流れる媒体の流れの方向を全く変えることなく冷
暖房運転が可能となる。
Next, the operation of the refrigeration apparatus according to Embodiment 8 will be described. As shown in FIG. 12, the medium that has been compressed by the compressor 2 to become a high-temperature and high-pressure vapor flows into the condenser 3 through one of the flow path switching valves 400, where it is condensed and converted into a liquid. I do. The medium discharged from the condenser 3 is
The medium control device 500 installed in the flow path between the condenser 3 and the evaporator 5 through the other flow path switching valve 400
Flows into. The medium that has flowed into the medium control device 500 is controlled to a state in which energy loss is small as described above, changes to a low-temperature, low-pressure, wet steam state, and is sent to the evaporator 5 where the medium flows. It exchanges heat with the outside air and water to change to low-temperature, low-pressure steam. Thereafter, the air is sent to the compressor 2 again through the flow path switching valve 400, and the same cycle is repeated. When the condenser 3 is placed outside the room and the evaporator 5 is placed inside the room to perform the cooling operation, as described above,
The medium can efficiently cool the indoor air by the evaporator 5. On the other hand, when performing the heating operation with the above-described device, the flow path is switched by the flow path switching valve 400, the medium flowing out of the compressor 2 flows into the evaporator 5, and the medium flowing out of the evaporator 5 is One of the flow path switching valves 400 is switched so as to flow to the medium control device 500, and the medium exiting from the medium control device 500 is transmitted to the medium control device 500.
An efficient heating operation can be performed by switching the flow path switching valve 400 installed on the downstream side of the condenser 3 and sending it to the condenser 3. According to the above-described device, the cooling / heating operation can be performed without changing the direction of the flow of the medium flowing in the pipe by simply switching the flow path switching valve.

【0034】図13は、実施の形態8による装置の系統
図で、流路切換弁400として四方バルブを用いてい
る。図において、(a)は冷房運転、(b)は暖房運転
の場合を示している。この図13に示した装置は、上記
四方バルブの切換えによって、上述した図12に示した
装置の場合と同様に動作して、やはり容易に効率的な運
転ができる。
FIG. 13 is a system diagram of an apparatus according to the eighth embodiment, in which a four-way valve is used as the flow path switching valve 400. In the figure, (a) shows a cooling operation, and (b) shows a heating operation. The device shown in FIG. 13 operates in the same manner as the device shown in FIG. 12 by switching the four-way valve, and can also easily and efficiently operate.

【0035】以上説明したように、本発明の構成によれ
ば、エネルギー損失の少ない効率的な運転ができるとと
もに、高価な付帯設備、切換の補修が不要で、一装置、
一システムに蒸発器、凝縮器一対で機能させられるた
め、小型、軽量、安価で、かつ冷房、暖房の切換可能な
冷凍装置を実現できる。なお、上述の例では、凝縮器3
および蒸発器5が一つづつ設置された場合について説明
したが、それぞれが複数台、室外、室内に設置されてい
る場合も、同様な効果がある。
As described above, according to the configuration of the present invention, efficient operation with little energy loss can be performed, and expensive auxiliary equipment and repair of switching are not required.
Since a single system can function as a pair of an evaporator and a condenser, a refrigeration apparatus that is small, lightweight, inexpensive, and can switch between cooling and heating can be realized. In the above example, the condenser 3
The case where the evaporator 5 is installed one by one has been described. However, the same effect can be obtained when a plurality of evaporators 5 are installed outdoors or indoors.

【0036】[0036]

【発明の効果】本発明における冷凍装置は、上記のよう
な構成にしたことにより、いずれの場合においても、高
価で高精度な機器を使用することなく、従来、問題とな
っていた凝縮器から流出する媒体の圧力損失を低減さ
せ、冷却能力、冷却効率を向上させることができる。し
たがって、本発明の構成によれば、容易に冷却効率が高
いうえに冷却能力の大きなサイクル運転が可能となり、
小型、軽量、かつ安価で高性能な冷凍装置を提供でき
る。
The refrigerating apparatus according to the present invention is constructed as described above, and in any case, without using expensive and high-precision equipment, the refrigerating apparatus can be replaced by a conventional condenser. The pressure loss of the medium flowing out can be reduced, and the cooling capacity and cooling efficiency can be improved. Therefore, according to the configuration of the present invention, it is possible to easily perform a cycle operation with high cooling efficiency and high cooling efficiency,
A compact, lightweight, inexpensive and high-performance refrigeration apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1および2を示す例で、
冷凍装置の系統図。
FIG. 1 is an example showing Embodiments 1 and 2 of the present invention,
FIG.

【図2】 本発明の冷凍装置による動作を示す圧力-エ
ンタルピー線図
FIG. 2 is a pressure-enthalpy diagram showing the operation of the refrigeration apparatus of the present invention.

【図3】 本発明の実施の形態3を示す例で、冷凍装置
の系統図
FIG. 3 is an example showing a third embodiment of the present invention, and is a system diagram of a refrigeration apparatus.

【図4】 本発明の冷凍装置による動作を示す圧力-エ
ンタルピー線図
FIG. 4 is a pressure-enthalpy diagram showing the operation of the refrigeration apparatus of the present invention.

【図5】 本発明の実施の形態4を示す例で、冷凍装置
の系統図
FIG. 5 is a diagram illustrating a refrigeration apparatus according to a fourth embodiment of the present invention.

【図6】 本発明の実施の形態5を示す例で、冷凍装置
の系統図
FIG. 6 is a diagram illustrating a refrigeration apparatus according to a fifth embodiment of the present invention.

【図7】 本発明の実施の形態6を示す例で、媒体制御
手段部分の拡大図。
FIG. 7 is an enlarged view of a medium control unit in an example showing the sixth embodiment of the present invention.

【図8】 本発明の実施の形態6を示す例で、媒体制御
手段部分の拡大図。
FIG. 8 is an enlarged view of a medium control unit in an example showing the sixth embodiment of the present invention.

【図9】 本発明の実施の形態6を示す例で、媒体制御
手段部分の拡大図。
FIG. 9 is an example showing the sixth embodiment of the present invention, and is an enlarged view of a medium control unit.

【図10】 本発明の実施の形態7を示す例で、冷凍装
置の系統図。
FIG. 10 is a system diagram of a refrigeration apparatus according to a seventh embodiment of the present invention.

【図11】 本発明の実施の形態7を示す例で、冷凍装
置の系統図。
FIG. 11 is an example showing a seventh embodiment of the present invention and is a system diagram of a refrigeration apparatus.

【図12】 本発明の実施の形態8を示す例で、冷凍装
置の系統図。
FIG. 12 is a system diagram of a refrigeration apparatus according to an eighth embodiment of the present invention.

【図13】 本発明の実施の形態8を示す例で、冷凍装
置の系統図。
FIG. 13 is a system diagram of a refrigeration apparatus according to an eighth embodiment of the present invention.

【図14】 従来の冷凍装置を示す系統図。FIG. 14 is a system diagram showing a conventional refrigeration apparatus.

【図15】 従来の冷凍装置の動作を示す圧力-エンタ
ルピー線図。
FIG. 15 is a pressure-enthalpy diagram showing the operation of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1. 冷凍装置、 2. 圧縮機、3. 凝縮器 4. 流量制御手段、5. 蒸発器、6. 配管 7. 気液分離機、10. エジェクタ、11. ケ
ーシング 12. ノズル、13. 低圧室、14. 合流室 15. ディフューザ、16. バイパス配管、1
7. 流量調整バルブ、18. 熱交換器、33.
過冷却測定手段 36. 第2の蒸発器、41. ケーシング、42.
弁体、43. 弁座、 44. 弁駆動装置、4
5. 流入管、50. テーパ付流出管、 100.
温度測定装置、101. 圧力測定装置、 102.
飽和温度算出手段、103. 過冷却度算出手段、 2
00. 媒体制御手段、201. 駆動手段、202.
合流手段、 203. 昇圧手段、301. メイン
流路、 302. バイパス流路、303. 減圧手段、
304. 冷却手段、 305. 合流口、400.
流路切換弁、 500. 媒体制御装置
1. Refrigeration equipment, 2. Compressor, 3. Condenser 4. 4. flow control means; Evaporator, 6. Piping 7. Gas-liquid separator, 10; Ejector, 11. Casing 12. Nozzle, 13. 13. low pressure chamber; Merging room 15. Diffuser, 16. Bypass piping, 1
7. Flow control valve, 18. Heat exchanger, 33.
Supercool measurement means 36. Second evaporator, 41. Casing, 42.
Valve body, 43. Valve seat, 44. Valve drive, 4
5. Inflow pipe, 50. 100. tapered outlet pipe;
Temperature measuring device, 101. Pressure measuring device, 102.
Means for calculating a saturation temperature, 103. Supercooling degree calculating means, 2
00. Medium control means, 201. Driving means, 202.
Merging means, 203. Boosting means, 301. Main flow path, 302. Bypass channel, 303. Decompression means,
304. Cooling means, 305. Junction, 400.
Flow path switching valve, 500. Medium control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 裕之 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L092 AA01 AA02 BA05 BA18 BA23 BA26 DA14 EA02 FA01 FA21 FA26  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroyuki Morimoto 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 3L092 AA01 AA02 BA05 BA18 BA23 BA26 DA14 EA02 FA01 FA21 FA26

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮器、凝縮器、蒸発器およびこれらを
順次接続する配管を備えたものにおいて、凝縮器から出
た媒体のメイン流路から分岐するバイパス流路を設け、
このバイパス流路にはバイパス流路の媒体を減圧する減
圧手段および上記バイパス流路の媒体を駆動させる駆動
手段を設け、上記メイン流路には上記バイパス流路の媒
体とこのメイン流路の媒体を合流させる合流手段、合流
後のメイン流路の媒体を昇圧させる昇圧手段および上記
メイン流路の媒体を冷却させる冷却手段を設けたことを
特徴とする冷凍装置。
1. A compressor having a compressor, a condenser, an evaporator, and a pipe for sequentially connecting the compressor, a condenser, a evaporator, and a piping that sequentially connects the compressor, a condenser, an evaporator, and a pipe.
The bypass flow path is provided with a decompression means for depressurizing the medium in the bypass flow path, and a driving means for driving the medium in the bypass flow path. The medium in the bypass flow path and the medium in the main flow path are provided in the main flow path. A refrigerating apparatus provided with a confluent means for converging the medium, a pressure increasing means for increasing the pressure of the medium in the main flow path after the confluence, and a cooling means for cooling the medium in the main flow path.
【請求項2】 上記メイン流路の媒体を冷却させる冷却
手段として、バイパス流路の媒体と熱交換を行う熱交換
器を設けたことを特徴とする請求項1に記載の冷凍装
置。
2. The refrigeration apparatus according to claim 1, wherein a heat exchanger for exchanging heat with the medium in the bypass flow path is provided as cooling means for cooling the medium in the main flow path.
【請求項3】 上記冷却手段を上記駆動手段、合流手段
および昇圧手段の設置位置よりも上流側に設けたことを
特徴とする請求項1に記載の冷凍装置。
3. The refrigerating apparatus according to claim 1, wherein said cooling means is provided on an upstream side of an installation position of said driving means, merging means and pressure increasing means.
【請求項4】 上記冷却手段を上記駆動手段、合流手段
および昇圧手段の設置位置よりも下流側に設けたことを
特徴とする請求項1に記載の冷凍装置。
4. The refrigeration apparatus according to claim 1, wherein said cooling means is provided downstream of the installation positions of said driving means, merging means and pressure increasing means.
【請求項5】 上記冷却手段として、外気と熱交換を行
う第2の蒸発器をバイパス流路に設け、バイパス流路の
媒体を外気と熱交換した後にメイン流路の媒体と合流さ
せるようにしたことを特徴とする請求項1に記載の冷凍
装置。
5. A cooling device, wherein a second evaporator for exchanging heat with the outside air is provided in the bypass flow path, and the medium in the bypass flow path exchanges heat with the outside air and then merges with the medium in the main flow path. 2. The refrigeration apparatus according to claim 1, wherein:
【請求項6】 上記駆動手段と、上記合流手段とが、隘
路およびバイパスからの媒体の合流口を備えた構造体と
したことを特徴とする請求項1に記載の冷凍装置。
6. The refrigerating apparatus according to claim 1, wherein the driving means and the merging means have a structure having a confluence of a medium from a bottleneck and a bypass.
【請求項7】 上記請求項1に記載の冷凍装置におい
て、配管内の媒体の温度および圧力を測定する手段を設
け、上記測定値から媒体の制御パラメータである過冷却
度、飽和温度、または過熱度を算出する過冷却度算出手
段、飽和温度算出手段、または過熱度算出手段を設け、
上記制御パラメータに応じて、上記減圧手段、駆動手
段、合流手段、昇圧手段、または圧縮器を制御すること
を特徴とする冷凍装置。
7. The refrigeration apparatus according to claim 1, further comprising means for measuring a temperature and a pressure of the medium in the pipe, and a supercooling degree, a saturation temperature, or an overheating which is a control parameter of the medium from the measured values. Provide supercooling degree calculating means for calculating the degree, saturation temperature calculating means, or superheating degree calculating means,
A refrigeration apparatus characterized by controlling the pressure reducing means, the driving means, the merging means, the pressure increasing means, or the compressor according to the control parameters.
【請求項8】 圧縮機、凝縮器、蒸発器およびこれらを
順次接続する配管を備え、凝縮器と蒸発器とが流路切換
弁によって相互の機能・動作が切換えられるものにおい
て、上記凝縮器と蒸発器の間に設けられる流路に、上記
請求項1に記載したバイパス流路、バイパス流路の媒体
を減圧させる減圧手段、メイン流路の媒体を冷却させる
冷却手段、バイパス流路の媒体を駆動させる駆動手段、
バイパス流路の媒体とメイン流路の媒体を合流させる合
流手段および合流後のメイン流路の媒体を昇圧させる昇
圧手段からなる媒体制御装置を設けたことを特徴とする
冷凍装置。
8. A compressor having a compressor, a condenser, an evaporator, and a pipe for sequentially connecting the compressor and the evaporator, wherein the mutual function and operation of the condenser and the evaporator are switched by a flow path switching valve. The flow path provided between the evaporators, the bypass flow path according to claim 1, a depressurizing means for depressurizing the medium of the bypass flow path, a cooling means for cooling the medium of the main flow path, the medium of the bypass flow path. Driving means for driving,
A refrigerating apparatus provided with a medium control device including a joining unit that joins a medium in a bypass passage and a medium in a main passage and a pressure increasing unit that pressurizes the medium in the main passage after the joining.
JP34281899A 1999-12-02 1999-12-02 Refrigeration equipment Expired - Lifetime JP4277397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34281899A JP4277397B2 (en) 1999-12-02 1999-12-02 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34281899A JP4277397B2 (en) 1999-12-02 1999-12-02 Refrigeration equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008202850A Division JP4697487B2 (en) 2008-08-06 2008-08-06 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2001153473A true JP2001153473A (en) 2001-06-08
JP4277397B2 JP4277397B2 (en) 2009-06-10

Family

ID=18356733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34281899A Expired - Lifetime JP4277397B2 (en) 1999-12-02 1999-12-02 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4277397B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118849A (en) * 2004-09-22 2006-05-11 Denso Corp Ejector type refrigeration cycle
JP2006118847A (en) * 2004-09-22 2006-05-11 Denso Corp Ejector cycle
JP2006258396A (en) * 2005-03-18 2006-09-28 Denso Corp Ejector cycle
JP2007003171A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector operated cycle
JP2007003166A (en) * 2005-05-24 2007-01-11 Denso Corp Vapor compression type refrigerating cycle using ejector
JP2007024398A (en) * 2005-07-15 2007-02-01 Denso Corp Ejector type refrigeration cycle
JP2007040638A (en) * 2005-08-04 2007-02-15 Denso Corp Ejector type cycle
JP2007051812A (en) * 2005-08-17 2007-03-01 Denso Corp Ejector type refrigerating cycle
JP2007064613A (en) * 2005-08-04 2007-03-15 Denso Corp Vapor compression refrigeration cycle
JP2007078339A (en) * 2005-06-30 2007-03-29 Denso Corp Ejector type refrigerating cycle
JP2007078318A (en) * 2005-09-16 2007-03-29 Toshiba Kyaria Kk Refrigeration cycle device
JP2007198675A (en) * 2006-01-26 2007-08-09 Denso Corp Vapor compression type cycle
JP2007212121A (en) * 2006-01-13 2007-08-23 Denso Corp Ejector type refrigerating cycle
JP2008082693A (en) * 2006-08-28 2008-04-10 Calsonic Kansei Corp Refrigerating cycle
JP2009222256A (en) * 2008-03-13 2009-10-01 Denso Corp Vapor compression refrigerating cycle
US7779647B2 (en) 2005-05-24 2010-08-24 Denso Corporation Ejector and ejector cycle device
US8047018B2 (en) 2005-06-30 2011-11-01 Denso Corporation Ejector cycle system
WO2019159638A1 (en) * 2018-02-13 2019-08-22 株式会社デンソー Refrigeration cycle apparatus

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118849A (en) * 2004-09-22 2006-05-11 Denso Corp Ejector type refrigeration cycle
JP2006118847A (en) * 2004-09-22 2006-05-11 Denso Corp Ejector cycle
JP4635705B2 (en) * 2004-09-22 2011-02-23 株式会社デンソー Ejector refrigeration cycle
US8186180B2 (en) 2004-09-22 2012-05-29 Denso Corporation Ejector-type refrigerant cycle device
DE112005000931B4 (en) 2004-09-22 2019-05-09 Denso Corporation Ejector refrigerant cycle device
JP2006258396A (en) * 2005-03-18 2006-09-28 Denso Corp Ejector cycle
JP4595607B2 (en) * 2005-03-18 2010-12-08 株式会社デンソー Refrigeration cycle using ejector
JP2007003166A (en) * 2005-05-24 2007-01-11 Denso Corp Vapor compression type refrigerating cycle using ejector
JP4725223B2 (en) * 2005-05-24 2011-07-13 株式会社デンソー Ejector type cycle
JP2007003171A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector operated cycle
US7779647B2 (en) 2005-05-24 2010-08-24 Denso Corporation Ejector and ejector cycle device
JP4595717B2 (en) * 2005-05-24 2010-12-08 株式会社デンソー Vapor compression refrigeration cycle using ejector
US8991201B2 (en) 2005-06-30 2015-03-31 Denso Corporation Ejector cycle system
JP2007078339A (en) * 2005-06-30 2007-03-29 Denso Corp Ejector type refrigerating cycle
US8047018B2 (en) 2005-06-30 2011-11-01 Denso Corporation Ejector cycle system
JP2007024398A (en) * 2005-07-15 2007-02-01 Denso Corp Ejector type refrigeration cycle
JP4556791B2 (en) * 2005-07-15 2010-10-06 株式会社デンソー Ejector refrigeration cycle
JP2007064613A (en) * 2005-08-04 2007-03-15 Denso Corp Vapor compression refrigeration cycle
JP2007040638A (en) * 2005-08-04 2007-02-15 Denso Corp Ejector type cycle
JP4609230B2 (en) * 2005-08-04 2011-01-12 株式会社デンソー Ejector type cycle
JP4631721B2 (en) * 2005-08-04 2011-02-16 株式会社デンソー Vapor compression refrigeration cycle
JP2007051812A (en) * 2005-08-17 2007-03-01 Denso Corp Ejector type refrigerating cycle
JP2007078318A (en) * 2005-09-16 2007-03-29 Toshiba Kyaria Kk Refrigeration cycle device
JP4704167B2 (en) * 2005-09-16 2011-06-15 東芝キヤリア株式会社 Refrigeration cycle equipment
JP2007212121A (en) * 2006-01-13 2007-08-23 Denso Corp Ejector type refrigerating cycle
JP2007198675A (en) * 2006-01-26 2007-08-09 Denso Corp Vapor compression type cycle
JP4539571B2 (en) * 2006-01-26 2010-09-08 株式会社デンソー Vapor compression cycle
JP2008082693A (en) * 2006-08-28 2008-04-10 Calsonic Kansei Corp Refrigerating cycle
US8424338B2 (en) 2008-03-13 2013-04-23 Denso Corporation Vapor compression refrigerating cycle apparatus with an ejector and distributor
JP2009222256A (en) * 2008-03-13 2009-10-01 Denso Corp Vapor compression refrigerating cycle
WO2019159638A1 (en) * 2018-02-13 2019-08-22 株式会社デンソー Refrigeration cycle apparatus
JP2019138577A (en) * 2018-02-13 2019-08-22 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP4277397B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
US11149989B2 (en) High efficiency ejector cycle
US20220113065A1 (en) Ejector Cycle
JP4277397B2 (en) Refrigeration equipment
KR100884804B1 (en) Refrigerant cycle device
US9612047B2 (en) Refrigeration cycle apparatus and refrigerant circulation method
CN100334407C (en) Freezer apparatus
JP4254217B2 (en) Ejector cycle
CN101589273B (en) Air conditioner
JP2010133606A (en) Ejector type refrigerating cycle
JP6847239B2 (en) Air conditioner
JP5359231B2 (en) Ejector refrigeration cycle
JP2009222255A (en) Vapor compression refrigerating cycle
JP4930214B2 (en) Refrigeration cycle equipment
JPH04320762A (en) Freezing cycle
JP2019158308A (en) Refrigeration cycle device
JP5018944B2 (en) Refrigeration equipment
JP4697487B2 (en) Refrigeration equipment
JP5510441B2 (en) Ejector refrigeration cycle
KR20120053381A (en) Refrigerant cycle apparatus
JP2014190562A (en) Refrigeration cycle and cooling device
JP2008261512A (en) Ejector type refrigerating cycle
JP2004044849A (en) Ejector cycle
JP2001241797A (en) Refrigerating cycle
JP4341515B2 (en) Ejector cycle
WO2019230436A1 (en) Refrigerant cycle device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4277397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term