JP2007040612A - Vapor compression type cycle - Google Patents

Vapor compression type cycle Download PDF

Info

Publication number
JP2007040612A
JP2007040612A JP2005225548A JP2005225548A JP2007040612A JP 2007040612 A JP2007040612 A JP 2007040612A JP 2005225548 A JP2005225548 A JP 2005225548A JP 2005225548 A JP2005225548 A JP 2005225548A JP 2007040612 A JP2007040612 A JP 2007040612A
Authority
JP
Japan
Prior art keywords
refrigerant
ejector
evaporator
pressure
vapor compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005225548A
Other languages
Japanese (ja)
Inventor
Gentaro Omura
源太郎 大村
Hirotsugu Takeuchi
裕嗣 武内
Yoshitaka Fujisawa
祥孝 藤澤
Etsuhisa Yamada
悦久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005225548A priority Critical patent/JP2007040612A/en
Priority to DE102006035880A priority patent/DE102006035880A1/en
Publication of JP2007040612A publication Critical patent/JP2007040612A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor compression type cycle capable of saving the space for an ejector and a refrigerant distribution part. <P>SOLUTION: This vapor compression type cycle comprises a compressor 11; a radiator 13; the ejector 14 having a nozzle part 14a decompressing and expanding refrigerant on the downstream side of the radiator 13, a refrigerant suction port 14b to the inside of which the refrigerant is sucked by a high-speed refrigerant flow injected from the nozzle part 14a, and a mixing part 14c mixing the high-speed refrigerant flow with the refrigerant sucked by the refrigerant suction port 14b; and an evaporator 15 carrying the refrigerant flowing out of the ejector 14 to a plurality of internal refrigerant passages 15a to evaporate it. A refrigerant distribution device 19 having pressure-raising function of converting speed energy of the mixed refrigerant to pressure energy to raise the pressure thereof, and distributing the mixed refrigerant to the plurality of refrigerant passages 15a of the evaporator 15 is connected to the mixed refrigerant outflow side of the mixing part 14c. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷媒減圧手段の役割および冷媒循環手段の役割を果たすエジェクタを用いた蒸気圧縮式サイクルに関するもので、例えば、家庭用空調装置、車両用空調装置、あるいは車載の荷物を冷凍、冷蔵する車両用冷凍装置等に適用して有効である。   The present invention relates to a vapor compression cycle using an ejector serving as a refrigerant decompression means and a refrigerant circulation means. For example, a home air conditioner, a vehicle air conditioner, or a vehicle-mounted luggage is frozen and refrigerated. It is effective when applied to a vehicle refrigeration system.

従来、エジェクタを用いた蒸気圧縮式の冷凍サイクルとして、例えば特許文献1に示されるものが知られている。即ち、この冷凍サイクルは、冷媒圧縮機、冷媒凝縮器、エジェクタ、第1冷媒蒸発器および気液分離器を冷媒配管によって環状に接続して、気液分離器の液相冷媒側とエジェクタの吸引部とを、第2冷媒蒸発器を配したバイパス配管で接続している。   Conventionally, as a vapor compression refrigeration cycle using an ejector, for example, one disclosed in Patent Document 1 is known. That is, in this refrigeration cycle, a refrigerant compressor, a refrigerant condenser, an ejector, a first refrigerant evaporator, and a gas-liquid separator are connected in an annular shape by a refrigerant pipe, and the liquid-phase refrigerant side of the gas-liquid separator and the suction of the ejector Are connected to each other by a bypass pipe provided with a second refrigerant evaporator.

第1冷媒蒸発器は、複数のチューブ(パス)を有しており、また、エジェクタと第1冷媒蒸発器との間には冷媒分配部(特許文献1中ではディストリビュータ)が設けられている。そして、この冷媒分配部によって、エジェクタより流出された気液二相状態の冷媒が第1冷媒蒸発器の複数のチューブの各々に均等に分配されるようにしている。尚、エジェクタ、冷媒分配部、第1、第2冷媒蒸発器および気液分離器は、一体的に形成されている。
特許第3265649号公報
The first refrigerant evaporator has a plurality of tubes (paths), and a refrigerant distributor (a distributor in Patent Document 1) is provided between the ejector and the first refrigerant evaporator. The refrigerant distribution unit distributes the gas-liquid two-phase refrigerant flowing out of the ejector equally to each of the plurality of tubes of the first refrigerant evaporator. The ejector, the refrigerant distributor, the first and second refrigerant evaporators, and the gas-liquid separator are integrally formed.
Japanese Patent No. 3265649

しかしながら、上記エジェクタはノズルとディフューザとが冷媒流れ方向に直列に並ぶように形成されたものであって、更に、エジェクタの冷媒流れ下流側に冷媒分配部を配設するようにしているので、冷媒流れ方向に長くなり、搭載スペースを大きく必要とするという問題があった。   However, the ejector is formed such that the nozzle and the diffuser are arranged in series in the refrigerant flow direction, and further, the refrigerant distributor is disposed on the downstream side of the refrigerant flow of the ejector. There was a problem that it became long in the flow direction and required a large mounting space.

本発明の目的は、上記問題に鑑み、エジェクタおよび冷媒分配装置の省スペース化を可能とする蒸気圧縮式サイクルを提供することにある。   In view of the above problems, an object of the present invention is to provide a vapor compression cycle that enables space saving of an ejector and a refrigerant distributor.

本発明は上記目的を達成するために、以下の技術的手段を採用する。   In order to achieve the above object, the present invention employs the following technical means.

請求項1に記載の発明では、蒸気圧縮式サイクルにおいて、冷媒を吸入し圧縮する圧縮機(11)と、圧縮機(11)から吐出された高圧冷媒の放熱を行う放熱器(13)と、放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、ノズル部(14a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(14b)、および高い速度の冷媒流と冷媒吸引口(14b)の吸引冷媒とを混合する混合部(14c)を有するエジェクタ(14)と、エジェクタ(14)から流出された冷媒を内部の複数の冷媒流路(15a)に流して蒸発させる蒸発器(15)とを備え、混合部(14c)の混合冷媒の流出側に、混合冷媒の速度エネルギーを圧力エネルギーに変換して昇圧する昇圧機能を有し、蒸発器(15)の複数の冷媒流路(15a)に混合冷媒を分配する冷媒分配装置(19)を接続したことを特徴としている。   In the invention according to claim 1, in the vapor compression cycle, a compressor (11) that sucks and compresses the refrigerant, a radiator (13) that radiates high-pressure refrigerant discharged from the compressor (11), A radiator (13), a nozzle part (14a) for decompressing and expanding the refrigerant on the downstream side, a refrigerant suction port (14b) through which the refrigerant is sucked by a high-speed refrigerant flow injected from the nozzle part (14a), and a high speed An ejector (14) having a mixing section (14c) for mixing the refrigerant flow and the suction refrigerant at the refrigerant suction port (14b), and the refrigerant flowed from the ejector (14) into a plurality of refrigerant flow paths (15a) inside An evaporator (15) that flows and evaporates, and has a pressure-increasing function for increasing the pressure by converting the velocity energy of the mixed refrigerant into pressure energy on the mixed refrigerant outflow side of the mixing section (14c). 15) It is characterized by connecting a refrigerant distributor (19) for distributing the mixed refrigerant in the refrigerant passage number (15a).

これにより、蒸発器(15)への冷媒分配機能を必要とするものにおいて、エジェクタ(14)の混合部(14c)の混合冷媒流出側に通常設けられる昇圧部を廃止して、冷媒分配装置(19)と兼用させることができるので、エジェクタ(14)の小型化が可能となる。よって、エジェクタ(14)および冷媒分配装置(19)に対する省スペース化を可能とすることができる。そして、冷媒分配装置(19)における昇圧機能は、冷媒を分配させるための分配流路(19b)の総流路断面積によって決定できるので、冷媒流れ方向における長さ設定の制約を受けずに、所望の昇圧分を持たせることができる。また、当然のことながら昇圧部を廃止できる分、安価なものにすることができる。   Thereby, in the thing which needs the refrigerant | coolant distribution function to an evaporator (15), the pressure | voltage rise part normally provided in the mixed refrigerant outflow side of the mixing part (14c) of an ejector (14) is abolished, and a refrigerant | coolant distribution apparatus ( 19), the ejector (14) can be downsized. Therefore, it is possible to save the space for the ejector (14) and the refrigerant distributor (19). And since the pressure | voltage rise function in a refrigerant | coolant distribution apparatus (19) can be determined by the total flow-path cross-sectional area of the distribution flow path (19b) for distributing a refrigerant | coolant, without receiving restrictions of the length setting in a refrigerant | coolant flow direction, A desired boosting amount can be provided. In addition, as a matter of course, it can be made inexpensive because the booster can be eliminated.

上記請求項1に記載の発明は、請求項2に記載の発明のように、エジェクタ(14)の上流部から分岐され冷媒吸引口(14b)に至る冷媒分岐通路(16)を有し、冷媒分岐通路(16)に絞り機構(17)が設けられ、この絞り機構(17)の下流側にもう1つの蒸発器(18)が設けられたものに適用して好適である。   The invention according to claim 1 has a refrigerant branch passage (16) branched from the upstream portion of the ejector (14) to reach the refrigerant suction port (14b) as in the invention according to claim 2, The present invention is suitably applied to a structure in which a throttle mechanism (17) is provided in the branch passage (16) and another evaporator (18) is provided on the downstream side of the throttle mechanism (17).

即ち、2つの蒸発器(15、18)を設定するものにおいて、エジェクタ(14)の上流部から分岐した冷媒を絞り機構(17)で減圧してもう1つの蒸発器(18)に供給できるから、蒸発器(15)の冷媒流れ下流側に気液分離器を設定する必要が無くなる。また、もう1つの蒸発器(18)への冷媒流量を絞り機構(17)によって独立に調整できることになるからである。   That is, in the case where two evaporators (15, 18) are set, the refrigerant branched from the upstream portion of the ejector (14) can be decompressed by the throttle mechanism (17) and supplied to the other evaporator (18). It is not necessary to set a gas-liquid separator on the downstream side of the refrigerant flow of the evaporator (15). Moreover, it is because the refrigerant | coolant flow rate to another evaporator (18) can be adjusted independently by the throttle mechanism (17).

請求項3に記載の発明では、請求項2に記載の発明において、放熱器(13)とエジェクタ(14)との間に、もう1つの絞り機構(17a)が設けられたことを特徴としている。   The invention according to claim 3 is characterized in that, in the invention according to claim 2, another throttle mechanism (17a) is provided between the radiator (13) and the ejector (14). .

これにより、エジェクタ(14)での減圧が不足する場合に、もう1つの絞り機構(17a)によって減圧補助を行うことができる。   Thereby, when the pressure reduction in the ejector (14) is insufficient, the pressure reduction assistance can be performed by the other throttle mechanism (17a).

請求項4に記載の発明では、上記請求項1に記載の蒸気圧縮式サイクルに対して、エジェクタ(14)から流出された冷媒をヘッダタンク(15b)を介して複数の冷媒チューブ(15c)に流して蒸発させる蒸発器(15A)を備えるものにおいて、ヘッダタンク(15b)にエジェクタ(14)の混合部(14c)の混合冷媒の流出側を接続したことを特徴としている。   In the invention according to claim 4, with respect to the vapor compression cycle according to claim 1, the refrigerant flowing out from the ejector (14) is supplied to the plurality of refrigerant tubes (15 c) via the header tank (15 b). An apparatus including an evaporator (15A) for flowing and evaporating is characterized in that the mixed refrigerant outflow side of the mixing section (14c) of the ejector (14) is connected to the header tank (15b).

これにより、ヘッダタンク(15b)が複数の冷媒チューブ(15c)に対する分配機能を果たすものであるので、上記請求項1に記載の発明と同様に、エジェクタ(14)の昇圧部を廃止したものとすることができる。   Accordingly, since the header tank (15b) serves to distribute the plurality of refrigerant tubes (15c), the booster of the ejector (14) is eliminated as in the invention described in claim 1 above. can do.

尚、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1、図2は本発明の第1実施形態を示すものであり、図1は第1実施形態による蒸気圧縮式サイクル10を車両用冷凍サイクル装置に適用した例を示す。図2はエジェクタ14および冷媒分配装置19を示す断面図である。本実施形態の蒸気圧縮式サイクル10において、冷媒を吸入圧縮する圧縮機11は、電磁クラッチ12、ベルト等を介して図示しない車両走行用エンジンにより回転駆動される。
(First embodiment)
1 and 2 show a first embodiment of the present invention. FIG. 1 shows an example in which a vapor compression cycle 10 according to the first embodiment is applied to a vehicle refrigeration cycle apparatus. FIG. 2 is a cross-sectional view showing the ejector 14 and the refrigerant distributor 19. In the vapor compression cycle 10 of the present embodiment, a compressor 11 that sucks and compresses refrigerant is rotationally driven by a vehicle travel engine (not shown) via an electromagnetic clutch 12 and a belt.

この圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチ12の断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを使用しても良い。また、圧縮機11として電動圧縮機を使用すれば、電動モータの回転数調整により冷媒吐出能力を調整できる。   The compressor 11 may be a variable capacity type compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or a fixed capacity type that adjusts the refrigerant discharge capacity by changing the operating rate of the compressor operation by switching the electromagnetic clutch 12. Any of the compressors may be used. Further, if an electric compressor is used as the compressor 11, the refrigerant discharge capacity can be adjusted by adjusting the rotation speed of the electric motor.

この圧縮機11の冷媒吐出側には放熱器13が配置されている。放熱器13は圧縮機11から吐出された高圧冷媒と図示しない冷却ファンにより送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。   A radiator 13 is disposed on the refrigerant discharge side of the compressor 11. The radiator 13 cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and outside air (air outside the vehicle compartment) blown by a cooling fan (not shown).

ここで、蒸気圧縮式サイクル10の冷媒として、通常のフロン系冷媒を用いる場合は、高圧圧力が臨界圧力を超えない亜臨界サイクルとなるので、放熱器13は冷媒を凝縮する凝縮器として作用する。一方、冷媒として二酸化炭素(CO)のように高圧圧力が臨界圧力を超える冷媒を用いる場合は蒸気圧縮式サイクル10が超臨界サイクルとなるので、冷媒は超臨界状態のまま放熱するだけで、凝縮しない。 Here, when a normal Freon refrigerant is used as the refrigerant of the vapor compression cycle 10, since the high pressure is a subcritical cycle in which the critical pressure is not exceeded, the radiator 13 acts as a condenser for condensing the refrigerant. . On the other hand, when a refrigerant whose high pressure exceeds a critical pressure, such as carbon dioxide (CO 2 ), is used as the refrigerant, the vapor compression cycle 10 becomes a supercritical cycle. Does not condense.

放熱器13よりも更に冷媒流れ下流側部位には、エジェクタ14が配置されている。このエジェクタ14は冷媒を減圧する減圧手段であると共に、高速で噴出する冷媒流の吸引作用(巻き込み作用)によって冷媒の循環(流体輸送)を行う冷媒循環手段(運動量輸送式ポンプ)でもある(JIS Z 8126 番号2.1.2.3等参照)。   An ejector 14 is disposed further downstream of the refrigerant flow than the radiator 13. The ejector 14 is a decompression means for decompressing the refrigerant, and is also a refrigerant circulation means (momentum transporting pump) that circulates the refrigerant (fluid transport) by suction action (contraction action) of the refrigerant flow ejected at high speed (JIS). Z 8126 number 2.1.2.3 etc.).

エジェクタ14には、放熱器13から流入する高圧冷媒の通路面積を小さく絞って、高圧冷媒を等エントロピ的に減圧膨張させるノズル部14aと、ノズル部14aの冷媒噴出口と同一空間に配置され、後述する第2蒸発器18からの気相冷媒を吸引する冷媒吸引口14bとが備えられている。更に、ノズル部14aおよび冷媒吸引口14bの冷媒流れ下流側部位には、ノズル部14aからの高速度の冷媒流と冷媒吸引口14bの吸引冷媒とを混合する混合部14cが設けられている。   The ejector 14 is arranged in the same space as the nozzle portion 14a for reducing the passage area of the high-pressure refrigerant flowing from the radiator 13 to a small pressure and expanding the high-pressure refrigerant in an isentropic manner, and the refrigerant outlet of the nozzle portion 14a. A refrigerant suction port 14b for sucking a gas-phase refrigerant from the second evaporator 18 described later is provided. Furthermore, a mixing unit 14c that mixes the high-speed refrigerant flow from the nozzle unit 14a and the suction refrigerant from the refrigerant suction port 14b is provided at the downstream side of the refrigerant flow of the nozzle unit 14a and the refrigerant suction port 14b.

そして、本実施形態の特徴部として、上記エジェクタ14の混合部14cの冷媒流れ下流側には、混合された冷媒に対する昇圧機能を有すると共に、後述する第1蒸発器15の複数の冷媒流路15aへの冷媒分配を行う冷媒分配装置19が接続されている。   As a feature of the present embodiment, the refrigerant flow downstream of the mixing unit 14c of the ejector 14 has a function of boosting the mixed refrigerant and a plurality of refrigerant channels 15a of the first evaporator 15 described later. A refrigerant distribution device 19 that distributes the refrigerant to is connected.

冷媒分配装置19は、例えば円柱状を成す本体部19aの内部に複数の分配流路19bが設けられて形成されている。分配流路19bは、混合部14cの冷媒流出側と対応する位置から複数に分岐して、それぞれが本体部19aの第1蒸発器15側に向けて拡がるように延びて、先端側で開口している。各分配流路19bは、第1蒸発器15の各冷媒流路15aに対応して接続されている。そして、複数の分配流路19bの先端側となる総流路断面積は、混合部14cの流路断面積より大きくなる所定面積となるように設定されており、冷媒分配装置19は、第1蒸発器15に対する冷媒分配機能に加えて、混合部14cからの混合冷媒の流れを減速して冷媒圧力を上昇させる機能(昇圧機能)、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する機能を併せ持っている。   The refrigerant distribution device 19 is formed, for example, by providing a plurality of distribution channels 19b inside a cylindrical body 19a. The distribution flow path 19b branches into a plurality from the position corresponding to the refrigerant outflow side of the mixing portion 14c, and extends so as to expand toward the first evaporator 15 side of the main body portion 19a, and opens at the tip end side. ing. Each distribution channel 19b is connected to each refrigerant channel 15a of the first evaporator 15. And the total flow path cross-sectional area which becomes the front end side of the some distribution flow path 19b is set so that it may become the predetermined area larger than the flow path cross-sectional area of the mixing part 14c, and the refrigerant | coolant distribution apparatus 19 is 1st. In addition to the refrigerant distribution function for the evaporator 15, it also has the function of increasing the refrigerant pressure by decelerating the flow of the mixed refrigerant from the mixing section 14c (pressure increasing function), that is, the function of converting the velocity energy of the refrigerant into pressure energy. ing.

冷媒分配装置19の冷媒流れ下流側に第1蒸発器(本発明における蒸発器に対応)15が接続され、この第1蒸発器15の冷媒流れ下流側は圧縮機11の吸入側に接続される。第1蒸発器15は、内部に複数の冷媒流路(複数のパス)15aを有しており、上記冷媒分配装置19によって分配された冷媒がそれぞれの冷媒流路15aを流通するようになっている。   A first evaporator 15 (corresponding to the evaporator in the present invention) 15 is connected to the refrigerant flow downstream side of the refrigerant distributor 19, and the refrigerant flow downstream side of the first evaporator 15 is connected to the suction side of the compressor 11. . The first evaporator 15 has a plurality of refrigerant flow paths (a plurality of paths) 15a therein, and the refrigerant distributed by the refrigerant distribution device 19 flows through the respective refrigerant flow paths 15a. Yes.

一方、エジェクタ14の上流部(放熱器13とエジェクタ14との間の中間部位)から冷媒分岐通路16が分岐され、この冷媒分岐通路16の下流側はエジェクタ14の冷媒吸引口14bに接続される。Zは冷媒分岐通路16の分岐点を示す。   On the other hand, a refrigerant branch passage 16 is branched from an upstream portion of the ejector 14 (an intermediate portion between the radiator 13 and the ejector 14), and a downstream side of the refrigerant branch passage 16 is connected to a refrigerant suction port 14b of the ejector 14. . Z indicates a branch point of the refrigerant branch passage 16.

この冷媒分岐通路16には絞り機構17が配置され、この絞り機構17よりも冷媒流れ下流側部位には第2蒸発器(本発明におけるもう1つの蒸発器に対応)18が配置されている。絞り機構17は、第2蒸発器18への冷媒流量の調節作用をなす減圧手段であって、具体的にはオリフィスのような固定絞りで構成できる。また、電動アクチュエータにより弁開度(通路絞り開度)が調整可能になっている電気制御弁を絞り機構17として用いても良い。   A throttle mechanism 17 is disposed in the refrigerant branch passage 16, and a second evaporator (corresponding to another evaporator in the present invention) 18 is disposed at a downstream side of the refrigerant flow from the throttle mechanism 17. The throttling mechanism 17 is a pressure reducing means that adjusts the flow rate of the refrigerant to the second evaporator 18, and can be specifically configured with a fixed throttling such as an orifice. An electric control valve whose valve opening (passage opening) can be adjusted by an electric actuator may be used as the throttle mechanism 17.

本実施形態では、2つの蒸発器15、18を図示しない1つの空調ケース内に収納するようになっている。そして、空調ケース内に構成される空気通路に共通の電動送風機(図示せず)により空気(被冷却空気)を矢印Aのごとく送風し、この送風空気を2つの蒸発器15、18で冷却するようになっている。   In this embodiment, the two evaporators 15 and 18 are accommodated in one air conditioning case (not shown). Then, air (cooled air) is blown as indicated by an arrow A by an electric blower (not shown) common to the air passage configured in the air conditioning case, and the blown air is cooled by the two evaporators 15 and 18. It is like that.

2つの蒸発器15、18で冷却された冷風を共通の冷却対象空間に送り込み、これにより、2つの蒸発器15、18にて共通の冷却対象空間を冷却するようになっている。ここで、2つの蒸発器15、18のうち、エジェクタ14下流側の主流路に接続される第1蒸発器15を空気流れAの上流側に配置し、エジェクタ14の冷媒吸引口14bに接続される第2蒸発器18を空気流れAの下流側に配置している。   The cold air cooled by the two evaporators 15 and 18 is sent to the common cooling target space, and thereby the common cooling target space is cooled by the two evaporators 15 and 18. Here, of the two evaporators 15 and 18, the first evaporator 15 connected to the main flow path on the downstream side of the ejector 14 is disposed on the upstream side of the air flow A, and is connected to the refrigerant suction port 14 b of the ejector 14. The second evaporator 18 is disposed downstream of the air flow A.

尚、本実施形態の蒸気圧縮式サイクル10を車両空調用冷凍サイクル装置に適用する場合は車室内空間が冷却対象空間となる。また、本実施形態の蒸気圧縮式サイクル10を冷凍車用冷凍サイクル装置に適用する場合は冷凍車の冷凍冷蔵庫内空間が冷却対象空間となる。   In addition, when applying the vapor compression cycle 10 of this embodiment to the refrigeration cycle apparatus for vehicle air conditioning, the vehicle interior space becomes the space to be cooled. In addition, when the vapor compression cycle 10 of the present embodiment is applied to a refrigeration cycle apparatus for a refrigeration vehicle, the space inside the refrigeration refrigerator of the refrigeration vehicle is a space to be cooled.

次に、第1実施形態の作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮され吐出された高温高圧状態の冷媒は放熱器13に流入する。放熱器13では高温の冷媒が外気により冷却されて凝縮する。放熱器13から流出した高圧液相冷媒は、分岐点Zにてエジェクタ14に向かう冷媒流れと、分岐冷媒通路16に向かう冷媒流れとに分流する。   Next, the operation of the first embodiment will be described. When the compressor 11 is driven by the vehicle engine, the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 11 flows into the radiator 13. In the radiator 13, the high-temperature refrigerant is cooled and condensed by the outside air. The high-pressure liquid-phase refrigerant that has flowed out of the radiator 13 is divided into a refrigerant flow toward the ejector 14 and a refrigerant flow toward the branch refrigerant passage 16 at the branch point Z.

エジェクタ14に流入した冷媒流れはノズル部14aで減圧され膨張する。従って、ノズル部14aで冷媒の圧力エネルギーが速度エネルギーに変換され、このノズル部14aの噴出口から冷媒は高速度となって噴出する。この際の冷媒圧力低下により、冷媒吸引口14bから分岐冷媒通路16の第2蒸発器18通過後の冷媒(気相冷媒)を吸引する。   The refrigerant flow flowing into the ejector 14 is decompressed and expanded by the nozzle portion 14a. Therefore, the pressure energy of the refrigerant is converted into velocity energy at the nozzle portion 14a, and the refrigerant is ejected at a high velocity from the outlet of the nozzle portion 14a. Due to the refrigerant pressure drop at this time, the refrigerant (gas phase refrigerant) after passing through the second evaporator 18 in the branch refrigerant passage 16 is sucked from the refrigerant suction port 14b.

ノズル部14aから噴出した冷媒と冷媒吸引口14bに吸引された冷媒は、ノズル部14a下流側の混合部14cで混合されて冷媒分配装置19に流入する。この冷媒分配装置19では、混合部14cで混合された冷媒が複数の分配流路19bに分配されると共に、混合部14cに対する流路断面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。   The refrigerant ejected from the nozzle portion 14a and the refrigerant sucked into the refrigerant suction port 14b are mixed in the mixing portion 14c on the downstream side of the nozzle portion 14a and flow into the refrigerant distribution device 19. In the refrigerant distributor 19, the refrigerant mixed in the mixing unit 14 c is distributed to the plurality of distribution channels 19 b, and the velocity (expansion) energy of the refrigerant is changed to pressure energy by expanding the channel cross-sectional area with respect to the mixing unit 14 c. Therefore, the pressure of the refrigerant rises.

そして、冷媒分配装置19から流出した冷媒は第1蒸発器15に流入する。第1蒸発器15では、複数の冷媒流路19aを低温の低圧冷媒が流れる間に、図1中の矢印A方向の送風空気から吸熱して蒸発する。送風空気は、冷媒蒸発時の蒸発潜熱により冷却される。そして、蒸発後の気相冷媒は、圧縮機11に吸入され、再び圧縮される。   Then, the refrigerant that has flowed out of the refrigerant distributor 19 flows into the first evaporator 15. The first evaporator 15 absorbs heat from the blown air in the direction of arrow A in FIG. 1 and evaporates while the low-temperature low-pressure refrigerant flows through the plurality of refrigerant flow paths 19a. The blown air is cooled by the latent heat of vaporization when the refrigerant evaporates. The vapor phase refrigerant after evaporation is sucked into the compressor 11 and compressed again.

一方、分岐冷媒通路16に流入した冷媒流れは絞り機構17で減圧されて低圧冷媒となり、この低圧冷媒が第2蒸発器18に流入する。第2蒸発器18では、内部を冷媒が流れる間に、図1中の矢印A方向の送風空気から冷媒が吸熱して蒸発する。そして、送風空気は冷媒蒸発時の蒸発潜熱により更に冷却される。蒸発後の気相冷媒は、冷媒吸引口14bからエジェクタ14内に吸引される。   On the other hand, the refrigerant flow flowing into the branch refrigerant passage 16 is decompressed by the throttle mechanism 17 to become a low-pressure refrigerant, and this low-pressure refrigerant flows into the second evaporator 18. In the second evaporator 18, while the refrigerant flows through the inside, the refrigerant absorbs heat from the blown air in the direction of arrow A in FIG. 1 and evaporates. The blown air is further cooled by the latent heat of evaporation when the refrigerant evaporates. The vapor-phase refrigerant after evaporation is sucked into the ejector 14 from the refrigerant suction port 14b.

以上のように、本実施形態によると、冷媒分配装置19の下流側冷媒を第1蒸発器15に供給すると共に、分岐通路16側の冷媒を絞り機構17を通して第2蒸発器18にも供給できるので、第1、第2蒸発器15、18で同時に冷却作用を発揮できる。そのため、第1、第2蒸発器15、18の両方で冷却された冷風を冷却対象空間に吹き出して、冷却対象空間を冷房(冷却)できる。   As described above, according to the present embodiment, the refrigerant on the downstream side of the refrigerant distributor 19 can be supplied to the first evaporator 15 and the refrigerant on the branch passage 16 side can also be supplied to the second evaporator 18 through the throttle mechanism 17. Therefore, the first and second evaporators 15 and 18 can exhibit a cooling action simultaneously. Therefore, the cooling target space can be cooled (cooled) by blowing the cool air cooled by both the first and second evaporators 15 and 18 to the cooling target space.

その際に、第1蒸発器15の冷媒蒸発圧力は冷媒分配装置19で昇圧された後の圧力であり、一方、第2蒸発器18の出口側はエジェクタ14の冷媒吸引口14bに接続されているから、ノズル部14aでの減圧直後の最も低い圧力を第2蒸発器18に作用させることができる。   At that time, the refrigerant evaporation pressure of the first evaporator 15 is the pressure after the pressure is increased by the refrigerant distributor 19, while the outlet side of the second evaporator 18 is connected to the refrigerant suction port 14 b of the ejector 14. Therefore, the lowest pressure immediately after the pressure reduction at the nozzle portion 14 a can be applied to the second evaporator 18.

これにより、第1蒸発器15の冷媒蒸発圧力(冷媒蒸発温度)よりも第2蒸発器18の冷媒蒸発圧力(冷媒蒸発温度)を低くすることができる。そして、送風空気の流れ方向Aに対して冷媒蒸発温度が高い第1蒸発器15を上流側に配置し、冷媒蒸発温度が低い第2蒸発器18を下流側に配置しているから、第1蒸発器15における冷媒蒸発温度と送風空気との温度差、および第2蒸発器18における冷媒蒸発温度と送風空気との温度差が両方とも確保できる。   Thereby, the refrigerant evaporation pressure (refrigerant evaporation temperature) of the second evaporator 18 can be made lower than the refrigerant evaporation pressure (refrigerant evaporation temperature) of the first evaporator 15. And since the 1st evaporator 15 with a high refrigerant | coolant evaporation temperature is arrange | positioned in the upstream with respect to the flow direction A of blowing air, and the 2nd evaporator 18 with a low refrigerant | coolant evaporation temperature is arrange | positioned in the downstream, the 1st Both the temperature difference between the refrigerant evaporation temperature and the blown air in the evaporator 15 and the temperature difference between the refrigerant evaporation temperature and the blown air in the second evaporator 18 can be ensured.

このため、第1、第2蒸発器15、18の冷却性能を両方とも有効に発揮できる。従って、共通の冷却対象空間に対する冷却性能を第1、第2蒸発器15、18の組み合わせにて効果的に向上できる。また、冷媒分配装置19での昇圧作用により圧縮機11の吸入圧が上昇され、圧縮機11の駆動動力が低減できる。   For this reason, both the cooling performance of the 1st, 2nd evaporators 15 and 18 can be exhibited effectively. Therefore, the cooling performance for the common space to be cooled can be effectively improved by the combination of the first and second evaporators 15 and 18. Further, the suction pressure of the compressor 11 is increased by the pressure increasing action in the refrigerant distributor 19, and the driving power of the compressor 11 can be reduced.

また、本実施形態の蒸気圧縮式サイクル10では、エジェクタ14の上流部の分岐点Zから分岐した冷媒分岐通路16をエジェクタ14の冷媒吸引口14bに接続し、この冷媒分岐通路16に絞り機構17および第2蒸発器18を設けているから、第2蒸発器18には冷媒分岐通路16を通して低圧の気液2相冷媒を独立して供給できる。このため、第1蒸発器15の冷媒流れ下流側に特許文献1(特許文献1中の図1)のような気液分離器を設定する必要がない。   In the vapor compression cycle 10 of the present embodiment, the refrigerant branch passage 16 branched from the branch point Z upstream of the ejector 14 is connected to the refrigerant suction port 14b of the ejector 14, and the throttle mechanism 17 is connected to the refrigerant branch passage 16. Since the second evaporator 18 is provided, the low-pressure gas-liquid two-phase refrigerant can be independently supplied to the second evaporator 18 through the refrigerant branch passage 16. For this reason, it is not necessary to set a gas-liquid separator like patent document 1 (FIG. 1 in patent document 1) in the refrigerant | coolant flow downstream of the 1st evaporator 15. FIG.

尚、特許文献1のように気液分離器を設定し、冷媒としてCO冷媒のようにサイクル高圧圧力が臨界圧力を超える冷媒を用いる超臨界サイクルの場合には、高外気温時にサイクル運転を停止すると、高圧側のみならず、低圧側も超臨界状態となる。 In the case of a supercritical cycle in which a gas-liquid separator is set as in Patent Document 1 and a refrigerant whose cycle high pressure exceeds the critical pressure is used as a refrigerant, such as CO 2 refrigerant, cycle operation is performed at a high outside air temperature. When stopped, not only the high pressure side but also the low pressure side becomes supercritical.

この結果、サイクル運転の再起動時に気液分離器による冷媒の気液分離ができないので、気液分離器内の超臨界状態の高温冷媒がそのまま冷媒吸引側の第2蒸発器18に流入して第2蒸発器18の冷却性能が大幅に低下する。これに対し、本実施形態によると、エジェクタ14の上流部で高圧冷媒を分岐し、この分岐冷媒を絞り機構17で減圧して低温冷媒を冷媒吸引側の第2蒸発器18に流入させることができるので、サイクル運転の再起動時にも第2蒸発器18の冷却性能を素早く発揮できる。   As a result, since the gas-liquid separator cannot perform gas-liquid separation when the cycle operation is restarted, the supercritical high-temperature refrigerant in the gas-liquid separator directly flows into the second evaporator 18 on the refrigerant suction side. The cooling performance of the second evaporator 18 is significantly reduced. On the other hand, according to the present embodiment, the high-pressure refrigerant is branched at the upstream portion of the ejector 14, and the branch refrigerant is decompressed by the throttle mechanism 17 so that the low-temperature refrigerant flows into the second evaporator 18 on the refrigerant suction side. As a result, the cooling performance of the second evaporator 18 can be quickly exhibited even when the cycle operation is restarted.

また、通常のフロン系の冷媒を用いる亜臨界サイクル(高圧圧力が臨界圧力を超えないサイクル)においても、サイクル熱負荷が小さい条件では、サイクルの高低圧差が小さくなって、エジェクタ14の入力が小さくなる。この場合に、特許文献1のサイクルでは、第2蒸発器18を通過する冷媒流量がエジェクタ14の冷媒吸引能力のみに依存するので、エジェクタ14の入力低下→エジェクタ14の冷媒吸引能力の低下→第2蒸発器18の冷媒流量の減少が発生して、第2蒸発器18の冷却性能を確保しにくい。   Further, even in a subcritical cycle using a normal chlorofluorocarbon refrigerant (a cycle in which the high pressure does not exceed the critical pressure), under a condition where the cycle heat load is small, the difference between the high and low pressures of the cycle is small, and the input of the ejector 14 is small. Become. In this case, in the cycle of Patent Document 1, since the flow rate of the refrigerant passing through the second evaporator 18 depends only on the refrigerant suction capability of the ejector 14, the input reduction of the ejector 14 → the reduction of the refrigerant suction capability of the ejector 14 → the second The refrigerant flow rate of the second evaporator 18 decreases, and it is difficult to ensure the cooling performance of the second evaporator 18.

これに対し、本実施形態によると、エジェクタ14の上流部で高圧冷媒を分岐し、この分岐冷媒を冷媒分岐通路16を通して冷媒吸引口14bに吸引させるから、冷媒分岐通路16がエジェクタ14に対して並列的な接続関係となる。   On the other hand, according to the present embodiment, the high-pressure refrigerant is branched at the upstream portion of the ejector 14, and the branched refrigerant is sucked into the refrigerant suction port 14 b through the refrigerant branch passage 16. Parallel connection relationship.

このため、冷媒分岐通路16にエジェクタ14の冷媒吸引能力だけでなく、圧縮機11の冷媒吸入、吐出能力をも利用して冷媒を供給できる。これにより、エジェクタ14の入力低下→エジェクタ14の冷媒吸引能力の低下という現象が発生しても、第2蒸発器18側の冷媒流量の減少度合いを特許文献1のサイクルよりも小さくできる。よって、低熱負荷条件でも、第2蒸発器18の冷却性能を確保しやすい。   For this reason, the refrigerant can be supplied to the refrigerant branch passage 16 by utilizing not only the refrigerant suction capability of the ejector 14 but also the refrigerant suction / discharge capability of the compressor 11. Thereby, even if the phenomenon that the input of the ejector 14 decreases and the refrigerant suction capacity of the ejector 14 decreases occurs, the degree of decrease in the refrigerant flow rate on the second evaporator 18 side can be made smaller than the cycle of Patent Document 1. Therefore, it is easy to ensure the cooling performance of the second evaporator 18 even under low heat load conditions.

また、第2蒸発器18側の冷媒流量をエジェクタ14の機能に依存することなく、絞り機構17にて独立に調整でき、第1蒸発器15への冷媒流量は圧縮機11の冷媒吐出能力の制御とエジェクタ14の絞り特性とにより調整できる。このため、第1、第2蒸発器15、18への冷媒流量をそれぞれの熱負荷に対応して容易に調整できる。   In addition, the refrigerant flow rate on the second evaporator 18 side can be adjusted independently by the throttle mechanism 17 without depending on the function of the ejector 14, and the refrigerant flow rate to the first evaporator 15 is equal to the refrigerant discharge capacity of the compressor 11. It can be adjusted by the control and the aperture characteristic of the ejector 14. For this reason, the refrigerant | coolant flow volume to the 1st, 2nd evaporators 15 and 18 can be easily adjusted corresponding to each heat load.

更に、本実施形態においては、エジェクタ14の混合部14cに昇圧機能を有する冷媒分配装置19を接続するようにしているので、第1蒸発器15への冷媒分配機能を必要とするものにおいて、エジェクタ14の混合部14cの混合冷媒流出側に通常設けられる昇圧部を廃止して、冷媒分配装置19と兼用させることができ、エジェクタ14の小型化が可能となる。よって、エジェクタ14および冷媒分配装置19に対する省スペース化を可能とすることができる。   Further, in the present embodiment, since the refrigerant distributor 19 having a pressure increasing function is connected to the mixing portion 14c of the ejector 14, the ejector that requires the refrigerant distribution function to the first evaporator 15 is used. Thus, the pressure increasing unit that is normally provided on the mixed refrigerant outflow side of the mixing unit 14c of the fourteenth unit can be abolished so that it can also be used as the refrigerant distribution device 19, and the ejector 14 can be downsized. Therefore, it is possible to save the space for the ejector 14 and the refrigerant distributor 19.

そして、冷媒分配装置19における昇圧機能は、冷媒を分配させるための分配流路19bの総流路断面積によって決定できるので、冷媒流れ方向における長さ設定の制約を受けずに、所望の昇圧分を持たせることができる。また、当然のことながら昇圧部を廃止できる分、安価なものにすることができる。   The pressure increasing function in the refrigerant distribution device 19 can be determined by the total flow path cross-sectional area of the distribution flow path 19b for distributing the refrigerant, so that the desired pressure increase amount can be obtained without being restricted by the length setting in the refrigerant flow direction. Can be given. In addition, as a matter of course, it can be made inexpensive because the booster can be eliminated.

(第2実施形態)
本発明の第2実施形態を図3に示す。第2実施形態は、上記第1実施形態に対して、放熱器13とエジェクタ14との間、更に具体的には、放熱器13と冷媒分岐通路16の分岐点Zとの間に第1絞り機構(本発明におけるもう1つの絞り機構に対応)17aを設け、第2蒸発器18の冷媒上流側の絞り機構を第2絞り機構17bとしている。
(Second Embodiment)
A second embodiment of the present invention is shown in FIG. The second embodiment is different from the first embodiment in that the first throttle is between the radiator 13 and the ejector 14, more specifically, between the radiator 13 and the branch point Z of the refrigerant branch passage 16. A mechanism (corresponding to another throttle mechanism in the present invention) 17a is provided, and the throttle mechanism on the refrigerant upstream side of the second evaporator 18 is a second throttle mechanism 17b.

第1絞り機構17aは第1蒸発器15の冷媒出口側の冷媒温度に応じて自身の開度が可変される温度式膨張弁としており、また、第2絞り機構17bは固定絞りとしている。   The first throttle mechanism 17a is a temperature expansion valve whose opening degree is variable according to the refrigerant temperature on the refrigerant outlet side of the first evaporator 15, and the second throttle mechanism 17b is a fixed throttle.

これにより、エジェクタ14での減圧が不足する場合に第1絞り機構17aによって減圧補助を行うことができると共に、第1蒸発器15における冷媒出口側の過熱度を所定過熱度となるように維持できる。   Thereby, when the decompression at the ejector 14 is insufficient, the first throttling mechanism 17a can assist the decompression, and the superheat degree on the refrigerant outlet side in the first evaporator 15 can be maintained to be a predetermined superheat degree. .

尚、第2実施形態の変形例として、図4に示すように、第1絞り機構17aを冷媒分岐流路16の分岐点Zとエジェクタ14との間に配設すると共に、第2絞り機構17cを第2蒸発器18の冷媒出口側の冷媒温度に応じて自身の開度が可変される温度式膨張弁としても良い。   As a modification of the second embodiment, as shown in FIG. 4, a first throttle mechanism 17a is disposed between the branch point Z of the refrigerant branch flow path 16 and the ejector 14, and the second throttle mechanism 17c. It is good also as a temperature type expansion valve by which the opening degree of itself is varied according to the refrigerant | coolant temperature of the refrigerant | coolant exit side of the 2nd evaporator 18.

これにより、サイクル熱負荷の変動が生じても、それぞれの絞り機構17a、17cによって、第1蒸発器15、第2蒸発器18における冷媒出口側の過熱度を所定過熱度となるように維持しながら、それぞれの蒸発器15、18の冷媒流量を制御することができる。   Thus, even if the cycle heat load fluctuates, the degree of superheat on the refrigerant outlet side in the first evaporator 15 and the second evaporator 18 is maintained at a predetermined superheat degree by the respective throttle mechanisms 17a and 17c. However, the refrigerant flow rates of the respective evaporators 15 and 18 can be controlled.

(第3実施形態)
本発明の第3実施形態を図5、図6に示す。第3実施形態は上記第1実施形態に対して、第1蒸発器(本発明の蒸発器に対応)15Aが、複数積層される冷媒チューブ15cを有しており、各冷媒チューブ15bの長手方向端部がヘッダタンク15bに接続連通されたものを対象としている。
(Third embodiment)
A third embodiment of the present invention is shown in FIGS. The third embodiment is different from the first embodiment in that a first evaporator (corresponding to the evaporator of the present invention) 15A includes a plurality of stacked refrigerant tubes 15c, and the longitudinal direction of each refrigerant tube 15b. The end is connected to the header tank 15b.

ここでは、エジェクタ14の混合部14cの混合冷媒流出側を第1蒸発器15Aのヘッダ15bに接続している。エジェクタ14のヘッダタンク15bに対する接続方向は、図5、図6に示すように、ヘッダタンク15bの長手方向に沿うもの、あるいはヘッダタンク15bの長手方向に交差するもの等、種々対応可能である。   Here, the mixed refrigerant outflow side of the mixing portion 14c of the ejector 14 is connected to the header 15b of the first evaporator 15A. As shown in FIGS. 5 and 6, the connection direction of the ejector 14 with respect to the header tank 15b can be variously adapted, for example, along the longitudinal direction of the header tank 15b or across the longitudinal direction of the header tank 15b.

これにより、ヘッダタンク15bが複数の冷媒チューブ15cに対する分配機能を果たすものであるので、上記第1実施形態と同様に、エジェクタ14の昇圧部を廃止したものとすることができる。   Thereby, since the header tank 15b performs the distribution function with respect to the some refrigerant | coolant tube 15c, the pressure | voltage rise part of the ejector 14 can be abolished similarly to the said 1st Embodiment.

(その他の実施形態)
本発明のエジェクタ14および冷媒分配装置19は、上記第1〜第3実施形態に対して、特許文献1(特許文献1中の図1)に示されるサイクル、即ち、第1蒸発器15と圧縮機11との間に気液分離器が設けられ、この気液分離器とエジェクタ14の冷媒吸引口14bとが第2蒸発器18が配設されるバイパス通路で接続されたサイクルに適用しても良い。
(Other embodiments)
The ejector 14 and the refrigerant distributor 19 of the present invention are compared with the first to third embodiments in the cycle shown in Patent Document 1 (FIG. 1 in Patent Document 1), that is, the first evaporator 15 and the compression. A gas-liquid separator is provided between the compressor 11 and the gas-liquid separator, and the refrigerant suction port 14b of the ejector 14 is applied to a cycle connected by a bypass passage in which the second evaporator 18 is disposed. Also good.

第1実施形態における蒸気圧縮式サイクルを示す模式図である。It is a schematic diagram which shows the vapor | steam compression-type cycle in 1st Embodiment. 図1におけるエジェクタおよび冷媒分配装置を示す断面図である。It is sectional drawing which shows the ejector and refrigerant | coolant distribution apparatus in FIG. 第2実施形態における蒸気圧縮式サイクルを示す模式図である。It is a schematic diagram which shows the vapor compression type cycle in 2nd Embodiment. 第2実施形態の変形例における蒸気圧縮式サイクルを示す模式図である。It is a schematic diagram which shows the vapor | steam compression-type cycle in the modification of 2nd Embodiment. 第3実施形態の1におけるエジェクタおよび第1蒸発器を示す外観斜視図である。It is an external appearance perspective view which shows the ejector and 1st evaporator in 1 of 3rd Embodiment. 第3実施形態の2におけるエジェクタおよび第1蒸発器を示す外観斜視図である。It is an external appearance perspective view which shows the ejector and 1st evaporator in 2 of 3rd Embodiment.

符号の説明Explanation of symbols

10 蒸気圧縮式サイクル
11 圧縮機
13 放熱器
14 エジェクタ
14a ノズル部
14b 冷媒吸引口
14c 混合部
15、15A 第1蒸発器(蒸発器)
15a 冷媒流路(複数の冷媒流路)
15b ヘッダタンク
15c 冷媒チューブ
16 冷媒分岐通路
17 絞り機構
17a 第1絞り機構(もう1つの絞り機構)
18 第2蒸発器(もう1つの蒸発器)
19 冷媒分配装置
DESCRIPTION OF SYMBOLS 10 Vapor compression cycle 11 Compressor 13 Radiator 14 Ejector 14a Nozzle part 14b Refrigerant suction port 14c Mixing part 15, 15A 1st evaporator (evaporator)
15a Refrigerant flow path (multiple refrigerant flow paths)
15b Header tank 15c Refrigerant tube 16 Refrigerant branch passage 17 Throttle mechanism 17a First throttling mechanism (another throttling mechanism)
18 Second evaporator (another evaporator)
19 Refrigerant distributor

Claims (4)

冷媒を吸入し圧縮する圧縮機(11)と、
前記圧縮機(11)から吐出された高圧冷媒の放熱を行う放熱器(13)と、
前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、前記ノズル部(14a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(14b)、および前記高い速度の冷媒流と前記冷媒吸引口(14b)の吸引冷媒とを混合する混合部(14c)を有するエジェクタ(14)と、
前記エジェクタ(14)から流出された冷媒を内部の複数の冷媒流路(15a)に流して蒸発させる蒸発器(15)とを備え、
前記混合部(14c)の混合冷媒の流出側に、前記混合冷媒の速度エネルギーを圧力エネルギーに変換して昇圧する昇圧機能を有し、前記蒸発器(15)の複数の冷媒流路(15a)に前記混合冷媒を分配する冷媒分配装置(19)を接続したことを特徴とする蒸気圧縮式サイクル。
A compressor (11) for sucking and compressing refrigerant;
A radiator (13) for radiating heat of the high-pressure refrigerant discharged from the compressor (11);
A nozzle part (14a) for decompressing and expanding the refrigerant on the downstream side of the radiator (13), a refrigerant suction port (14b) through which the refrigerant is sucked by a high-speed refrigerant flow injected from the nozzle part (14a), and An ejector (14) having a mixing section (14c) for mixing the high-speed refrigerant flow and the suction refrigerant of the refrigerant suction port (14b);
An evaporator (15) that evaporates the refrigerant that has flowed out of the ejector (14) through a plurality of refrigerant flow paths (15a) inside;
On the outflow side of the mixed refrigerant in the mixing section (14c), there is a pressure increasing function for increasing pressure by converting the velocity energy of the mixed refrigerant into pressure energy, and a plurality of refrigerant flow paths (15a) of the evaporator (15) A vapor compression cycle, characterized in that a refrigerant distribution device (19) for distributing the mixed refrigerant is connected to the vapor compression cycle.
前記エジェクタ(14)の上流部から分岐され前記冷媒吸引口(14b)に至る冷媒分岐通路(16)を有し、
前記冷媒分岐通路(16)に絞り機構(17)が設けられ、この絞り機構(17)の下流側にもう1つの蒸発器(18)が設けられていることを特徴とする請求項1に記載の蒸気圧縮式サイクル。
A refrigerant branch passage (16) branched from an upstream portion of the ejector (14) and reaching the refrigerant suction port (14b);
The throttle mechanism (17) is provided in the refrigerant branch passage (16), and another evaporator (18) is provided downstream of the throttle mechanism (17). Vapor compression cycle.
前記放熱器(13)と前記エジェクタ(14)との間に、もう1つの絞り機構(17a)が設けられたことを特徴とする請求項2に記載の蒸気圧縮式サイクル。   The vapor compression cycle according to claim 2, wherein another throttle mechanism (17a) is provided between the radiator (13) and the ejector (14). 冷媒を吸入し圧縮する圧縮機(11)と、
前記圧縮機(11)から吐出された高圧冷媒の放熱を行う放熱器(13)と、
前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、前記ノズル部(14a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(14b)、および前記高い速度の冷媒流と前記冷媒吸引口(14b)の吸引冷媒とを混合する混合部(14c)を有するエジェクタ(14)と、
前記エジェクタ(14)から流出された冷媒をヘッダタンク(15b)を介して複数の冷媒チューブ(15c)に流して蒸発させる蒸発器(15A)とを備え、
前記ヘッダタンク(15b)に前記混合部(14c)の混合冷媒の流出側を接続したことを特徴とする蒸気圧縮式サイクル。
A compressor (11) for sucking and compressing refrigerant;
A radiator (13) for radiating heat of the high-pressure refrigerant discharged from the compressor (11);
A nozzle part (14a) for decompressing and expanding the refrigerant on the downstream side of the radiator (13), a refrigerant suction port (14b) through which the refrigerant is sucked by a high-speed refrigerant flow injected from the nozzle part (14a), and An ejector (14) having a mixing section (14c) for mixing the high-speed refrigerant flow and the suction refrigerant of the refrigerant suction port (14b);
An evaporator (15A) for flowing and evaporating the refrigerant flowing out of the ejector (14) through the header tank (15b) to the plurality of refrigerant tubes (15c);
A vapor compression cycle, wherein the mixed refrigerant outflow side of the mixing section (14c) is connected to the header tank (15b).
JP2005225548A 2005-08-03 2005-08-03 Vapor compression type cycle Withdrawn JP2007040612A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005225548A JP2007040612A (en) 2005-08-03 2005-08-03 Vapor compression type cycle
DE102006035880A DE102006035880A1 (en) 2005-08-03 2006-08-01 An air conditioning system has an ejector with a suction inlet for further cooled refrigerant and a jet by which mixing occurs in a following chamber before return to the compressor through a heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225548A JP2007040612A (en) 2005-08-03 2005-08-03 Vapor compression type cycle

Publications (1)

Publication Number Publication Date
JP2007040612A true JP2007040612A (en) 2007-02-15

Family

ID=37715704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225548A Withdrawn JP2007040612A (en) 2005-08-03 2005-08-03 Vapor compression type cycle

Country Status (2)

Country Link
JP (1) JP2007040612A (en)
DE (1) DE102006035880A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236707A (en) * 2009-03-30 2010-10-21 Daikin Ind Ltd Heat exchanger
JP2011145035A (en) * 2010-01-18 2011-07-28 Denso Corp Evaporator unit
CN104214983A (en) * 2014-09-19 2014-12-17 温州市双峰制冷设备制造有限公司 Water cooling cooling-water machine unit provided with two-stage evaporators
CN107131687A (en) * 2016-02-29 2017-09-05 约克(无锡)空调冷冻设备有限公司 A kind of heat-exchanger rig suitable for low pressure refrigerant
CN107208944A (en) * 2015-02-02 2017-09-26 株式会社电装 The one-piece type heat exchanger of injector
CN107314565A (en) * 2017-07-07 2017-11-03 埃思柯(上海)空调冷冻设备有限公司 A kind of low temperature water outlet need not add the water-cooled cold water unit of anti-icing fluid
JP2018146222A (en) * 2017-03-02 2018-09-20 株式会社デンソー Ejector module and evaporator unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128508B (en) * 2010-01-19 2014-10-29 珠海格力电器股份有限公司 Ejector throttling and vapor supplementing system and heat pump or refrigerating system vapor supplementing method
US20110259551A1 (en) * 2010-04-23 2011-10-27 Kazushige Kasai Flow distributor and environmental control system provided the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236707A (en) * 2009-03-30 2010-10-21 Daikin Ind Ltd Heat exchanger
JP2011145035A (en) * 2010-01-18 2011-07-28 Denso Corp Evaporator unit
CN104214983A (en) * 2014-09-19 2014-12-17 温州市双峰制冷设备制造有限公司 Water cooling cooling-water machine unit provided with two-stage evaporators
CN107208944A (en) * 2015-02-02 2017-09-26 株式会社电装 The one-piece type heat exchanger of injector
CN107131687A (en) * 2016-02-29 2017-09-05 约克(无锡)空调冷冻设备有限公司 A kind of heat-exchanger rig suitable for low pressure refrigerant
JP2018146222A (en) * 2017-03-02 2018-09-20 株式会社デンソー Ejector module and evaporator unit
CN107314565A (en) * 2017-07-07 2017-11-03 埃思柯(上海)空调冷冻设备有限公司 A kind of low temperature water outlet need not add the water-cooled cold water unit of anti-icing fluid
CN107314565B (en) * 2017-07-07 2020-06-19 爱斯柯(江苏)空调冷冻设备有限公司 Water-cooled water chilling unit with low-temperature water outlet without adding anti-freezing solution

Also Published As

Publication number Publication date
DE102006035880A1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4626531B2 (en) Ejector refrigeration cycle
US7987685B2 (en) Refrigerant cycle device with ejector
US7428826B2 (en) Ejector cycle device
US7367202B2 (en) Refrigerant cycle device with ejector
US7823401B2 (en) Refrigerant cycle device
JP4259478B2 (en) Evaporator structure and ejector cycle
JP5195364B2 (en) Ejector refrigeration cycle
JP4923838B2 (en) Ejector refrigeration cycle
JP4765828B2 (en) Ejector refrigeration cycle
JP2007040612A (en) Vapor compression type cycle
JP2017227427A (en) Refrigeration cycle device
JP5359231B2 (en) Ejector refrigeration cycle
JP4415835B2 (en) Refrigeration cycle equipment for vehicles
JP4952830B2 (en) Ejector refrigeration cycle
US20090229306A1 (en) Vapor compression refrigerating cycle apparatus
JP2019020063A (en) Ejector-type refrigeration cycle
JP2009138952A (en) Brine type cooling device
JP4725449B2 (en) Ejector refrigeration cycle
WO2017217142A1 (en) Refrigeration cycle device
JP2008261512A (en) Ejector type refrigerating cycle
JP2008281338A (en) Ejector cycle
JP2015007490A (en) Ejector type refrigeration cycle
JP5045677B2 (en) Ejector refrigeration cycle
JP2006118727A (en) Ejector cycle
JP2019211118A (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090227