JP4341515B2 - Ejector cycle - Google Patents

Ejector cycle Download PDF

Info

Publication number
JP4341515B2
JP4341515B2 JP2004275849A JP2004275849A JP4341515B2 JP 4341515 B2 JP4341515 B2 JP 4341515B2 JP 2004275849 A JP2004275849 A JP 2004275849A JP 2004275849 A JP2004275849 A JP 2004275849A JP 4341515 B2 JP4341515 B2 JP 4341515B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
flow
ejector
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004275849A
Other languages
Japanese (ja)
Other versions
JP2006090606A (en
Inventor
洋 押谷
裕嗣 武内
伸 本田
美歌 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004275849A priority Critical patent/JP4341515B2/en
Publication of JP2006090606A publication Critical patent/JP2006090606A/en
Application granted granted Critical
Publication of JP4341515B2 publication Critical patent/JP4341515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、流体を減圧する減圧手段であるとともに、高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプであるエジェクタ(JIS Z 816 番号2.2など参照)を有するエジェクタサイクルに関するものであり、車両用空調装置の冷凍サイクルに適用して有効である。   The present invention is an ejector cycle having an ejector (see, for example, JIS Z 816 number 2.2) which is a decompression means for decompressing a fluid and which is a momentum transporting pump that transports fluid by the entrainment action of a working fluid ejected at high speed. And is effective when applied to a refrigeration cycle of a vehicle air conditioner.

本出願人は先に、複数の蒸発器を有するエジェクタサイクルを出願している(出願2004−41163号)。図7は、その先願のエジェクタサイクルの一例を示す模式図である。   The present applicant has previously filed an ejector cycle having a plurality of evaporators (Application 2004-41163). FIG. 7 is a schematic diagram showing an example of the ejector cycle of the prior application.

冷媒を高圧状態にする圧縮機1と、圧縮機1から吐出した高圧冷媒の熱を放熱する放熱器2と、放熱器2から流出した高圧冷媒を等エントロピ的に減圧膨張させるノズル部3aを有し、ノズル部3aから噴射する高い速度の冷媒流により気相冷媒流入口3bから気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して吐出するエジェクタ3と、冷媒流出側が圧縮機1の吸引側に接続され、エジェクタ3から吐出した冷媒を蒸発させる第1蒸発器4と、冷媒流れを放熱器2とエジェクタ3との間の第1冷媒循環路R1から分岐して気相冷媒流入口3bへと導く第2冷媒循環路R2と、第2冷媒循環路R2に配置されて冷媒を減圧するとともに冷媒の流量を調節する第1絞り手段5と、第2冷媒循環路R2の第1絞り手段5よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第2蒸発器6とを備えている。   A compressor 1 for bringing the refrigerant into a high-pressure state; a radiator 2 for radiating heat of the high-pressure refrigerant discharged from the compressor 1; and a nozzle portion 3a for decompressing and expanding the high-pressure refrigerant flowing out of the radiator 2 isentropically. The ejector 3 that sucks the gas-phase refrigerant from the gas-phase refrigerant inlet 3b by the high-speed refrigerant flow injected from the nozzle portion 3a, converts the expansion energy into pressure energy, and discharges it. The first evaporator 4 that evaporates the refrigerant discharged from the ejector 3 and the refrigerant flow is branched from the first refrigerant circulation path R1 between the radiator 2 and the ejector 3, and the gas-phase refrigerant flow The second refrigerant circuit R2 leading to the inlet 3b, the first throttle means 5 disposed in the second refrigerant circuit R2 to depressurize the refrigerant and adjust the flow rate of the refrigerant, and the first refrigerant circuit R2 Throttling means 5 Also disposed in the refrigerant flow downstream portion, and a second evaporator 6 for evaporating the refrigerant.

このエジェクタサイクルにおいては、第1蒸発器4と第2蒸発器6とを並列運転するだけではなく、第1絞り手段5を締め切ることにより第1蒸発器4の単独運転を行うことができる。   In this ejector cycle, not only the first evaporator 4 and the second evaporator 6 are operated in parallel, but also the first evaporator 4 can be operated alone by closing the first throttle means 5.

しかしながら、上記したエジェクタサイクルにおいて、第1蒸発器4の単独運転時に冷媒通過音が発生する場合がある。図8は、この冷媒通過音の発生メカニズムを説明するエジェクタ3の断面図である。図8に示すように、気相冷媒流入口3bからの吸引流が第1絞り手段5によって遮断されることで、ノズル部3aの出口において駆動流の周りに渦が生じ、この渦損失の増大によって冷媒通過音が発生する場合がある。   However, in the above-described ejector cycle, a refrigerant passing sound may be generated when the first evaporator 4 is operated alone. FIG. 8 is a cross-sectional view of the ejector 3 for explaining the generation mechanism of the refrigerant passing sound. As shown in FIG. 8, when the suction flow from the gas-phase refrigerant inlet 3b is blocked by the first throttle means 5, a vortex is generated around the driving flow at the outlet of the nozzle portion 3a, and this vortex loss increases. May cause refrigerant passing noise.

この冷媒通過音により、音環境が厳しい室内や車室内などにはエジェクタ3を設置することが難しく、搭載自由度が大幅に制限されるという問題がある。本発明は、上記の問題に鑑みて成されたものであり、その目的は、簡素な構成で冷媒通過音を軽減することのできる複数の蒸発器を有したエジェクタサイクルを提供することにある。   Due to the refrigerant passing sound, it is difficult to install the ejector 3 in a room with a severe sound environment, a vehicle interior, or the like, and there is a problem that the degree of freedom of mounting is greatly limited. The present invention has been made in view of the above problems, and an object thereof is to provide an ejector cycle having a plurality of evaporators capable of reducing refrigerant passing sound with a simple configuration.

本発明は上記目的を達成するために、請求項1ないし請求項6に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、冷媒を高圧状態にする圧縮機(1)と、圧縮機(1)から吐出した高圧冷媒の熱を放熱する放熱器(2)と、放熱器(2)から流出した高圧冷媒を等エントロピ的に減圧膨張させるノズル部(3a)を有し、ノズル部(3a)から噴射する高い速度の冷媒流により気相冷媒流入口(3b)から気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して吐出するエジェクタ(3)と、冷媒流出側が圧縮機(1)の吸引側に接続され、エジェクタ(3)から吐出した冷媒を蒸発させる第1蒸発器(4)と、冷媒流れを放熱器(2)とエジェクタ(3)との間の第1冷媒循環路(R1)から分岐して気相冷媒流入口(3b)へと導く第2冷媒循環路(R2)と、第2冷媒循環路(R2)に配置されて冷媒を減圧するとともに冷媒の流量を調節する第1絞り手段(5)と、第2冷媒循環路(R2)の第1絞り手段(5)よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第2蒸発器(6)とを備えるエジェクタサイクルにおいて、
第2冷媒循環路(R2)の第1絞り手段(5)よりも冷媒流れ上流側部位から第2蒸発器(6)と気相冷媒流入口(3b)との間へと冷媒を導くバイパス流路(B)を設けたことを特徴としている。
In order to achieve the above object, the present invention employs technical means described in claims 1 to 6. That is, in the first aspect of the invention, the compressor (1) that brings the refrigerant into a high-pressure state, the radiator (2) that radiates the heat of the high-pressure refrigerant discharged from the compressor (1), and the radiator (2 ) Has a nozzle portion (3a) that decompresses and expands the high-pressure refrigerant isentropically, and the gas-phase refrigerant is supplied from the gas-phase refrigerant inlet (3b) by the high-speed refrigerant flow injected from the nozzle portion (3a). An ejector (3) that sucks and converts expansion energy into pressure energy and discharges, and a first evaporation that evaporates the refrigerant discharged from the ejector (3) with the refrigerant outflow side connected to the suction side of the compressor (1) And the second refrigerant circulation that branches the refrigerant flow from the first refrigerant circulation path (R1) between the radiator (2) and the ejector (3) to the gas-phase refrigerant inlet (3b). Path (R2) and the second refrigerant circulation path (R2). The first throttle means (5) for reducing the pressure of the refrigerant and adjusting the flow rate of the refrigerant, and the first throttle means (5) of the second refrigerant circulation path (R2) are disposed at a portion downstream of the refrigerant flow. In an ejector cycle comprising a second evaporator (6) for evaporating
Bypass flow for introducing the refrigerant from the upstream side portion of the refrigerant flow path to the second evaporator (6) and the gas-phase refrigerant inlet (3b) with respect to the first throttle means (5) of the second refrigerant circulation path (R2). The road (B) is provided.

また、請求項2に記載の発明では、冷媒を高圧状態にする圧縮機(1)と、圧縮機(1)から吐出した高圧冷媒の熱を放熱する放熱器(2)と、放熱器(2)から流出した高圧冷媒を等エントロピ的に減圧膨張させるノズル部(3a)を有し、ノズル部(3a)から噴射する高い速度の冷媒流により気相冷媒流入口(3b)から気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して吐出するエジェクタ(3)と、冷媒流出側が圧縮機(1)の吸引側に接続され、エジェクタ(3)から吐出した冷媒を蒸発させる第1蒸発器(4)と、冷媒流れを放熱器(2)とエジェクタ(3)との間の第1冷媒循環路(R1)から分岐して気相冷媒流入口(3b)へと導く第2冷媒循環路(R2)と、第2冷媒循環路(R2)に配置されて冷媒を減圧するとともに冷媒の流量を調節する第1絞り手段(5)と、第2冷媒循環路(R2)の第1絞り手段(5)よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第2蒸発器(6)と、第2冷媒循環路(R2)の第1絞り手段(5)よりも冷媒流れ上流側部位で分岐して第1蒸発器(4)と圧縮機(1)との間へと冷媒を導く第3冷媒循環路(R3)と、第3冷媒循環路(R3)に配置されて冷媒を減圧するとともに冷媒の流量を調節する第2絞り手段(7)と、第3冷媒循環路(R3)の第2絞り手段(7)よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第3蒸発器(8)とを備えるエジェクタサイクルにおいて、
第2冷媒循環路(R2)の第1絞り手段(5)よりも冷媒流れ上流側部位から第2蒸発器(6)と気相冷媒流入口(3b)との間へと冷媒を導くバイパス流路(B)を設けたことを特徴としている。
Moreover, in invention of Claim 2, the compressor (1) which makes a refrigerant | coolant a high-pressure state, the radiator (2) which radiates the heat | fever of the high pressure refrigerant | coolant discharged from the compressor (1), and a radiator (2 ) Has a nozzle portion (3a) that decompresses and expands the high-pressure refrigerant isentropically, and the gas-phase refrigerant is supplied from the gas-phase refrigerant inlet (3b) by the high-speed refrigerant flow injected from the nozzle portion (3a). An ejector (3) that sucks and converts expansion energy into pressure energy and discharges, and a first evaporation that evaporates the refrigerant discharged from the ejector (3) with the refrigerant outflow side connected to the suction side of the compressor (1) And the second refrigerant circulation that branches the refrigerant flow from the first refrigerant circulation path (R1) between the radiator (2) and the ejector (3) to the gas-phase refrigerant inlet (3b). Disposed in the path (R2) and the second refrigerant circulation path (R2). The first throttle means (5) for reducing the pressure of the refrigerant and adjusting the flow rate of the refrigerant, and the first throttle means (5) of the second refrigerant circulation path (R2) are disposed in the downstream portion of the refrigerant flow, The second evaporator (6) to be evaporated and the first evaporator (4) and the compressor (1) are branched at a portion upstream of the refrigerant flow from the first throttle means (5) of the second refrigerant circulation path (R2). A third refrigerant circuit (R3) for guiding the refrigerant between the second refrigerant circuit (R3) and a second throttle means (7) disposed in the third refrigerant circuit (R3) to depressurize the refrigerant and adjust the flow rate of the refrigerant. In an ejector cycle comprising a third evaporator (8) disposed downstream of the second throttle means (7) of the third refrigerant circulation path (R3) and evaporating the refrigerant.
Bypass flow for introducing the refrigerant from the upstream side portion of the refrigerant flow path to the second evaporator (6) and the gas-phase refrigerant inlet (3b) with respect to the first throttle means (5) of the second refrigerant circulation path (R2). The road (B) is provided.

また、請求項3に記載の発明では、冷媒を高圧状態にする圧縮機(1)と、圧縮機(1)から吐出した高圧冷媒の熱を放熱する放熱器(2)と、放熱器(2)から流出した高圧冷媒を等エントロピ的に減圧膨張させるノズル部(3a)を有し、ノズル部(3a)から噴射する高い速度の冷媒流により気相冷媒流入口(3b)から気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して吐出するエジェクタ(3)と、冷媒流出側が圧縮機(1)の吸引側に接続され、エジェクタ(3)から吐出した冷媒を蒸発させる第1蒸発器(4)と、冷媒流れを放熱器(2)とエジェクタ(3)との間の第1冷媒循環路(R1)から分岐して気相冷媒流入口(3b)へと導く第2冷媒循環路(R2)と、第2冷媒循環路(R2)に配置されて冷媒を減圧するとともに冷媒の流量を調節する第1絞り手段(5)と、第2冷媒循環路(R2)の第1絞り手段(5)よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第2蒸発器(6)と、第2冷媒循環路(R2)の第1絞り手段(5)よりも冷媒流れ上流側部位で分岐して第1蒸発器(4)と圧縮機(1)との間へと冷媒を導く第3冷媒循環路(R3)と、第3冷媒循環路(R3)に配置されて冷媒を減圧するとともに冷媒の流量を調節する第2絞り手段(7)と、第3冷媒循環路(R3)の第2絞り手段(7)よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第3蒸発器(8)とを備えるエジェクタサイクルにおいて、
第3冷媒循環路(R3)の第3蒸発器(8)よりも冷媒流れ下流側部位から第2冷媒循環路(R2)の第2蒸発器(6)と気相冷媒流入口(3b)との間へと冷媒を導くバイパス流路(B)を設けたことを特徴としている。
In the invention according to claim 3, the compressor (1) for bringing the refrigerant into a high pressure state, the radiator (2) for radiating the heat of the high-pressure refrigerant discharged from the compressor (1), and the radiator (2 ) Has a nozzle portion (3a) that decompresses and expands the high-pressure refrigerant isentropically, and the gas-phase refrigerant is supplied from the gas-phase refrigerant inlet (3b) by the high-speed refrigerant flow injected from the nozzle portion (3a). An ejector (3) that sucks and converts expansion energy into pressure energy and discharges, and a first evaporation that evaporates the refrigerant discharged from the ejector (3) with the refrigerant outflow side connected to the suction side of the compressor (1) And the second refrigerant circulation that branches the refrigerant flow from the first refrigerant circulation path (R1) between the radiator (2) and the ejector (3) to the gas-phase refrigerant inlet (3b). Disposed in the path (R2) and the second refrigerant circulation path (R2). The first throttle means (5) for reducing the pressure of the refrigerant and adjusting the flow rate of the refrigerant, and the first throttle means (5) of the second refrigerant circulation path (R2) are disposed in the downstream portion of the refrigerant flow, The second evaporator (6) to be evaporated and the first evaporator (4) and the compressor (1) are branched at a portion upstream of the refrigerant flow from the first throttle means (5) of the second refrigerant circulation path (R2). A third refrigerant circuit (R3) for guiding the refrigerant between the second refrigerant circuit (R3) and a second throttle means (7) disposed in the third refrigerant circuit (R3) to depressurize the refrigerant and adjust the flow rate of the refrigerant. In an ejector cycle comprising a third evaporator (8) disposed downstream of the second throttle means (7) of the third refrigerant circulation path (R3) and evaporating the refrigerant.
The second evaporator (6) and the gas-phase refrigerant inlet (3b) of the second refrigerant circulation path (R2) from the downstream side of the refrigerant flow than the third evaporator (8) of the third refrigerant circulation path (R3) A bypass channel (B) for guiding the refrigerant between the two is provided.

この請求項1ないし請求項3に記載のいずれの発明においても、第1絞り手段(5)を締め切って第2蒸発器(6)から気相冷媒流入口(3b)へ流入する冷媒流を遮断しても、バイパス流路(B)から気相冷媒流入口(3b)へ冷媒が供給されて吸引側流量が確保されるため、ノズル部(3a)出口での渦損失が抑えられ、冷媒通過音の発生を軽減することができる。   In any of the first to third aspects of the present invention, the first throttle means (5) is closed to shut off the refrigerant flow flowing from the second evaporator (6) to the gas-phase refrigerant inlet (3b). Even so, since the refrigerant is supplied from the bypass channel (B) to the gas-phase refrigerant inlet (3b) and the suction side flow rate is secured, the vortex loss at the outlet of the nozzle (3a) is suppressed, and the refrigerant passes. Generation of sound can be reduced.

また、第2蒸発器(6)をバイパスする構成とすることで、第1蒸発器(4)の性能にはほとんど影響を与えないで冷媒通過音の発生を軽減することができる。また、バイパス流路(B)は冷媒流路を短絡しただけの簡素な構成であるため、冷凍装置のコストを抑えることができる。また、冷媒通過音低減により、音環境が厳しい室内や車室内などへのエジェクタの設置が可能となり、搭載自由度を向上させることができる。   Moreover, by setting it as the structure which bypasses a 2nd evaporator (6), generation | occurrence | production of a refrigerant | coolant passage sound can be reduced, hardly affecting the performance of a 1st evaporator (4). Moreover, since the bypass flow path (B) has a simple configuration in which the refrigerant flow path is short-circuited, the cost of the refrigeration apparatus can be suppressed. Further, by reducing the refrigerant passing sound, it is possible to install the ejector in a room where the sound environment is severe or in the vehicle interior, and the degree of freedom of mounting can be improved.

また、請求項4に記載の発明では、請求項1ないし請求項3のいずれかに記載のエジェクタサイクルにおいて、バイパス流路(B)の冷媒流量を、第2冷媒循環路(R2)の冷媒流量よりも少なくしたことを特徴としている。この請求項4に記載の発明によれば、バイパス流路(B)によるバイパス量を必要最小限とすることで、並列運転時も第2蒸発器(6)の性能にはほとんど影響を与えないようにすることができる。   In the invention according to claim 4, in the ejector cycle according to any one of claims 1 to 3, the refrigerant flow rate in the bypass flow path (B) is changed to the refrigerant flow rate in the second refrigerant circulation path (R2). It is characterized by less. According to the fourth aspect of the present invention, by minimizing the amount of bypass by the bypass flow path (B), the performance of the second evaporator (6) is hardly affected even during parallel operation. Can be.

また、請求項5に記載の発明では、請求項4のいずれかに記載のエジェクタサイクルにおいて、バイパス流路(B)に、流通する冷媒流れを断続する開閉手段(9)を設けたことを特徴としている。この請求項5に記載の発明によれば、第1蒸発器(4)と第2蒸発器(6)との並列運転時に、バイパス流路(B)に冷媒が流れることによって第2蒸発器(6)の冷媒流量が減少して能力低下することを防ぐことができる。   In the invention according to claim 5, in the ejector cycle according to any one of claims 4, the bypass passage (B) is provided with an opening / closing means (9) for interrupting the flowing refrigerant flow. It is said. According to the invention described in claim 5, when the first evaporator (4) and the second evaporator (6) are operated in parallel, the refrigerant flows into the bypass flow path (B), whereby the second evaporator ( It can be prevented that the refrigerant flow rate of 6) is reduced and the capacity is lowered.

また、請求項6に記載の発明では、請求項1または請求項2のいずれかに記載のエジェクタサイクルにおいて、第2冷媒循環路(R2)において第1絞り手段(5)を無くし、代わりに、冷媒を減圧し冷媒の流量を調節するとともに、冷媒流れを第2蒸発器(6)側とバイパス流路(B)側とに切り替える流路切替手段(10)を設けたことを特徴としている。   In the invention according to claim 6, in the ejector cycle according to claim 1 or 2, the first throttle means (5) is eliminated in the second refrigerant circulation path (R2), instead, The present invention is characterized in that a flow path switching means (10) for switching the refrigerant flow between the second evaporator (6) side and the bypass flow path (B) side is provided while decompressing the refrigerant and adjusting the flow rate of the refrigerant.

この請求項6に記載の発明によれば、上記請求項5では第1絞り手段(5)と開閉手段(9)とで行う機能を1つの流路切替手段(10)によって達成することができるため、冷凍装置の構成を簡素にすることができる。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   According to the sixth aspect of the present invention, in the fifth aspect, the function performed by the first throttle means (5) and the opening / closing means (9) can be achieved by one flow path switching means (10). Therefore, the configuration of the refrigeration apparatus can be simplified. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with the specific means described in the embodiments described later.

(第1実施形態)
以下、本発明の実施の形態について添付した図面を参照しながら詳細に説明する。図1は、本発明の第1実施形態におけるエジェクタサイクルを示す模式図であり、図2は、本発明のバイパス流路Bによる効果を説明するエジェクタ3の断面図である。尚、本実施形態は、本発明に係るエジェクタサイクルを車両用空調装置の冷凍サイクルに適用した例として説明する。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic view showing an ejector cycle in the first embodiment of the present invention, and FIG. 2 is a cross-sectional view of an ejector 3 for explaining the effect of the bypass flow path B of the present invention. In addition, this embodiment demonstrates as an example which applied the ejector cycle which concerns on this invention to the refrigerating cycle of a vehicle air conditioner.

エジェクタサイクルは、冷媒が循環する冷媒循環路Rを形成している。冷媒循環路Rには、冷媒を吸入圧縮する圧縮機1が配置されている。この圧縮機1の冷媒流れ下流側には放熱器2が配置されている。放熱器2よりもさらに冷媒流れ下流側部位には、エジェクタ3が配置されている。   The ejector cycle forms a refrigerant circulation path R through which the refrigerant circulates. In the refrigerant circulation path R, a compressor 1 that sucks and compresses the refrigerant is disposed. A radiator 2 is disposed on the downstream side of the refrigerant flow of the compressor 1. An ejector 3 is disposed further downstream than the radiator 2 in the refrigerant flow.

エジェクタ3には、放熱器2から流入する冷媒の通路面積を小さく絞るノズル部3aと、ノズル部3aの冷媒噴出口と同一空間に配置され、後述する第2蒸発器6からの気相冷媒が流入する気相冷媒流入口(以下、流入口と略す)3bが備えられている。さらに、ノズル部3aおよび流入口3bの冷媒流れ下流側部位には、冷媒の通路面積を徐々に大きくするディフューザ部3cが配置されている。   The ejector 3 is arranged in the same space as the nozzle portion 3a for reducing the passage area of the refrigerant flowing from the radiator 2 and the refrigerant outlet of the nozzle portion 3a, and the gas-phase refrigerant from the second evaporator 6 described later is provided in the ejector 3. An inflow gas-phase refrigerant inlet (hereinafter referred to as an inlet) 3b is provided. Further, a diffuser portion 3c that gradually increases the passage area of the refrigerant is disposed in the refrigerant flow downstream portion of the nozzle portion 3a and the inlet 3b.

エジェクタ3のディフューザ部3cから流出した冷媒は、第1蒸発器4に流入する。第1蒸発器4は、冷媒と車室内に吹き出す空気とを熱交換させて、冷媒を蒸発(吸熱)させることにより冷房能力を発揮するものである。第1蒸発器4から流出した冷媒は圧密機1に吸引され、再び冷媒循環路Rを循環する。   The refrigerant that has flowed out of the diffuser portion 3 c of the ejector 3 flows into the first evaporator 4. The first evaporator 4 exhibits cooling capability by exchanging heat between the refrigerant and the air blown into the passenger compartment to evaporate (heat absorption) the refrigerant. The refrigerant that has flowed out of the first evaporator 4 is sucked into the compactor 1 and circulates in the refrigerant circuit R again.

また、本実施形態のエジェクタサイクルには、冷媒循環路Rの放熱器2とエジェクタ3との間の第1冷媒循環路R1から分岐し、エジェクタ3の流入口3bで冷媒循環路Rに合流する第2冷媒循環路R2が形成されている。この第2冷媒循環路R2には、冷媒の流量調節と冷媒の減圧とを行う第1絞り手段としての第1流量調節弁5が配置されており、この第1流量調節弁5よりも冷媒流れ下流側部位には第2蒸発器6が配置されている。   Further, in the ejector cycle of the present embodiment, a branch is made from the first refrigerant circulation path R1 between the radiator 2 and the ejector 3 in the refrigerant circulation path R, and merges with the refrigerant circulation path R at the inlet 3b of the ejector 3. A second refrigerant circulation path R2 is formed. In the second refrigerant circulation path R2, a first flow rate control valve 5 is arranged as a first throttle means for adjusting the flow rate of the refrigerant and depressurizing the refrigerant. The refrigerant flow is more than that of the first flow rate control valve 5. A second evaporator 6 is disposed in the downstream portion.

次に、本発明に係る要部構成について説明する。本実施形態では、第2冷媒循環路R2の第1流量調節弁5よりも冷媒流れ上流側部位から第2蒸発器6と流入口3bとの間へと冷媒を導くバイパス流路Bを設けている。このバイパス流路Bは、細い冷媒配管などで形成されており、流通する冷媒流量が第2冷媒循環路R2の冷媒流量よりもかなり少なくなるよう設定してある。   Next, the configuration of the main part according to the present invention will be described. In the present embodiment, a bypass flow path B is provided for guiding the refrigerant from the upstream side portion of the refrigerant flow with respect to the first flow rate control valve 5 of the second refrigerant circulation path R2 to between the second evaporator 6 and the inlet 3b. Yes. The bypass flow path B is formed by a thin refrigerant pipe or the like, and is set so that the flow rate of the circulating refrigerant is considerably smaller than the refrigerant flow rate of the second refrigerant circulation path R2.

次に、上記構成において本実施形態の作動を説明する。圧縮機1が駆動すると、圧縮幾1で圧縮されて高温高圧状態となった冷媒は矢印方向に吐出されて放熱器2に流入する。放熱器2では高温の冷媒が車室外空気へ放熱する。言い換えると、冷媒が車室外空気により冷却されて液化凝縮する。放熱器2から流出した液相冷媒は、第1冷媒循環路R1を流れる流れと、第2冷媒循環路R2を流れる流れとに分流する。   Next, the operation of this embodiment in the above configuration will be described. When the compressor 1 is driven, the refrigerant that has been compressed by the compression unit 1 and is in a high temperature and high pressure state is discharged in the direction of the arrow and flows into the radiator 2. In the radiator 2, the high-temperature refrigerant radiates heat to the outside air of the passenger compartment. In other words, the refrigerant is cooled and liquefied and condensed by outside air. The liquid-phase refrigerant that has flowed out of the radiator 2 is divided into a flow that flows through the first refrigerant circuit R1 and a flow that flows through the second refrigerant circuit R2.

尚、第2冷媒循環路R2を流れる冷媒量は第1流量調節弁5の開度で調節される。第2冷媒循環路R2を流れる冷媒ぱ、第1流量調節弁5で減圧された後、第2蒸発器6で車室内へ流れる空気から吸熱する。言い換えると、冷媒が車室内空気で加熱されて気化蒸発する。そして、第2蒸発器6から流出した気相冷媒は、エジェクタ3の流入口3cへ流入する。   The amount of refrigerant flowing through the second refrigerant circulation path R2 is adjusted by the opening degree of the first flow rate adjustment valve 5. The refrigerant flowing through the second refrigerant circulation path R2 is depressurized by the first flow rate adjusting valve 5, and then absorbs heat from the air flowing into the vehicle compartment by the second evaporator 6. In other words, the refrigerant is heated by the cabin air and vaporizes and evaporates. And the gaseous-phase refrigerant | coolant which flowed out from the 2nd evaporator 6 flows in into the inflow port 3c of the ejector 3. FIG.

また、若干量の冷媒はバイパス流路Bを通り、第1流量調節弁5と第2蒸発器6とをバイパスしてエジェクタ3の流入口3cへ流入する。一方、第1冷媒循環路R1を流れる冷媒はエジェクタ3に流入し、ノズル部3aで減圧される。つまり、ノズル部3aで冷媒の圧力エネルギーが速度エネルギーに変換される。このノズル部3aで高速度となって噴出口から噴出する冷媒は、この際に生じる断熱熱落差により、流入口3bから第2蒸発器6にて蒸発した気相冷媒と、バイパス流路Bから供給される冷媒とを吸引する。   A small amount of the refrigerant passes through the bypass flow path B, bypasses the first flow rate control valve 5 and the second evaporator 6, and flows into the inlet 3 c of the ejector 3. On the other hand, the refrigerant flowing through the first refrigerant circuit R1 flows into the ejector 3 and is decompressed by the nozzle portion 3a. That is, the pressure energy of the refrigerant is converted into velocity energy at the nozzle portion 3a. The refrigerant jetted from the jet outlet at a high speed by the nozzle portion 3a is separated from the gas-phase refrigerant evaporated from the inlet 3b by the second evaporator 6 and the bypass channel B due to the adiabatic heat drop generated at this time. The supplied refrigerant is sucked.

噴出した冷媒と吸引された冷媒は、混合してディフューザ部3cに流入する。このとき、冷媒の膨張エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。そして、エジェクタ3から流出した冷媒は、第1蒸発器4に流入する。第1蒸発器4では、冷媒が車室内へ流れる空気から吸熱する。言い換えると、冷媒が車室内空気で加熱されて気化蒸発する。この気化した冷媒は、圧縮機1に吸引圧縮されて再び冷媒循環路Rを矢印方向に流れる。   The ejected refrigerant and the sucked refrigerant are mixed and flow into the diffuser portion 3c. At this time, since the expansion energy of the refrigerant is converted into pressure energy, the pressure of the refrigerant rises. Then, the refrigerant that has flowed out of the ejector 3 flows into the first evaporator 4. In the first evaporator 4, the refrigerant absorbs heat from the air flowing into the passenger compartment. In other words, the refrigerant is heated by the cabin air and vaporizes and evaporates. The vaporized refrigerant is sucked and compressed by the compressor 1 and flows again through the refrigerant circulation path R in the direction of the arrow.

尚、上記した運転は、第1蒸発器4と第2蒸発器6との両方で車室内空気を冷却する並列運転であるが、本実施形態の冷凍サイクルは第1流量調節弁5を締め切ることにより第2蒸発器6での冷却を停止し、第1蒸発器4だけを単独運転することができる。この場合、エジェクタ3の吸入側(流入口3b)へはバイパス流路Bを通して若干量の冷媒が供給されることとなる。   Note that the above-described operation is a parallel operation in which the air in the passenger compartment is cooled by both the first evaporator 4 and the second evaporator 6, but the refrigeration cycle of the present embodiment closes the first flow rate control valve 5. Thus, the cooling in the second evaporator 6 is stopped, and only the first evaporator 4 can be operated alone. In this case, a slight amount of refrigerant is supplied to the suction side (inflow port 3b) of the ejector 3 through the bypass channel B.

次に、本実施形態での特徴と、その効果について述べる。まず、第2冷媒循環路R2の第1流量調節弁5よりも冷媒流れ上流側部位から第2蒸発器6と流入口3bとの間へと冷媒を導くバイパス流路Bを設けている。これによれば、第1流量調節弁5を締め切って第2蒸発器6から流入口3bへ流入する冷媒流を遮断しても、バイパス流路Bから流入口3bへ冷媒が供給されて吸引側流量が確保されるため、ノズル部3a出口での渦損失が抑えられ、冷媒通過音の発生を軽減することができる(図2参照)。   Next, features and effects of this embodiment will be described. First, a bypass flow path B is provided for guiding the refrigerant from a portion upstream of the refrigerant flow with respect to the first flow rate control valve 5 of the second refrigerant circulation path R2 to between the second evaporator 6 and the inlet 3b. According to this, even if the first flow rate control valve 5 is closed and the refrigerant flow flowing into the inlet 3b from the second evaporator 6 is shut off, the refrigerant is supplied from the bypass flow path B to the inlet 3b, and the suction side Since the flow rate is ensured, vortex loss at the outlet of the nozzle portion 3a can be suppressed, and generation of refrigerant passing sound can be reduced (see FIG. 2).

また、第2蒸発器6をバイパスする構成とすることで、第1蒸発器4の性能にはほとんど影響を与えないで冷媒通過音の発生を軽減することができる。また、バイパス流路Bは冷媒流路を短絡しただけの簡素な構成であるため、冷凍装置のコストを抑えることができる。また、冷媒通過音低減により、音環境が厳しい室内や車室内などへのエジェクタの設置が可能となり、搭載自由度を向上させることができる。   Further, by adopting a configuration in which the second evaporator 6 is bypassed, it is possible to reduce the generation of the refrigerant passing sound without substantially affecting the performance of the first evaporator 4. Moreover, since the bypass flow path B has a simple configuration in which the refrigerant flow path is short-circuited, the cost of the refrigeration apparatus can be suppressed. Further, by reducing the refrigerant passing sound, it is possible to install the ejector in a room where the sound environment is severe or in the vehicle interior, and the degree of freedom of mounting can be improved.

また、バイパス流路Bの冷媒流量を、第2冷媒循環路R2の冷媒流量よりも少なくしている。これによれば、バイパス流路Bによるバイパス量を必要最小限とすることで、並列運転時も第2蒸発器6の性能にはほとんど影響を与えないようにすることができる。   Moreover, the refrigerant | coolant flow rate of the bypass flow path B is made smaller than the refrigerant | coolant flow rate of 2nd refrigerant circuit R2. According to this, by minimizing the amount of bypass by the bypass flow path B, it is possible to hardly affect the performance of the second evaporator 6 even during parallel operation.

(第2実施形態)
図3は、本発明の第2実施形態におけるエジェクタサイクルを示す模式図である。上述した第1実施形態と異なるのは、第2冷媒循環路R2の第1流量調節弁5よりも冷媒流れ上流側部位で分岐して第1蒸発器4と圧縮機1との間へと冷媒を導く第3冷媒循環路R3を設けている。そして、その第3冷媒循環路R3には、冷媒を減圧するとともに冷媒の流量を調節する第2絞り手段としての第2流量調節弁7と、その第2流量調節弁7よりも冷媒流れ下流側部位に配置されて冷媒を蒸発させる第3蒸発器8とを設けたものである。
(Second Embodiment)
FIG. 3 is a schematic diagram showing an ejector cycle in the second embodiment of the present invention. The difference from the first embodiment described above is that the refrigerant branches at the upstream side portion of the refrigerant flow with respect to the first flow rate control valve 5 of the second refrigerant circuit R2 and flows between the first evaporator 4 and the compressor 1. Is provided with a third refrigerant circulation path R3. In the third refrigerant circulation path R3, the second flow rate adjusting valve 7 as a second throttle means for reducing the pressure of the refrigerant and adjusting the flow rate of the refrigerant, and the refrigerant flow downstream side of the second flow rate adjusting valve 7 are provided. A third evaporator 8 is provided which is disposed at the site and evaporates the refrigerant.

このような3つの蒸発器を持つ冷凍サイクルにおいても、第1実施形態と同様に、第2冷媒循環路R2の第1流量調節弁5よりも冷媒流れ上流側部位から第2蒸発器6と流入口3bとの間へと冷媒を導くバイパス流路Bを設けることにより、第1実施形態と同様の効果を得ることができる。   In such a refrigeration cycle having three evaporators, the second evaporator 6 and the flow from the upstream side portion of the refrigerant flow with respect to the first flow rate control valve 5 of the second refrigerant circulation path R2 as in the first embodiment. By providing the bypass channel B that guides the refrigerant to and from the inlet 3b, the same effect as in the first embodiment can be obtained.

(第3実施形態)
図4は、本発明の第3実施形態におけるエジェクタサイクルを示す模式図である。冷凍サイクルの構成は第2実施形態と同じ3つの蒸発器を持つものである。上述した第2実施形態と異なるのは、第3冷媒循環路R3の第3蒸発器8よりも冷媒流れ下流側部位から第2冷媒循環路R2の第2蒸発器6と流入口3bとの間へと冷媒を導くバイパス流路Bを設けた点である。このようにバイパス流路Bを配設しても、第1実施形態と同様の効果を得ることができる。
(Third embodiment)
FIG. 4 is a schematic diagram showing an ejector cycle in the third embodiment of the present invention. The configuration of the refrigeration cycle has the same three evaporators as in the second embodiment. The difference from the second embodiment described above is between the second evaporator 6 and the inlet 3b of the second refrigerant circuit R2 from the downstream side of the refrigerant flow than the third evaporator 8 of the third refrigerant circuit R3. This is the point where a bypass channel B is provided for guiding the refrigerant to the outside. Thus, even if the bypass flow path B is provided, the same effect as that of the first embodiment can be obtained.

(第4実施形態)
図5は、本発明の第4実施形態におけるエジェクタサイクルを示す模式図である。上述した各実施形態と異なるのは、バイパス流路Bに、流通する冷媒流れを断続する開閉手段としての電磁弁9を設けている。これによれば、第1蒸発器4と第2蒸発器6との並列運転時に、バイパス流路Bに冷媒が流れることによって第2蒸発器6の冷媒流量が減少して能力低下することを防ぐことができる。尚、冷凍サイクルの構成を第1実施形態と同じもので示したが、第2(第3)実施形態のサイクル構成においても同様である。
(Fourth embodiment)
FIG. 5 is a schematic diagram showing an ejector cycle in the fourth embodiment of the present invention. The difference from each embodiment described above is that the bypass passage B is provided with an electromagnetic valve 9 as an opening / closing means for intermittently circulating the flowing refrigerant flow. According to this, at the time of the parallel operation of the first evaporator 4 and the second evaporator 6, it is prevented that the refrigerant flows through the bypass flow path B to reduce the refrigerant flow rate of the second evaporator 6 and reduce the capacity. be able to. The configuration of the refrigeration cycle is the same as that of the first embodiment, but the same applies to the cycle configuration of the second (third) embodiment.

(第5実施形態)
図6は、本発明の第5実施形態におけるエジェクタサイクルを示す模式図である。上述した第4実施形態と異なるのは、第2冷媒循環路R2において第1流量調節弁5を無くし、代わりに、冷媒を減圧し冷媒の流量を調節するとともに、冷媒流れを第2蒸発器6側とバイパス流路B側とに切り替える流路切替手段としての三方弁10を設けている。これによれば、上述した第4実施形態では第1流量調節弁5と電磁弁9とで行う機能を1つの三方弁10によって達成することができるため、冷凍装置の構成を簡素にすることができる。
(Fifth embodiment)
FIG. 6 is a schematic diagram showing an ejector cycle in the fifth embodiment of the present invention. The difference from the fourth embodiment described above is that the first flow rate adjusting valve 5 is eliminated in the second refrigerant circulation path R2, and instead, the refrigerant flow is reduced and the flow rate of the refrigerant is adjusted, and the refrigerant flow is changed to the second evaporator 6. A three-way valve 10 is provided as a channel switching means for switching between the side and the bypass channel B side. According to this, since the function performed by the first flow rate control valve 5 and the electromagnetic valve 9 can be achieved by one three-way valve 10 in the fourth embodiment described above, the configuration of the refrigeration apparatus can be simplified. it can.

(その他の実施形態)
上述の実施形態では本発明のエジェクタサイクルを車両用空調装置の冷凍サイクルに適用した例を示したが、本発明は車両用空調装置に限らず、給湯器用のヒートポンプサイクルなどの蒸気圧縮式サイクルに適用しても良い。また、上述の実施形態では車室内を空調する例を示したが、冷却対象空間は車室内に限らず、例えば冷蔵(冷凍)庫内などであっても良い。
(Other embodiments)
In the above-described embodiment, an example in which the ejector cycle of the present invention is applied to a refrigeration cycle of a vehicle air conditioner has been shown. However, the present invention is not limited to a vehicle air conditioner, but is applied to a vapor compression cycle such as a heat pump cycle for a water heater. It may be applied. Moreover, although the example which air-conditions a vehicle interior was shown in the above-mentioned embodiment, the space for cooling is not restricted to a vehicle interior, For example, the inside of a refrigerator (freezer) etc. may be sufficient.

また、上述の実施形態では冷媒の種類を特定しなかったが、冷媒はフロン系・HC系の代替フロン・二酸化炭素など蒸気圧縮式冷凍サイクルに適用できるものであれば良い。また、上述の第1実施形態では、2つの蒸発器が異なる冷凍能力を持つ冷凍サイクルであるが、第2・第3実施形態のように3つ(以上)の蒸発器が異なる冷凍能力を発揮するものであっても良い。   Moreover, although the kind of refrigerant | coolant was not specified in the above-mentioned embodiment, the refrigerant | coolant should just be applicable to vapor compression refrigeration cycles, such as a CFC type | system | group, a CFC alternative CFC, and a carbon dioxide. In the first embodiment described above, the two evaporators are refrigeration cycles having different refrigeration capacities, but three (or more) evaporators exhibit different refrigeration capacities as in the second and third embodiments. It may be what you do.

また、上述の実施形態では、気液分離器を用いていない構成例を示したが、第1蒸発器4の上流側に気液分離器を設けて第1蒸発器4に液冷媒のみを流人させたり、圧縮機1上流側に気液分離器を設けて圧縮機1に気相冷媒のみを流入させたりする構成としても良い。また、放熱器2の下流側にレシーバが配置されていても良い。   In the above-described embodiment, the configuration example in which the gas-liquid separator is not used is shown. However, a gas-liquid separator is provided on the upstream side of the first evaporator 4 so that only the liquid refrigerant flows through the first evaporator 4. It is also possible to adopt a configuration in which a person or a gas-liquid separator is provided on the upstream side of the compressor 1 so that only the gas-phase refrigerant flows into the compressor 1. A receiver may be disposed on the downstream side of the radiator 2.

また、上述の実施形態では、第2蒸発器6の上流側に流量調整弁5が配置されている例を示したが、この流量調整弁5は、例えばキャピラリチューブなどの絞りが一定(固定絞り)のものであっても良い。また、例えば膨張弁などの蒸発器出口側の過熱度などを検知して絞り開度を調整する機能を備えるものであっても良い。   Further, in the above-described embodiment, an example in which the flow rate adjusting valve 5 is arranged on the upstream side of the second evaporator 6 has been described. However, the flow rate adjusting valve 5 has a fixed throttle (a fixed throttle, for example) such as a capillary tube. ). Further, for example, a function of detecting the degree of superheat on the evaporator outlet side such as an expansion valve and adjusting the throttle opening may be provided.

また、第2蒸発器6の上流側に配置されている流量調整弁5に流路遮断(シャット)機能を備えた弁を用いても良い。また、流路遮断機能を有しない流量調整弁5と流路遮断機能を持つ電磁弁などの弁を併用することで、1つの蒸発器のみを運転することが可能な構成としても良い。   Further, a valve having a flow path shutoff (shut) function may be used for the flow rate adjustment valve 5 arranged on the upstream side of the second evaporator 6. Moreover, it is good also as a structure which can drive | operate only one evaporator by using together the valves, such as the flow regulating valve 5 which does not have a flow-path cutoff function, and solenoid valves with a flow-path cutoff function.

また、上述の実施形態のエジェクタ3として、第1蒸発器4の過熱度などを検知して流量調整機能を有する可変エジェクタを使用しても良いし、ノズル部3aでの絞りが一定の固定エジェクタであっても良い。また、上述の実施形態では2つの冷凍能力を発揮する蒸発器を別体で構成しているが、これらの蒸発器が一体となっていても良い。   Further, as the ejector 3 of the above-described embodiment, a variable ejector having a flow rate adjusting function by detecting the degree of superheat of the first evaporator 4 may be used, or a fixed ejector with a fixed throttle at the nozzle portion 3a. It may be. Moreover, although the evaporator which exhibits two refrigerating capacity is comprised separately in the above-mentioned embodiment, these evaporators may be united.

本発明の第1実施形態におけるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle in 1st Embodiment of this invention. 本発明のバイパス流路Bによる効果を説明するエジェクタ3の断面図である。It is sectional drawing of the ejector 3 explaining the effect by the bypass flow path B of this invention. 本発明の第2実施形態におけるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle in 2nd Embodiment of this invention. 本発明の第3実施形態におけるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle in 3rd Embodiment of this invention. 本発明の第4実施形態におけるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle in 4th Embodiment of this invention. 本発明の第5実施形態におけるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle in 5th Embodiment of this invention. 先願のエジェクタサイクルの一例を示す模式図である。It is a schematic diagram which shows an example of the ejector cycle of a prior application. 冷媒通過音の発生メカニズムを説明するエジェクタ3の断面図である。It is sectional drawing of the ejector 3 explaining the generation | occurrence | production mechanism of a refrigerant | coolant passage sound.

符号の説明Explanation of symbols

1…圧縮機
2…放熱器
3…エジェクタ
3a…ノズル部
3b…流入口(気相冷媒流入口)
4…第1蒸発器
5…第1流量調節弁(第1絞り手段)
6…第2蒸発器
7…第2流量調節弁(第2絞り手段)
8…第3蒸発器
9…電磁弁(開閉手段)
10…三方弁(流路切替手段)
B…バイパス流路
R1…第1冷媒循環路
R2…第2冷媒循環路
R3…第3冷媒循環路
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Radiator 3 ... Ejector 3a ... Nozzle part 3b ... Inlet (gas phase refrigerant inlet)
4 ... 1st evaporator 5 ... 1st flow control valve (1st throttle means)
6 ... 2nd evaporator 7 ... 2nd flow control valve (2nd throttle means)
8 ... Third evaporator 9 ... Solenoid valve (opening / closing means)
10 ... Three-way valve (flow path switching means)
B ... Bypass channel R1 ... First refrigerant circuit R2 ... Second refrigerant circuit R3 ... Third refrigerant circuit

Claims (6)

冷媒を高圧状態にする圧縮機(1)と、
前記圧縮機(1)から吐出した高圧冷媒の熱を放熱する放熱器(2)と、
前記放熱器(2)から流出した高圧冷媒を等エントロピ的に減圧膨張させるノズル部(3a)を有し、前記ノズル部(3a)から噴射する高い速度の冷媒流により気相冷媒流入口(3b)から気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して吐出するエジェクタ(3)と、
冷媒流出側が前記圧縮機(1)の吸引側に接続され、前記エジェクタ(3)から吐出した冷媒を蒸発させる第1蒸発器(4)と、
冷媒流れを前記放熱器(2)と前記エジェクタ(3)との間の第1冷媒循環路(R1)から分岐して前記気相冷媒流入口(3b)へと導く第2冷媒循環路(R2)と、
前記第2冷媒循環路(R2)に配置されて冷媒を減圧するとともに冷媒の流量を調節する第1絞り手段(5)と、
前記第2冷媒循環路(R2)の前記第1絞り手段(5)よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第2蒸発器(6)とを備えるエジェクタサイクルにおいて、
前記第2冷媒循環路(R2)の前記第1絞り手段(5)よりも冷媒流れ上流側部位から前記第2蒸発器(6)と前記気相冷媒流入口(3b)との間へと冷媒を導くバイパス流路(B)を設けたことを特徴とするエジェクタサイクル。
A compressor (1) for bringing the refrigerant into a high pressure state;
A radiator (2) that radiates heat of the high-pressure refrigerant discharged from the compressor (1);
It has a nozzle part (3a) that decompresses and expands the high-pressure refrigerant flowing out of the radiator (2) in an isentropic manner, and a gas-phase refrigerant inlet (3b) is generated by a high-speed refrigerant flow injected from the nozzle part (3a). ) An ejector (3) for sucking the gas-phase refrigerant from and converting the expansion energy into pressure energy and discharging it,
A first evaporator (4) whose refrigerant outlet side is connected to the suction side of the compressor (1) and evaporates the refrigerant discharged from the ejector (3);
A second refrigerant circuit (R2) for branching the refrigerant flow from the first refrigerant circuit (R1) between the radiator (2) and the ejector (3) and leading to the gas-phase refrigerant inlet (3b) )When,
A first throttle means (5) disposed in the second refrigerant circulation path (R2) to depressurize the refrigerant and adjust the flow rate of the refrigerant;
In an ejector cycle comprising a second evaporator (6) disposed in a downstream portion of the refrigerant flow than the first throttle means (5) of the second refrigerant circulation path (R2) and evaporating the refrigerant,
Refrigerant from the upstream portion of the second refrigerant circulation path (R2) with respect to the first throttle means (5) to the space between the second evaporator (6) and the gas-phase refrigerant inlet (3b). An ejector cycle characterized in that a bypass flow path (B) for guiding is provided.
冷媒を高圧状態にする圧縮機(1)と、
前記圧縮機(1)から吐出した高圧冷媒の熱を放熱する放熱器(2)と、
前記放熱器(2)から流出した高圧冷媒を等エントロピ的に減圧膨張させるノズル部(3a)を有し、前記ノズル部(3a)から噴射する高い速度の冷媒流により気相冷媒流入口(3b)から気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して吐出するエジェクタ(3)と、
冷媒流出側が前記圧縮機(1)の吸引側に接続され、前記エジェクタ(3)から吐出した冷媒を蒸発させる第1蒸発器(4)と、
冷媒流れを前記放熱器(2)と前記エジェクタ(3)との間の第1冷媒循環路(R1)から分岐して前記気相冷媒流入口(3b)へと導く第2冷媒循環路(R2)と、
前記第2冷媒循環路(R2)に配置されて冷媒を減圧するとともに冷媒の流量を調節する第1絞り手段(5)と、
前記第2冷媒循環路(R2)の前記第1絞り手段(5)よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第2蒸発器(6)と、
前記第2冷媒循環路(R2)の前記第1絞り手段(5)よりも冷媒流れ上流側部位で分岐して前記第1蒸発器(4)と前記圧縮機(1)との間へと冷媒を導く第3冷媒循環路(R3)と、
前記第3冷媒循環路(R3)に配置されて冷媒を減圧するとともに冷媒の流量を調節する第2絞り手段(7)と、
前記第3冷媒循環路(R3)の第2絞り手段(7)よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第3蒸発器(8)とを備えるエジェクタサイクルにおいて、
前記第2冷媒循環路(R2)の前記第1絞り手段(5)よりも冷媒流れ上流側部位から前記第2蒸発器(6)と前記気相冷媒流入口(3b)との間へと冷媒を導くバイパス流路(B)を設けたことを特徴とするエジェクタサイクル。
A compressor (1) for bringing the refrigerant into a high pressure state;
A radiator (2) that radiates heat of the high-pressure refrigerant discharged from the compressor (1);
It has a nozzle part (3a) that decompresses and expands the high-pressure refrigerant flowing out of the radiator (2) in an isentropic manner, and a gas-phase refrigerant inlet (3b) is generated by a high-speed refrigerant flow injected from the nozzle part (3a). ) An ejector (3) for sucking the gas-phase refrigerant from and converting the expansion energy into pressure energy and discharging it,
A first evaporator (4) having a refrigerant outlet side connected to a suction side of the compressor (1) and evaporating the refrigerant discharged from the ejector (3);
A second refrigerant circuit (R2) for branching the refrigerant flow from the first refrigerant circuit (R1) between the radiator (2) and the ejector (3) and leading to the gas-phase refrigerant inlet (3b) )When,
A first throttle means (5) disposed in the second refrigerant circulation path (R2) to depressurize the refrigerant and adjust the flow rate of the refrigerant;
A second evaporator (6) that is disposed downstream of the first throttle means (5) of the second refrigerant circulation path (R2) and evaporates the refrigerant;
Refrigerant flows between the first evaporator (4) and the compressor (1) by branching at a portion upstream of the refrigerant flow from the first throttle means (5) of the second refrigerant circulation path (R2). A third refrigerant circuit (R3) for guiding
A second throttle means (7) disposed in the third refrigerant circulation path (R3) to depressurize the refrigerant and adjust the flow rate of the refrigerant;
In an ejector cycle comprising a third evaporator (8) disposed downstream of the second throttle means (7) of the third refrigerant circulation path (R3) and evaporating the refrigerant.
Refrigerant from the upstream portion of the second refrigerant circulation path (R2) with respect to the first throttle means (5) to the space between the second evaporator (6) and the gas-phase refrigerant inlet (3b). An ejector cycle characterized in that a bypass flow path (B) for guiding is provided.
冷媒を高圧状態にする圧縮機(1)と、
前記圧縮機(1)から吐出した高圧冷媒の熱を放熱する放熱器(2)と、
前記放熱器(2)から流出した高圧冷媒を等エントロピ的に減圧膨張させるノズル部(3a)を有し、前記ノズル部(3a)から噴射する高い速度の冷媒流により気相冷媒流入口(3b)から気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して吐出するエジェクタ(3)と、
冷媒流出側が前記圧縮機(1)の吸引側に接続され、前記エジェクタ(3)から吐出した冷媒を蒸発させる第1蒸発器(4)と、
冷媒流れを前記放熱器(2)と前記エジェクタ(3)との間の第1冷媒循環路(R1)から分岐して前記気相冷媒流入口(3b)へと導く第2冷媒循環路(R2)と、
前記第2冷媒循環路(R2)に配置されて冷媒を減圧するとともに冷媒の流量を調節する第1絞り手段(5)と、
前記第2冷媒循環路(R2)の前記第1絞り手段(5)よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第2蒸発器(6)と、
前記第2冷媒循環路(R2)の前記第1絞り手段(5)よりも冷媒流れ上流側部位で分岐して前記第1蒸発器(4)と前記圧縮機(1)との間へと冷媒を導く第3冷媒循環路(R3)と、
前記第3冷媒循環路(R3)に配置されて冷媒を減圧するとともに冷媒の流量を調節する第2絞り手段(7)と、
前記第3冷媒循環路(R3)の第2絞り手段(7)よりも冷媒流れ下流側部位に配置され、冷媒を蒸発させる第3蒸発器(8)とを備えるエジェクタサイクルにおいて、
前記第3冷媒循環路(R3)の前記第3蒸発器(8)よりも冷媒流れ下流側部位から前記第2冷媒循環路(R2)の前記第2蒸発器(6)と前記気相冷媒流入口(3b)との間へと冷媒を導くバイパス流路(B)を設けたことを特徴とするエジェクタサイクル。
A compressor (1) for bringing the refrigerant into a high pressure state;
A radiator (2) that radiates heat of the high-pressure refrigerant discharged from the compressor (1);
It has a nozzle part (3a) that decompresses and expands the high-pressure refrigerant flowing out of the radiator (2) in an isentropic manner, and a gas-phase refrigerant inlet (3b) is generated by a high-speed refrigerant flow injected from the nozzle part (3a). ) An ejector (3) for sucking the gas-phase refrigerant from and converting the expansion energy into pressure energy and discharging it,
A first evaporator (4) whose refrigerant outlet side is connected to the suction side of the compressor (1) and evaporates the refrigerant discharged from the ejector (3);
A second refrigerant circuit (R2) for branching the refrigerant flow from the first refrigerant circuit (R1) between the radiator (2) and the ejector (3) and leading to the gas-phase refrigerant inlet (3b) )When,
A first throttle means (5) disposed in the second refrigerant circulation path (R2) to depressurize the refrigerant and adjust the flow rate of the refrigerant;
A second evaporator (6) that is disposed downstream of the first throttle means (5) of the second refrigerant circulation path (R2) and evaporates the refrigerant;
Refrigerant flows between the first evaporator (4) and the compressor (1) by branching at a portion upstream of the refrigerant flow from the first throttle means (5) of the second refrigerant circulation path (R2). A third refrigerant circuit (R3) for guiding
A second throttle means (7) disposed in the third refrigerant circulation path (R3) to depressurize the refrigerant and adjust the flow rate of the refrigerant;
In an ejector cycle comprising a third evaporator (8) disposed downstream of the second throttle means (7) of the third refrigerant circulation path (R3) and evaporating the refrigerant.
The second evaporator (6) in the second refrigerant circulation path (R2) and the gas phase refrigerant flow from the downstream side of the refrigerant flow with respect to the third evaporator (8) in the third refrigerant circulation path (R3). An ejector cycle characterized in that a bypass flow path (B) for guiding the refrigerant to and from the inlet (3b) is provided.
前記バイパス流路(B)の冷媒流量を、前記第2冷媒循環路(R2)の冷媒流量よりも少なくしたことを特徴とする請求項1ないし請求項3のいずれかに記載のエジェクタサイクル。   The ejector cycle according to any one of claims 1 to 3, wherein a refrigerant flow rate in the bypass flow path (B) is smaller than a refrigerant flow rate in the second refrigerant circulation path (R2). 前記バイパス流路(B)に、流通する冷媒流れを断続する開閉手段(9)を設けたことを特徴とする請求項1ないし請求項4のいずれかに記載のエジェクタサイクル。   The ejector cycle according to any one of claims 1 to 4, wherein the bypass passage (B) is provided with an opening / closing means (9) for interrupting a flowing refrigerant flow. 前記第2冷媒循環路(R2)において前記第1絞り手段(5)を無くし、代わりに、冷媒を減圧し冷媒の流量を調節するとともに、冷媒流れを前記第2蒸発器(6)側と前記バイパス流路(B)側とに切り替える流路切替手段(10)を設けたことを特徴とする請求項1または請求項2のいずれかに記載のエジェクタサイクル。   The first throttle means (5) is eliminated in the second refrigerant circulation path (R2), and instead, the refrigerant is depressurized to adjust the flow rate of the refrigerant, and the refrigerant flow is changed between the second evaporator (6) side and the 3. An ejector cycle according to claim 1, further comprising a flow path switching means (10) for switching to the bypass flow path (B) side.
JP2004275849A 2004-09-22 2004-09-22 Ejector cycle Expired - Fee Related JP4341515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275849A JP4341515B2 (en) 2004-09-22 2004-09-22 Ejector cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275849A JP4341515B2 (en) 2004-09-22 2004-09-22 Ejector cycle

Publications (2)

Publication Number Publication Date
JP2006090606A JP2006090606A (en) 2006-04-06
JP4341515B2 true JP4341515B2 (en) 2009-10-07

Family

ID=36231761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275849A Expired - Fee Related JP4341515B2 (en) 2004-09-22 2004-09-22 Ejector cycle

Country Status (1)

Country Link
JP (1) JP4341515B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104214983A (en) * 2014-09-19 2014-12-17 温州市双峰制冷设备制造有限公司 Water cooling cooling-water machine unit provided with two-stage evaporators
US9080222B2 (en) 2007-09-11 2015-07-14 Voestalpine Krems Gmbh Method and device for hardening profiles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451808B1 (en) * 2008-04-25 2014-10-16 한라비스테온공조 주식회사 Cooling system of air conditioner for vehicles
US20160334150A1 (en) * 2015-05-15 2016-11-17 Carrier Corporation Ejectors
CN108344196B (en) * 2018-04-19 2019-11-22 天津商业大学 A kind of Two-stage Compression cryogenic refrigerating system
CN108362026B (en) * 2018-04-19 2019-11-22 天津商业大学 A kind of carbon dioxide trans-critical cycle cool and thermal power combined system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080222B2 (en) 2007-09-11 2015-07-14 Voestalpine Krems Gmbh Method and device for hardening profiles
CN104214983A (en) * 2014-09-19 2014-12-17 温州市双峰制冷设备制造有限公司 Water cooling cooling-water machine unit provided with two-stage evaporators

Also Published As

Publication number Publication date
JP2006090606A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4779928B2 (en) Ejector refrigeration cycle
JP4984453B2 (en) Ejector refrigeration cycle
JP6547781B2 (en) Refrigeration cycle device
JP4600208B2 (en) Cycle using ejector
JP4626531B2 (en) Ejector refrigeration cycle
JP4254217B2 (en) Ejector cycle
JP5195364B2 (en) Ejector refrigeration cycle
JP3931899B2 (en) Ejector cycle
JP4539571B2 (en) Vapor compression cycle
JP2009092249A (en) Refrigerant cycle device with ejector
JP5359231B2 (en) Ejector refrigeration cycle
JP2007078340A (en) Ejector type refrigerating cycle
JP4924436B2 (en) Vapor compression cycle
JP2007040612A (en) Vapor compression type cycle
JP4415835B2 (en) Refrigeration cycle equipment for vehicles
JP6708161B2 (en) Ejector type refrigeration cycle
JP4725223B2 (en) Ejector type cycle
JP4341515B2 (en) Ejector cycle
JP2010266198A (en) Ejector type refrigerating cycle
WO2013018298A1 (en) Refrigeration cycle device
JP2007078349A (en) Ejector cycle
JP2010038456A (en) Vapor compression refrigeration cycle
WO2017217142A1 (en) Refrigeration cycle device
JP2008261512A (en) Ejector type refrigerating cycle
JP4747967B2 (en) Vapor compression cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees