JP2002310518A - Refrigerating apparatus - Google Patents

Refrigerating apparatus

Info

Publication number
JP2002310518A
JP2002310518A JP2001116348A JP2001116348A JP2002310518A JP 2002310518 A JP2002310518 A JP 2002310518A JP 2001116348 A JP2001116348 A JP 2001116348A JP 2001116348 A JP2001116348 A JP 2001116348A JP 2002310518 A JP2002310518 A JP 2002310518A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid refrigerant
supercooler
condenser
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001116348A
Other languages
Japanese (ja)
Inventor
Junichi Hirohashi
純一 廣橋
Makoto Otawara
信 太田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001116348A priority Critical patent/JP2002310518A/en
Publication of JP2002310518A publication Critical patent/JP2002310518A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Abstract

PROBLEM TO BE SOLVED: To prevent a refrigerating capacity from being deteriorated by securing a stable operation state in a refrigerating apparatus even when air bubbles are mixed into a liquid refrigerant in liquid refrigerant piping located at an outlet of a condenser. SOLUTION: In the refrigerating apparatus provided with a refrigeration cycle comprising a compressor, the condenser, a supercooler including a cooling means for supercooling a liquid refrigerant from the condenser, an expansion valve, and a vaporizer, a cooling means inlet of the supercooler is connected with downstream piping of the foregoing expansion valve, and an outlet of the cooling means is connected with upstream piping of the vaporizer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルを用
いる冷凍装置に係り、空気調和機、冷凍機、冷水機、除
湿機等の冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus using a refrigerating cycle, and more particularly to a refrigerating apparatus such as an air conditioner, a refrigerator, a chiller, and a dehumidifier.

【0002】[0002]

【従来の技術】従来、冷凍装置に使用されてきた特定フ
ロン(CFC系冷媒)は、1996年年初より生産全廃
となった。指定フロン(HCFC系冷媒)は1996年
より生産の総量規制開始となり、それらの代替として安
全性、性能等の面からHFC系冷媒が注目されている。
2. Description of the Related Art The production of specific CFCs (CFC-based refrigerants) which have been used in refrigeration systems has been completely abolished since the beginning of 1996. HFC-based refrigerants have been receiving attention from the viewpoint of safety, performance, etc. as a substitute for the specified amount of specified fluorocarbons (HCFC-based refrigerants), which began to be regulated in 1996.

【0003】HFC系冷媒の代表としてR134aが、
HFC系混合冷媒の代表としてR404A、R507A
及びR407C等があるが、CFC、HCFC系冷媒と
比較して、圧縮機吸入ガス密度が大きく、圧縮機の入口
体積は一定であることより、ガス重量が大きくなって、
冷媒循環量が多くなり、結果として液配管中の圧力損失
が大きくなり、過冷却度が下がると共に、飽和温度降下
度も大きく液配管中で冷媒気泡が発生しやすい。
[0003] R134a is a typical HFC-based refrigerant,
R404A, R507A as representatives of HFC-based mixed refrigerants
And R407C, etc., compared to CFC and HCFC-based refrigerants, the compressor intake gas density is large, and the compressor inlet volume is constant, so the gas weight increases,
The refrigerant circulation amount increases, and as a result, the pressure loss in the liquid pipe increases, the degree of supercooling decreases, and the degree of saturation temperature drop increases.

【0004】また、CFC、HCFC系冷媒と比較し
て、液冷媒の比熱が大となるため、液過冷却度が小とな
る傾向がある。また、受液器又は凝縮器の液冷媒だめ部
において液冷媒部にガス冷媒気泡が溶け込みやすい特徴
がある。
[0004] Further, since the specific heat of the liquid refrigerant is larger than that of the CFC or HCFC refrigerant, the degree of subcooling of the liquid tends to be small. In addition, there is a characteristic that gas refrigerant bubbles easily melt into the liquid refrigerant portion in the liquid refrigerant sump portion of the liquid receiver or the condenser.

【0005】気泡を多く含む液冷媒は比体積が大きいの
で、従来の図5のような冷凍サイクルでは膨張弁3がチ
ョークして、冷媒循環量が減少し、その結果、蒸発器4
における冷媒の蒸発量が減少し、これに伴って冷凍能力
の低下や、圧縮機1に吸入されるガス冷媒温度の上昇に
基づく圧縮機1の耐久性の低下等の不具合が発生するこ
とがあった。
Since the liquid refrigerant containing many bubbles has a large specific volume, in the conventional refrigeration cycle as shown in FIG. 5, the expansion valve 3 is choked and the refrigerant circulation amount is reduced.
Accordingly, problems such as a decrease in the refrigerating capacity and a decrease in the durability of the compressor 1 due to an increase in the temperature of the gas refrigerant sucked into the compressor 1 may occur. Was.

【0006】そこで、従来より冷凍サイクルにおいて凝
縮器2下流の液冷媒配管6に冷媒気泡が混入するのを防
止する対策がとられた。
Therefore, conventionally, measures have been taken to prevent refrigerant bubbles from entering the liquid refrigerant pipe 6 downstream of the condenser 2 in the refrigeration cycle.

【0007】第1の従来例として特開平6−11212
号公報に開示されたものがある。これは冷凍サイクルを
形成する受液器に関するものであり、受液器上部に下方
ほど径の大きい円錐面または半球面の外面を上にした案
内部を有しており、液ガス混合冷媒はこの円錐部または
半球面の下方の内面に導かれて円筒形壁面を伝わって液
冷媒の中へ静かに流下させ、液冷媒の中での気泡の発生
を減少させるものである。
A first conventional example is disclosed in Japanese Patent Laid-Open No. 6-11212.
Is disclosed in Japanese Patent Application Laid-Open Publication No. HEI 9-203 (1995). This relates to a liquid receiver that forms a refrigeration cycle, and has a guide part with a conical surface or a hemispherical outer surface with a larger diameter at the upper part on the upper part of the liquid receiver. It is guided to the inner surface below the conical portion or the hemispherical surface, travels along the cylindrical wall surface, and flows down gently into the liquid refrigerant to reduce the generation of bubbles in the liquid refrigerant.

【0008】第2の従来例として、水冷式凝縮器の場合
に冷媒封入量を増し、液冷媒の過冷却度を確保するとい
う方法がある。
As a second conventional example, there is a method of increasing the amount of charged refrigerant in the case of a water-cooled condenser to ensure the degree of supercooling of the liquid refrigerant.

【0009】また、第3の従来例として、吸入ガスと液
冷媒とを熱交換する液ガス熱交換という方法が、特開平
9−196480号公報に開示されている。すなわち、
本公報には、低温ガス冷媒と熱交換して冷凍室の温度を
下げるための蒸発器と、該蒸発器からのガス冷媒を吸入
してこれを圧縮するための圧縮機と、該圧縮機からの高
温高圧ガス冷媒を水等と熱交換して凝縮し液冷媒とする
ための凝縮器と、該凝縮器からの液冷媒を過冷却するた
めの冷却管を有する過冷却器と、該過冷却器からの液冷
媒を膨張させ低温ガス冷媒とするための膨張弁と、を備
え、これらの機器を配管接続して冷凍サイクルを構成す
る冷凍装置において、前記過冷却器の冷却管入口が前記
蒸発器の下流側配管に接続され、また同じく冷却管出口
が前記圧縮機の吸入側配管に接続される冷凍装置につい
ての例が示されている。
As a third conventional example, Japanese Patent Application Laid-Open No. Hei 9-196480 discloses a method called liquid gas heat exchange in which heat is exchanged between a suction gas and a liquid refrigerant. That is,
This publication discloses an evaporator for exchanging heat with a low-temperature gas refrigerant to lower the temperature of a freezing chamber, a compressor for sucking gas refrigerant from the evaporator and compressing it, and A condenser for heat-exchanging the high-temperature and high-pressure gas refrigerant with water or the like to condense into a liquid refrigerant, a subcooler having a cooling pipe for subcooling the liquid refrigerant from the condenser, and the subcooling. An expansion valve for expanding the liquid refrigerant from the cooler into a low-temperature gaseous refrigerant, and connecting these devices with a pipe to form a refrigeration cycle. An example is shown of a refrigerating device connected to a downstream pipe of a vessel and also having a cooling pipe outlet connected to a suction pipe of the compressor.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、第1の
従来例では、液冷媒配管6の液冷媒の過冷却度が不足
し、液冷媒配管6内で再び気泡が発生するという問題点
があった。
However, the first conventional example has a problem that the degree of supercooling of the liquid refrigerant in the liquid refrigerant pipe 6 is insufficient, and bubbles are generated again in the liquid refrigerant pipe 6. .

【0011】また、第2の従来例では、価格の高いHF
C冷媒を多く封入する必要があり、コスト高となるとい
う問題点があった。
In the second conventional example, the expensive HF
It is necessary to enclose a large amount of the C refrigerant, and there is a problem that the cost increases.

【0012】さらに、本願発明に最も近い第3の従来例
では、液ガス熱交換により、圧力損失が生じこの影響で
吸入ガス密度が低下し、冷媒循環量が低下し、冷凍能力
が低下する。例えば、過冷却器のない標準サイクルに対
する本従来例の冷凍能力の低下は、蒸発温度0℃として
約15%、−40℃として約10%となるという問題点
があった。
Further, in the third conventional example closest to the present invention, a pressure loss occurs due to the liquid-gas heat exchange, the intake gas density decreases due to this effect, the refrigerant circulation amount decreases, and the refrigerating capacity decreases. For example, the decrease in the refrigerating capacity of the conventional example with respect to the standard cycle having no supercooler has a problem that the evaporation temperature is about 15% at 0 ° C. and about 10% at −40 ° C.

【0013】本発明の目的は、上記のような従来技術の
問題点を解決し、液冷媒配管に気泡が混入しても安定し
た運転状態を確保し、冷凍能力の低下を防止する冷凍装
置を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a refrigeration apparatus which ensures a stable operation state even if bubbles are mixed in a liquid refrigerant pipe and prevents a decrease in refrigeration capacity. To provide.

【0014】[0014]

【課題を解決するための手段】前記の目的を達成するた
め、本発明による冷凍装置は、特許請求の範囲の各請求
項に記載されたところを特徴とするものであるが、独立
発明としての請求項1に係る冷凍装置は、圧縮機、凝縮
器、該凝縮器からの液冷媒を過冷却するための冷却手段
を有する過冷却器、膨張弁及び蒸発器を備えた冷凍サイ
クルからなる冷凍装置において、前記過冷却器の冷却手
段入口が前記膨張弁の下流側配管に接続され、また同じ
く冷却手段出口が前記蒸発器の上流側配管に接続されて
いることを特徴とするものである。
In order to achieve the above object, a refrigeration apparatus according to the present invention is characterized by what is described in each claim of the claims. A refrigerating apparatus according to claim 1, comprising a refrigerating cycle including a compressor, a condenser, a subcooler having a cooling unit for subcooling liquid refrigerant from the condenser, an expansion valve, and an evaporator. Wherein the cooling means inlet of the supercooler is connected to the downstream pipe of the expansion valve, and the cooling means outlet is also connected to the upstream pipe of the evaporator.

【0015】[0015]

【作用】本発明におけるモリエル線図を図4に示す。気
泡を含む液冷媒が状態c、過冷却器液冷媒出口が状態
d、膨張弁下流の過冷却器ガス冷媒入口が状態e、蒸発
器4上流の過冷却器ガス冷媒出口が状態fを表してい
る。なお、aは圧縮機への吸入口の状態を表している。
FIG. 4 is a Mollier diagram according to the present invention. The liquid refrigerant containing bubbles is in state c, the subcooler liquid refrigerant outlet is state d, the subcooler gas refrigerant inlet downstream of the expansion valve is state e, and the subcooler gas refrigerant outlet upstream of the evaporator 4 is state f. I have. Note that a represents the state of the suction port to the compressor.

【0016】本モリエル線図において過冷却器における
熱交換量は、以下の式によって示される。
In the Mollier diagram, the amount of heat exchange in the subcooler is represented by the following equation.

【0017】G(ic−id)=G(if−ie)
(G;冷媒循環量) 一方、冷凍能力はG(ia−if)で示される。ここで冷
媒循環量Gは、過冷却器の有無に関係無く一定値であ
る。また、冷凍能力に関するエンタルピ差(ia−if
も過冷却器の有無に関係無く一定値である。すなわち、
本発明のように過冷却器を設けることは、液冷媒中の気
泡を液化させるだけで冷凍能力には何ら影響を及ぼさ
ず、過冷却器のない標準サイクルと等しい冷凍能力を有
し、第3の従来例のような冷凍能力の低下は生じない。
[0017] G (i c -i d) = G (i f -i e)
(G; refrigerant circulation amount) On the other hand, the refrigerating capacity is represented by G (i a -i f). Here, the refrigerant circulation amount G is a constant value regardless of the presence or absence of the supercooler. In addition, the enthalpy difference relates to a refrigeration capacity (i a -i f)
Is also constant regardless of the presence or absence of the supercooler. That is,
The provision of the supercooler as in the present invention does not affect the refrigerating capacity at all only by liquefying bubbles in the liquid refrigerant, and has a refrigerating capacity equal to that of a standard cycle without a supercooler. The lowering of the refrigerating capacity unlike the conventional example does not occur.

【0018】[0018]

【発明の実施の形態】以下、本発明の冷凍装置に係る実
施例を図1ないし図3に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to FIGS.

【0019】図1は、本発明の第一実施例を示す冷凍サ
イクル系統図である。冷凍装置は、スクリュー式あるい
はスクロール式等の圧縮機1、凝縮器2、膨張弁3、蒸
発器4、過冷却器5及び液冷媒配管6等で構成されてい
る。
FIG. 1 is a refrigeration cycle system diagram showing a first embodiment of the present invention. The refrigerating apparatus includes a screw type or scroll type compressor 1, a condenser 2, an expansion valve 3, an evaporator 4, a subcooler 5, a liquid refrigerant pipe 6, and the like.

【0020】図1において、過冷却器5は、被冷却側が
過冷却器液冷媒入口7から過冷却器液冷媒出口8へ液冷
媒を通す被冷却手段5aで構成され、冷却側は過冷却器
ガス冷媒入口9から過冷却器ガス冷媒出口10へとガス
冷媒を通す冷却手段5bで構成され、被冷却手段5a
は、凝縮器2の下流側であってかつ温度駆動方式あるい
は電子駆動方式の膨張弁3の上流側に設けられると共
に、冷却手段5bは、膨張弁3の下流側であってかつ蒸
発器4の上流側に設けられている。
In FIG. 1, the subcooler 5 comprises cooling means 5a for passing liquid refrigerant from a subcooler liquid refrigerant inlet 7 to a subcooler liquid refrigerant outlet 8 on the side to be cooled, and a subcooler on the cooling side. A cooling means 5b for passing the gas refrigerant from the gas refrigerant inlet 9 to the supercooler gas refrigerant outlet 10;
Is provided on the downstream side of the condenser 2 and on the upstream side of the temperature-driven or electronically driven expansion valve 3, and the cooling means 5 b is provided on the downstream side of the expansion valve 3 and of the evaporator 4. It is provided on the upstream side.

【0021】また、温度式膨張弁の感温筒及び均圧管か
らなる冷媒流量調整手段11は、感温筒を蒸発器4の下
流の配管に密着し、膨張弁3の開度を制御する。本制御
の方法により、蒸発器4に十分な潜熱を持ったガス冷媒
が供給できる。
The refrigerant flow rate adjusting means 11 comprising a temperature-sensitive cylinder and a pressure equalizing pipe of the temperature-type expansion valve closely contacts the temperature-sensitive cylinder to a pipe downstream of the evaporator 4, and controls the opening of the expansion valve 3. By this control method, a gas refrigerant having sufficient latent heat can be supplied to the evaporator 4.

【0022】このような構成で、圧縮機1で圧縮された
ガス冷媒は、凝縮器2に送られて冷却水等と熱交換して
凝縮され液冷媒となる。さらに、凝縮器2液出口後に設
けられた過冷却器5で気泡が混入した液冷媒を完全に液
化、過冷却し、冷媒は膨張弁3に送られて膨張され、湿
りガス状となる。湿りガス状となった冷媒は、再び過冷
却器5に流入し、気泡が混入した液冷媒を冷却した後、
冷媒配管を通して蒸発器4へ送られて被冷却物との熱交
換後、ガス冷媒となって圧縮機1に吸入される。
With such a configuration, the gas refrigerant compressed by the compressor 1 is sent to the condenser 2 and exchanges heat with cooling water or the like to be condensed into a liquid refrigerant. Further, the liquid refrigerant containing air bubbles is completely liquefied and supercooled by the supercooler 5 provided after the outlet of the liquid from the condenser 2, and the refrigerant is sent to the expansion valve 3 and expanded to become a wet gas. The refrigerant in a wet gas state flows into the supercooler 5 again to cool the liquid refrigerant containing bubbles,
After being sent to the evaporator 4 through the refrigerant pipe and exchanging heat with the object to be cooled, it becomes a gas refrigerant and is sucked into the compressor 1.

【0023】ここで過冷却器5には、プレート熱交式、
シェルアンドチューブ式等いかなる熱交換器でも使用可
能である。
Here, the subcooler 5 has a plate heat exchange type,
Any heat exchanger such as a shell and tube type can be used.

【0024】過冷却器液冷媒入口7より被冷却手段5a
に流入する気泡を含んだ液冷媒は、膨張弁3を通過して
蒸発温度となったガス冷媒により冷却され、前記気泡を
完全に液化し、該液冷媒は過冷却器液出口8より流出す
る。過冷却器5より流出した液冷媒は膨張弁3を通過
し、蒸発温度となり、過冷却器ガス入口9より冷却手段
5bに流入し、前述した気泡を含んだ液冷媒を冷却し、
過冷却器ガス出口10より流出し、蒸発器4へ流入す
る。
The subcooler liquid refrigerant inlet 7 is connected to the means 5a to be cooled.
Is cooled by the gas refrigerant which has passed through the expansion valve 3 and reached the evaporation temperature, completely liquefies the bubbles, and the liquid refrigerant flows out of the supercooler liquid outlet 8. . The liquid refrigerant flowing out of the supercooler 5 passes through the expansion valve 3, reaches an evaporation temperature, flows into the cooling means 5b from the supercooler gas inlet 9, and cools the liquid refrigerant containing the above-described bubbles.
It flows out from the supercooler gas outlet 10 and flows into the evaporator 4.

【0025】過冷却器5から蒸発器4の間の配管は乾き
度の高い冷媒が流れるため、圧力損失を低減するため、
凝縮器2から過冷却器5の間の配管より太くする。
The piping between the supercooler 5 and the evaporator 4 flows a highly dry refrigerant, so that the pressure loss is reduced.
The pipe is thicker than the pipe between the condenser 2 and the subcooler 5.

【0026】図2は、本発明の第二実施例を示す冷凍装
置サイクル系統図である。図2において図1の冷凍装置
と異なる点は、凝縮器2と過冷却器5の間に、受液器1
2が配設されていることである。受液器12から流出す
る液冷媒は、被冷却側の配管に入り、冷却側のガス冷媒
と熱交換し、液冷媒を過冷却する。受液器12を設ける
ことにより一定の冷媒量を初期設定時に確保できる。
FIG. 2 is a refrigerating apparatus cycle system diagram showing a second embodiment of the present invention. 2 is different from the refrigeration apparatus shown in FIG.
2 is provided. The liquid refrigerant flowing out of the receiver 12 enters the pipe on the side to be cooled, exchanges heat with the gas refrigerant on the cooling side, and supercools the liquid refrigerant. By providing the liquid receiver 12, a certain amount of refrigerant can be secured at the time of initial setting.

【0027】図3は、本発明の第三実施例を示す冷凍装
置サイクル系統図である。図3において図1の冷凍装置
と異なる点は、過冷却器5が受液器12を兼ねており、
その内部には、液冷媒が滞留している。液冷媒が被冷却
側であり、過冷却器5内の下部には冷却側のガス冷媒の
通るガス冷媒配管が設けてあり、通常は滞留している液
冷媒に浸っている。膨張弁3で断熱膨張して冷却された
ガス冷媒がガス冷媒配管の中を通過する時に、過冷却器
5内に滞留している液冷媒と熱交換し、液冷媒を過冷却
する。本過冷却器5であれば受液器12の機能を有しな
がら、受液器12を省くことができる。
FIG. 3 is a refrigerating apparatus cycle system diagram showing a third embodiment of the present invention. 3 is different from the refrigeration apparatus of FIG. 1 in that the supercooler 5 also serves as the liquid receiver 12,
The liquid refrigerant stays therein. The liquid refrigerant is on the side to be cooled, and a gas refrigerant pipe through which the gas refrigerant on the cooling side passes is provided at a lower portion in the subcooler 5, and is usually immersed in the staying liquid refrigerant. When the gas refrigerant adiabatically expanded and cooled by the expansion valve 3 passes through the gas refrigerant pipe, the gas refrigerant exchanges heat with the liquid refrigerant retained in the supercooler 5 to supercool the liquid refrigerant. With the supercooler 5, the liquid receiver 12 can be omitted while having the function of the liquid receiver 12.

【0028】過冷却器内の気泡の液化に必要な空冷式の
伝熱面積を、水冷式の伝熱面積と比較を行う。運転条件
を蒸発温度0℃、凝縮温度40℃、水冷式の場合の冷却
水入口温度32℃、出口温度37℃と仮定した場合、本
発明で必要な過冷却器の伝熱面積は水冷式の場合と比較
して約1/8で済むことになる。これは、本発明による
過冷却器内の冷却側の温度が、冷凍サイクルの蒸発温度
であり、冷却側と被冷却側の温度差が大きいことによ
る。
The air-cooled heat transfer area required for liquefaction of bubbles in the supercooler is compared with the water-cooled heat transfer area. Assuming that the operating conditions are an evaporating temperature of 0 ° C., a condensing temperature of 40 ° C., a cooling water inlet temperature of 32 ° C. and an outlet temperature of 37 ° C. in the case of a water cooling type, the heat transfer area of the supercooler required in the present invention is a water cooling type. This is only about 1/8 of the case. This is because the temperature on the cooling side in the subcooler according to the present invention is the evaporation temperature of the refrigeration cycle, and the temperature difference between the cooling side and the cooled side is large.

【0029】[0029]

【発明の効果】以上に述べたごとく、本発明によれば凝
縮器液出口配管に気泡を含んだ液冷媒が流出しても過冷
却器で完全に液化されるため、膨張弁のチョークを防ぐ
ことにより冷凍能力の低下を防ぎ、冷凍能力は現状のま
まで安定した運転を維持できるようになる。
As described above, according to the present invention, even if the liquid refrigerant containing bubbles flows out to the condenser liquid outlet pipe, the liquid refrigerant is completely liquefied by the supercooler, thereby preventing the expansion valve from being choked. This prevents the refrigerating capacity from lowering and allows the refrigerating capacity to maintain a stable operation as it is.

【0030】また、液冷媒中の気泡の混入を防止するた
めには受液器又は凝縮器の液冷媒溜め部の冷媒封入量を
増す必要があったが、本発明により液溜め部の冷媒量を
最小限にし、冷媒封入量を削減でき、地球環境面におい
て温暖化防止などに寄与するだけでなく、冷凍装置の低
コスト化を実現できる。
Further, in order to prevent air bubbles in the liquid refrigerant from being mixed, it is necessary to increase the amount of refrigerant charged in the liquid refrigerant reservoir of the receiver or the condenser. , The amount of refrigerant to be charged can be reduced, not only contributing to the prevention of global warming in the global environment, but also the cost of the refrigeration system can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例を示すサイクル系統図を示
す。
FIG. 1 is a cycle system diagram showing a first embodiment of the present invention.

【図2】本発明の第二実施例を示すサイクル系統図を示
す。
FIG. 2 is a cycle system diagram showing a second embodiment of the present invention.

【図3】本発明の第三実施例を示すサイクル系統図を示
す。
FIG. 3 is a cycle system diagram showing a third embodiment of the present invention.

【図4】本発明のモリエル線図を示す。FIG. 4 shows a Mollier diagram of the present invention.

【図5】従来技術であるサイクル系統図を示す。FIG. 5 shows a prior art cycle system diagram.

【符号の説明】 1…圧縮機 2…凝縮器 3…膨張弁 4…蒸発器 5…過冷却器 5a…被冷却手段 5b…冷却手段 6…液冷媒配管 7…過冷却器液入口 8…過冷却器液出口 9…過冷却器ガス入口 10…過冷却器ガス出口 11…冷媒流量調整手段 12…受液器[Explanation of Signs] 1 ... Compressor 2 ... Condenser 3 ... Expansion valve 4 ... Evaporator 5 ... Supercooler 5a ... Cooled means 5b ... Cooling means 6 ... Liquid refrigerant pipe 7 ... Supercooler liquid inlet 8 ... Super Cooler liquid outlet 9 ... Supercooler gas inlet 10 ... Supercooler gas outlet 11 ... Refrigerant flow rate adjusting means 12 ... Liquid receiver

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、該凝縮器からの液冷媒
を過冷却するための冷却手段を有する過冷却器、膨張弁
及び蒸発器を備えた冷凍サイクルからなる冷凍装置にお
いて、 前記過冷却器の冷却手段入口が前記膨張弁の下流側配管
に接続され、また同じく冷却手段出口が前記蒸発器の上
流側配管に接続されていることを特徴とする冷凍装置。
1. A refrigerating apparatus comprising a compressor, a condenser, a subcooler having a cooling means for subcooling a liquid refrigerant from the condenser, a refrigerating cycle having an expansion valve and an evaporator, A refrigerating apparatus, wherein a cooling means inlet of a cooler is connected to a downstream pipe of the expansion valve, and a cooling means outlet is also connected to an upstream pipe of the evaporator.
【請求項2】 前記冷媒は、HFC系冷媒であることを
特徴とした請求項1に記載の冷凍装置。
2. The refrigeration apparatus according to claim 1, wherein the refrigerant is an HFC-based refrigerant.
【請求項3】 前記冷媒は、HFC系混合冷媒であるこ
とを特徴とした請求項1に記載の冷凍装置。
3. The refrigeration apparatus according to claim 1, wherein the refrigerant is an HFC-based mixed refrigerant.
JP2001116348A 2001-04-16 2001-04-16 Refrigerating apparatus Pending JP2002310518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001116348A JP2002310518A (en) 2001-04-16 2001-04-16 Refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001116348A JP2002310518A (en) 2001-04-16 2001-04-16 Refrigerating apparatus

Publications (1)

Publication Number Publication Date
JP2002310518A true JP2002310518A (en) 2002-10-23

Family

ID=18967095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001116348A Pending JP2002310518A (en) 2001-04-16 2001-04-16 Refrigerating apparatus

Country Status (1)

Country Link
JP (1) JP2002310518A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164103A (en) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
JP2009059576A (en) * 2007-08-31 2009-03-19 Toshiba Corp Fuel supply system for fuel battery
KR20170091597A (en) 2014-11-21 2017-08-09 얀마 가부시키가이샤 Heat pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164103A (en) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
EP1538405A3 (en) * 2003-12-01 2005-07-13 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
JP2009059576A (en) * 2007-08-31 2009-03-19 Toshiba Corp Fuel supply system for fuel battery
KR20170091597A (en) 2014-11-21 2017-08-09 얀마 가부시키가이샤 Heat pump
US10591171B2 (en) 2014-11-21 2020-03-17 Yanmar Co., Ltd. Heat pump
EP3677845A1 (en) 2014-11-21 2020-07-08 Yanmar Co., Ltd. Heat pump
US11566797B2 (en) 2014-11-21 2023-01-31 Yanmar Power Technology Co., Ltd. Heat pump

Similar Documents

Publication Publication Date Title
CN101688697B (en) Refrigerant vapor compression system with dual economizer circuits
KR20160091107A (en) Cooling Cycle Apparatus for Refrigerator
US11402134B2 (en) Outdoor unit and control method thereof
JP2000055488A (en) Refrigerating device
JP2009299911A (en) Refrigeration device
JPH1019418A (en) Refrigerator with deep freezer
JPH11351680A (en) Cooling equipment
JP2002310518A (en) Refrigerating apparatus
JP2008082674A (en) Supercooling device
JP5193450B2 (en) Supercooling device
JP2009036508A (en) Supercooling system
JP3256856B2 (en) Refrigeration system
JP2008082676A (en) Supercooling device
JP3097971U (en) Refrigeration equipment
JP2009024998A (en) Supercooling device
JP4798884B2 (en) Refrigeration system
JP2008082677A (en) Supercooling device
AU2019292493B2 (en) Apparatus and method for transferring heat
JP2009024999A (en) Supercooling device
JPH10115469A (en) Air conditioner
JPH02225953A (en) Freezing system with double vaporizer for domestic refrigerator
JP2009024997A (en) Supercooling device
JP2008309486A (en) Supercooling device
JP2009002645A (en) Supercooling device
JP2008309478A (en) Supercooling device