JP2000018735A - Refrigerating machine - Google Patents

Refrigerating machine

Info

Publication number
JP2000018735A
JP2000018735A JP10176326A JP17632698A JP2000018735A JP 2000018735 A JP2000018735 A JP 2000018735A JP 10176326 A JP10176326 A JP 10176326A JP 17632698 A JP17632698 A JP 17632698A JP 2000018735 A JP2000018735 A JP 2000018735A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
liquid
compressor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10176326A
Other languages
Japanese (ja)
Inventor
Natsuo Kanzaki
奈津夫 神崎
Akira Matsui
▲晧▼ 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10176326A priority Critical patent/JP2000018735A/en
Publication of JP2000018735A publication Critical patent/JP2000018735A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure

Abstract

PROBLEM TO BE SOLVED: To make a heat exchanger itself compact, and enable the improvement of COP, using a nonazeotropic mixed refrigerant. SOLUTION: In a refrigerating machine equipped with a closed circulation passage for a nonazeotropic mixed refrigerant including a compressor, a first heat exchanger for condensation, a liquid receiver, an economizer, a first expansion valve, and a second heat exchanger for evaporation, a liquid subcooler 15 being a vertical one path counterflow type heat exchanger, which lets a refrigerant at high pressure having flown out of an economizer flow in and lets it flow from under to above, and lets it flow out toward the first expansion valve from under, and besides lets it flow in the refrigerant at low pressure having flown out of a second heat exchanger 17 and lets it flow from under to above and turns it into gas form toward the suction part of the compressor and lets it flow out, is provided in a body with the second heat exchanger, and this is a vertical one path counterflow type where the second heat exchanger 17 lets the refrigerant having flown in via the first expansion valve flow from under to above, and besides lets cooled water flow from above to under, and it lets the refrigerant containing unevaporated components flow out toward the liquid subcooler 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非共沸混合冷媒を
用いた冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system using a non-azeotropic refrigerant mixture.

【0002】[0002]

【従来の技術】近年、地球を取巻くオゾン層を保護し、
地球の温暖化を防止するために、従来広く採用されてき
た冷媒、例えばR22の使用が国際的に禁止され、その
代替冷媒の開発が急務となっている。例えば、冷媒R4
07C、R410Aは目下のところ注目されている冷媒
の一つである。しかしながら、冷媒R22に比して、こ
れに代わる冷媒の場合、単独で使用しても低い成績係数
(COP:蒸発能力/動力)しか得られないため、複数
の冷媒からなる非共沸混合冷媒を用いて成績係数を改善
しようとした種々の提案がなされている(例:特開平1-
102254号公報)。
2. Description of the Related Art In recent years, the ozone layer surrounding the earth has been protected,
In order to prevent global warming, the use of a refrigerant widely used in the past, for example, R22, has been internationally banned, and the development of a substitute refrigerant has been urgently required. For example, refrigerant R4
07C and R410A are one of the refrigerants that are currently attracting attention. However, as compared with the refrigerant R22, in the case of the refrigerant instead of this, only a low coefficient of performance (COP: evaporating capacity / power) can be obtained even when used alone, so that a non-azeotropic mixed refrigerant composed of a plurality of refrigerants is used. Various proposals have been made to improve the coefficient of performance by using the method (eg,
No. 102254).

【0003】[0003]

【発明が解決しようとする課題】例えば、上記特開平1-
102254号公報に記載の発明の場合、公報には明記されて
いないが、凝縮器、蒸発器にアルミ製のプレートフィン
タイプの熱交換器を使用することが前提になっている。
ところが、この種の熱交換器は、腐食し易いのに加え
て、高価であるという問題がある。また、この他の装置
についても、熱交換器を非常に大きくしない限り、十分
なCOPを達成することができないという問題がある。
本発明は、斯る従来の問題をなくすことを課題としてな
されたもので、非共沸混合冷媒を用いて、熱交換器自体
をコンパクトなものにし、かつCOPの改善を可能とし
た冷凍装置を提供しようとするものである。
For example, Japanese Patent Application Laid-Open No. Hei.
In the case of the invention described in Japanese Patent Publication No. 102254, although not specified in the publication, it is assumed that an aluminum plate-fin type heat exchanger is used for the condenser and the evaporator.
However, this type of heat exchanger has a problem that it is expensive in addition to being easily corroded. In addition, other devices have a problem that a sufficient COP cannot be achieved unless the heat exchanger is made very large.
SUMMARY OF THE INVENTION The present invention has been made in order to eliminate such a conventional problem, and has provided a refrigeration apparatus that uses a non-azeotropic mixed refrigerant to make a heat exchanger itself compact and that can improve COP. It is something to offer.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、第1発明は、少なくとも圧縮機、凝縮用第1熱交換
器、受液器、第1膨張弁、蒸発用第2熱交換器を含む閉
じた非共沸混合冷媒用の循環流路を備えた冷凍装置にお
いて、上記第1膨張弁に達する前の高圧冷媒を流入させ
て上から下に流動させ、下部から上記第1膨張弁に向け
て流出させる一方、上記第2熱交換器から流出した低圧
冷媒を流入させて下から上に流動させ、上記圧縮機の吸
込部に向けてガス状態にして流出させる縦形1パス対向
流タイプの熱交換器である液過冷却器を設けるととも
に、上記第2熱交換器が、上記第1膨張弁を経て冷媒を
下から上に流動させる一方、被冷却水を上から下に流動
させる縦形1パス対向流タイプで、かつ未蒸発分を含ん
だ冷媒を上記液過冷却器に向けて流出させ、かつ上記液
過冷却器および上記第2熱交換器のそれぞれを、プレー
ト式熱交換器の流体流路を形成する複数のプレートから
なるプレート群を挟着する両側面の耐圧部材からなる端
面板の一方の端面板を省いた構造にするとともに、この
両者の端面板を省いた側面同志を当接させ、この当接さ
せた側面に対向し、かつ上記液過冷却器の高圧冷媒流出
入口および低圧冷媒流出入口を設けた耐圧部材からなる
第1端面板と、上記当接させた側面に対向し、かつ上記
第2熱交換器の冷媒流出入口および被冷却水流出入口を
設けた耐圧部材からなる第2端面板により上記液過冷却
器および上記第2熱交換器の各プレート群を挟着して、
上記液過冷却器および上記第2熱交換器を一体的に形成
した。
In order to solve the above-mentioned problems, a first invention comprises at least a compressor, a first heat exchanger for condensation, a liquid receiver, a first expansion valve, and a second heat exchanger for evaporation. In the refrigerating apparatus provided with a closed non-azeotropic mixed refrigerant circulation channel including: a high-pressure refrigerant before reaching the first expansion valve is caused to flow and flow from top to bottom; And a low-pressure refrigerant flowing out of the second heat exchanger flows in from the second heat exchanger, flows upward from the bottom, and flows out in a gaseous state toward the suction portion of the compressor. A vertical type in which a liquid subcooler, which is a heat exchanger, is provided, and the second heat exchanger causes the refrigerant to flow from the bottom through the first expansion valve, while the water to be cooled flows from the top to the bottom. 1-pass counter-flow type and liquid supercooled refrigerant containing non-evaporated component And the liquid subcooler and the second heat exchanger are disposed on both sides of a plate group consisting of a plurality of plates forming a fluid flow path of the plate heat exchanger. A structure in which one of the end plates made of a pressure-resistant member is omitted, and the side surfaces having both end plates omitted are brought into contact with each other, and the liquid supercooler is opposed to the contacted side surfaces. A first end plate made of a pressure-resistant member provided with a high-pressure refrigerant outflow port and a low-pressure refrigerant outflow port, and a refrigerant outflow port and a cooled water outflow port of the second heat exchanger that face the contacted side surface. The liquid subcooler and the plate group of the second heat exchanger are sandwiched by a second end face plate made of a pressure-resistant member provided,
The liquid subcooler and the second heat exchanger were integrally formed.

【0005】さらに、第2発明は、少なくとも圧縮機、
凝縮用第1熱交換器、受液器、第1膨張弁、蒸発用第2
熱交換器を含む閉じた非共沸混合冷媒用の循環流路を備
えた冷凍装置において、上記第1膨張弁に達する前の高
圧冷媒を流入させて上から下に流動させ、下部から上記
第1膨張弁に向けて流出させる一方、上記第2熱交換器
から流出した低圧冷媒を流入させて下から上に流動さ
せ、上記圧縮機の吸込部に向けてガス状態にして流出さ
せる縦形1パス対向流タイプの熱交換器である液過冷却
器を設けるとともに、上記第2熱交換器が、上記第1膨
張弁を経て流入した冷媒を下から上に流動させる一方、
被冷却水を上から下に流動させる縦形1パス対向流タイ
プで、かつ未蒸発分を含んだ冷媒を上記液過冷却器に向
けて流出させてなり、上記第2熱交換器の冷媒流出口と
上記液過冷却器の低圧冷媒流入口との間の冷媒流路に介
在し、上部が上記冷媒流出口に連通する冷媒ガス空間
部、下部が上記低圧冷媒流入口に連通する冷媒液溜まり
部となった第1気液分離器と、上記冷媒ガス空間部を上
記圧縮機の吸込部に連通させる吸込冷媒流路と、この吸
込冷媒流路に上記低圧冷媒流出口を連通させる合流冷媒
流路と、上記吸込冷媒流路と上記合流冷媒流路との合流
部に介在し、上記冷媒ガス空間部から上記圧縮機の吸込
部に向けて流動する冷媒ガスに、上記低圧冷媒流出口か
らの冷媒ガスを吸引させ、随伴させる吸引手段とを設け
た構成とした。
[0005] Further, a second invention provides at least a compressor,
1st heat exchanger for condensation, liquid receiver, 1st expansion valve, 2nd for evaporation
In a refrigeration apparatus having a closed non-azeotropic mixed refrigerant circulation path including a heat exchanger, a high-pressure refrigerant before reaching the first expansion valve is caused to flow and flow from top to bottom, and A vertical one-pass for allowing the low-pressure refrigerant flowing out of the second heat exchanger to flow in from the second heat exchanger to flow upward from the bottom while flowing toward the expansion valve, and flowing out in a gaseous state toward the suction part of the compressor; While providing a liquid subcooler which is a counter-flow type heat exchanger, the second heat exchanger allows the refrigerant flowing through the first expansion valve to flow upward from below,
A vertical one-pass counterflow type in which the water to be cooled flows from top to bottom, and a refrigerant containing an unevaporated component flows out toward the liquid subcooler, and a refrigerant outlet of the second heat exchanger And a refrigerant gas space portion having an upper portion communicating with the refrigerant outlet and a lower portion having a lower portion communicating with the low pressure refrigerant inlet. A first gas-liquid separator, a suction refrigerant flow path for communicating the refrigerant gas space with a suction part of the compressor, and a combined refrigerant flow path for communicating the low-pressure refrigerant outlet with the suction refrigerant flow path. And a refrigerant from the low-pressure refrigerant outlet into a refrigerant gas interposed at a junction between the suction refrigerant flow path and the merged refrigerant flow path and flowing from the refrigerant gas space toward the suction part of the compressor. Suction means for sucking gas and accompanying it is provided.

【0006】さらに、第3発明は、上記第2発明におけ
る構成に加え、上記第1気液分離器が、上記液過冷却器
よりも上方に配置された構成とした。
Further, in a third invention, in addition to the structure of the second invention, the first gas-liquid separator is arranged above the liquid subcooler.

【0007】さらに、第4発明は、上記第1発明におけ
る構成に加え、上記圧縮機をその駆動部であるモータと
同一ケーシング内に収容した半密閉形のものとし、上記
液過冷却器と上記圧縮機との間に、下部が冷媒液溜まり
部、上部が冷媒ガス空間部となった第2気液分離器を分
設し、かつ上記低圧冷媒流出口と上記冷媒ガス空間部と
を連通させる第1冷媒流路と、上記冷媒液溜まり部を上
記圧縮機の吸込部に直接連通させる第2冷媒流路と、上
記冷媒ガス空間部から上記ケーシング内のモータを通過
して上記吸込部に冷媒ガスを導く吸込冷媒流路とを設け
て形成した。
According to a fourth aspect of the present invention, in addition to the structure of the first aspect, the compressor is a semi-hermetic type housed in the same casing as a motor as a drive unit thereof, and the liquid subcooler and A second gas-liquid separator having a lower portion serving as a refrigerant liquid storage portion and an upper portion serving as a refrigerant gas space portion is provided between the compressor and the compressor, and communicates the low-pressure refrigerant outlet with the refrigerant gas space portion. A first refrigerant flow path, a second refrigerant flow path for directly connecting the refrigerant liquid reservoir to the suction part of the compressor, and a refrigerant flowing from the refrigerant gas space through a motor in the casing to the suction part. It was formed by providing a suction refrigerant channel for guiding gas.

【0008】さらに、第5発明は、上記各発明における
構成に加え、上記第1熱交換器が、上記圧縮機から流入
した冷媒を上から下に流動させる一方、冷却水を下から
上に流動させる縦形1パス対向流タイプで、かつ上記受
液器よりも上方に配置された構成とした。
According to a fifth aspect of the present invention, in addition to the configuration of the above-mentioned inventions, the first heat exchanger allows the refrigerant flowing from the compressor to flow from top to bottom while cooling water flows from bottom to top. It is a vertical one-pass counterflow type to be disposed and arranged above the liquid receiver.

【0009】[0009]

【発明の実施の形態】次に、本発明の一実施形態を図面
にしたがって説明する。図1〜3は、本発明の第1実施
形態に係る冷凍装置を示し、複数の冷媒からなる非共沸
混合冷媒を圧縮機11、凝縮用第1熱交換器12、受液
器13、エコノマイザ14、液過冷却器15、第1膨張
弁16、蒸発用第2熱交換器17を経由させ、再度、液
過冷却器15を経て圧縮機11に戻らせる閉じた循環流
路Iが形成してある。また、エコノマイザ14と液過冷
却器15との間の循環流路Iの部分から分岐し、第2膨
張弁18を経て、エコノマイザ14内の循環流路Iの部
分とは、別個に、かつ熱交換可能にこのエコノマイザ1
4を通過した後、圧縮機11内のガス圧縮空間部に至る
中間流路IIが設けてある。
Next, an embodiment of the present invention will be described with reference to the drawings. 1 to 3 show a refrigeration apparatus according to a first embodiment of the present invention, in which a non-azeotropic mixed refrigerant composed of a plurality of refrigerants is supplied to a compressor 11, a first heat exchanger 12 for condensation, a liquid receiver 13, an economizer. 14. A closed circulation flow path I is formed to pass through the liquid subcooler 15, the first expansion valve 16, and the second heat exchanger 17 for evaporation, and then return to the compressor 11 through the liquid subcooler 15 again. It is. In addition, it branches off from the portion of the circulation flow path I between the economizer 14 and the liquid subcooler 15, passes through the second expansion valve 18, and is separated from the portion of the circulation flow path I in the economizer 14 separately and thermally. This economizer 1 can be exchanged
4, an intermediate flow path II is provided to reach a gas compression space in the compressor 11.

【0010】圧縮機11は、例えば単段、或いは低段、
高段圧縮機本体を直列に配設した2段圧縮機のいずれで
もよく、その形式としては例えばスクリュ式、レシプロ
式、ターボ式のものが含まれる。なお、2段圧縮機の場
合、中間流路IIは低段圧縮機本体の吸込口と高段圧縮機
本体の吐出口との間にあって、かつこれらの吸込口、吐
出口のいずれにも連通しない循環流路Iの部分に至る。
The compressor 11 is, for example, a single stage or a low stage,
Any of a two-stage compressor in which a high-stage compressor body is arranged in series may be used, and examples thereof include a screw type, a reciprocating type, and a turbo type. In the case of a two-stage compressor, the intermediate passage II is located between the suction port of the low-stage compressor body and the discharge port of the high-stage compressor body, and does not communicate with any of these suction ports and discharge ports. It reaches the part of the circulation channel I.

【0011】第1熱交換器12は、従来周知の縦形1パ
ス対向流タイプのプレート式のものである。この第1熱
交換器12では、圧縮機11からの冷媒を上部に設けた
冷媒流入口21から流入させて上から下に流動させ、下
部に設けた冷媒流出口22から流出させる一方、冷却水
を下部に設けた冷却水流入口23から流入させて下から
上に流動させ、上部に設けた冷却水流出口24から流出
させ、冷媒と冷却水との間で熱交換がなされるようにな
っている。
The first heat exchanger 12 is of a well-known vertical one-pass counterflow type plate type. In the first heat exchanger 12, the refrigerant from the compressor 11 flows through the refrigerant inlet 21 provided at the upper part, flows from top to bottom, and flows out from the refrigerant outlet 22 provided at the lower part, while the cooling water Flows through the cooling water inlet 23 provided at the lower part, flows upward from the bottom, flows out from the cooling water outlet 24 provided at the upper part, and heat exchange is performed between the refrigerant and the cooling water. .

【0012】受液器13は、横置きタイプのもので、第
1熱交換器12の下方に配置されている。このため、第
1熱交換器12内で凝縮した冷媒液は、この第1熱交換
器12内に滞留することなく、直ちに受液器13に流れ
落ちる。この第1熱交換器12の下部に冷媒液が溜まる
と、伝熱面積が減少し、凝縮圧力が上昇するだけでな
く、滞留液近くにまで流下してきたガスは、低沸点の成
分比に変質し、液化温度が低下する。一方、下方より、
冷却水は滞留液中を上昇し、この間、加熱されるので、
温度が上がり、冷却水と滞留液中との両者の温度差が接
近し、熱交換しづらくなる。また、第1熱交換器12内
では、冷媒と熱交換する冷却水の温度は下部から上部に
向かって高くなるため、第1熱交換器12内では、上部
ほど凝縮しづらく、凝縮性能が低下するという不具合が
発生することになる。しかしながら、この第1実施形態
に係る冷凍装置では、第1熱交換器12の下方に受液器
13を配置することにより凝縮した冷媒を直ちに第1熱
交換器12外に流出させるようになっている故、上述し
た不具合を生じることはなく、良好な熱交換が行われる
ようになっている。
The liquid receiver 13 is of a horizontal type and is disposed below the first heat exchanger 12. Thus, the refrigerant liquid condensed in the first heat exchanger 12 immediately flows down to the liquid receiver 13 without staying in the first heat exchanger 12. When the refrigerant liquid accumulates in the lower part of the first heat exchanger 12, not only the heat transfer area decreases, the condensing pressure increases, but also the gas flowing down to the vicinity of the stagnant liquid is transformed into a component ratio of a low boiling point. And the liquefaction temperature decreases. On the other hand, from below
As the cooling water rises in the resident liquid and is heated during this time,
The temperature rises, and the temperature difference between the cooling water and the stagnant liquid approaches, making it difficult to exchange heat. Further, in the first heat exchanger 12, the temperature of the cooling water that exchanges heat with the refrigerant increases from the lower part to the upper part. Therefore, in the first heat exchanger 12, the upper part is harder to condense, and the condensing performance decreases. Will be caused. However, in the refrigeration apparatus according to the first embodiment, by disposing the liquid receiver 13 below the first heat exchanger 12, the condensed refrigerant immediately flows out of the first heat exchanger 12. Therefore, the above-described problem does not occur, and good heat exchange is performed.

【0013】エコノマイザ14は、高圧冷媒液を第2膨
張弁18により膨張させて温度降下した冷媒液と、受液
器13からの高圧冷媒液との間で熱交換させてこの高圧
冷媒液の過冷却を行うものである。第2膨張弁18から
エコノマイザ14内にて熱交換して、蒸発した冷媒ガス
は、圧縮機11内のガス圧縮空間部、即ち中間圧力部に
吸入される。液過冷却器15は、基本的には縦形1パス
対向流タイプのプレート式のもので、後述するように第
2熱交換器17と一体的に形成されている。この液過冷
却器15では、エコノマイザ14を通過してきた液状態
の高圧冷媒を、上部の高圧冷媒流入口25から流入させ
て上から下に流動させ、下部の高圧冷媒流出口26から
流出させる一方、第2熱交換器17からの未蒸発分を含
んだ低圧冷媒を、下部の低圧冷媒流入口27から流入さ
せて下から上に流動させ、エコノマイザ14からの高圧
冷媒と熱交換させて上部の低圧冷媒流出口28から圧縮
機11の吸込部Sに向けてガス状態で流出させるように
なっている。
The economizer 14 expands the high-pressure refrigerant liquid by the second expansion valve 18 and exchanges heat between the refrigerant liquid whose temperature has dropped and the high-pressure refrigerant liquid from the receiver 13, thereby removing the high-pressure refrigerant liquid. Cooling is performed. The refrigerant gas evaporated by heat exchange in the economizer 14 from the second expansion valve 18 is sucked into a gas compression space portion in the compressor 11, that is, an intermediate pressure portion. The liquid subcooler 15 is basically a plate type of a vertical one-pass counterflow type, and is formed integrally with the second heat exchanger 17 as described later. In the liquid subcooler 15, the high-pressure refrigerant in the liquid state, which has passed through the economizer 14, flows in from the upper high-pressure refrigerant inlet 25, flows downward from above, and flows out from the lower high-pressure refrigerant outlet 26. The low-pressure refrigerant containing the unevaporated component from the second heat exchanger 17 flows from the low-pressure refrigerant inlet 27 at the lower part and flows upward from below, and exchanges heat with the high-pressure refrigerant from the economizer 14 to exchange heat at the upper part. The refrigerant is discharged in a gaseous state from the low-pressure refrigerant outlet 28 toward the suction part S of the compressor 11.

【0014】第2熱交換器17は、基本的には縦形1パ
ス対向流タイプのプレート式のものである。そして、液
状態の高圧冷媒を第1膨張弁16により膨張させて圧力
および温度降下した冷媒を、液状態で第2熱交換器17
の下部の冷媒流入口35から流入させて下から上に流動
させ、上部の冷媒流出口36から未蒸発分を含んだ状態
で流出させる一方、被冷却水を上部の被冷却水流入口3
7から流入させて上から下に流動させ、冷媒との熱交換
により温度降下させて下部の被冷却水流出口38から流
出させるようになっている。
The second heat exchanger 17 is basically a vertical one-pass counterflow type plate type. Then, the high-pressure refrigerant in the liquid state is expanded by the first expansion valve 16, and the refrigerant whose pressure and temperature have dropped is converted into the second heat exchanger 17 in the liquid state.
The coolant flows from the lower coolant inlet 35 into the upper coolant outlet 35 and flows out from the upper coolant outlet 36 in a state containing the un-evaporated components.
7, flows downward from above, and is cooled down by heat exchange with the refrigerant to flow out from the cooled water outlet 38 at the lower part.

【0015】ところで、図1は、冷媒の流れを示したも
のであって、冷凍装置を構成する各機器相互の位置関
係、寸法、形状等を示したものではなく、図中、液過冷
却器15と第2熱交換器17とは、それぞれ別個に表わ
されている。しかしながら、この冷凍装置では、図2,
3に示すように、液過冷却器15と第2熱交換器17と
は、一体的に形成されている。以下、さらに詳述する。
図4〜6は、第1熱交換器12と同じ、従来周知の縦形
1パス対向流タイプのプレート式の熱交換器Hを示した
ものである。この熱交換器Hは、内部に流体流路を有す
る複数のプレート31を当接させてプレート群とし、さ
らにこのプレート群の両側に耐圧部材である端面板3
2,33を当てて、ボルト・ナット34により端面板3
2,33間に上記プレート群を挟着して形成されてい
る。
FIG. 1 shows the flow of the refrigerant, and does not show the positional relationship, dimensions, shape, etc., of the components constituting the refrigeration system. 15 and the second heat exchanger 17 are separately shown. However, in this refrigerating apparatus, FIG.
As shown in FIG. 3, the liquid subcooler 15 and the second heat exchanger 17 are integrally formed. Hereinafter, this will be described in more detail.
4 to 6 show a conventionally known vertical one-pass counterflow type plate heat exchanger H, which is the same as the first heat exchanger 12. The heat exchanger H includes a plurality of plates 31 each having a fluid flow path therein, which are brought into contact with each other to form a plate group.
2 and 33, and the end plate 3
The plate group is sandwiched between 2 and 33.

【0016】一方、この冷凍装置の場合、図2,3に示
すように、液過冷却器15および第2熱交換器17のそ
れぞれを、プレート式熱交換器のプレート群を挟着する
両側面の耐圧部材からなる端面板の一方の端面板を省い
た構造にして、この両者のプレート群同志を当接させて
ある。そして、液過冷却器15の高圧冷媒流出入口2
6,25および低圧冷媒流出入口28,27を設けた耐
圧部材からなる第1端面板41と、第2熱交換器17の
冷媒流出入口36,35および被冷却水流出入口38,
37を設けた耐圧部材からなる第2端面板42とにより
液過冷却器15および第2熱交換器17の各プレート群
を挟着して、液過冷却器15および第2熱交換器17を
外観上一プレート形熱交換器に形成してある。
On the other hand, in the case of this refrigerating apparatus, as shown in FIGS. One of the end plates made of the pressure-resistant member is omitted, and the two plate groups are brought into contact with each other. And the high pressure refrigerant outflow inlet 2 of the liquid subcooler 15
6, 25, and a first end plate 41 made of a pressure-resistant member provided with low-pressure refrigerant outflow ports 28, 27, and refrigerant outflow ports 36, 35 and cooling water outflow ports 38, 38 of the second heat exchanger 17.
The liquid subcooler 15 and the second heat exchanger 17 are sandwiched by a second end face plate 42 made of a pressure-resistant member provided with 37, and the liquid subcooler 15 and the second heat exchanger 17 are separated. It is formed as a one-plate heat exchanger in appearance.

【0017】そして、斯かる構成により、第2熱交換器
17で液状態の冷媒をできるだけ多く含んだ状態、即ち
クオリティ(冷媒中のガスの重量比率)をできるだけ小
さくなるようにして冷媒と被冷却水との熱交換を行わせ
ており、ガス状態の冷媒と被冷却水との間の熱交換の場
合に比して効率よく熱交換が行われるようになってい
る。また、液過冷却器15にて第2熱交換器17からの
液状態の低圧冷媒の気化熱を利用して高圧冷媒を過冷却
するようにしているが、このことにより第2熱交換器1
7に流入する減圧後の冷媒の温度は非共沸混合冷媒特有
の温度低下現象に従い、低下するので、熱交換効率は良
くなり、COPも向上するようになっている。
With this configuration, the second heat exchanger 17 contains the refrigerant in the liquid state as much as possible, that is, the quality (the weight ratio of the gas in the refrigerant) becomes as small as possible so that the refrigerant and the refrigerant are cooled. The heat exchange with water is performed, and the heat exchange is performed more efficiently than the heat exchange between the gaseous refrigerant and the water to be cooled. In addition, the liquid supercooler 15 subcools the high-pressure refrigerant by utilizing the heat of vaporization of the low-pressure refrigerant in the liquid state from the second heat exchanger 17.
The temperature of the refrigerant after decompression flowing into the refrigerant 7 decreases according to the temperature reduction phenomenon peculiar to the non-azeotropic mixed refrigerant, so that the heat exchange efficiency is improved and the COP is also improved.

【0018】ところで、上述したプレート式熱交換器の
端面板は、各プレートが内圧により破壊しないように、
その側面からこれらを保護する耐圧部材であり、現実に
は熱交換器の中で占めるスペース、重量の比率はかなり
大きい。本冷凍装置では、液過冷却器15と第2熱交換
器17とを一体的に形成して、本来ならばこの両者間に
介在する二つの端面板をなくすことによりコンパクトに
組立ててあり、この結果装置全体の占有スペースの縮小
化、軽量化が可能となっている。
By the way, the end plate of the above-mentioned plate type heat exchanger is designed so that each plate is not broken by internal pressure.
It is a pressure-resistant member that protects them from the side, and in reality, the ratio of space and weight occupied in the heat exchanger is considerably large. In the present refrigeration apparatus, the liquid subcooler 15 and the second heat exchanger 17 are integrally formed, and originally two compact end plates that are interposed between the two units are compactly assembled. As a result, the space occupied by the entire device can be reduced and the weight can be reduced.

【0019】なお、図1〜3では、実線の矢印は冷媒の
流れ、一点鎖線の矢印は冷却水或いは被冷却水の流れを
示している。また、上述したように、第1熱交換器12
および液過冷却器15は第2熱交換器17と同じ縦形1
パス対向流タイプのプレート式のものであって、図6に
示す第2熱交換器17を第1熱交換器12に当てはめた
場合、実線の矢印が冷却水、一点鎖線の矢印が冷媒の流
れを示し、同様に液過冷却器15に当てはめた場合、実
線の矢印が低圧冷媒、一点鎖線の矢印が高圧冷媒の流れ
を示すことになる。
In FIGS. 1 to 3, solid arrows indicate the flow of the refrigerant and dashed-dotted arrows indicate the flow of the cooling water or the water to be cooled. Also, as described above, the first heat exchanger 12
And the liquid subcooler 15 is the same vertical type 1 as the second heat exchanger 17.
When the second heat exchanger 17 shown in FIG. 6 is applied to the first heat exchanger 12 in the plate type of the counter flow type, the solid arrow indicates the flow of the cooling water, and the dashed line indicates the flow of the refrigerant. Similarly, when applied to the liquid subcooler 15, the solid arrow indicates the flow of the low-pressure refrigerant, and the dashed-dotted arrow indicates the flow of the high-pressure refrigerant.

【0020】図7は、本発明の第2実施形態に係る冷凍
装置を示し、図1〜3に示す第1実施形態に係る冷凍装
置と互いに共通する部分については同一番号を付して説
明を省略する。この冷凍装置では、第2熱交換器17の
冷媒流出口36と液過冷却器15の低圧冷媒流入口27
との間の冷媒流路に介在し、上部が冷媒流出口36に連
通する冷媒ガス空間部51、下部が低圧冷媒流入口27
に連通する冷媒液溜まり部52となった第1気液分離器
53が設けてあり、ここで冷媒液と冷媒ガスとを分離す
るようになっている。さらに、冷媒ガス空間部51を圧
縮機11の吸込部Sに連通させる吸込冷媒流路54と、
この吸込冷媒流路54に低圧冷媒流出口28を連通させ
る合流冷媒流路55と、吸込冷媒流路54と合流冷媒流
路55との合流部に介在し、冷媒ガス空間部51から圧
縮機11の吸込部Sに向けて流動する冷媒ガスに、低圧
冷媒流出口28からの冷媒ガスを吸引させ、随伴させる
エジェクタ56とが設けてある。なお、上記第1気液分
離器53が、上記液過冷却器15よりも上方に配置され
て構成している。
FIG. 7 shows a refrigeration apparatus according to a second embodiment of the present invention. Parts common to those of the refrigeration apparatus according to the first embodiment shown in FIGS. Omitted. In this refrigeration system, the refrigerant outlet 36 of the second heat exchanger 17 and the low-pressure refrigerant inlet 27 of the liquid subcooler 15
, A refrigerant gas space 51 having an upper part communicating with the refrigerant outlet 36 and a lower part having a low pressure refrigerant inlet 27.
A first gas-liquid separator 53 is provided as a refrigerant liquid reservoir 52 communicating with the refrigerant gas, and separates the refrigerant liquid and the refrigerant gas here. Further, a suction refrigerant flow passage 54 for connecting the refrigerant gas space 51 to the suction portion S of the compressor 11,
A merging refrigerant flow path 55 for communicating the low-pressure refrigerant outflow port 28 with the suction refrigerant flow path 54, and a merging portion between the suction refrigerant flow path 54 and the merging refrigerant flow path 55, are provided from the refrigerant gas space 51 to the compressor 11. An ejector 56 is provided which causes the refrigerant gas flowing toward the suction portion S to suck the refrigerant gas from the low-pressure refrigerant outlet 28 and accompany the refrigerant gas. Note that the first gas-liquid separator 53 is arranged above the liquid subcooler 15.

【0021】そして、斯る構成により液過冷却器15で
の熱交換効率を向上させるようになっている。即ち、第
2熱交換器17から直接液過冷却器15に冷媒を送り込
むと、熱交換の効率が悪いガス状態の冷媒が多く含まれ
る一方、蒸発時の潜熱を利用した、熱交換の効率が良好
な液状態の冷媒が少なくなる。しかしながら、上述した
第3実施形態に係る冷凍装置の場合、第1気液分離器5
3が設けてあり、ここで冷媒液と冷媒ガスとを分離し
て、熱交換のためには、むしろ邪魔な冷媒ガスは直接圧
縮機11に送り、冷媒液のみを液過冷却器15に導くよ
うに形成してあり、液過冷却器15での熱交換のために
は望ましい状態が作り出されるようになっている。
Further, the heat exchange efficiency in the liquid subcooler 15 is improved by such a configuration. That is, when the refrigerant is directly sent from the second heat exchanger 17 to the liquid subcooler 15, a large amount of gaseous refrigerant having low heat exchange efficiency is included, while the heat exchange efficiency utilizing latent heat during evaporation is reduced. Less refrigerant in good liquid state. However, in the case of the refrigeration apparatus according to the third embodiment, the first gas-liquid separator 5
3 is provided, where the refrigerant liquid and the refrigerant gas are separated and, for heat exchange, rather hindered refrigerant gas is directly sent to the compressor 11 and only the refrigerant liquid is led to the liquid subcooler 15. Thus, a desired state is created for the heat exchange in the liquid subcooler 15.

【0022】図8は、本発明の第3実施形態に係る冷凍
装置を示し、上述した各実施形態に係る冷凍装置と互い
に共通する部分については同一番号を付して説明を省略
する。この冷凍装置では、圧縮機11をその駆動部であ
るモータMと同一のケーシングC内に収容された半密閉
形のものとし、液過冷却器15と圧縮機11との間に、
下部が冷媒液溜まり部61、上部が冷媒ガス空間部62
となった第2気液分離器63を介設し、かつ低圧冷媒流
出口28と冷媒ガス空間部62とを連通させる第1冷媒
流路64と、冷媒液溜まり部61を圧縮機11の吸込部
Sに直接連通させる第2冷媒流路65と、冷媒ガス空間
部62からケーシングC内のモータMを通過して吸込部
Sに冷媒ガスを導く吸込冷媒流路66とを設けて形成し
てある。さらに、冷媒流入口35の一次側に第1温度セ
ンサ67、吸込冷媒流路66に第2温度センサ68のそ
れぞれを、冷媒温度検出可能に設けてあり、図示しない
制御装置を介して、第1温度センサ67、第2温度セン
サ68による各検出温度の差が一定になるように第1膨
張弁16の開度が制御されるようになっている。
FIG. 8 shows a refrigerating apparatus according to a third embodiment of the present invention, and the same reference numerals are given to parts common to the refrigerating apparatuses according to the above-described embodiments, and description thereof will be omitted. In this refrigerating apparatus, the compressor 11 is of a semi-hermetic type housed in the same casing C as the motor M as a driving part thereof, and the compressor 11 is provided between the liquid subcooler 15 and the compressor 11.
The lower part is a refrigerant liquid reservoir 61 and the upper part is a refrigerant gas space 62.
A first refrigerant flow path 64 that communicates the low-pressure refrigerant outlet 28 and the refrigerant gas space 62 with the second gas-liquid separator 63 and the refrigerant liquid reservoir 61 is drawn into the compressor 11 by suction. A second refrigerant flow path 65 that directly communicates with the section S, and a suction refrigerant flow path 66 that guides the refrigerant gas from the refrigerant gas space section 62 through the motor M in the casing C to the suction section S. is there. Further, a first temperature sensor 67 is provided on the primary side of the refrigerant inlet 35, and a second temperature sensor 68 is provided on the suction refrigerant flow path 66 so as to detect the refrigerant temperature. The opening degree of the first expansion valve 16 is controlled so that the difference between the temperatures detected by the temperature sensor 67 and the second temperature sensor 68 becomes constant.

【0023】非共沸混合冷媒を用いた冷凍装置では、上
述したように第2熱交換器17の冷媒流入口35の一次
側の冷媒と圧縮機11の吸込冷媒流路66の冷媒の温度
差が一定になるように第1膨張弁16の開度が制御さ
れ、通常、上記温度差は温度すべり分プラスαに設定さ
れ、このαが過熱度になる。また、冷凍装置の高効率運
転を実現するには、このαを限りなく小さくするのが望
ましいが、第2気液分離器63、第2冷媒流路65がな
く、低圧冷媒流出口28から冷媒が直接吸込部Sに導か
れるとすると、αを小さくするほど吸込冷媒流路66に
飛散してくる液ミストの量が増大する。この結果、この
一次側にて、第2温度センサ68で冷媒温度を検出して
も、検出しているのが冷媒ガス温度とは限らず、冷媒液
温度であることもあり、第1膨張弁16の開度制御が不
安定になるという問題が生じる。
In the refrigerating apparatus using the non-azeotropic mixed refrigerant, as described above, the temperature difference between the refrigerant on the primary side of the refrigerant inlet 35 of the second heat exchanger 17 and the refrigerant in the suction refrigerant passage 66 of the compressor 11. The opening degree of the first expansion valve 16 is controlled so as to be constant, and the temperature difference is usually set to the temperature slip plus α, and this α becomes the degree of superheat. In order to realize a high efficiency operation of the refrigeration system, it is desirable to make this α as small as possible. However, since the second gas-liquid separator 63 and the second refrigerant flow path 65 are not provided, the refrigerant flows from the low-pressure refrigerant outlet 28 to the refrigerant. Is directly led to the suction portion S, the smaller the α is, the greater the amount of liquid mist scattered in the suction refrigerant flow path 66. As a result, even if the refrigerant temperature is detected by the second temperature sensor 68 on the primary side, the detected temperature is not limited to the refrigerant gas temperature, but may be the refrigerant liquid temperature. A problem arises in that the opening degree control of No. 16 becomes unstable.

【0024】上述した第3実施形態に係る冷凍装置の場
合、第2気液分離器63により、冷媒液と冷媒ガスとを
分離し、第2温度センサ68に冷媒ガスの温度のみを検
出させるようにし、上述した問題が生じるのを防止して
いる。また、冷媒液溜まり部61の冷媒をモータMの部
分を通過させると、モータMを過剰に冷却し、この結果
圧縮機11の効率低下をもたらすことになる。このた
め、この冷凍装置では、冷媒液溜まり部61の冷媒液を
第2冷媒流路65によりモータMを通過させることなく
直接吸込部Sに導き、冷媒ガス空間62の冷媒ガスのみ
をモータMの部分を通過させ、モータMを冷却するよう
になっている。そして、モータMの過剰冷却を防止する
とともに、冷媒ガスがモータMを通過する際の圧損によ
る冷媒ガスの圧力降下により吸込部Sへの冷媒液の吸引
が促進されるようになっている。
In the case of the refrigerating apparatus according to the third embodiment, the refrigerant gas and the refrigerant gas are separated by the second gas-liquid separator 63 so that the second temperature sensor 68 detects only the temperature of the refrigerant gas. This prevents the above-described problem from occurring. Further, when the refrigerant in the refrigerant liquid reservoir 61 passes through the portion of the motor M, the motor M is excessively cooled, and as a result, the efficiency of the compressor 11 is reduced. For this reason, in this refrigeration system, the refrigerant liquid in the refrigerant liquid reservoir 61 is directly guided to the suction part S without passing through the motor M by the second refrigerant flow path 65, and only the refrigerant gas in the refrigerant gas space 62 is supplied to the motor M. The motor M is cooled by passing through the portion. In addition to preventing the motor M from being excessively cooled, the suction of the refrigerant liquid into the suction portion S is promoted by the pressure drop of the refrigerant gas due to the pressure loss when the refrigerant gas passes through the motor M.

【0025】なお、上記各実施形態における混合冷媒
は、2種の冷媒を混合したものの他に、3種以上の冷媒
を混合したものも含まれる。なお、上記各実施形態に
て、第1熱交換器12、第2熱交換器17において、混
合冷媒と熱交換される流体として水を示したが、本発明
はこれに限るものではない。また、本発明の第2実施形
態にて、吸引手段としてエジェクタを示したが、本発明
はこれに限るものではなく、例えば、エジェクタに代え
て、吸引ポンプが介設されていてもよい。
The refrigerant mixture in each of the above embodiments includes a mixture of two or more refrigerants, as well as a mixture of three or more refrigerants. In each of the above embodiments, the first heat exchanger 12 and the second heat exchanger 17 use water as the fluid to be exchanged with the mixed refrigerant, but the present invention is not limited to this. In the second embodiment of the present invention, an ejector is shown as a suction unit. However, the present invention is not limited to this. For example, a suction pump may be provided instead of the ejector.

【0026】[0026]

【発明の効果】以上の説明より明らかなように、第1発
明によれば、少なくとも圧縮機、凝縮用第1熱交換器、
受液器、第1膨張弁、蒸発用第2熱交換器を含む閉じた
非共沸混合冷媒用の循環流路を備えた冷凍装置におい
て、上記第1膨張弁に達する前の高圧冷媒を流入させて
上から下に流動させ、下部から上記第1膨張弁に向けて
流出させる一方、上記第2熱交換器から流出した低圧冷
媒を流入させて下から上に流動させ、上記圧縮機の吸込
部に向けてガス状態にして流出させる縦形1パス対向流
タイプの熱交換器である液過冷却器を設けるとともに、
上記第2熱交換器が、上記第1膨張弁を経て冷媒を下か
ら上に流動させる一方、被冷却水を上から下に流動させ
る縦形1パス対向流タイプで、かつ未蒸発分を含んだ冷
媒を上記液過冷却器に向けて流出させ、かつ上記液過冷
却器および上記第2熱交換器のそれぞれを、プレート式
熱交換器の流体流路を形成する複数のプレートからなる
プレート群を挟着する両側面の耐圧部材からなる端面板
の一方の端面板を省いた構造にするとともに、この両者
の端面板を省いた側面同志を当接させ、この当接させた
側面に対向し、かつ上記液過冷却器の高圧冷媒流出入口
および低圧冷媒流出入口を設けた耐圧部材からなる第1
端面板と、上記当接させた側面に対向し、かつ上記第2
熱交換器の冷媒流出入口および被冷却水流出入口を設け
た耐圧部材からなる第2端面板により上記液過冷却器お
よび上記第2熱交換器の各プレート群を挟着して、上記
液過冷却器および上記第2熱交換器を一体的に形成して
ある。このため、非共沸混合冷媒を用いた冷凍装置にお
いて、蒸発用第2熱交換器での熱交換効率、蒸発性能が
向上し、成績係数(COP)の向上が可能になるととと
もに、装置の占有スペースを縮小化、軽量化が可能とな
るという効果を奏する。
As is apparent from the above description, according to the first invention, at least the compressor, the first heat exchanger for condensation,
In a refrigeration system including a closed non-azeotropic refrigerant mixture circulation path including a liquid receiver, a first expansion valve, and a second heat exchanger for evaporation, a high-pressure refrigerant before reaching the first expansion valve flows thereinto. And flows out from the upper part to the lower part and flows out from the lower part toward the first expansion valve, while the low-pressure refrigerant flowing out from the second heat exchanger flows and flows from the lower part to the upper part and sucks the compressor. A liquid subcooler, which is a vertical one-pass counter-flow type heat exchanger that flows out in a gas state toward the part,
The second heat exchanger is a vertical one-pass counterflow type in which refrigerant flows from bottom to top through the first expansion valve, while water to be cooled flows from top to bottom, and contains unevaporated components. The refrigerant is allowed to flow toward the liquid subcooler, and each of the liquid subcooler and the second heat exchanger is formed of a plate group including a plurality of plates forming a fluid flow path of a plate heat exchanger. A structure in which one end plate of the end plates made of pressure-resistant members on both sides to be sandwiched is omitted, and the side surfaces with both end plates omitted are brought into contact with each other, facing the contacted side surfaces, A first pressure-resistant member provided with a high-pressure refrigerant outlet and a low-pressure refrigerant outlet of the liquid subcooler;
The end face plate and the side surface in contact with the end face plate;
The liquid subcooler and the respective plate groups of the second heat exchanger are sandwiched by a second end plate made of a pressure-resistant member provided with a refrigerant outflow port and a cooled water outflow port of the heat exchanger, and the liquid subcooling is performed. The heat exchanger and the second heat exchanger are integrally formed. For this reason, in the refrigerating apparatus using the non-azeotropic mixed refrigerant, the heat exchange efficiency and the evaporating performance in the second heat exchanger for evaporation are improved, and the coefficient of performance (COP) can be improved. There is an effect that the space can be reduced and the weight can be reduced.

【0027】また、第2発明によれば、少なくとも圧縮
機、凝縮用第1熱交換器、受液器、第1膨張弁、蒸発用
第2熱交換器を含む閉じた非共沸混合冷媒用の循環流路
を備えた冷凍装置において、上記第1膨張弁に達する前
の高圧冷媒を流入させて上から下に流動させ、下部から
上記第1膨張弁に向けて流出させる一方、上記第2熱交
換器から流出した低圧冷媒を流入させて下から上に流動
させ、上記圧縮機の吸込部に向けてガス状態にして流出
させる縦形1パス対向流タイプの熱交換器である液過冷
却器を設けるとともに、上記第2熱交換器が、上記第1
膨張弁を経て流入した冷媒を下から上に流動させる一
方、被冷却水を上から下に流動させる縦形1パス対向流
タイプで、かつ未蒸発分を含んだ冷媒を上記液過冷却器
に向けて流出させてなり、上記第2熱交換器の冷媒流出
口と上記液過冷却器の低圧冷媒流入口との間の冷媒流路
に介在し、上部が上記冷媒流出口に連通する冷媒ガス空
間部、下部が上記低圧冷媒流入口に連通する冷媒液溜ま
り部となった第1気液分離器と、上記冷媒ガス空間部を
上記圧縮機の吸込部に連通させる吸込冷媒流路と、この
吸込冷媒流路に上記低圧冷媒流出口を連通させる合流冷
媒流路と、上記吸込冷媒流路と上記合流冷媒流路との合
流部に介在し、上記冷媒ガス空間部から上記圧縮機の吸
込部に向けて流動する冷媒ガスに、上記低圧冷媒流出口
からの冷媒ガスを吸引させ、随伴させるエジェクタとを
設けた構成としてある。このため、圧力損失が減少し、
第1発明と同じく、熱交換効率、蒸発性能が向上し、成
績係数(COP)の向上が可能となる。
According to the second invention, for a closed non-azeotropic mixed refrigerant including at least a compressor, a first heat exchanger for condensation, a liquid receiver, a first expansion valve, and a second heat exchanger for evaporation. In the refrigerating apparatus having the circulation flow path of the above, the high-pressure refrigerant before reaching the first expansion valve is caused to flow in, flow from top to bottom, and flow out from the lower part toward the first expansion valve, and A liquid subcooler, which is a vertical one-pass counter-flow type heat exchanger that causes the low-pressure refrigerant flowing out of the heat exchanger to flow in, flow upward from the bottom, and flow out in a gas state toward the suction portion of the compressor. And the second heat exchanger is provided with the first heat exchanger.
A vertical one-pass counter-flow type in which the refrigerant flowing through the expansion valve flows from bottom to top while the water to be cooled flows from top to bottom, and the refrigerant containing unevaporated components is directed to the liquid subcooler. A refrigerant gas space interposed in the refrigerant flow path between the refrigerant outlet of the second heat exchanger and the low-pressure refrigerant inlet of the liquid subcooler, and having an upper part communicating with the refrigerant outlet. A first gas-liquid separator having a lower portion and a lower portion serving as a refrigerant liquid reservoir communicating with the low-pressure refrigerant inflow port; a suction refrigerant flow path communicating the refrigerant gas space with a suction portion of the compressor; A merging refrigerant flow path that communicates the low-pressure refrigerant outlet with the refrigerant flow path, a merging part between the suction refrigerant flow path and the merging refrigerant flow path, and from the refrigerant gas space to the suction part of the compressor. The refrigerant gas flowing from the low-pressure refrigerant outlet into the refrigerant gas flowing toward Is allowed, there is a structure in which the ejector to associated. For this reason, pressure loss is reduced,
As in the first invention, the heat exchange efficiency and the evaporation performance are improved, and the coefficient of performance (COP) can be improved.

【0028】また、第3発明によれば、第2発明の構成
に加え、上記第1気液分離器が、上記液過冷却器よりも
上方に配置されてた構成としてある。このことから、第
2発明の効果がより一層促進されるという効果を奏す
る。
According to the third invention, in addition to the structure of the second invention, the first gas-liquid separator is arranged above the liquid subcooler. From this, there is an effect that the effect of the second invention is further promoted.

【0029】さらに、第4発明によれば、上記圧縮機を
その駆動部であるモータと同一ケーシング内に収容した
半密閉形のものとし、上記液過冷却器と上記圧縮機との
間に、下部が冷媒液溜まり部、上部が冷媒ガス空間部と
なった第2気液分離器を介設し、かつ上記低圧冷媒流出
口と上記冷媒ガス空間部とを連通させる第1冷媒流路
と、上記冷媒液溜まり部を上記圧縮機の吸込部に直接連
通させる第2冷媒流路と、上記冷媒ガス空間部から上記
ケーシング内のモータを通過して上記吸込部に冷媒ガス
を導く吸込冷媒流路とを設けて形成してある。このた
め、半密閉形圧縮機を用いた冷凍装置の場合には、第1
発明による効果がより一層促進されるという効果を奏す
る。
Further, according to the fourth aspect of the invention, the compressor is a semi-hermetic type housed in the same casing as a motor as a driving unit thereof, and the compressor is provided between the liquid subcooler and the compressor. A first refrigerant flow path interposing a second gas-liquid separator in which a lower portion is a refrigerant liquid storage portion and an upper portion is a refrigerant gas space portion, and communicates the low-pressure refrigerant outlet with the refrigerant gas space portion; A second refrigerant flow path that directly communicates the refrigerant liquid reservoir with a suction part of the compressor; and a suction refrigerant flow path that guides refrigerant gas from the refrigerant gas space through a motor in the casing to the suction part. Are formed. Therefore, in the case of a refrigeration system using a semi-hermetic compressor, the first
An effect that the effect of the invention is further promoted is exhibited.

【0030】さらに、第5発明によれば、上記第1熱交
換器が、上記圧縮機から流入した冷媒を上から下に流動
させる一方、冷却水を下から上に流動させる縦形1パス
対向流タイプで、かつ上記受液器よりも上方に配置され
た構成としてある。このため、上記各発明による効果に
加えて、凝縮用第1熱交換器での熱交換効率が良好な状
態に保たれ、凝縮性能が向上するという効果を奏する。
Further, according to the fifth invention, the first heat exchanger allows the refrigerant flowing from the compressor to flow from top to bottom while the cooling water flows from bottom to top. It is of a type and arranged above the liquid receiver. For this reason, in addition to the effect by each said invention, there exists an effect that the heat exchange efficiency in the 1st heat exchanger for condensation is maintained in a favorable state, and the condensation performance improves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態に係る冷凍装置の冷媒
系統図である。
FIG. 1 is a refrigerant system diagram of a refrigeration apparatus according to a first embodiment of the present invention.

【図2】 図1に示す冷凍装置の液過冷却器、第2熱交
換器の部分の概略を示す正面図である。
FIG. 2 is a front view schematically showing a liquid subcooler and a second heat exchanger of the refrigeration apparatus shown in FIG.

【図3】 図2に示す液過冷却器、第2熱交換器の部分
の概略を示す斜視図である。
FIG. 3 is a perspective view schematically showing a part of a liquid subcooler and a second heat exchanger shown in FIG. 2;

【図4】 従来周知の縦形1パス対向流タイプのプレー
ト式熱交換器の正面図である。
FIG. 4 is a front view of a conventionally known vertical one-pass counterflow type plate heat exchanger.

【図5】 図4に示す熱交換器の左側面図である。FIG. 5 is a left side view of the heat exchanger shown in FIG.

【図6】 図4に示す熱交換器の分解斜視図である。FIG. 6 is an exploded perspective view of the heat exchanger shown in FIG.

【図7】 本発明の第2実施形態に係る冷凍装置の冷媒
系統図である。
FIG. 7 is a refrigerant system diagram of a refrigeration apparatus according to a second embodiment of the present invention.

【図8】 本発明の第3実施形態に係る冷凍装置の冷媒
系統図である。
FIG. 8 is a refrigerant system diagram of a refrigeration apparatus according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 圧縮機 12 第1熱交換器 13 受液器 14 エコノマイザ 15 液過冷却器 16 第1膨張弁 17 第2熱交換器 18 第2膨張弁 21 冷媒流入口 22 冷媒流出口 23 冷却水流入口 24 冷却水流出口 25 高圧冷媒流入口 26 高圧冷媒流出口 27 低圧冷媒流入口 28 低圧冷媒流出口 31 プレート 32,33 端面板 34 ボルト・ナット 35 冷媒流入口 36 冷媒流出口 37 被冷却水流入口 38 被冷却水流出口 41 第1端面板 42 第2端面板 51 冷媒ガス空間部 52 冷媒液溜まり部 53 第1気液分離器 54 吸込冷媒流路 55 合流冷媒流路 56 エジェクタ 61 冷媒液溜まり部 62 冷媒ガス空間 63 第2気液分離器 64 第1冷媒流路 65 第2冷媒流路 66 吸込冷媒流路 67 第1温度センサ 68 第2温度センサ I 循環流路 II 過冷却流路 S 吸込部 DESCRIPTION OF SYMBOLS 11 Compressor 12 1st heat exchanger 13 Liquid receiver 14 Economizer 15 Liquid supercooler 16 1st expansion valve 17 2nd heat exchanger 18 2nd expansion valve 21 Refrigerant inlet 22 Refrigerant outlet 23 Cooling water inlet 24 Cooling Water outlet 25 High-pressure refrigerant inlet 26 High-pressure refrigerant outlet 27 Low-pressure refrigerant inlet 28 Low-pressure refrigerant outlet 31 Plate 32,33 End plate 34 Bolt / nut 35 Refrigerant inlet 36 Refrigerant outlet 37 Cooled water inlet 38 Cooled water flow Outlet 41 First end face plate 42 Second end face plate 51 Refrigerant gas space part 52 Refrigerant liquid reservoir part 53 First gas-liquid separator 54 Suction refrigerant flow path 55 Merging refrigerant flow path 56 Ejector 61 Refrigerant liquid storage part 62 Refrigerant gas space 63 Second gas-liquid separator 64 First refrigerant flow path 65 Second refrigerant flow path 66 Suction refrigerant flow path 67 First temperature sensor 68 Second temperature sensor I Circulation flow path II Subcooling flow path S Suction section

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機、凝縮用第1熱交換
器、受液器、第1膨張弁、蒸発用第2熱交換器を含む閉
じた非共沸混合冷媒用の循環流路を備えた冷凍装置にお
いて、上記第1膨張弁に達する前の高圧冷媒を流入させ
て上から下に流動させ、下部から上記第1膨張弁に向け
て流出させる一方、上記第2熱交換器から流出した低圧
冷媒を流入させて下から上に流動させ、上記圧縮機の吸
込部に向けてガス状態にして流出させる縦形1パス対向
流タイプの熱交換器である液過冷却器を設けるととも
に、上記第2熱交換器が、上記第1膨張弁を経て流入し
た冷媒を下から上に流動させる一方、被冷却水を上から
下に流動させる縦形1パス対向流タイプで、かつ未蒸発
分を含んだ冷媒を上記液過冷却器に向けて流出させ、か
つ上記液過冷却器および上記第2熱交換器のそれぞれ
を、プレート式熱交換器の流体流路を形成する複数のプ
レートからなるプレート群を挟着する両側面の耐圧部材
からなる端面板の一方の端面板を省いた構造にするとと
もに、この両者の端面板を省いた側面同志を当接させ、
この当接させた側面に対向し、かつ上記液過冷却器の高
圧冷媒流出入口および低圧冷媒流出入口を設けた耐圧部
材からなる第1端面板と、上記当接させた側面に対向
し、かつ上記第2熱交換器の冷媒流出入口および被冷却
水流出入口を設けた耐圧部材からなる第2端面板により
上記液過冷却器および上記第2熱交換器の各プレート群
を挟着して、上記液過冷却器および上記第2熱交換器を
一体的に形成したことを特徴とする冷凍装置。
1. A closed circulation path for a non-azeotropic mixed refrigerant including at least a compressor, a first heat exchanger for condensation, a receiver, a first expansion valve, and a second heat exchanger for evaporation. In the refrigerating apparatus, the high-pressure refrigerant before reaching the first expansion valve is flowed in from the top to the bottom, and is discharged from the lower part toward the first expansion valve, while the low-pressure refrigerant flowing from the second heat exchanger is discharged. A liquid subcooler, which is a vertical one-pass counter-flow type heat exchanger that allows a refrigerant to flow in from the bottom to flow upward from the bottom and to flow out in a gas state toward the suction portion of the compressor, and A vertical one-pass counterflow type in which the heat exchanger flows the refrigerant flowing through the first expansion valve from bottom to top while flowing the water to be cooled from top to bottom, and contains a non-evaporated component. To the liquid subcooler, and the liquid subcooler and For each of the second heat exchangers, one of the end plates made of pressure-resistant members on both sides sandwiching a plate group consisting of a plurality of plates forming a fluid flow path of the plate heat exchanger is omitted. In addition to the structure, the two sides without the end plates abut each other,
A first end plate made of a pressure-resistant member provided with a high-pressure refrigerant outflow port and a low-pressure refrigerant outflow port of the liquid subcooler, facing the contacted side surface, and facing the contacted side surface, and The liquid subcooler and each plate group of the second heat exchanger are sandwiched by a second end face plate made of a pressure-resistant member provided with a refrigerant outflow port and a cooled water outflow port of the second heat exchanger, A refrigeration apparatus wherein the liquid subcooler and the second heat exchanger are integrally formed.
【請求項2】 少なくとも圧縮機、凝縮用第1熱交換
器、受液器、第1膨張弁、蒸発用第2熱交換器を含む閉
じた非共沸混合冷媒用の循環流路を備えた冷凍装置にお
いて、上記第1膨張弁に達する前の高圧冷媒を流入させ
て上から下に流動させ、下部から上記第1膨張弁に向け
て流出させる一方、上記第2熱交換器から流出した低圧
冷媒を流入させて下から上に流動させ、上記圧縮機の吸
込部に向けてガス状態にして流出させる縦形1パス対向
流タイプの熱交換器である液過冷却器を設けるととも
に、上記第2熱交換器が、上記第1膨張弁を経て流入し
た冷媒を下から上に流動させる一方、被冷却水を上から
下に流動させる縦形1パス対向流タイプで、かつ未蒸発
分を含んだ冷媒を上記液過冷却器に向けて流出させてな
り、上記第2熱交換器の冷媒流出口と上記液過冷却器の
低圧冷媒流入口との間の冷媒流路に介在し、上部が上記
冷媒流出口に連通する冷媒ガス空間部、下部が上記低圧
冷媒流入口に連通する冷媒液溜まり部となった第1気液
分離器と、上記冷媒ガス空間部を上記圧縮機の吸込部に
連通させる吸込冷媒流路と、この吸込冷媒流路に上記低
圧冷媒流出口を連通させる合流冷媒流路と、上記吸込冷
媒流路と上記合流冷媒流路との合流部に介在し、上記冷
媒ガス空間部から上記圧縮機の吸込部に向けて流動する
冷媒ガスに、上記低圧冷媒流出口からの冷媒ガスを吸引
させ、随伴させる吸引手段とを設けたことを特徴とする
冷凍装置。
2. A closed circulation path for a non-azeotropic mixed refrigerant including at least a compressor, a first heat exchanger for condensation, a liquid receiver, a first expansion valve, and a second heat exchanger for evaporation. In the refrigerating apparatus, the high-pressure refrigerant before reaching the first expansion valve is flowed in from the top to the bottom, and is discharged from the lower part toward the first expansion valve, while the low-pressure refrigerant flowing from the second heat exchanger is discharged. A liquid subcooler, which is a vertical one-pass counter-flow type heat exchanger that allows a refrigerant to flow in from the bottom to flow upward from the bottom and to flow out in a gas state toward the suction portion of the compressor, and A vertical one-pass counterflow type in which the heat exchanger flows the refrigerant flowing through the first expansion valve from bottom to top while flowing the water to be cooled from top to bottom, and contains a non-evaporated component. To the liquid subcooler, and the second heat exchanger A refrigerant gas space portion that is interposed in the refrigerant flow path between the refrigerant outlet and the low-pressure refrigerant inlet of the liquid subcooler and has an upper portion communicating with the refrigerant outlet, and a lower portion communicating with the low-pressure refrigerant inlet. A first gas-liquid separator serving as a liquid reservoir, a suction refrigerant flow path for connecting the refrigerant gas space to a suction part of the compressor, and a confluence for connecting the low-pressure refrigerant outlet to the suction refrigerant flow path A refrigerant flow path, interposed at the junction of the suction refrigerant flow path and the merged refrigerant flow path, into the refrigerant gas flowing from the refrigerant gas space toward the suction part of the compressor, the low-pressure refrigerant outlet A refrigerating apparatus provided with suction means for sucking and accompanying refrigerant gas from the refrigerator.
【請求項3】 上記第1気液分離器が、上記液過冷却器
よりも上方に配置されたことを特徴とする請求項2に記
載の冷凍装置。
3. The refrigeration apparatus according to claim 2, wherein the first gas-liquid separator is disposed above the liquid subcooler.
【請求項4】 上記圧縮機をその駆動部であるモータと
同一ケーシング内に収容した半密閉形のものとし、上記
液過冷却器と上記圧縮機との間に、下部が冷媒液溜まり
部、上部が冷媒ガス空間部となった第2気液分離器を分
設し、かつ上記低圧冷媒流出口と上記冷媒ガス空間部と
を連通させる第1冷媒流路と、上記冷媒液溜まり部を上
記圧縮機の吸込部に直接連通させる第2冷媒流路と、上
記冷媒ガス空間部から上記ケーシング内のモータを通過
して上記吸込部に冷媒ガスを導く吸込冷媒流路とを設け
て形成したことを特徴とする請求項1に記載の冷凍装
置。
4. A compressor according to claim 1, wherein said compressor is a semi-hermetic type housed in the same casing as a motor which is a driving unit thereof, and a lower portion of said compressor is provided between said liquid supercooler and said compressor. A second gas-liquid separator having an upper portion serving as a refrigerant gas space portion is provided, and a first refrigerant flow path that communicates the low-pressure refrigerant outlet with the refrigerant gas space portion, and the refrigerant liquid reservoir portion is formed as described above. A second refrigerant flow path directly communicating with the suction part of the compressor, and a suction refrigerant flow path for guiding the refrigerant gas from the refrigerant gas space through the motor in the casing to the suction part. The refrigeration apparatus according to claim 1, wherein:
【請求項5】 上記第1熱交換器が、上記圧縮機から流
入した冷媒を上から下に流動させる一方、冷却水を下か
ら上に流動させる縦形1パス対向流タイプで、かつ上記
受液器よりも上方に配置されたことを特徴とする請求項
1から4のいずれかに記載の冷凍装置。
5. The vertical one-pass counterflow type in which the first heat exchanger causes the refrigerant flowing from the compressor to flow from top to bottom, and the cooling water to flow from bottom to top. The refrigeration apparatus according to any one of claims 1 to 4, wherein the refrigeration apparatus is disposed above the vessel.
JP10176326A 1998-06-23 1998-06-23 Refrigerating machine Pending JP2000018735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10176326A JP2000018735A (en) 1998-06-23 1998-06-23 Refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10176326A JP2000018735A (en) 1998-06-23 1998-06-23 Refrigerating machine

Publications (1)

Publication Number Publication Date
JP2000018735A true JP2000018735A (en) 2000-01-18

Family

ID=16011640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10176326A Pending JP2000018735A (en) 1998-06-23 1998-06-23 Refrigerating machine

Country Status (1)

Country Link
JP (1) JP2000018735A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283998A (en) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp Refrigerating cycle
JP2007078318A (en) * 2005-09-16 2007-03-29 Toshiba Kyaria Kk Refrigeration cycle device
WO2010104057A1 (en) * 2009-03-12 2010-09-16 三菱重工業株式会社 Heat pump device
JP2012163243A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Refrigerator
WO2016117069A1 (en) * 2015-01-22 2016-07-28 三菱電機株式会社 Plate heat exchanger and heat-pump-type outdoor device
WO2018047299A1 (en) * 2016-09-09 2018-03-15 三菱電機株式会社 Plate-type heat exchanger and refrigeration cycle device
WO2019026481A1 (en) * 2017-07-31 2019-02-07 株式会社デンソー Combined heat exchanger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283998A (en) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp Refrigerating cycle
JP2007078318A (en) * 2005-09-16 2007-03-29 Toshiba Kyaria Kk Refrigeration cycle device
JP4704167B2 (en) * 2005-09-16 2011-06-15 東芝キヤリア株式会社 Refrigeration cycle equipment
WO2010104057A1 (en) * 2009-03-12 2010-09-16 三菱重工業株式会社 Heat pump device
JP2010210224A (en) * 2009-03-12 2010-09-24 Mitsubishi Heavy Ind Ltd Heat pump device
JP2012163243A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Refrigerator
WO2016117069A1 (en) * 2015-01-22 2016-07-28 三菱電機株式会社 Plate heat exchanger and heat-pump-type outdoor device
JPWO2016117069A1 (en) * 2015-01-22 2017-06-29 三菱電機株式会社 Plate heat exchanger and heat pump outdoor unit
WO2018047299A1 (en) * 2016-09-09 2018-03-15 三菱電機株式会社 Plate-type heat exchanger and refrigeration cycle device
JPWO2018047299A1 (en) * 2016-09-09 2019-04-11 三菱電機株式会社 Plate heat exchanger and refrigeration cycle equipment
WO2019026481A1 (en) * 2017-07-31 2019-02-07 株式会社デンソー Combined heat exchanger
JP2019027690A (en) * 2017-07-31 2019-02-21 株式会社デンソー Complex type heat exchanger
US11105536B2 (en) 2017-07-31 2021-08-31 Denso Corporation Combined heat exchanger

Similar Documents

Publication Publication Date Title
EP2828591B1 (en) Electronics cooling using lubricant return for a shell-and-tube style evaporator
US7254961B2 (en) Vapor compression cycle having ejector
US6898947B2 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
US9032754B2 (en) Electronics cooling using lubricant return for a shell-and-tube evaporator
KR101633781B1 (en) Chiller
US20080289350A1 (en) Two stage transcritical refrigeration system
CN1170860A (en) Dual inlet oil separator for chiller
KR101220741B1 (en) Freezing device
KR20110097367A (en) Chiller
JP2004028525A (en) Accumulator and refrigeration cycle using the same
JP2000018735A (en) Refrigerating machine
KR20090045473A (en) A condenser
JPS6022250B2 (en) vapor compression refrigeration equipment
JP2005249282A (en) Refrigerator
JP2002364936A (en) Refrigeration unit
JPH10160190A (en) Air conditioner
SU1079968A1 (en) Refrigerating machine
JP5193450B2 (en) Supercooling device
JP2002310518A (en) Refrigerating apparatus
JPH02213652A (en) Two-stage compression and freezing cycle type air conditioner
JP2008071021A (en) Automatic vending machine
KR100922426B1 (en) Air-conditioning system for vehicle
JP2574545B2 (en) Refrigeration cycle device
JPH01305266A (en) Heat pump
JPS5926196Y2 (en) thermally driven refrigeration equipment