JP2009299911A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
JP2009299911A
JP2009299911A JP2008151203A JP2008151203A JP2009299911A JP 2009299911 A JP2009299911 A JP 2009299911A JP 2008151203 A JP2008151203 A JP 2008151203A JP 2008151203 A JP2008151203 A JP 2008151203A JP 2009299911 A JP2009299911 A JP 2009299911A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
gas
compressor
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008151203A
Other languages
Japanese (ja)
Other versions
JP5049889B2 (en
Inventor
Atsuhiko Yokozeki
敦彦 横関
Kenji Matsumura
賢治 松村
Susumu Nakayama
進 中山
Yukio Innami
幸夫 印南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008151203A priority Critical patent/JP5049889B2/en
Publication of JP2009299911A publication Critical patent/JP2009299911A/en
Application granted granted Critical
Publication of JP5049889B2 publication Critical patent/JP5049889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration device capable of preventing increase of pressure loss in a gas side connection pipe having low pressure or the like even if using refrigerant having large specific volume such as HFO-1234yf in refrigeration cycle to ensure satisfactory refrigeration performance. <P>SOLUTION: In this refrigeration device, an outdoor unit 100 provided with a compressor 1, an outdoor heat exchanger 3, a heat exchanger 8 for overcooling, an outdoor pressure reducing device 7, and an ejector 5 and an indoor unit 200 provided with an indoor heat exchanger 11 are mutually connected by a refrigerant pipe to constitute the refrigeration cycle. A part of liquid refrigerant fed into the heat exchanger operating as an evaporator is bypassed, pressure of the bypassed refrigerant is reduced to let this refrigerant flow into the heat exchanger for overcooling, and a main stream of the liquid refrigerant is cooled by the heat exchanger for overcooling and is supplied into the indoor heat exchanger. The bypassed refrigerant evaporated after exchanging heat with the main stream refrigerant is sucked by the ejector and then flows into a gas-liquid separator 6. The gas refrigerant in the gas-liquid separator has high pressure exceeding suction pressure of the compressor and is sucked into the compressor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、空気調和機や冷凍機などの冷凍サイクルを備えた冷凍装置に関し、特に過冷却用熱交換器を備えて、蒸発器へ送られる液冷媒の主流側をバイパス流側冷媒により過冷却させるようにした冷凍装置に関する。   The present invention relates to a refrigeration apparatus provided with a refrigeration cycle such as an air conditioner or a refrigerator, and in particular, with a supercooling heat exchanger, the main stream side of liquid refrigerant sent to an evaporator is supercooled by a bypass flow side refrigerant. The present invention relates to a refrigeration apparatus.

凝縮器出口側に設けられた二重管熱交換器等を用いて、蒸発器へ送られる液冷媒を、その一部をバイパスし、減圧させ低温になった冷媒と、熱交換させることで過冷却させる空気調和機として特開2000−18737号公報(特許文献1)に示される従来技術が知られている。   Using a double-tube heat exchanger or the like provided on the condenser outlet side, the liquid refrigerant sent to the evaporator bypasses part of the refrigerant and is reduced in pressure to reduce the temperature by exchanging heat. As an air conditioner to be cooled, a conventional technique disclosed in Japanese Patent Laid-Open No. 2000-18737 (Patent Document 1) is known.

このような過冷却用熱交換器を備えた空気調和機では、蒸発器へ送られる冷媒循環量が低減されるため、蒸発器及び接続配管の圧力損失が低減されて、成績係数が向上できることが知られている。   In an air conditioner equipped with such a supercooling heat exchanger, the amount of refrigerant circulating to the evaporator is reduced, so that the pressure loss of the evaporator and the connecting piping can be reduced and the coefficient of performance can be improved. Are known.

また、過冷却用熱交換器と共に、エジェクタを備え、バイパスされてエジェクタで膨張される際に、膨張動力が回収されることにより、減圧時の膨張損失を低減させて、成績係数を向上させる冷凍装置として特開2007−78318号公報(特許文献2)に示される従来技術が知られている。   In addition to the supercooling heat exchanger, the refrigeration system is equipped with an ejector, and when it is bypassed and expanded by the ejector, the expansion power is recovered, thereby reducing the expansion loss during decompression and improving the coefficient of performance. As a device, a conventional technique disclosed in Japanese Patent Application Laid-Open No. 2007-78318 (Patent Document 2) is known.

特開2000−18737号公報JP 2000-18737 A 特開2007−78318号公報JP 2007-78318 A

現在、空気調和機や冷凍機などの蒸気圧縮式冷凍装置の冷媒として、広く使用されているR−410AやR−407C或いはR−404Aと云った、いわゆるHFC系冷媒(Hydrofluorocarbons)は、地球温暖化防止の観点から、GWP(地球温暖化係数)のより低い冷媒への転換が検討されている。   At present, so-called HFC refrigerants (Hydrofluorocarbons) such as R-410A, R-407C or R-404A, which are widely used as refrigerants for vapor compression refrigeration apparatuses such as air conditioners and refrigerators, From the viewpoint of prevention of globalization, conversion to a refrigerant having a lower GWP (global warming potential) has been studied.

代替冷媒の候補として、R−290(プロパン),R−717(アンモニア),R−744(二酸化炭素)などの自然冷媒が検討されてきたが、可燃性や毒性、あるいは効率の面で、空気調和機等への適用が難しいことが明らかとなってきている。そのような中で、これらの課題を改善できるHFO−1234yf(2,3,3,3−Tetrafluoropropene)などの低GWP冷媒が開発されつつある。   Natural refrigerants such as R-290 (propane), R-717 (ammonia), and R-744 (carbon dioxide) have been studied as alternative refrigerant candidates, but air is flammable, toxic, or efficient. It has become clear that application to a harmony machine etc. is difficult. Under such circumstances, low GWP refrigerants such as HFO-1234yf (2,3,3,3-Tetrafluoropropene) capable of improving these problems are being developed.

しかしながら、HFO−1234yfなどの低GWP冷媒は従来から空気調和機で使用されてきたR−410Aなどの冷媒に比べて、同じ飽和温度でのガス冷媒の比容積が大きく、従来のシステムに適用した場合には、低圧側の圧力損失が大きくなることが懸念されている。   However, low GWP refrigerants such as HFO-1234yf have a larger specific volume of gas refrigerants at the same saturation temperature than refrigerants such as R-410A conventionally used in air conditioners, and are applied to conventional systems. In such a case, there is a concern that the pressure loss on the low pressure side will increase.

特に接続配管長が比較的長く、圧力損失による影響を受けやすいシステムとして、同一冷媒系統のシステムに複数の室内機が接続される、いわゆるビル用マルチエアコンなどが上げられる。   In particular, a so-called multi-air conditioner for a building in which a plurality of indoor units are connected to a system of the same refrigerant system is a system that has a relatively long connection pipe length and is easily affected by pressure loss.

圧力損失を低減させる方策としては、冷媒配管径の拡大や、蒸発器の伝熱管通路数の増加などがあるが、これらの方法では材料費や加工費及び接続配管の施工費などが増加するため、コストアップの要因となると共に、老朽化した空気調和機を更新する際には、R−22,R−410Aなどの従来の冷媒を使用していた際の既設の冷媒接続配管を流用することができなくなり、資源の無駄や施工工数の増加が発生するため、実用的ではないという課題があった。   Measures to reduce the pressure loss include expansion of the refrigerant pipe diameter and increase in the number of heat transfer pipe passages in the evaporator, but these methods increase material costs, processing costs, and construction costs for connecting piping. When renewing an old air conditioner, the existing refrigerant connection pipes used when using conventional refrigerants such as R-22 and R-410A are used. This makes it impossible to use the resources and increases the number of construction man-hours.

そこで、これらに代わる低圧側圧力損失低減の手段が必要となるが、前記特許文献1に示される従来技術においては、過冷却用熱交換器に流入する低圧側冷媒の出口側が圧縮機吸入側に接続されている関係上、過冷却された液冷媒は圧縮機吸入圧力の飽和温度以下にすることはできない。   Therefore, instead of these, means for reducing the low pressure side pressure loss is required. However, in the conventional technique disclosed in Patent Document 1, the outlet side of the low pressure refrigerant flowing into the supercooling heat exchanger is connected to the compressor suction side. Due to the connected relationship, the supercooled liquid refrigerant cannot be lower than the saturation temperature of the compressor suction pressure.

このため、ガス側接続配管や蒸発器の圧力損失が大きくなりやすい比容積が大きい冷媒を用いた場合には、圧力損失の低減効果が不足するために、冷房能力の不足、或いは成績係数の低下という課題がある。   For this reason, when a refrigerant with a large specific volume that tends to increase the pressure loss of the gas side connection pipe or the evaporator is used, the effect of reducing the pressure loss is insufficient, so the cooling capacity is insufficient or the coefficient of performance is decreased. There is a problem.

また、前記特許文献2に示される従来技術においては、エジェクタを用いて膨張動力の回収を行うことで、冷凍装置の効率を向上することができるが、エジェクタの出口冷媒を過冷却用熱交換器に流入させる構成であるため、前記従来技術(特許文献1)と同様に、蒸発器へ送られる冷媒温度は圧縮機吸入圧力の飽和温度以下にすることが出来ない。また、エジェクタで昇圧された後の冷媒が過冷却用熱交換器へ流入されるため、過冷却用熱交換器の圧力損失を受けて圧縮機吸入圧力が低下するため、エジェクタでの動力回収効果が十分に発揮できないという課題がある。   Moreover, in the prior art shown by the said patent document 2, although the efficiency of a freezing apparatus can be improved by collect | recovering expansion power using an ejector, the outlet refrigerant | coolant of an ejector is used as the heat exchanger for supercooling Therefore, the temperature of the refrigerant sent to the evaporator cannot be made equal to or lower than the saturation temperature of the compressor suction pressure, as in the prior art (Patent Document 1). Moreover, since the refrigerant whose pressure has been increased by the ejector flows into the supercooling heat exchanger, the compressor suction pressure is reduced due to the pressure loss of the supercooling heat exchanger, so the power recovery effect at the ejector There is a problem that cannot be fully demonstrated.

本発明の目的は、蒸発器へ送られる液冷媒の過冷却度を大きくすることにより、低圧側の冷媒循環に伴う圧力損失を十分に抑えて能力を確保できる冷凍装置を得ることにある。   An object of the present invention is to obtain a refrigeration apparatus that can sufficiently secure the capacity by sufficiently suppressing the pressure loss associated with the refrigerant circulation on the low-pressure side by increasing the degree of supercooling of the liquid refrigerant sent to the evaporator.

本発明の他の目的は、エジェクタを用いるか、或いは膨張機と補助圧縮機の組み合わせなどにより圧縮された冷媒から膨張動力を回収し昇圧作用をなす機構を備えることで、膨張損失の低減を図って効率向上させることのできる冷凍装置を得ることにある。   Another object of the present invention is to reduce expansion loss by providing a mechanism for recovering expansion power from a refrigerant compressed by using an ejector or a combination of an expander and an auxiliary compressor and performing a pressurizing action. It is to obtain a refrigeration apparatus that can improve efficiency.

上記従来技術の課題を解決するために、本発明は、圧縮機,室外熱交換器,過冷却用熱交換器,室外減圧装置,昇圧手段を備えた室外機と、室内熱交換器を備えた室内機をそれぞれ冷媒配管により接続した冷凍サイクルを備えた装置において、蒸発器として作用する熱交換器へ送られる液冷媒の一部をバイパスさせたバイパス冷媒を減圧し、前記過冷却用熱交換器に流入させ、前記液冷媒の主流側冷媒を前記過冷却用熱交換器で冷却して前記室内熱交換器へ送り、蒸発した前記バイパス冷媒を前記昇圧手段で前記圧縮機の吸入圧力以上に昇圧させることを特徴とする。   In order to solve the above-described problems of the prior art, the present invention includes a compressor, an outdoor heat exchanger, a supercooling heat exchanger, an outdoor decompression device, an outdoor unit including a pressure boosting unit, and an indoor heat exchanger. In an apparatus having a refrigeration cycle in which indoor units are connected to each other by refrigerant piping, the bypass refrigerant that bypasses part of the liquid refrigerant sent to the heat exchanger acting as an evaporator is decompressed, and the supercooling heat exchanger The refrigerant on the main stream side of the liquid refrigerant is cooled by the supercooling heat exchanger and sent to the indoor heat exchanger, and the evaporated bypass refrigerant is boosted to a pressure higher than the suction pressure of the compressor by the boosting means. It is characterized by making it.

上記において、前記昇圧手段としてはエジェクタを用いることができる。   In the above, an ejector can be used as the boosting means.

ここで、前記エジェクタの出口側に気液分離器を設け、凝縮器として作用する熱交換器から流出した冷媒を前記エジェクタに流入させ、前記エジェクタから流出した冷媒を前記気液分離器に流入させ、前記気液分離器のガス側出口から流出した冷媒を前記圧縮機に戻し、前記気液分離器の液側出口から流出した冷媒の一部をバイパスさせたバイパス冷媒を前記室外減圧装置で減圧し、前記液冷媒の主流側冷媒を前記過冷却用熱交換器で冷却して前記室内熱交換器へ送ると共に、前記過冷却用熱交換器でガス化した前記バイパス冷媒を前記エジェクタの吸入口から吸引させる構成とすると良い。   Here, a gas-liquid separator is provided on the outlet side of the ejector, the refrigerant flowing out from the heat exchanger acting as a condenser is caused to flow into the ejector, and the refrigerant flowing out from the ejector is caused to flow into the gas-liquid separator. The refrigerant flowing out from the gas side outlet of the gas-liquid separator is returned to the compressor, and the bypass refrigerant obtained by bypassing a part of the refrigerant flowing out from the liquid side outlet of the gas-liquid separator is decompressed by the outdoor pressure reducing device. The refrigerant on the main stream side of the liquid refrigerant is cooled by the supercooling heat exchanger and sent to the indoor heat exchanger, and the bypass refrigerant gasified by the supercooling heat exchanger is supplied to the intake port of the ejector It is good to make it the structure made to suck from.

また、前記エジェクタの出口側に気液分離器を備え、凝縮器として作用する熱交換器からの冷媒の一部をバイパスさせたバイパス冷媒を前記エジェクタに流入させ、前記エジェクタから流出した冷媒を前記気液分離器に流入させ、前記気液分離器のガス側出口から流出した冷媒を前記圧縮機に戻し、前記気液分離器の液側出口から流出した冷媒を前記室外減圧装置で減圧し、前記凝縮器として作用する熱交換器からの冷媒の主流側冷媒を前記過冷却用熱交換器で冷却して前記室内熱交換器へ送ると共に、前記過冷却用熱交換器でガス化した前記バイパス冷媒を前記エジェクタの吸入口から吸引させる構成としても良い。   Further, a gas-liquid separator is provided on the outlet side of the ejector, and a bypass refrigerant obtained by bypassing a part of the refrigerant from the heat exchanger acting as a condenser is caused to flow into the ejector, and the refrigerant that has flowed out of the ejector is Flowing into the gas-liquid separator, returning the refrigerant flowing out from the gas-side outlet of the gas-liquid separator to the compressor, reducing the refrigerant flowing out from the liquid-side outlet of the gas-liquid separator with the outdoor pressure reducing device, The bypass from which the mainstream refrigerant of the refrigerant from the heat exchanger acting as the condenser is cooled by the supercooling heat exchanger and sent to the indoor heat exchanger and is gasified by the supercooling heat exchanger The refrigerant may be sucked from the suction port of the ejector.

上記において、前記昇圧手段として補助圧縮機を用いることもできる。
ここで、凝縮器として作用する熱交換器から流出した冷媒を膨張させて動力を回収する膨張機を備え、前記膨張機から流出した冷媒の一部をバイパスさせたバイパス冷媒を前記室外減圧装置で減圧させて前記過冷却用熱交換器へ流入させ、前記膨張機から流出した冷媒の他方である主流側冷媒を冷却して前記室内熱交換器へ送り、前記過冷却用熱交換器で蒸発した前記バイパス冷媒は、前記膨張機で回収された動力で作動される前記補助圧縮機で前記圧縮機の吸入圧力以上に昇圧されて前記圧縮機へ吸入される構成にすると良い。
In the above, an auxiliary compressor can also be used as the pressure increasing means.
Here, an expander that recovers power by expanding the refrigerant that has flowed out of the heat exchanger acting as a condenser is provided, and bypass refrigerant that bypasses part of the refrigerant that has flowed out of the expander is bypassed by the outdoor pressure reducing device. The refrigerant is depressurized and flows into the supercooling heat exchanger, the main-stream-side refrigerant that is the other refrigerant flowing out of the expander is cooled, sent to the indoor heat exchanger, and evaporated in the supercooling heat exchanger The bypass refrigerant may be configured to be sucked into the compressor after being boosted to a pressure higher than the suction pressure of the compressor by the auxiliary compressor operated by the power recovered by the expander.

また、凝縮器として作用する熱交換器から流出した冷媒の一部をバイパスしたバイパス冷媒を減圧膨張させて動力を回収する膨張機を備え、前記凝縮器として作用する熱交換器から流出した冷媒の他方である主流側冷媒を、前記バイパス冷媒により前記過冷却用熱交換器内で冷却して前記室内熱交換器へ送り、前記過冷却用熱交換器で蒸発した前記バイパス冷媒は前記膨張機で回収された動力で作動される前記補助圧縮機で前記圧縮機の吸入圧力以上に昇圧されて前記圧縮機へ吸入される構成とすることもできる。   And an expander that recovers power by depressurizing and expanding a bypass refrigerant that bypasses a part of the refrigerant that has flowed out of the heat exchanger that acts as a condenser, and the refrigerant that has flowed out of the heat exchanger that acts as the condenser. The other main stream side refrigerant is cooled in the supercooling heat exchanger by the bypass refrigerant and sent to the indoor heat exchanger, and the bypass refrigerant evaporated in the supercooling heat exchanger is the expander. The auxiliary compressor that is operated by the recovered power may be increased to a pressure higher than the suction pressure of the compressor and sucked into the compressor.

上記において、逆止弁で構成されたブリッジ回路を備え、該ブリッジ回路を用いて前記エジェクタと前記過冷却用熱交換器の冷媒流路の方向を、冷房及び暖房運転時の双方で同一方向になるように構成することもできる。   In the above, a bridge circuit constituted by a check valve is provided, and the direction of the refrigerant flow path of the ejector and the supercooling heat exchanger is set in the same direction during both cooling and heating operation using the bridge circuit. It can also be configured.

また、逆止弁で構成されたブリッジ回路を備え、該ブリッジ回路を用いて前記補助圧縮機と前記過冷却用熱交換器の冷媒流路の方向を、冷房及び暖房運転時の双方で同一方向になるように構成することもできる。   In addition, a bridge circuit including a check valve is provided, and the direction of the refrigerant flow path of the auxiliary compressor and the supercooling heat exchanger is the same in both the cooling and heating operation using the bridge circuit. It can also be configured to be.

更に、使用される冷媒の同一蒸発温度における飽和ガスの比容積がR−410Aに対して1.5倍以上の冷媒(好ましくは1.5〜2.5倍程度の冷媒)に本発明を適用すると更に効果的である。   Furthermore, the present invention is applied to a refrigerant having a specific volume of saturated gas at the same evaporation temperature of the refrigerant used that is 1.5 times or more that of R-410A (preferably about 1.5 to 2.5 times the refrigerant) Then it is more effective.

本発明によれば、蒸発器へ送られる液冷媒の過冷却度を大きくとることができるため、冷凍能力を減少させることなく、蒸発器に送られる冷媒循環量を減少させて低圧側圧力損失の低減効果を大きくできる。従って、比容積が大きな冷媒を使用した場合でも冷媒配管の径を拡大することなく冷凍能力を十分に発生させることができる冷凍装置が得られる。   According to the present invention, since the degree of supercooling of the liquid refrigerant sent to the evaporator can be increased, the refrigerant circulation amount sent to the evaporator is reduced and the low pressure side pressure loss is reduced without reducing the refrigeration capacity. The reduction effect can be increased. Therefore, even when a refrigerant having a large specific volume is used, it is possible to obtain a refrigeration apparatus that can sufficiently generate refrigeration capacity without increasing the diameter of the refrigerant pipe.

また、本発明によれば、圧縮された冷媒の膨張動力を回収することができるため、効率的な運転を行うことができる冷凍装置が得られる。   In addition, according to the present invention, since the expansion power of the compressed refrigerant can be recovered, a refrigeration apparatus capable of efficient operation is obtained.

比体積の大きな冷媒(例えば、R−410Aに対して比容積が1.5〜2.5倍程度の冷媒で、主に地球温暖化係数の低い冷媒(低GWP冷媒)が該当する)を採用すると、ガス接続配管の圧力損失に起因する能力未達成が生じる。この課題は圧縮機吐出量や熱交換器増加では対応困難である。なお、配管径を増加させれば解決できるが、大きな冷媒配管に置き換える施工が必要となる。本発明は、冷媒を大きく過冷却することで、冷媒質量流量が少なくても能力を発揮できる構成として、大きな径の冷媒配管に置き換えなくても十分な能力を確保できるようにしたものである。   Adopting a refrigerant with a large specific volume (for example, a refrigerant with a specific volume of about 1.5 to 2.5 times that of R-410A and mainly a refrigerant with a low global warming potential (low GWP refrigerant)) Then, the capability unachieved resulting from the pressure loss of gas connection piping arises. This problem is difficult to cope with by increasing the compressor discharge rate and heat exchanger. Although the problem can be solved by increasing the pipe diameter, it is necessary to replace the pipe with a large refrigerant pipe. In the present invention, by sufficiently supercooling the refrigerant, a configuration capable of exhibiting the capability even when the refrigerant mass flow rate is small can ensure sufficient capability without replacing the refrigerant pipe with a large diameter.

以下、本発明の具体的実施例を図面に基づき説明する。各実施例において、同一符号を付した部分は同一または相当する部分を示す。また、本発明の冷凍装置の実施例としては、空気調和機を挙げて説明を行うが、ショーケース用の冷凍機など、冷凍サイクルを用いた装置であれば、本発明を同様に適用できる。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. In each embodiment, parts denoted by the same reference numerals indicate the same or corresponding parts. In addition, an air conditioner will be described as an example of the refrigeration apparatus of the present invention, but the present invention can be similarly applied to any apparatus using a refrigeration cycle such as a refrigerator for a showcase.

本発明の実施例1の空気調和機を図1から図3を用いて説明する。   The air conditioner of Example 1 of this invention is demonstrated using FIGS. 1-3.

まず、実施例の空気調和機の概要について、図1を参照しながら説明する。図1は本実施形態の空気調和機の冷凍装置の構成図である。   First, an outline of the air conditioner of the embodiment will be described with reference to FIG. FIG. 1 is a configuration diagram of a refrigeration apparatus for an air conditioner according to the present embodiment.

空気調和機は、室外機100,室内機200と、これらを接続する液側接続配管9,ガス側接続配管13と、を備えて構成されている。   The air conditioner includes an outdoor unit 100, an indoor unit 200, a liquid side connection pipe 9 and a gas side connection pipe 13 that connect them.

室外機100は、冷媒を圧縮する圧縮機1と、室外空気と冷媒との熱交換を行う室外熱交換器3と、冷媒を膨張して減圧すると共に、この際発生する動力により、低圧ガスを圧縮するエジェクタ5と、気液二相冷媒を液冷媒とガス冷媒を分離する気液分離器6と、液冷媒を減圧する室外減圧装置7と、液冷媒をバイパスされ減圧された冷媒により過冷却する過冷却用熱交換器8と、前記気液分離器6で分離されたガス冷媒を、前記圧縮機1の吸込側に戻す回路を開閉する二方弁20と、を冷凍装置の構成要素として備えている。   The outdoor unit 100 includes a compressor 1 that compresses the refrigerant, an outdoor heat exchanger 3 that performs heat exchange between the outdoor air and the refrigerant, and expands and depressurizes the refrigerant. Supercooling by the ejector 5 to be compressed, the gas-liquid separator 6 that separates the gas-liquid two-phase refrigerant from the liquid refrigerant and the gas refrigerant, the outdoor decompression device 7 that depressurizes the liquid refrigerant, and the refrigerant bypassed and depressurized. And a two-way valve 20 for opening and closing a circuit for returning the gas refrigerant separated by the gas-liquid separator 6 to the suction side of the compressor 1 as components of the refrigeration apparatus. I have.

ここで、室外機100には、室外熱交換器3に室外空気を通風する室外送風機4が備えられている。   Here, the outdoor unit 100 is provided with an outdoor blower 4 for passing outdoor air through the outdoor heat exchanger 3.

室内機200は、室内空気と冷媒との熱交換を行う室内熱交換器11と、室内熱交換器11の出口状態または、冷媒流量を調整する室内減圧装置10が備えられている。   The indoor unit 200 includes an indoor heat exchanger 11 that performs heat exchange between indoor air and a refrigerant, and an indoor decompressor 10 that adjusts the outlet state of the indoor heat exchanger 11 or the refrigerant flow rate.

そして、室内機200には、室内熱交換器11に室内空気を通風する室内送風機12が備えられている。   And the indoor unit 200 is provided with the indoor air blower 12 which ventilates indoor air to the indoor heat exchanger 11.

次に、係る空気調和機の冷房運転時の冷凍装置の動作及び冷媒の状態変化について、図1〜3を参照しながら説明をする。図2は図1の空気調和機における冷房運転時の状態変化を示すモリエル線図である。ここでは例として、冷媒をR−134a(1,1,1,2−Tetrafluoroethane)とした場合を示しているが、HFO−1234yf(2,3,3,3−Tetrafluoropropene)など、他の冷媒を使用しても以下の説明は同様であり、冷媒の種類には限定されない。ただし、R−410Aなど従来から使用されている冷媒に対して、同一温度での飽和蒸気の比容積が1.5倍以上に大きい冷媒であれば、本発明の効果は特に大きくなる。   Next, the operation of the refrigeration apparatus and the state change of the refrigerant during the cooling operation of the air conditioner will be described with reference to FIGS. FIG. 2 is a Mollier diagram showing a state change during the cooling operation in the air conditioner of FIG. Here, the case where the refrigerant is R-134a (1,1,1,2-Tetrafluoroethane) is shown as an example, but other refrigerants such as HFO-1234yf (2,3,3,3-Tetrafluoropropene) are used. Even if it is used, the following description is the same and is not limited to the type of refrigerant. However, the effect of the present invention is particularly great if the specific volume of saturated steam at the same temperature is 1.5 times or more larger than that of conventionally used refrigerants such as R-410A.

また、図3は図1のエジェクタの構造及び動作説明図である。   FIG. 3 is a diagram for explaining the structure and operation of the ejector shown in FIG.

冷房運転時には、二方弁20が開放され、図1で示された矢印方向に冷媒が循環する。   During the cooling operation, the two-way valve 20 is opened, and the refrigerant circulates in the arrow direction shown in FIG.

即ち、冷媒は、圧縮機1で圧縮され(図2のa→b)、室外熱交換器3で室外空気により冷却され(図2のb→c)、エジェクタ5のノズルに流入する。   That is, the refrigerant is compressed by the compressor 1 (a → b in FIG. 2), cooled by outdoor air in the outdoor heat exchanger 3 (b → c in FIG. 2), and flows into the nozzle of the ejector 5.

エジェクタは図3に示すように、冷媒を圧縮機1の吸入圧力よりも低く減圧して噴出するノズル部51と、このノズル部51から噴出された冷媒と、この噴出された冷媒により吸引部52を通して吸引される冷媒を混合する混合部53と、この混合された冷媒を減速して圧縮機1の吸入圧力まで圧力を回復するディフューザ部54と、ノズル部51の減圧量を調整するニードル56と、このニードル56を制御するコイル55と、を備えて構成されている。   As shown in FIG. 3, the ejector includes a nozzle portion 51 that discharges the refrigerant by reducing its pressure lower than the suction pressure of the compressor 1, a refrigerant jetted from the nozzle portion 51, and a suction portion 52 by the jetted refrigerant. A mixing unit 53 that mixes the refrigerant sucked through, a diffuser unit 54 that decelerates the mixed refrigerant and restores the pressure to the suction pressure of the compressor 1, and a needle 56 that adjusts the amount of decompression of the nozzle unit 51, And a coil 55 for controlling the needle 56.

エジェクタ5に送られた高圧Phの冷媒は、第1流入口57からノズル部51に冷媒循環量Grmで流入し、圧力Pejesまで減圧される(図2のc→d)。即ち、冷媒は、ノズル部51内における断熱変化(等エントロピー変化)に近い状態変化を経て、出口では高速の気液二相流で噴出される。   The high-pressure Ph refrigerant sent to the ejector 5 flows into the nozzle portion 51 from the first inflow port 57 at a refrigerant circulation amount Grm and is reduced to the pressure Pejes (c → d in FIG. 2). That is, the refrigerant passes through a state change close to an adiabatic change (isentropic change) in the nozzle portion 51 and is ejected at a high-speed gas-liquid two-phase flow at the outlet.

その際に発生する動圧により静圧が低下して、第2流入口58から低圧ガス冷媒(図2のdg)が吸引部52へ冷媒循環量Grbで吸引される(図2のd→dm,dg→dm)。   The static pressure is reduced by the dynamic pressure generated at that time, and the low-pressure gas refrigerant (dg in FIG. 2) is sucked from the second inlet 58 into the suction part 52 with the refrigerant circulation amount Grb (d → dm in FIG. 2). , Dg → dm).

噴出された冷媒と吸引された冷媒は、混合部53にて混合,圧縮され、冷媒循環量Grm+Grb,静圧Pejemの冷媒となる。この冷媒は、ディフューザ部54の流路断面積の拡大により減速されて静圧がPejeoまで回復する。これら一連のエジェクタ5内での状態変化により、エジェクタ5の出口59に至るまでに、結果としてノズル51に流入した高圧冷媒の膨張動力が、吸入ガス冷媒の圧縮仕事(Pejes→Pejeo)に変換される(図2のdm→f)。   The ejected refrigerant and the sucked refrigerant are mixed and compressed by the mixing unit 53 to become a refrigerant having a refrigerant circulation amount Grm + Grb and a static pressure Pejem. This refrigerant is decelerated by the expansion of the flow path cross-sectional area of the diffuser portion 54, and the static pressure is restored to Pejeo. Due to the state change in the series of these ejectors 5, the expansion power of the high-pressure refrigerant that has flowed into the nozzle 51 as a result is converted into the compression work (Pejes → Pejeo) of the suction gas refrigerant until the outlet 59 of the ejector 5 is reached. (Dm → f in FIG. 2).

なお、エジェクタ5は、上述したように減圧機能を有するとともに、昇圧機能を有し、膨張動力の回収効果があるため、高圧冷媒の膨張に伴う不可逆損失を低減することが出来る。   In addition, since the ejector 5 has a pressure reducing function and a pressure increasing function as described above, and has an effect of recovering expansion power, the irreversible loss accompanying expansion of the high-pressure refrigerant can be reduced.

エジェクタ5を出た気液二相冷媒は気液分離器6に流入し、ガス冷媒と液冷媒に分離される(図2のf→fg:ガス f→fL:液)。このうち、ガス冷媒は圧縮機1の吸入側に戻され(図2のfg→a)、液冷媒のうちの一部(循環量Grb:バイパス流側)は室外減圧装置7にて減圧されて(図2のfL→j)、過冷却用熱交換器8に流入し、もう一方(循環量Gre:主流側)はそのまま、過冷却用熱交換器8に流入する。   The gas-liquid two-phase refrigerant exiting the ejector 5 flows into the gas-liquid separator 6 and is separated into a gas refrigerant and a liquid refrigerant (f → fg: gas f → fL: liquid in FIG. 2). Among these, the gas refrigerant is returned to the suction side of the compressor 1 (fg → a in FIG. 2), and a part of the liquid refrigerant (circulation amount Grb: bypass flow side) is decompressed by the outdoor decompression device 7. (FL → j in FIG. 2), it flows into the supercooling heat exchanger 8, and the other (circulation amount Gre: main flow side) flows into the supercooling heat exchanger 8 as it is.

過冷却用熱交換器8の構造は例えば、二重管やプレート式熱交換器、或いは2つの配管を互いに接触させてロウ付けした構造が用いられ、高温側冷媒から、低温側冷媒へ熱交換が行われる。   The structure of the supercooling heat exchanger 8 is, for example, a double pipe, a plate heat exchanger, or a structure in which two pipes are brought into contact with each other and brazed to exchange heat from the high-temperature side refrigerant to the low-temperature side refrigerant. Is done.

ここでは、バイパス側冷媒は圧縮機吸入圧力以下にすることができるため、圧縮機吸入圧力の飽和温度よりも低温となり、これと熱交換される主流側冷媒は圧縮機吸入圧力の飽和温度以下まで冷却される(図2のfL→g)。これと同時に、バイパス側冷媒は主流側冷媒により加熱されて、蒸発する(図2のj→dg)。   Here, since the bypass side refrigerant can be made lower than the compressor suction pressure, the temperature becomes lower than the saturation temperature of the compressor suction pressure, and the main stream side refrigerant exchanged with this bypasses the saturation temperature of the compressor suction pressure or less. It is cooled (fL → g in FIG. 2). At the same time, the bypass-side refrigerant is heated by the main-stream-side refrigerant and evaporates (j → dg in FIG. 2).

このバイパス側冷媒はエジェクタ5の第2流入口に吸引され、主流側冷媒は液側接続配管9を通して室内機200へと送られ、室内減圧装置10で減圧量調整された後、室内熱交換器11へと流入する。室内熱交換器11では室内送風機12により送られる室内空気と冷媒が熱交換され(図2のh→i)、室内空気に対して冷房作用がなされる。   The bypass-side refrigerant is sucked into the second inlet of the ejector 5, and the main-stream side refrigerant is sent to the indoor unit 200 through the liquid-side connection pipe 9, and after the pressure reduction amount is adjusted by the indoor pressure reducing device 10, the indoor heat exchanger 11 flows into. In the indoor heat exchanger 11, the indoor air sent from the indoor blower 12 and the refrigerant are heat-exchanged (h → i in FIG. 2), and the indoor air is cooled.

ここで、冷房能力に寄与する冷媒側の比エンタルピ差は図2のΔhescnで示されるように、通常サイクルでの比エンタルピ差Δheに比べて大幅に拡大されている。   Here, the specific enthalpy difference on the refrigerant side that contributes to the cooling capacity is greatly expanded as compared with the specific enthalpy difference Δhe in the normal cycle, as indicated by Δhescn in FIG. 2.

室内熱交換器11の出口冷媒はガス側接続配管13を通して室外機100へと戻され、圧縮機1へ吸入される(図2のi→a)。   The outlet refrigerant of the indoor heat exchanger 11 is returned to the outdoor unit 100 through the gas side connection pipe 13 and sucked into the compressor 1 (i → a in FIG. 2).

以上が本発明の空調機における冷房運転時の一連の冷媒循環と冷房動作を示すものである。   The above shows a series of refrigerant circulation and cooling operations during cooling operation in the air conditioner of the present invention.

これに対して、図4に示されるモリエル線図上の冷凍サイクルは通常の冷凍サイクル及び、従来技術における過冷却バイパスサイクルの運転状態を示したものである。   On the other hand, the refrigeration cycle on the Mollier diagram shown in FIG. 4 shows the operating state of a normal refrigeration cycle and a conventional supercooling bypass cycle.

図4の実線で示したものが通常サイクルの運転状態であり、冷房運転時には圧縮(a→b),凝縮(b→c),減圧(c→d),蒸発(d→i)の順で冷凍サイクルが動作する。このとき蒸発器での比エンタルピ差は図4のΔheoで示される。   The solid line in FIG. 4 shows the operation state of the normal cycle. During cooling operation, compression (a → b), condensation (b → c), decompression (c → d), and evaporation (d → i) are performed in this order. The refrigeration cycle operates. At this time, the specific enthalpy difference in the evaporator is indicated by Δheo in FIG.

図4の破線で示されたものが従来技術(特許文献1など)における過冷却バイパスサイクルの運転状態であり、冷房運転時には圧縮(a′→b′),凝縮(b′→c)、ここで、主流冷媒とバイパス冷媒に分けられ、主流側が過冷却(c→c′),減圧(c′→d′),蒸発(d′→i′)、バイパス側が減圧(c→e′),蒸発(e′→i′)の順で冷凍サイクルが動作する。ここで、主流側蒸発時の比エンタルピ差はΔhescで示され、通常サイクルに比べて大きくなっている。   The broken line in FIG. 4 shows the operation state of the supercooling bypass cycle in the prior art (Patent Document 1, etc.). During cooling operation, compression (a ′ → b ′), condensation (b ′ → c), The main stream side is subcooled (c → c ′), decompressed (c ′ → d ′), evaporated (d ′ → i ′), and the bypass side is depressurized (c → e ′). The refrigeration cycle operates in the order of evaporation (e ′ → i ′). Here, the specific enthalpy difference at the time of mainstream evaporation is indicated by Δhesc, which is larger than that in the normal cycle.

このため、同一冷房能力時の冷媒循環量が低減されて、低圧側圧力損失が低下する。   For this reason, the refrigerant circulation amount at the same cooling capacity is reduced, and the low pressure side pressure loss is reduced.

図5は同一冷房能力時の蒸発器冷媒比エンタルピ差と低圧側圧力損失、及び冷媒循環量の関係を示したものである。   FIG. 5 shows the relationship between the evaporator refrigerant specific enthalpy difference, the low-pressure pressure loss, and the refrigerant circulation rate at the same cooling capacity.

通常サイクル、従来の過冷却バイパスサイクル、本発明の過冷却サイクルの順に蒸発器での冷媒比エンタルピ差が拡大されていることから、冷媒循環量が減少し、その結果、低圧側の圧力損失は大幅に低減されている。このため、室外機100と室内機200とを接続するガス側接続配管13が長い場合や十分に流路断面積が大きくない場合においても、能力低下が生じにくくなり、高効率な冷房運転が可能となる。   Since the refrigerant specific enthalpy difference in the evaporator is enlarged in the order of the normal cycle, the conventional supercooling bypass cycle, and the supercooling cycle of the present invention, the refrigerant circulation amount decreases, and as a result, the pressure loss on the low pressure side is reduced. It is greatly reduced. For this reason, even when the gas side connection pipe 13 that connects the outdoor unit 100 and the indoor unit 200 is long or when the cross-sectional area of the flow path is not sufficiently large, it is difficult for the capacity to decrease, and a highly efficient cooling operation is possible. It becomes.

次に、本発明の実施例2の空気調和機を図6及び図7を用いて説明する。   Next, an air conditioner according to a second embodiment of the present invention will be described with reference to FIGS.

本発明の実施例2の空気調和機の冷凍装置の構成を図6に示し、この空気調和機の冷房運転時の冷媒状態変化を図7のモリエル線図上に示す。   FIG. 6 shows the configuration of the air conditioner refrigeration apparatus of Example 2 of the present invention, and the refrigerant state change during the cooling operation of the air conditioner is shown on the Mollier diagram of FIG.

図1に示した実施例1との大まかな違いは、エジェクタ5を膨張機5′と補助圧縮機1′に置き換えた点であり、気液分離器6は省かれている。また、機能的にはほぼ同様となるため、異なる部分のみ説明を行う。   A rough difference from the first embodiment shown in FIG. 1 is that the ejector 5 is replaced with an expander 5 'and an auxiliary compressor 1', and the gas-liquid separator 6 is omitted. Since the functions are almost the same, only different parts will be described.

室外熱交換器3で凝縮された液冷媒(図7のc)は膨張機5′で減圧されて、気液二相状態になると共に、動力Wrが取り出される(図7のc→d)。ここで、膨張機5′は圧縮機と逆の動作となり、例として、スクロール型やロータリ型あるいはレシプロ型などの容積型のものが使用され、膨張時に発生する動力を回転動力に変換する作用がなされる。   The liquid refrigerant condensed in the outdoor heat exchanger 3 (c in FIG. 7) is decompressed by the expander 5 ′ to be in a gas-liquid two-phase state, and the power Wr is taken out (c → d in FIG. 7). Here, the expander 5 'operates in reverse to the compressor. For example, a volume type such as a scroll type, a rotary type, or a reciprocating type is used, and the function of converting the power generated at the time of expansion into rotational power is used. Made.

膨張器5′の出口(図7のd)の気液二相冷媒は一部(循環量Grb)がバイパスされ、室外減圧装置7により減圧され(図7のd→g)、過冷却用熱交換器8へと流入する。残りの主流側冷媒は過冷却用熱交換器8のもう一方の入口から流入し、低温のバイパス側冷媒により冷却される(図7のd→e)。バイパス側冷媒は、その過程で蒸発し(図7のg→h)、補助圧縮機1′に流入する。   The gas-liquid two-phase refrigerant at the outlet of the expander 5 '(d in FIG. 7) is partially bypassed (circulation amount Grb) and depressurized by the outdoor pressure reducing device 7 (d → g in FIG. 7), and heat for supercooling It flows into the exchanger 8. The remaining main stream side refrigerant flows from the other inlet of the supercooling heat exchanger 8 and is cooled by the low temperature bypass side refrigerant (d → e in FIG. 7). The bypass-side refrigerant evaporates in the process (g → h in FIG. 7) and flows into the auxiliary compressor 1 ′.

補助圧縮機1′は膨張機5′の動力Wrにより駆動されているため、低圧ガスを圧縮機1の吸入圧力以上に昇圧することが出来る(図7のh→a)。膨張機5′と補助圧縮機1′の動作により、膨張動力が回収されることになり、その省電力効果はエジェクタを用いた実施例1の効果と同様である。   Since the auxiliary compressor 1 ′ is driven by the power Wr of the expander 5 ′, the low pressure gas can be increased to a pressure higher than the suction pressure of the compressor 1 (h → a in FIG. 7). The expansion power is recovered by the operations of the expander 5 ′ and the auxiliary compressor 1 ′, and the power saving effect is the same as that of the first embodiment using the ejector.

ここで、膨張機5′と補助圧縮機1′は同一圧力容器内に収められた一体構造であっても良い。また、これら2つと圧縮機1を一体化させた構造であっても良い。一体化することにより、機器の小型化や低コスト化が可能となる。また、軸受などの潤滑に使用される冷凍機油の貯留場所を共用することが出来るため、油面の確保が容易となり、信頼性の向上に有効である。   Here, the expander 5 ′ and the auxiliary compressor 1 ′ may have an integrated structure housed in the same pressure vessel. Moreover, the structure which united these two and the compressor 1 may be sufficient. Integration makes it possible to reduce the size and cost of the device. Further, since the storage location for the refrigerating machine oil used for lubricating the bearings and the like can be shared, it is easy to secure the oil level, which is effective for improving the reliability.

過冷却された主流側冷媒は、液側接続配管9を通して室内機200へと送られ、室内減圧装置10で圧力が調整された後(図7のe→f)、室内熱交換器11に流入する。ここで、室内送風機12により送られた室内空気との熱交換により、室内空気を冷却し、冷房作用が行われる。その際、室内熱交換器11内で冷媒は蒸発されて低圧ガス状態になる(図7のf→i)。   The subcooled main stream side refrigerant is sent to the indoor unit 200 through the liquid side connection pipe 9, and after the pressure is adjusted by the indoor pressure reducing device 10 (e → f in FIG. 7), it flows into the indoor heat exchanger 11. To do. Here, the room air is cooled by heat exchange with the room air sent by the room blower 12, and a cooling operation is performed. At that time, the refrigerant is evaporated in the indoor heat exchanger 11 to be in a low pressure gas state (f → i in FIG. 7).

その後、ガス側接続配管13を通して、室外機100へと戻され(図7のi→a)、補助圧縮機1′からのバイパス冷媒と共に圧縮機1へ戻される。   Thereafter, the gas is returned to the outdoor unit 100 through the gas side connection pipe 13 (i → a in FIG. 7), and returned to the compressor 1 together with the bypass refrigerant from the auxiliary compressor 1 ′.

以上説明を行ったように、実施例2の空気調和機においても実施例1と同様に、蒸発器へ送られる冷媒の比エンタルピが小さくできるため、蒸発器での比エンタルピ差が拡大される。その結果、冷媒循環量が低減でき、低圧側圧力損失を大幅に低減することができる。   As described above, also in the air conditioner of the second embodiment, the specific enthalpy of the refrigerant sent to the evaporator can be reduced similarly to the first embodiment, so that the specific enthalpy difference in the evaporator is expanded. As a result, the refrigerant circulation amount can be reduced, and the low-pressure pressure loss can be greatly reduced.

次に、本発明の実施例3の空気調和機を図8及び図9を用いて説明する。   Next, an air conditioner according to a third embodiment of the present invention will be described with reference to FIGS.

本発明の実施例3の空気調和機の冷凍装置の構成を図8に示し、この空気調和機の冷房運転時における冷媒状態の変化を図9のモリエル線図上に示す。   FIG. 8 shows the configuration of the air conditioner refrigeration apparatus according to Embodiment 3 of the present invention, and the change in refrigerant state during the cooling operation of the air conditioner is shown on the Mollier diagram of FIG.

実施例1(図1)との違いは、凝縮器出口の高圧液冷媒をエジェクタ5のノズル入口と、過冷却用熱交換器8への2つの流路に分岐させる点である。これに対し、実施例1では凝縮器出口冷媒をすべてエジェクタ5に流入させる構成である。これ以外のサイクル構成及び運転状態は実施例1と共通点が多いため、変更点のみの説明を行う。   The difference from the first embodiment (FIG. 1) is that the high-pressure liquid refrigerant at the outlet of the condenser is branched into two flow paths to the nozzle inlet of the ejector 5 and the supercooling heat exchanger 8. On the other hand, in Example 1, all the refrigerant | coolants at a condenser exit flow into the ejector 5. FIG. Since the other cycle configurations and operating states have much in common with the first embodiment, only the changes will be described.

冷房運転時に凝縮器として作用する室外熱交換器3を出た高圧液冷媒(図9のc)は、2つの流路に分岐されて、一方がバイパス流(循環量Grb)としてエジェクタ5に流入し、他方が過冷却用熱交換器8に流入する。   The high-pressure liquid refrigerant (c in FIG. 9) that exits the outdoor heat exchanger 3 that acts as a condenser during cooling operation is branched into two flow paths, and one of them flows into the ejector 5 as a bypass flow (circulation amount Grb). The other flows into the supercooling heat exchanger 8.

エジェクタ5では実施例1で説明を行ったのと同様な動作が行われ、断熱膨張(図9のc→d)、過冷却用熱交換器8から出た低圧ガス(図9のdg)との混合(図9のdm)、昇圧作用(図9のdm→f)がなされて、膨張動力が回収される。   In the ejector 5, the same operation as described in the first embodiment is performed, and adiabatic expansion (c → d in FIG. 9), low-pressure gas (dg in FIG. 9) discharged from the supercooling heat exchanger 8 and Are mixed (dm in FIG. 9), and the pressure increasing action (dm → f in FIG. 9) is performed, and the expansion power is recovered.

そして、気液分離器6にて気液分離され(図9のa:ガス、fL:液)、ガス冷媒は、気液分離器6の底面付近に設けられた油戻し穴からの油と共に圧縮機吸入側に戻され、液冷媒は室外減圧装置7で減圧されて、過冷却用熱交換器8に流入する。   Gas-liquid separation is performed by the gas-liquid separator 6 (a: gas, fL: liquid in FIG. 9), and the gas refrigerant is compressed together with oil from an oil return hole provided near the bottom of the gas-liquid separator 6. Returned to the machine suction side, the liquid refrigerant is decompressed by the outdoor decompression device 7 and flows into the supercooling heat exchanger 8.

過冷却用熱交換器8では、低圧側バイパス側冷媒の蒸発(図9のj→dg)作用により、主流側液冷媒が冷却(図9のc→g)される。主流側冷媒は液側接続配管9を通して室内機200へと送られて、室内減圧装置10で減圧され(図9のg→h)、室内熱交換器11へと流入する。   In the supercooling heat exchanger 8, the main-stream-side liquid refrigerant is cooled (c → g in FIG. 9) by the evaporation of the low-pressure bypass refrigerant (j → dg in FIG. 9). The main-stream-side refrigerant is sent to the indoor unit 200 through the liquid-side connection pipe 9, decompressed by the indoor decompression device 10 (g → h in FIG. 9), and flows into the indoor heat exchanger 11.

室内熱交換器11では、室内送風機12により送られた室内空気と熱交換し、冷房作用が行われる。この時の冷媒側の比エンタルピ差は通常サイクルではΔheであるが、Δhescnに拡大されているため、同一冷房能力時の冷媒循環量が減少し、実施例1と同様に低圧側圧力損失の大幅な低減がなされる。   In the indoor heat exchanger 11, heat is exchanged with room air sent by the indoor blower 12, and a cooling operation is performed. The specific enthalpy difference on the refrigerant side at this time is Δhe in the normal cycle, but is increased to Δhecn, so that the refrigerant circulation amount at the same cooling capacity is reduced, and the low pressure side pressure loss is greatly increased as in the first embodiment. Reduction is made.

また、実施例1との運転上の差異としては、蒸発器として作用する室内熱交換器11へ送られる液冷媒が高圧状態のままであることである。そのため、室内機200が室外機100よりも上部の位置に据え付けられて、その高低差により生じる液冷媒のヘッド差が大きい場合であっても、運転が可能になる。   Moreover, the operational difference from Example 1 is that the liquid refrigerant sent to the indoor heat exchanger 11 acting as an evaporator remains in a high pressure state. Therefore, even when the indoor unit 200 is installed at a position higher than the outdoor unit 100 and the head difference of the liquid refrigerant caused by the height difference is large, the operation can be performed.

次に、本発明の実施例4の空気調和機を図10及び図11を用いて説明する。   Next, an air conditioner according to a fourth embodiment of the present invention will be described with reference to FIGS. 10 and 11.

本発明の実施例4の空気調和機の冷凍装置の構成を図10に示し、この空気調和機の冷房運転時における冷媒状態の変化を図11のモリエル線図上に示す。   FIG. 10 shows the configuration of the air conditioner refrigeration apparatus according to Embodiment 4 of the present invention, and the change in refrigerant state during the cooling operation of the air conditioner is shown on the Mollier diagram of FIG.

実施例2(図6)との違いは、凝縮器出口の高圧液冷媒を膨張機5′入口と、過冷却用熱交換器8への2つの流路に分岐させる点である。これに対して、実施例2では凝縮器出口冷媒をすべて膨張機5′に流入させる構成となっている。これ以外のサイクル構成及び運転状態は実施例2と共通点が多いため、変更点のみの説明を行う。   The difference from the second embodiment (FIG. 6) is that the high-pressure liquid refrigerant at the condenser outlet is branched into two flow paths to the expander 5 ′ inlet and the supercooling heat exchanger 8. On the other hand, in Example 2, all the refrigerant | coolants at a condenser exit flow into the expander 5 '. Since the other cycle configurations and operating states have much in common with the second embodiment, only the changes will be described.

冷房運転時に凝縮器として作用する室外熱交換器3から出た高圧液冷媒(図11のc)は、2つの流路に分岐され、一方は膨張機5′に流入し、他方は過冷却用熱交換器8へと流入する。   The high-pressure liquid refrigerant (c in FIG. 11) exiting from the outdoor heat exchanger 3 acting as a condenser during the cooling operation is branched into two flow paths, one flowing into the expander 5 'and the other for supercooling. It flows into the heat exchanger 8.

膨張機5′では、実施例2の空気調和機と同様に、冷媒を減圧膨張させた時に発生する動力が動力Wrとして取り出される(図11のc→d)。このとき減圧後の圧力は、図11のPeLと低くなり、過冷却用熱交換器8に流入する。   In the expander 5 ′, as in the air conditioner of the second embodiment, the power generated when the refrigerant is expanded under reduced pressure is taken out as power Wr (c → d in FIG. 11). At this time, the pressure after depressurization becomes as low as PeL in FIG. 11 and flows into the supercooling heat exchanger 8.

過冷却用熱交換器8では、減圧されて低温になったバイパス冷媒により、主流側冷媒が冷却される(図11のc→d)。そのため、この液冷媒は室内熱交換器11に送られて、冷房能力に寄与する比エンタルピ差がΔhescnと通常サイクルに比べて増大し、循環量が低減されるため大幅な圧損低減がなされる。   In the subcooling heat exchanger 8, the main-flow-side refrigerant is cooled by the bypass refrigerant that has been decompressed to a low temperature (c → d in FIG. 11). Therefore, this liquid refrigerant is sent to the indoor heat exchanger 11, and the specific enthalpy difference that contributes to the cooling capacity increases as compared with Δhescn and the normal cycle, and the circulation amount is reduced, so that the pressure loss is greatly reduced.

また、バイパス側冷媒は過冷却用熱交換器8内で蒸発し(図11のd→e)、補助圧縮機1′で圧縮されて、圧縮機1へ戻される。このときの必要動力は膨張機5′で回収された動力Wrで賄われる。   Further, the bypass-side refrigerant evaporates in the supercooling heat exchanger 8 (d → e in FIG. 11), is compressed by the auxiliary compressor 1 ′, and is returned to the compressor 1. The necessary power at this time is covered by the power Wr recovered by the expander 5 '.

実施例2との効果の違いは、実施例3でも述べた通り、室内機200へ送られる液冷媒が高圧であることにより、室内機200が室外機100の上方に設置された際に、高低差から発生する液ヘッド差への対応可能範囲の拡大が図れることである。   As described in the third embodiment, the difference in effect from the second embodiment is that when the indoor unit 200 is installed above the outdoor unit 100 because the liquid refrigerant sent to the indoor unit 200 has a high pressure, The range in which the liquid head difference generated from the difference can be handled can be expanded.

次に、本発明の実施例5の空気調和機を図12及び図13を用いて説明する。   Next, the air conditioner of Example 5 of this invention is demonstrated using FIG.12 and FIG.13.

本発明の実施例5の空気調和機の冷凍装置の構成を図12に示し、この空気調和機の冷房運転時における冷媒状態の変化を図13のモリエル線図上に示す。   FIG. 12 shows the configuration of a refrigerating apparatus for an air conditioner according to a fifth embodiment of the present invention, and changes in the refrigerant state during the cooling operation of the air conditioner are shown on the Mollier diagram of FIG.

実施例4の空気調和機との違いは、膨張機5′を有さずに、補助圧縮機1′が別の動力で運転される点である。このため、膨張動力の回収動作はなされないが、その他の動作と効果は同様であり、図13で示されるように蒸発器での比エンタルピ差が拡大でき、低圧側圧力損失を大幅に低減することが可能であり、長配管接続時や配管断面積が十分大きくない場合においても冷房能力の確保が容易である。   The difference from the air conditioner of the fourth embodiment is that the auxiliary compressor 1 'is operated with different power without having the expander 5'. For this reason, the recovery operation of the expansion power is not performed, but the other operations and effects are the same. As shown in FIG. 13, the specific enthalpy difference in the evaporator can be expanded, and the low-pressure pressure loss is greatly reduced. Therefore, it is easy to ensure the cooling capacity even when a long pipe is connected or when the cross-sectional area of the pipe is not sufficiently large.

また、膨張動力回収機構がある場合と異なって、補助圧縮機1′の昇圧量及び冷媒循環量は任意に制御することが可能なため、蒸発器へ送られる液冷媒の過冷却度を任意に制御することが可能となる。   Further, unlike the case where there is an expansion power recovery mechanism, the amount of pressure increase and refrigerant circulation amount of the auxiliary compressor 1 ′ can be arbitrarily controlled, so that the degree of supercooling of the liquid refrigerant sent to the evaporator can be arbitrarily set It becomes possible to control.

また、実施例1〜4の空気調和機に比べて、冷凍装置の構成が簡素化できるため、低コスト化や高信頼性化に優位である。   Moreover, since the structure of a freezing apparatus can be simplified compared with the air conditioner of Examples 1-4, it is advantageous to cost reduction and high reliability.

次に、本発明の実施例6の空気調和機を図14を用いて説明する。本発明の実施例6の空気調和機の冷凍装置の構成を図14に示す。   Next, the air conditioner of Example 6 of this invention is demonstrated using FIG. FIG. 14 shows the configuration of a refrigerating apparatus for an air conditioner according to Embodiment 6 of the present invention.

ここでは、実施例1の空気調和機の冷凍装置をベースとし、逆止弁21a〜21dを用いた逆止弁ブリッジ回路を用いた冷凍装置を示しているが、実施例2〜5の空気調和機の冷凍装置の構成をベースとし、逆止弁ブリッジ回路を備えた冷凍装置であっても、以下に説明する効果は同様である。   Here, although the refrigerating apparatus using the check valve bridge circuit using the check valves 21a to 21d based on the refrigerating apparatus of the air conditioner of the first embodiment is shown, the air conditioners of the second to fifth embodiments are shown. The effects described below are the same even in a refrigeration apparatus having a check valve bridge circuit based on the configuration of the refrigeration apparatus of the machine.

逆止弁21a〜21dを用いた図14の逆止弁ブリッジ回路を用いると、四方弁2の切替え動作により冷媒流通方向が逆転される、冷房運転と暖房運転の双方で、エジェクタ5,気液分離器6,室外減圧装置7,過冷却用熱交換器8,二方弁20のそれぞれの流路方向が同一となる。これにより、冷房運転のみならず、暖房運転時においても、蒸発器での冷媒側比エンタルピ差の拡大による、低圧側冷媒循環量低減で得られる低圧側圧力損失の大幅な低減効果が発揮でき、能力の確保とCOPの向上が実現出来る。   When the check valve bridge circuit of FIG. 14 using the check valves 21a to 21d is used, the ejector 5 and the gas liquid are used in both the cooling operation and the heating operation in which the refrigerant flow direction is reversed by the switching operation of the four-way valve 2. The flow paths of the separator 6, the outdoor pressure reducing device 7, the supercooling heat exchanger 8, and the two-way valve 20 are the same. As a result, not only in cooling operation but also in heating operation, a significant reduction effect of low pressure side pressure loss obtained by reducing the low pressure side refrigerant circulation amount due to expansion of refrigerant side specific enthalpy difference in the evaporator can be exhibited, Capability can be secured and COP can be improved.

特に、低圧側圧力損失が増加しやすい外気低温時の暖房運転においては、低圧側圧力損失の低減効果が大きくなり、暖房能力の増大や能力立ち上がりを改善することが出来、快適な室内暖房が実現できると共に、省エネ化が実現される。   In particular, in heating operation at low temperatures, where the low pressure side pressure loss tends to increase, the effect of reducing the low pressure side pressure loss is increased, and the heating capacity can be increased and the start-up of the capacity can be improved. In addition, energy saving is realized.

また、室内機200a,200bと同一冷媒系統に複数の室内機が接続される場合においても、室内減圧装置10a,10bが各々の室内機に必要な冷媒循環量を制御することで、要求される空調負荷に応じた能力を発揮することが可能となる。空気調和機(室内機200,室外機100)のみを更新し、液側接続配管9及び、ガス側接続配管13は既設のものが再利用されることがある。   Further, even when a plurality of indoor units are connected to the same refrigerant system as the indoor units 200a and 200b, the indoor decompression devices 10a and 10b are required by controlling the refrigerant circulation amount necessary for each indoor unit. It becomes possible to demonstrate the capability according to the air conditioning load. Only the air conditioner (indoor unit 200, outdoor unit 100) is updated, and the existing liquid side connection pipe 9 and gas side connection pipe 13 may be reused.

このような施工方法により、天井裏や壁面などに埋め込まれた冷媒配管を再施工する必要が無くなり、少資材かつ短時間での更新が実現されるため、年々その比率が増大しつつある。   Such a construction method eliminates the need to reconstruct the refrigerant pipe embedded in the ceiling, the wall surface, and the like, and realizes renewal with a small amount of material and in a short time. Therefore, the ratio is increasing year by year.

しかし、更新前の空気調和機ではR−22やR−407c,R−410Aなどの比較的比容積の小さな冷媒が使用されていることが多く、更新後に、同一温度の飽和ガス比容積がこれらよりも大きい冷媒が、使用される場合には、ガス側接続配管の径(断面積)が十分であるとは言えず、そのままではガス側接続配管13の圧力損失に起因して冷房能力が不足してしまう。   However, refrigerants with a relatively small specific volume such as R-22, R-407c, and R-410A are often used in the air conditioner before the update, and the saturated gas specific volume at the same temperature after these is updated When a larger refrigerant is used, the diameter (cross-sectional area) of the gas side connection pipe cannot be said to be sufficient, and the cooling capacity is insufficient due to the pressure loss of the gas side connection pipe 13 as it is. Resulting in.

本発明の実施例1〜6の空気調和機によれば、ガス側接続配管の断面積が十分ではない既設配管を流用した場合においても、冷房能力を十分に発揮させることが出来るようになる。   According to the air conditioners of Embodiments 1 to 6 of the present invention, even when an existing pipe whose cross-sectional area of the gas side connection pipe is insufficient is used, the cooling capacity can be sufficiently exhibited.

本発明の冷凍装置の実施例1を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows Example 1 of the freezing apparatus of this invention. 図1に示す冷凍装置における冷房運転状態を示すモリエル線図。The Mollier diagram which shows the air_conditionaing | cooling operation state in the freezing apparatus shown in FIG. 図1に示すエジェクタの内部構造図及び作動時の静圧分布を示す線図。The internal structure figure of the ejector shown in FIG. 1, and the diagram which shows the static pressure distribution at the time of an action | operation. 従来の冷凍装置における冷房時の運転状態を示すモリエル線図。The Mollier diagram which shows the driving | running state at the time of air_conditioning | cooling in the conventional freezing apparatus. 従来及び本発明の冷凍装置における同一冷房能力時の蒸発器冷媒側の比エンタルピ差と、冷媒循環量及び低圧側圧力損失の関係を説明する線図。The diagram explaining the relationship between the specific enthalpy difference on the evaporator refrigerant side, the refrigerant circulation amount, and the low pressure side pressure loss at the same cooling capacity in the conventional and the refrigeration apparatus of the present invention. 本発明の冷凍装置の実施例2を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows Example 2 of the freezing apparatus of this invention. 図6に示す冷凍装置における冷房運転状態を示すモリエル線図。The Mollier diagram which shows the air_conditioning | cooling driving | running state in the freezing apparatus shown in FIG. 本発明の冷凍装置の実施例3を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows Example 3 of the freezing apparatus of this invention. 図8に示す冷凍装置における冷房運転状態を示すモリエル線図。The Mollier diagram which shows the air_conditioning | cooling driving | running state in the freezing apparatus shown in FIG. 本発明の冷凍装置の実施例4を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows Example 4 of the freezing apparatus of this invention. 図10に示す冷凍装置における冷房運転状態を示すモリエル線図。The Mollier diagram which shows the air_conditioning | cooling driving | running state in the freezing apparatus shown in FIG. 本発明の冷凍装置の実施例5を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows Example 5 of the freezing apparatus of this invention. 図12に示す冷凍装置における冷房運転状態を示すモリエル線図。The Mollier diagram which shows the air_conditioning | cooling driving | running state in the freezing apparatus shown in FIG. 本発明の冷凍装置の実施例6を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows Example 6 of the freezing apparatus of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 室外熱交換器
4 室外送風機
5 エジェクタ
6 気液分離器
7 室外減圧装置
8 過冷却用熱交換器
9 液側接続配管
10 室内減圧装置
11 室内熱交換器
12 室内送風機
13 ガス側接続配管
100 室外機
200 室内機
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Outdoor fan 5 Ejector 6 Gas-liquid separator 7 Outdoor decompression device 8 Supercooling heat exchanger 9 Liquid side connection piping 10 Indoor decompression device 11 Indoor heat exchanger 12 Indoor blower 13 Gas side connection piping 100 Outdoor unit 200 Indoor unit

Claims (10)

圧縮機,室外熱交換器,過冷却用熱交換器,室外減圧装置を備えた室外機と、室内熱交換器を備えた室内機とをそれぞれ冷媒配管により接続した冷凍サイクルを備えた装置において、
蒸発器として作用する熱交換器へ送られる液冷媒の一部をバイパスさせたバイパス冷媒を減圧し、前記過冷却用熱交換器に流入させ、前記液冷媒の主流側冷媒を前記過冷却用熱交換器で冷却して前記室内熱交換器へ送ると共に、前記過冷却用熱交換器で蒸発した前記バイパス冷媒を前記圧縮機の吸入圧力以上に昇圧させる昇圧手段により昇圧させた後前記圧縮機の吸入側に吸入させる構成としたことを特徴とする冷凍装置。
In an apparatus having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a supercooling heat exchanger, an outdoor unit equipped with an outdoor decompressor, and an indoor unit equipped with an indoor heat exchanger are connected to each other by a refrigerant pipe,
The bypass refrigerant obtained by bypassing a part of the liquid refrigerant sent to the heat exchanger acting as an evaporator is depressurized and flows into the supercooling heat exchanger, and the main stream side refrigerant of the liquid refrigerant is converted into the supercooling heat. The refrigerant is cooled by an exchanger and sent to the indoor heat exchanger, and the bypass refrigerant evaporated by the supercooling heat exchanger is boosted by a boosting means that boosts the suction pressure to be higher than the suction pressure of the compressor, and then the compressor A refrigeration apparatus characterized in that the inhalation side is configured to inhale.
請求項1において、前記昇圧手段としてエジェクタを備えたことを特徴とする冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein an ejector is provided as the boosting means. 請求項1において、前記昇圧手段として補助圧縮機を備えたことを特徴とする冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein an auxiliary compressor is provided as the pressure increasing means. 請求項2において、前記エジェクタの出口側に気液分離器を設け、凝縮器として作用する熱交換器から流出した冷媒を前記エジェクタに流入させ、前記エジェクタから流出した冷媒を前記気液分離器に流入させ、前記気液分離器のガス側出口から流出した冷媒を前記圧縮機に戻し、前記気液分離器の液側出口から流出した冷媒の一部をバイパスさせたバイパス冷媒を前記室外減圧装置で減圧し、前記液冷媒の主流側冷媒を前記過冷却用熱交換器で冷却して前記室内熱交換器へ送ると共に、前記過冷却用熱交換器でガス化した前記バイパス冷媒を前記エジェクタの吸入口から吸引させる構成としたことを特徴とする冷凍装置。   The gas-liquid separator is provided in the exit side of the said ejector, the refrigerant | coolant which flowed out from the heat exchanger which acts as a condenser is flowed into the said ejector, and the refrigerant | coolant which flowed out of the said ejector is supplied to the said gas-liquid separator. The outdoor decompression device that bypasses a part of the refrigerant that flows in and returns the refrigerant that flows out from the gas side outlet of the gas-liquid separator to the compressor and bypasses part of the refrigerant that flows out from the liquid side outlet of the gas-liquid separator. The main refrigerant on the main stream side of the liquid refrigerant is cooled by the supercooling heat exchanger and sent to the indoor heat exchanger, and the bypass refrigerant gasified by the supercooling heat exchanger is supplied to the ejector. A refrigeration apparatus characterized by being configured to be sucked from an inlet. 請求項2において、前記エジェクタの出口側に気液分離器を備え、凝縮器として作用する熱交換器からの冷媒の一部をバイパスさせたバイパス冷媒を前記エジェクタに流入させ、前記エジェクタから流出した冷媒を前記気液分離器に流入させ、前記気液分離器のガス側出口から流出した冷媒を前記圧縮機に戻し、前記気液分離器の液側出口から流出した冷媒を前記室外減圧装置で減圧し、前記凝縮器として作用する熱交換器からの冷媒の主流側冷媒を前記過冷却用熱交換器で冷却して前記室内熱交換器へ送ると共に、前記過冷却用熱交換器でガス化した前記バイパス冷媒を前記エジェクタの吸入口から吸引させる構成としたことを特徴とする冷凍装置。   In Claim 2, the gas-liquid separator was provided in the exit side of the said ejector, the bypass refrigerant which bypassed a part of refrigerant | coolant from the heat exchanger which acts as a condenser was made to flow in into the said ejector, and it flowed out of the said ejector Refrigerant is allowed to flow into the gas-liquid separator, the refrigerant flowing out from the gas-side outlet of the gas-liquid separator is returned to the compressor, and the refrigerant flowing out from the liquid-side outlet of the gas-liquid separator is The main stream side refrigerant of the refrigerant from the heat exchanger acting as the condenser is decompressed, cooled by the supercooling heat exchanger and sent to the indoor heat exchanger, and gasified by the supercooling heat exchanger The refrigeration apparatus, wherein the bypass refrigerant is sucked from the suction port of the ejector. 請求項3において、凝縮器として作用する熱交換器から流出した冷媒を膨張させて動力を回収する膨張機を備え、前記膨張機から流出した冷媒の一部をバイパスさせたバイパス冷媒を前記室外減圧装置で減圧させて前記過冷却用熱交換器へ流入させ、前記膨張機から流出した冷媒の他方である主流側冷媒を冷却して前記室内熱交換器へ送り、前記過冷却用熱交換器で蒸発した前記バイパス冷媒は、前記膨張機で回収された動力で作動される前記補助圧縮機で前記圧縮機の吸入圧力以上に昇圧されて前記圧縮機へ吸入される構成としたことを特徴とする冷凍装置。   4. The outdoor decompression apparatus according to claim 3, further comprising an expander that expands the refrigerant that has flowed out of the heat exchanger acting as a condenser and collects power, and bypasses a part of the refrigerant that has flowed out of the expander. The pressure is reduced by an apparatus and flows into the supercooling heat exchanger, the mainstream refrigerant that is the other of the refrigerant that has flowed out of the expander is cooled and sent to the indoor heat exchanger, and the supercooling heat exchanger The evaporated bypass refrigerant is boosted to a pressure higher than a suction pressure of the compressor and sucked into the compressor by the auxiliary compressor operated by power recovered by the expander. Refrigeration equipment. 請求項3において、凝縮器として作用する熱交換器から流出した冷媒の一部をバイパスしたバイパス冷媒を減圧膨張させて動力を回収する膨張機を備え、前記凝縮器として作用する熱交換器から流出した冷媒の他方である主流側冷媒を、前記バイパス冷媒により前記過冷却用熱交換器内で冷却して前記室内熱交換器へ送り、前記過冷却用熱交換器で蒸発した前記バイパス冷媒は前記膨張機で回収された動力で作動される前記補助圧縮機で前記圧縮機の吸入圧力以上に昇圧されて前記圧縮機へ吸入される構成としたことを特徴とする冷凍装置。   4. The apparatus according to claim 3, further comprising an expander that recovers power by decompressing and expanding a bypass refrigerant that bypasses a part of the refrigerant that has flowed out of the heat exchanger that acts as a condenser, and flows out of the heat exchanger that acts as the condenser. The main refrigerant on the other side of the refrigerant that has been cooled is cooled in the supercooling heat exchanger by the bypass refrigerant and sent to the indoor heat exchanger, and the bypass refrigerant evaporated in the supercooling heat exchanger is A refrigeration apparatus characterized in that the auxiliary compressor operated by power recovered by an expander is boosted to a pressure higher than a suction pressure of the compressor and sucked into the compressor. 請求項2,4,5の何れかにおいて、逆止弁で構成されたブリッジ回路を備え、該ブリッジ回路を用いて前記エジェクタと前記過冷却用熱交換器の冷媒流路の方向を、冷房及び暖房運転時の双方で同一方向になるように構成したことを特徴とした冷凍装置。   6. A bridge circuit comprising a check valve according to claim 2, wherein the bridge circuit is used to change the direction of the refrigerant flow path of the ejector and the supercooling heat exchanger. A refrigeration apparatus configured to be in the same direction during both heating operations. 請求項3,6,7の何れかにおいて、逆止弁で構成されたブリッジ回路を備え、該ブリッジ回路を用いて前記補助圧縮機と前記過冷却用熱交換器の冷媒流路の方向を、冷房及び暖房運転時の双方で同一方向になるように構成したことを特徴とした冷凍装置。   In any one of claims 3, 6, and 7, comprising a bridge circuit constituted by a check valve, using the bridge circuit, the direction of the refrigerant flow path of the auxiliary compressor and the supercooling heat exchanger, A refrigeration apparatus configured to be in the same direction during both cooling and heating operations. 請求項1〜8の何れかにおいて、使用される冷媒の同一蒸発温度における飽和ガスの比容積がR−410Aに対して1.5倍以上であることを特徴とした冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 8, wherein the specific volume of the saturated gas at the same evaporation temperature of the refrigerant used is 1.5 times or more that of R-410A.
JP2008151203A 2008-06-10 2008-06-10 Refrigeration equipment Expired - Fee Related JP5049889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151203A JP5049889B2 (en) 2008-06-10 2008-06-10 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151203A JP5049889B2 (en) 2008-06-10 2008-06-10 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2009299911A true JP2009299911A (en) 2009-12-24
JP5049889B2 JP5049889B2 (en) 2012-10-17

Family

ID=41546999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151203A Expired - Fee Related JP5049889B2 (en) 2008-06-10 2008-06-10 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5049889B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300041A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device
WO2012101672A1 (en) * 2011-01-26 2012-08-02 三菱電機株式会社 Air conditioner device
CN102901283A (en) * 2012-10-13 2013-01-30 北京德能恒信科技有限公司 Cycling refrigeration system of recycling evaporator
CN103765124A (en) * 2011-09-01 2014-04-30 大金工业株式会社 Refrigeration device
JP2019138577A (en) * 2018-02-13 2019-08-22 株式会社デンソー Refrigeration cycle device
JP2019215120A (en) * 2018-06-12 2019-12-19 三菱電機株式会社 Show case
JP2021502924A (en) * 2017-11-17 2021-02-04 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Liquefied fuel power generation and distribution system, and cargo handling method using that system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344066A (en) * 2013-07-15 2013-10-09 江苏七政新能源有限公司 Bent tube type cooler
KR102618118B1 (en) * 2023-04-11 2023-12-27 (주)하이세이브아시아 Liquid refrigerant mild method for supplying low temperature refrigerant to the suction side of the refrigerant liquid pump that circulates the refrigerant in the refrigeration system under increased pressure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083620A (en) * 2001-09-12 2003-03-19 Mitsubishi Electric Corp Refrigerating and air-conditioning device
JP2007315663A (en) * 2006-05-25 2007-12-06 Sanden Corp Refrigeration system
JP2008116124A (en) * 2006-11-06 2008-05-22 Hitachi Appliances Inc Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083620A (en) * 2001-09-12 2003-03-19 Mitsubishi Electric Corp Refrigerating and air-conditioning device
JP2007315663A (en) * 2006-05-25 2007-12-06 Sanden Corp Refrigeration system
JP2008116124A (en) * 2006-11-06 2008-05-22 Hitachi Appliances Inc Air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300041A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device
AU2011357097B2 (en) * 2011-01-26 2015-01-22 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103229004B (en) * 2011-01-26 2016-05-04 三菱电机株式会社 Aircondition
CN103229004A (en) * 2011-01-26 2013-07-31 三菱电机株式会社 Air conditioner device
JPWO2012101672A1 (en) * 2011-01-26 2014-06-30 三菱電機株式会社 Air conditioner
WO2012101672A1 (en) * 2011-01-26 2012-08-02 三菱電機株式会社 Air conditioner device
CN103765124A (en) * 2011-09-01 2014-04-30 大金工业株式会社 Refrigeration device
CN103765124B (en) * 2011-09-01 2015-11-25 大金工业株式会社 Refrigerating plant
CN102901283B (en) * 2012-10-13 2016-04-13 北京德能恒信科技有限公司 A kind of recirculation evaporator cycle refrigeration system
CN102901283A (en) * 2012-10-13 2013-01-30 北京德能恒信科技有限公司 Cycling refrigeration system of recycling evaporator
JP2021502924A (en) * 2017-11-17 2021-02-04 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Liquefied fuel power generation and distribution system, and cargo handling method using that system
JP7011713B2 (en) 2017-11-17 2022-01-27 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Liquefied fuel power generation and distribution system, and cargo handling method using that system
JP2019138577A (en) * 2018-02-13 2019-08-22 株式会社デンソー Refrigeration cycle device
JP2019215120A (en) * 2018-06-12 2019-12-19 三菱電機株式会社 Show case
JP7060455B2 (en) 2018-06-12 2022-04-26 三菱電機株式会社 Showcase

Also Published As

Publication number Publication date
JP5049889B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5049889B2 (en) Refrigeration equipment
JP4952210B2 (en) Air conditioner
EP2428749B1 (en) Air conditioner
JP4167196B2 (en) Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
EP1645818B1 (en) Air-conditioner with a dual-refrigerant circuit
JP4704167B2 (en) Refrigeration cycle equipment
JP5049888B2 (en) Refrigeration cycle equipment
JP2009229051A (en) Refrigerating device
JP2001221517A (en) Supercritical refrigeration cycle
JP2007240025A (en) Refrigerating device
JP2009264606A (en) Refrigerating device
JP5186949B2 (en) Refrigeration equipment
EP1876401B1 (en) Refrigeration device
JP2011214753A (en) Refrigerating device
KR101044464B1 (en) Refrigeration device
JP2009204266A (en) Refrigerating device
KR20100096857A (en) Air conditioner
JP2005214550A (en) Air conditioner
KR100614364B1 (en) Refrigeration equipment
JP4889714B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2023116735A (en) Refrigeration system and method
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device
JP2009228972A (en) Refrigerating device
JP6765086B2 (en) Refrigeration equipment
JP2007093086A (en) Refrigerating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5049889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees