WO2012101672A1 - Air conditioner device - Google Patents

Air conditioner device Download PDF

Info

Publication number
WO2012101672A1
WO2012101672A1 PCT/JP2011/000406 JP2011000406W WO2012101672A1 WO 2012101672 A1 WO2012101672 A1 WO 2012101672A1 JP 2011000406 W JP2011000406 W JP 2011000406W WO 2012101672 A1 WO2012101672 A1 WO 2012101672A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat
supercooling
heat medium
Prior art date
Application number
PCT/JP2011/000406
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 森本
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/000406 priority Critical patent/WO2012101672A1/en
Priority to AU2011357097A priority patent/AU2011357097B2/en
Priority to JP2012554478A priority patent/JPWO2012101672A1/en
Priority to US13/882,524 priority patent/US20130213078A1/en
Priority to CN201180057064.XA priority patent/CN103229004B/en
Priority to EP11856898.9A priority patent/EP2669598B1/en
Publication of WO2012101672A1 publication Critical patent/WO2012101672A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • the present invention relates to an air conditioner.
  • an air conditioner that includes a supercooling unit and that cools a refrigerant sent from a condenser to a throttling device with a bypass-side refrigerant (see, for example, Patent Document 1).
  • the air conditioner provided with such a supercooling means, the amount of refrigerant circulating to the expansion device is reduced, so that the pressure loss of the evaporator and the extension pipe at the rear stage of the expansion device can be reduced.
  • HFC refrigerants with high global warming potential for example, R410A, R404A, R407C, R134a, etc.
  • refrigerants with low global warming potential for example, an air conditioner using HFO1234yf, carbon dioxide, etc.
  • HFO1234yf has a significantly lower refrigerant density at low pressure than R410A, and its pressure characteristics at the same temperature are much lower than R410A.
  • the influence of pressure loss in the low-pressure gas piping is extremely large. Therefore, there has been a problem that the pipe diameter has to be increased in order to reduce the pressure loss.
  • the diameter of the low-pressure gas pipe is about 22.2 mm, but when a refrigerant with low refrigerant density at low pressure is used, About twice as much as ⁇ 44.5mm. Therefore, it is very difficult to bend the pipe, and the processing cost is greatly increased.
  • the refrigerant pipe having such a large pipe diameter is usually hardly used in the market, so that the cost is greatly increased.
  • reducing the pipe diameter of the low-pressure gas pipe is considered as one of the major problems when using a refrigerant having a low refrigerant density at low pressure.
  • the air conditioner of Patent Document 1 is effective in reducing pressure loss as described above.
  • a refrigerant having a low refrigerant density at low pressure is used as the working refrigerant, and the effect of reducing pressure loss is not sufficient. Therefore, simply applying a refrigerant having a low refrigerant density at a low pressure to the air conditioner cannot solve the problem of a large increase in the diameter of the low-pressure gas pipe as described above.
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to obtain an air conditioner that can make a low-pressure gas pipe thin even when a refrigerant having a low refrigerant density at low pressure is used. To do.
  • the compressor, the heat source side heat exchanger, the expansion device, and the use side heat exchanger are connected by piping, and the saturated refrigerant gas density at 0 ° C. is 35 to 65% of the R410A refrigerant.
  • a supercooling means for setting the liquid temperature of the high-pressure liquid refrigerant sent to the expansion device from the heat source side heat exchanger to 5 ° C. or less during the cooling operation.
  • the liquid temperature of the high-pressure liquid refrigerant sent from the heat source side heat exchanger to the expansion device is 5 ° C. or lower during the cooling operation, the refrigeration effect can be increased and the refrigerant flow rate can be reduced. Can do. Therefore, the low pressure pipe can be made thin.
  • FIG. FIG. 1 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • a detailed circuit configuration of the air conditioner will be described with reference to FIG. FIG. 1 shows an example in which four indoor units 20 are connected.
  • the relationship of the size of each component may be different from the actual one.
  • the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification.
  • the form of the constituent elements appearing in the whole specification is merely an example, and is not limited to these descriptions.
  • an air conditioner 100 includes an outdoor unit (heat source unit) 10, an indoor unit 20a to an indoor unit 20d (hereinafter, may be collectively referred to as an indoor unit 20), an extension pipe 400a and an extension 400b. (Hereinafter, it may be collectively referred to as an extension pipe 400). That is, in the air conditioner 100, a plurality of indoor units 20 are connected to the outdoor unit 10 in parallel.
  • the extension pipe 400 is a refrigerant pipe that conducts the refrigerant (heat source side refrigerant). Further, it is assumed that HFO1234yf or HFO1234ze is enclosed in the air conditioner 100 as a refrigerant.
  • the outdoor unit 10 includes a compressor 1, a flow switching device 2 such as a four-way valve, a heat source side heat exchanger 3, a supercooling heat exchanger 4, and an accumulator 6.
  • a refrigerant circulation circuit in which refrigerant is circulated is connected to the user side heat exchanger 21 and the expansion device 22 by piping.
  • the outdoor unit 10 further includes a supercooling heat exchanger 4 between the heat source side heat exchanger 3 and the expansion device 22.
  • the outdoor unit 10 branches from between the supercooling heat exchanger 4 and the expansion device 22, and is connected to the inlet side of the accumulator 6 through the expansion device 5 and the low pressure side of the supercooling heat exchanger 4.
  • a bypass circuit 7 is provided.
  • the supercooling heat exchanger 4 exchanges heat between the high-pressure side refrigerant between the heat source side heat exchanger 3 and the expansion device 22 and the low-pressure side refrigerant obtained by decompressing a part of the high-pressure side refrigerant with the expansion device 5 to increase the pressure. Cool the side refrigerant.
  • the compressor 1 sucks the refrigerant, compresses the refrigerant to be brought into a high-temperature and high-pressure state, and conveys the refrigerant to a refrigerant circulation circuit.
  • the compressor 1 may be composed of an inverter compressor capable of controlling capacity.
  • the flow path switching device 2 switches the refrigerant flow in the heating operation mode and the refrigerant flow in the cooling operation mode.
  • the heat source side heat exchanger (outdoor heat exchanger) 3 functions as an evaporator during heating operation, functions as a radiator during cooling operation, and is provided between air and refrigerant supplied from a blower such as a fan (not shown). Heat exchange.
  • the accumulator 6 is provided on the suction side of the compressor 1, and surplus refrigerant due to a difference between the heating operation mode and the cooling operation mode, a change in transient operation (for example, a change in the number of operating indoor units 20). The excess refrigerant is stored.
  • a pressure sensor 8 and a temperature sensor 9 are provided at the outlet (liquid side) of the supercooling heat exchanger 4.
  • the outdoor unit 10 is further provided with various sensors such as a sensor (not shown) for detecting the suction temperature and the discharge temperature of the compressor 1.
  • the outdoor unit 10 is provided with a control device 10A.
  • the control device 10A is connected so as to receive detection signals of various sensors in the outdoor unit 10 and various sensors described later in the indoor unit 20.
  • the control device 10A performs control such as adjusting the opening degree of the expansion device 5 and the expansion device 22 based on detection signals from various sensors.
  • the control device 10 ⁇ / b> A performs the cooling operation mode and the heating operation mode by switching the flow path switching device 2.
  • FIG. 1 shows a configuration in which the control device 10A is provided only in the outdoor unit 10, a sub-control device having a part of the function of the control device 10A is provided in each indoor unit 20, and the control device 10A and sub-control are provided. You may make it the structure which performs a cooperation process by performing data communication between apparatuses.
  • a use side heat exchanger (indoor side heat exchanger) 21 (21a to 21d) and an expansion device 22 (22a to 22d) are connected in series to constitute a part of a refrigerant circulation circuit.
  • the use-side heat exchanger 21 functions as a radiator during heating operation, functions as an evaporator during cooling operation, performs heat exchange between air supplied from a blower such as a fan (not shown) and the refrigerant, and is air-conditioned. Heating air or cooling air to be supplied to the target space is generated.
  • the throttling device 22 has a function as a pressure reducing valve or an expansion valve, expands the refrigerant by depressurizing it, and may be constituted by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • Embodiment 1 shows an example in which four indoor units 20 are connected, and are illustrated as an indoor unit 20a, an indoor unit 20b, an indoor unit 20c, and an indoor unit 20d from the left side of the page. Further, according to the indoor unit 20a to the indoor unit 20d, the use side heat exchanger 21 also uses the use side heat exchanger 21a, the use side heat exchanger 21b, the use side heat exchanger 21c, and the use side heat exchanger from the left side of the page. It is illustrated as 21d.
  • the diaphragm device 22 is also illustrated as a diaphragm device 22a, a diaphragm device 22b, a diaphragm device 22c, and a diaphragm device 22d from the left side of the drawing. Note that the number of connected indoor units 20 is not limited to four.
  • temperature sensors 23 a to 23 d and 24 a to 24 d are provided at the refrigerant inlet / outlet of the use side heat exchanger 21. Detection signals from the temperature sensors 23a to 23d and 24a to 24d are output to the control device 10A.
  • the indoor unit is controlled by the control unit 10A for the outdoor unit.
  • a control unit is provided for each indoor unit, and the indoor units 20a to 20d are controlled by the control unit. good.
  • the low-pressure refrigerant HFO1234yf or HFO1234ze is used as the refrigerant.
  • the saturated gas density at 0 ° C. of these refrigerants is as shown in Table 1.
  • Table 1 shows that HFO1234yf is 58% and HFO1234ze is 38% with respect to the gas density of R410A. That is, this refrigerant has a low-pressure gas density of about 35 to 65% compared to the R410A refrigerant currently used in many air conditioners.
  • the values are obtained from REFPROP Version 8.0 released by NIST (National Institute of Standards and Technology).
  • the temperature of the high-pressure liquid refrigerant sent to the expansion device 22 from the heat source side heat exchanger 3 serving as a radiator in the cooling operation mode is lowered to 5 ° C. or lower.
  • the condensation temperature is 49 ° C.
  • the degree of supercooling when the target temperature of the liquid temperature of the high-pressure liquid refrigerant is 5 ° C. or less is 44 ° C. or more.
  • the refrigeration effect can be increased as compared with, for example, a case where the liquid temperature is set to 44 ° C. (supercooling degree 5 ° C.).
  • the refrigerant flow rate can be reduced, and the pipe size can be reduced.
  • FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling operation mode.
  • FIG. 2 the case where all of the indoor units 20 are driven will be described as an example.
  • the flow direction of the refrigerant is indicated by arrows.
  • a low temperature / low pressure refrigerant is compressed by the compressor 1 and discharged as a high temperature / high pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching device 2 and flows into the heat source side heat exchanger 3.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 3 becomes liquid by exchanging heat with air supplied from a blower (not shown) and flows out of the heat source side heat exchanger 3.
  • the liquid refrigerant flowing out of the heat source side heat exchanger 3 flows into the high pressure side of the supercooling heat exchanger 4.
  • the liquid refrigerant on the high pressure side of the supercooling heat exchanger 4 is cooled by exchanging heat with the refrigerant on the low pressure side, and the liquid temperature decreases (increases the degree of supercooling) and flows out of the supercooling heat exchanger 4.
  • the low pressure two-phase refrigerant on the low pressure side of the supercooling heat exchanger 4 exchanges heat with the refrigerant on the high pressure side to become a low pressure gas refrigerant, exits the supercooling heat exchanger 4, and travels toward the accumulator 6.
  • the opening degree of the expansion device 5 is adjusted so that the liquid temperature of the high-pressure liquid refrigerant at the outlet of the supercooling heat exchanger 4 is lowered to about 5 ° C.
  • the refrigeration effect is increased, so that the opening degree of the expansion device 5 becomes smaller than when the degree of supercooling is set to 5 ° C. Therefore, the refrigerant supply amount to the use side heat exchanger 21 is reduced. As a result, the piping size can be reduced.
  • the opening degree of the expansion device 5 is adjusted by the control device 10A based on detection signals from the pressure sensor 8 and the temperature sensor 9.
  • the supercooling heat exchanger 4 of this Embodiment 1 employs a double-pipe system, a high-pressure liquid refrigerant that is a high-pressure side refrigerant in the annular part, and a low-pressure in the inner pipe.
  • a gas-liquid two-phase refrigerant that is a side refrigerant is flowing. This is because when the gas-liquid two-phase refrigerant is caused to flow through the annular part, the liquid refrigerant is biased toward the bottom part of the annular part and the heat exchange performance is deteriorated.
  • the supercooling heat exchanger 4 is not limited to a double tube system, and a plate heat exchanger may be used.
  • this plate heat exchanger is used, the heat exchanger performance is effectively demonstrated by allowing the low-pressure gas-liquid two-phase refrigerant to flow from bottom to top and the high-pressure liquid refrigerant from top to bottom (to AC). can do.
  • the liquid refrigerant that has flowed out of the supercooling heat exchanger 4 passes through the extension pipe 400a toward the indoor unit 20 and flows into each of the indoor units 20a to 20d.
  • the refrigerant flowing into the indoor unit 20a to the indoor unit 20d is expanded (depressurized) by each of the expansion devices 22a to 22d to be in a low-temperature / low-pressure gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant flows into the use side heat exchanger 21a to the use side heat exchanger 21d.
  • the gas-liquid two-phase refrigerant flowing into the use side heat exchanger 21a to the use side heat exchanger 21d absorbs heat from the air by exchanging heat with air (indoor air) supplied from a blower (not shown).
  • the refrigerant flows out of the use side heat exchanger 21a to the use side heat exchanger 21d.
  • the refrigerant supply amount to the use side heat exchanger 21 is adjusted using temperature information from the temperature sensors 23 a to 23 d and 24 a to 24 d provided at the refrigerant inlet / outlet of the use side heat exchanger 21.
  • the control device 10A acquires information from the temperature sensors 23a to 23d and 24a to 24d, and calculates the degree of superheat (refrigerant temperature on the outlet side ⁇ refrigerant temperature on the inlet side) based on the acquired information. . Then, the opening degree of the expansion device 22 is determined so that the degree of superheat is about 2 to 5 ° C., and the refrigerant supply amount to the use side heat exchanger 21 is adjusted.
  • the low-pressure gas refrigerant that has flowed out of the use side heat exchanger 21a to the use side heat exchanger 21d flows out of the indoor unit 20a to the indoor unit 20d, and flows into the outdoor unit 10 through the extension pipe 400b.
  • the refrigerant flowing into the outdoor unit 10 passes through the flow path switching device 2 and flows into the accumulator 6.
  • the refrigerant flowing into the accumulator 6 is separated from the liquid refrigerant and the gas refrigerant, and the gas refrigerant is sucked into the compressor 1 again.
  • the superheat degree control is performed in each indoor unit 20 so that the superheat degree is in the positive range, so that the liquid refrigerant does not flow into the accumulator 6.
  • a small amount of refrigerant dryness of about 0.95 may flow into the accumulator 6.
  • the liquid refrigerant that has flowed into the accumulator 6 is evaporated and sucked into the compressor 1 or is sucked into the compressor 1 through an oil return hole (not shown) provided in the outlet pipe of the accumulator 6. .
  • FIG. 4 shows the relationship between the liquid temperature at the outlet of the supercooling heat exchanger and the reduction rate of the refrigerant flow rate.
  • the refrigerant flow rate ratio is 1 when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.).
  • other calculation conditions are an evaporation temperature of 0 ° C. and a condensation temperature of 49 ° C.
  • the flow rate is about 66% when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.), and the extension pipe 400a. It can be seen that the refrigerant flow rate flowing through 400b is reduced by 34%.
  • FIG. 5 is a graph showing the relationship between the liquid temperature at the outlet of the supercooling heat exchanger and the reduction ratio of the pressure loss of the piping.
  • the pressure loss ratio when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.) is 1.
  • the pressure loss becomes about 44% when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.). It can be seen that the pressure loss at 400a and 400b is reduced by 56%.
  • FIG. 6 is a graph showing the relationship between the liquid temperature at the outlet of the supercooling heat exchanger and the pipe diameter reduction ratio.
  • the pipe diameter ratio when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.) is 1.
  • the pipe diameter becomes about 80% when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.).
  • the pipe diameters at 400a and 400b are reduced by 20%. That is, the pipe diameter can be reduced from one rank to two ranks, and the extension pipes 400a and 400b can be made thin.
  • the extension pipe 400b which is a low-pressure pipe through which the gas refrigerant passes, is greatly affected by pressure loss, and is thicker than the extension pipe 400a. Therefore, reducing the pipe diameter of the extension pipe 400b by one or two ranks is very effective since the effects of reducing the pipe cost, improving the workability, and the work cost can be obtained.
  • FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating operation mode.
  • the case where all the indoor units 20 are driven will be described as an example.
  • the flow direction of the refrigerant is indicated by arrows.
  • the expansion device 5 is closed.
  • a low temperature / low pressure refrigerant is compressed by the compressor 1 and discharged as a high temperature / high pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows out of the outdoor unit 10 through the flow path switching device 2, and flows into each of the indoor units 20a to 20d through the extension pipe 400b.
  • the high-temperature and high-pressure gas refrigerant flowing into the indoor unit 20a to the indoor unit 20d exchanges heat with air (indoor air) supplied from a blower (not shown) in the use side heat exchanger 21a to the use side heat exchanger 21d.
  • air indoor air
  • a blower not shown
  • heat is radiated to the air, and the liquid is converted into a liquid state and flows out from the use side heat exchanger 21a to the use side heat exchanger 21d.
  • the high-pressure liquid refrigerant is expanded (depressurized) by each of the expansion devices 22a to 22d to be in a low-temperature and low-pressure gas-liquid two-phase state, and flows out from the indoor units 20a to 20d.
  • the refrigerant supply amount to the use side heat exchanger 21 is adjusted using information from temperature sensors 23a to 23d and pressure sensors (not shown) provided at the refrigerant outlet of the use side heat exchanger 21. Yes. Specifically, the degree of supercooling (saturation temperature converted from the detected pressure of refrigerant on the outlet side-refrigerant temperature on the outlet side) is calculated from information from these sensors, and the degree of supercooling is about 2 to 5 ° C. Thus, the opening degree of the expansion device 22 is determined, and the refrigerant supply amount to the heat source side heat exchanger 3 is adjusted.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed out of the indoor unit 20a to the indoor unit 20d flows into the outdoor unit 10 through the extension pipe 400a.
  • This refrigerant passes through the supercooling heat exchanger 4 as it is and flows into the heat source side heat exchanger 3.
  • the low-temperature / constant-pressure gas-liquid two-phase refrigerant flowing into the heat source side heat exchanger 3 absorbs heat from the air by exchanging heat with air supplied from a blower (not shown), and gradually increases in dryness. Become. Then, at the outlet of the heat source side heat exchanger 3, it becomes a gas-liquid two-phase refrigerant with a high degree of dryness and flows out of the heat source side heat exchanger 3.
  • the refrigerant flowing out of the heat source side heat exchanger 3 flows into the accumulator 6 through the flow path switching device 2.
  • the refrigerant flowing into the accumulator 6 is separated from the liquid refrigerant and the gas refrigerant, and the gas refrigerant is sucked into the compressor 1 again.
  • the flow rate of the refrigerant flowing into the extension pipe 400b cannot be reduced.
  • a high-pressure gas refrigerant flows through the extension pipe 400b (a refrigerant having a high density)
  • the pressure loss The refrigerant does not flow through the supercooling heat exchanger 4.
  • the low-pressure piping outlet of the supercooling heat exchanger 4-> evaporator-> piping to the inlet of the accumulator 6) of the outdoor unit 10 can also be made thin.
  • the liquid temperature of the high-pressure liquid refrigerant sent from the use side heat exchanger 21 to the expansion device 22 may be 5 ° C. or lower, or the degree of supercooling may be 44 ° C. or higher.
  • the high-pressure liquid temperature is lowered to about 5 ° C. by the supercooling means (the supercooling heat exchanger 4, the expansion device 5, and the bypass circuit 7) in the cooling operation mode.
  • the pipe diameter of the extension pipe (low pressure gas pipe) 400b can be reduced by one or two ranks.
  • Embodiment 2 the supercooling means is configured by the supercooling heat exchanger 4, the expansion device 5, and the bypass circuit 7, but in the second embodiment, the supercooling means is configured by the supercooling refrigerant circulation circuit. It is a thing.
  • FIG. 8 is a schematic diagram of an air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the air conditioner 101 includes a refrigerant circulation circuit 101A and a supercooling circuit 101B.
  • differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment are denoted by the same reference numerals.
  • specific examples and modifications applied to the same components as those in the first embodiment are similarly applied to the present embodiment. This also applies to embodiments described later.
  • the refrigerant circulation circuit 101A includes a compressor 1, a flow switching device 2 such as a four-way valve, a heat source side heat exchanger 3, and an accumulator 6, and includes a use side heat exchanger 21 and a throttle device of the indoor unit 20.
  • the refrigeration cycle in which refrigerant is circulated is connected with the pipe 22 together.
  • the supercooling circuit 101B includes a compressor 31, a condenser 32, a throttling device 33, and a supercooling heat exchanger 34, which are connected by piping so that the refrigerant circulates and functions as supercooling means. It constitutes the refrigeration cycle.
  • the supercooling heat exchanger 34 performs heat exchange between the low-pressure side refrigerant circulating in the supercooling circuit 101B and the high-pressure side refrigerant between the heat source side heat exchanger 3 and the expansion device 22 of the refrigerant circulation circuit 101A.
  • each device excluding the use side heat exchanger 21 and the expansion device 22 and the supercooling circuit 101B are installed in the same casing, and constitute an outdoor unit 30. Further, the compressor 31 of the subcooling circuit 101B is equipped with a compressor having a smaller capacity than the compressor 1.
  • the outdoor unit 30 is provided with a control device 30A.
  • the control device 30 ⁇ / b> A is connected so as to receive detection signals of various sensors in the outdoor unit 30 and various sensors described later in the indoor unit 20.
  • the control device 30A performs control such as adjusting the opening degree of the expansion device 33 and the expansion device 22 based on detection signals from various sensors.
  • the control device 30 ⁇ / b> A performs the cooling operation mode and the heating operation mode by switching the flow path switching device 2.
  • FIG. 8 shows a configuration in which the control device 30A is provided only in the outdoor unit 30, a sub-control device having a part of the function of the control device 30A is provided in each indoor unit 20, and the control device 30A and sub-control are provided. You may make it the structure which performs a cooperation process by performing data communication between apparatuses.
  • FIG. 9 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus according to Embodiment 2 of the present invention is in the cooling operation mode.
  • the case where all the indoor units 20 are driven will be described as an example.
  • the flow direction of the refrigerant is indicated by arrows.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching device 2 and flows into the heat source side heat exchanger 3.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 3 becomes a liquid state by exchanging heat with air supplied from a blower (not shown) and flows out of the heat source side heat exchanger 3, and the supercooling heat It flows into the exchanger 34.
  • the liquid refrigerant that has flowed into the supercooling heat exchanger 34 is cooled by the gas-liquid two-phase refrigerant generated in the supercooling circuit 101B, and the liquid temperature decreases (increases the degree of supercooling) so that the supercooling heat exchanger. 34 flows out.
  • the temperature of the high-pressure liquid refrigerant at the outlet of the supercooling heat exchanger 34 is lowered to about 5 ° C.
  • the temperature of the high-pressure liquid refrigerant depends on the heat exchange amount in the supercooling heat exchanger 34. Therefore, the temperature of the high-pressure liquid refrigerant at the outlet of the supercooling heat exchanger 34 is lowered to about 5 ° C. by adjusting the opening degree of the expansion device 33 of the subcooling circuit 101B and the rotation speed of the compressor 31. Yes.
  • the same effect as in the first embodiment can be obtained.
  • the liquid refrigerant that has flowed out of the supercooling heat exchanger 34 goes to the indoor unit 20 through the extension pipe 400a and flows into each of the indoor units 20a to 20d.
  • the refrigerant flowing into the indoor unit 20a to the indoor unit 20d is expanded (depressurized) by each of the expansion devices 22a to 22d to be in a low-temperature / low-pressure gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant flows into the use side heat exchanger 21a to the use side heat exchanger 21d.
  • the gas-liquid two-phase refrigerant flowing into the use side heat exchanger 21a to the use side heat exchanger 21d absorbs heat from the air by exchanging heat with air (indoor air) supplied from a blower (not shown). Then, it becomes a low-pressure gas refrigerant and flows out from the use side heat exchanger 21a to the use side heat exchanger 21d.
  • the refrigerant supply amount to the use side heat exchanger 21 is adjusted using temperature information from the temperature sensors 23 a to 23 d and 24 a to 24 d provided at the refrigerant inlet / outlet of the use side heat exchanger 21.
  • the control device 30A calculates the degree of superheat (refrigerant temperature on the outlet side ⁇ refrigerant temperature on the inlet side) based on information from the temperature sensors 23a to 23d and 24a to 24d.
  • the opening degree of the expansion device 22 is determined so that the degree of superheat is about 2 to 5 ° C., and the refrigerant supply amount to the use side heat exchanger 21 is adjusted. .
  • the low-pressure gas refrigerant that has flowed out of the use side heat exchanger 21a to the use side heat exchanger 21d flows out of the indoor unit 20a to the indoor unit 20d, and flows into the outdoor unit 10 through the extension pipe 400b.
  • the refrigerant flowing into the outdoor unit 10 passes through the flow path switching device 2 and flows into the accumulator 6.
  • the refrigerant flowing into the accumulator 6 is separated from the liquid refrigerant and the gas refrigerant, and the gas refrigerant is sucked into the compressor 1 again.
  • the refrigerant is compressed by the compressor 31 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 31 flows into the condenser 32.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the condenser 32 becomes a liquid state by exchanging heat with air supplied from a blower (not shown), flows out of the condenser 32, and flows into the expansion device 33.
  • the opening degree of the expansion device 33 is adjusted so that the temperature of the high-pressure liquid refrigerant at the outlet of the supercooling heat exchanger 34 is lowered to about 5 ° C. as described above.
  • the refrigerant flowing into the expansion device 33 is depressurized into a low-pressure gas-liquid two-phase flow and flows into the supercooling heat exchanger 34.
  • the liquid refrigerant that has flowed into the supercooling heat exchanger 34 exchanges heat with the high-pressure liquid refrigerant generated in the refrigerant circuit 101A.
  • the heat-exchanged gas-liquid two-phase refrigerant becomes a low-pressure gas refrigerant, flows out of the supercooling heat exchanger 34, and is sucked into the compressor 31 again.
  • the temperature of the high-pressure liquid refrigerant flowing out of the supercooling heat exchanger 34 is reduced to about 5 ° C. by the supercooling heat exchanger 34 as in the first embodiment.
  • the pipe diameter of the extension pipe (low pressure gas pipe) 400b can be reduced by about 1 to 2 ranks, and the pipe cost and the construction cost can be reduced.
  • the flow rate of the refrigerant flowing into the extension pipe 400b cannot be reduced, but a high-pressure gas refrigerant flows (a refrigerant having a high density).
  • the effect of pressure loss is small, and no refrigerant flows through the supercooling heat exchanger 34. That is, the supercooling circuit 101B is not operated.
  • the same refrigerant HFO1234yf or HFO1234ze is used for the refrigerant circulation circuit 101A and the supercooling circuit 101B, but the supercooling circuit 101B is replaced with another refrigerant having a low global warming potential, for example, dioxide dioxide. Carbon, HC refrigerant or the like may be used.
  • Embodiment 3 FIG.
  • the air conditioner of the third embodiment is the same as the outdoor unit 10 of the first embodiment shown in FIG. 1 or the implementation shown in FIG. 8.
  • the outdoor unit 30 of the form 2 is applied.
  • FIG. 10 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the air conditioner 102 is roughly composed of a heat source unit (outdoor unit) 40, a heat medium converter 60, and an indoor unit 50.
  • the outdoor unit 40 and the heat medium converter 60 are connected by a refrigerant pipe 401 via a heat medium heat exchanger 61 a and a heat medium heat exchanger 61 b provided in the heat medium converter 60.
  • the heat medium converter 60 and the indoor unit 50 are also connected by a pipe 500 via the heat exchanger related to heat medium 61a and the heat exchanger related to heat medium 61b.
  • the outdoor unit 40 includes each device and various sensors that constitute the outdoor unit 10 of the first embodiment shown in FIG. 1, and, like the first and second embodiments, the high-pressure liquid refrigerant is provided.
  • the liquid temperature is lowered to about 5 ° C.
  • the outdoor unit 40 is further provided with four check valves 41a to 41d in order to make the refrigerant flow in one direction. In the case of such a circuit, the temperature of the high-pressure liquid refrigerant can be lowered only in the cooling operation.
  • the check valve 41d is provided in the refrigerant pipe 401 between the heat medium converter 60 and the flow path switching device 2, and is a heat source side refrigerant only in a predetermined direction (direction from the heat medium converter 60 to the outdoor unit 40). Is allowed.
  • the check valve 41a is provided in the refrigerant pipe 401 between the heat source side heat exchanger 12 and the heat medium converter 60, and only in a predetermined direction (direction from the outdoor unit 40 to the heat medium converter 60).
  • the refrigerant flow is allowed.
  • the check valve 41b is provided in the first connection pipe 42a, and causes the heat source side refrigerant discharged from the compressor 1 during the heating operation to flow to the heat medium converter 60.
  • the check valve 41 c is provided in the second connection pipe 42 b and causes the heat source side refrigerant returned from the heat medium converter 60 during the heating operation to flow to the suction side of the compressor 1.
  • the first connection pipe 42a includes a refrigerant pipe 401 between the flow path switching device 2 and the check valve 41d, and a refrigerant pipe 401 between the check valve 41a and the heat medium relay unit 60.
  • the second connection pipe 42b includes a refrigerant pipe 401 between the check valve 41d and the heat medium relay 60, and a refrigerant pipe 401 between the heat source side heat exchanger 12 and the check valve 41a.
  • FIG. 10 shows an example in which the first connection pipe 42a, the second connection pipe 42b, the check valve 41a, the check valve 41b, the check valve 41c, and the check valve 41d are provided. However, these are not necessarily provided.
  • the outdoor unit 40 is provided with a control device 40A.
  • the control device 40A is connected so as to receive detection signals from various sensors in the outdoor unit 40, the indoor unit 50, and the heat medium relay unit 60.
  • the control device 40A performs control such as adjusting the opening degree of the expansion device 5 and the expansion device 22 based on detection signals from various sensors.
  • the control device 10 ⁇ / b> A performs the cooling operation mode and the heating operation mode by switching the flow path switching device 2.
  • FIG. 10 shows a configuration in which the control device 40A is provided only in the outdoor unit 40, each indoor unit 50 and heat medium converter 60 is provided with a sub-control device having a part of the function of the control device 40A.
  • a configuration may be adopted in which cooperative processing is performed by performing data communication between the control device 30A and the sub-control device.
  • the control device 30A may be provided for each unit, or may be provided in the heat medium converter 60.
  • Each of the indoor units 50 is equipped with a load side heat exchanger 51 (51a to 51d).
  • the load-side heat exchanger 51 is connected to the heat medium flow control devices 74 (74a to 74d) and the second heat medium flow switching devices 73 (73a to 73d) of the heat medium converter 60 through the pipe 500. ing.
  • the load-side heat exchanger 51 performs heat exchange between air and air in the air-conditioning target space supplied from a fan such as a fan (not shown) and supplies the air to the indoor space. It produces working air.
  • FIG. 10 shows an example in which four indoor units 50 are connected to the heat medium converter 60, and are illustrated as an indoor unit 50a, an indoor unit 50b, an indoor unit 50c, and an indoor unit 50d from the bottom of the page. Show. Further, depending on the indoor unit 50a to the indoor unit 50d, the load-side heat exchanger 51 also loads the load-side heat exchanger 51a, the load-side heat exchanger 51b, the load-side heat exchanger 51c, and the load-side heat exchanger from the lower side of the page. It is shown as a container 51d. 1 and 2, the number of indoor units 50 connected is not limited to four as shown in FIG.
  • the heat medium relay 60 includes two heat medium heat exchangers 61 (61a, 61b), two expansion devices 62 (62a, 62b), two opening / closing devices 63 (63a, 63b), and two Channel switching device 64 (64a, 64b), two pumps 71 (71a, 71b), four first heat medium channel switching devices 72 (72a-72d), and four second heat medium channel switching A device 73 (73a to 73d) and four heat medium flow control devices 74 (74a to 74d) are mounted.
  • the heat exchanger related to heat medium 61 corresponds to the use side heat exchanger constituting the refrigerant circulation circuit of the first and second embodiments.
  • the two heat exchangers between heat media 61 function as a condenser (heat radiator) or an evaporator, and heat is generated by the heat source side refrigerant and the heat medium. Exchange is performed, and the cold or warm heat generated in the outdoor unit 40 and stored in the heat source side refrigerant is transmitted to the heat medium.
  • the heat exchanger related to heat medium 61a is provided between the expansion device 62a and the flow path switching device 64a in the refrigerant circulation circuit A, and serves to heat the heat medium in the cooling / heating mixed operation mode.
  • the heat exchanger related to heat medium 61b is provided between the expansion device 62b and the flow path switching device 64b in the refrigerant circuit A and serves to cool the heat medium in the cooling / heating mixed operation mode.
  • two heat exchangers for heat medium 61 are installed, but one may be installed, or three or more may be installed.
  • the two expansion devices 62 have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 62a is provided on the upstream side of the heat exchanger related to heat medium 61a in the flow of the heat source side refrigerant during the cooling operation.
  • the expansion device 62b is provided on the upstream side of the heat exchanger related to heat medium 61b in the flow of the heat source side refrigerant during the cooling operation.
  • the two throttling devices 62 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices 63 are constituted by two-way valves or the like, and open / close the refrigerant pipe 401.
  • the opening / closing device 63a is provided in the refrigerant pipe 401 on the inlet side of the heat source side refrigerant.
  • the opening / closing device 63b is provided in a pipe connecting the refrigerant pipe 401 on the inlet side and outlet side of the heat source side refrigerant.
  • the two flow path switching devices 64 (the flow path switching device 64a and the flow path switching device 64b) are configured by a four-way valve or the like, and switch the flow of the heat source side refrigerant according to the operation mode.
  • the flow path switching device 64a is provided on the downstream side of the heat exchanger related to heat medium 61a in the flow of the heat source side refrigerant during the cooling operation.
  • the flow path switching device 64b is provided on the downstream side of the heat exchanger related to heat medium 61b in the flow of the heat source side refrigerant during the cooling only operation.
  • the two pumps 71 (pump 71a and pump 71b), which are heat medium delivery devices, circulate the heat medium conducted through the pipe 500.
  • the pump 71 a is provided in the pipe 500 between the heat exchanger related to heat medium 61 a and the second heat medium flow switching device 73.
  • the pump 71 b is provided in the pipe 500 between the heat exchanger related to heat medium 61 b and the second heat medium flow switching device 73.
  • the two pumps 71 may be constituted by, for example, pumps capable of capacity control.
  • the four first heat medium flow switching devices 72 are configured by three-way valves or the like, and switch the heat medium flow channels. Is.
  • the number of first heat medium flow switching devices 72 (four here) according to the number of indoor units 50 installed is provided.
  • one of the three sides is in the heat exchanger 61a, one of the three is in the heat exchanger 61b, and one of the three is in the heat medium flow rate.
  • Each is connected to the adjusting device 74 and provided on the outlet side of the heat medium flow path of the load side heat exchanger 51.
  • the first heat medium flow switching device 72 a In correspondence with the indoor unit 50, the first heat medium flow switching device 72 a, the first heat medium flow switching device 72 b, the first heat medium flow switching device 72 c, and the first heat medium flow channel from the lower side of the drawing. This is illustrated as a switching device 72d.
  • the four second heat medium flow switching devices 73 are configured by three-way valves or the like, and switch the flow path of the heat medium. Is.
  • the number of the second heat medium flow switching devices 73 is set according to the number of indoor units 50 installed (four in this case).
  • one of the three sides is in the heat exchanger related to heat medium 61a, one of the three is in the heat exchanger related to heat medium 61b, and one of the three is in the load side heat.
  • Each is connected to the exchanger 51 and provided on the inlet side of the heat medium flow path of the load side heat exchanger 51.
  • the second heat medium flow switching device 73a, the second heat medium flow switching device 73b, the second heat medium flow switching device 73c, and the second heat medium flow from the lower side of the drawing. This is illustrated as a switching device 73d.
  • the four heat medium flow control devices 74 are configured by two-way valves or the like that can control the opening area, and control the flow rate flowing through the pipe 500. is there.
  • the number of the heat medium flow control devices 74 (four here) according to the number of installed indoor units 50 is provided.
  • One of the heat medium flow control devices 74 is connected to the load side heat exchanger 51, and the other is connected to the first heat medium flow switching device 72, and is connected to the outlet side of the heat medium flow path of the load side heat exchanger 51. Is provided.
  • the heat medium flow rate adjustment device 74a, the heat medium flow rate adjustment device 74b, the heat medium flow rate adjustment device 74c, and the heat medium flow rate adjustment device 74d are illustrated from the lower side of the drawing. Further, the heat medium flow control device 74 may be provided on the inlet side of the heat medium flow path of the load side heat exchanger 51.
  • the heat medium converter 60 is provided with various detection devices (two first temperature sensors 81, four second temperature sensors 82, four third temperature sensors 83, and a pressure sensor 84). Signals related to the detection of these detection devices are sent to, for example, the control device 40A, the driving frequency of the compressor 1, the rotational speed of the blower (not shown), the switching of the flow path switching device 2, the driving frequency of the pump 71, This is used for control such as switching of the flow path switching device 64 and switching of the flow path of the heat medium.
  • various detection devices two first temperature sensors 81, four second temperature sensors 82, four third temperature sensors 83, and a pressure sensor 84. Signals related to the detection of these detection devices are sent to, for example, the control device 40A, the driving frequency of the compressor 1, the rotational speed of the blower (not shown), the switching of the flow path switching device 2, the driving frequency of the pump 71, This is used for control such as switching of the flow path switching device 64 and switching of the flow path of the heat medium.
  • the two first temperature sensors 81 are the heat medium flowing out from the heat exchanger related to heat medium 61, that is, the temperature of the heat medium at the outlet of the heat exchanger related to heat medium 61.
  • a thermistor may be used.
  • the first temperature sensor 81a is provided in the pipe 500 on the inlet side of the pump 71a.
  • the first temperature sensor 81b is provided in the pipe 500 on the inlet side of the pump 71b.
  • the four second temperature sensors 82 are provided between the first heat medium flow switching device 72 and the heat medium flow control device 74, and are used for the load-side heat exchanger.
  • the temperature of the heat medium flowing out from 51 is detected, and a thermistor or the like may be used.
  • the number of the second temperature sensors 82 is set according to the number of installed indoor units 50 (here, four). In correspondence with the indoor unit 50, the second temperature sensor 82a, the second temperature sensor 82b, the second temperature sensor 82c, and the second temperature sensor 82d are illustrated from the lower side of the drawing.
  • the four third temperature sensors 83 are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 61, and the heat exchanger related to heat medium 61.
  • the temperature of the heat source side refrigerant flowing into the heat source or the temperature of the heat source side refrigerant flowing out of the heat exchanger related to heat medium 61 is detected, and may be composed of a thermistor or the like.
  • the third temperature sensor 83a is provided between the heat exchanger related to heat medium 61a and the flow path switching device 64a.
  • the third temperature sensor 83b is provided between the heat exchanger related to heat medium 61a and the expansion device 62a.
  • the third temperature sensor 83c is provided between the heat exchanger related to heat medium 61b and the flow path switching device 64b.
  • the third temperature sensor 83d is provided between the heat exchanger related to heat medium 61b and the expansion device 62b.
  • the pressure sensor 84 is provided between the heat exchanger related to heat medium 61b and the expansion device 62b, and between the heat exchanger related to heat medium 61b and the expansion device 62b. The pressure of the flowing heat source side refrigerant is detected.
  • the pipe 500 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 61a and one that is connected to the heat exchanger related to heat medium 61b.
  • the pipe 500 is branched (here, four branches) in accordance with the number of indoor units 50 connected to the heat medium relay unit 60.
  • the pipe 500 is connected by the first heat medium flow switching device 72 and the second heat medium flow switching device 73.
  • the heat medium from the heat exchanger related to heat medium 61a flows into the load-side heat exchanger 51, or the heat medium Whether the heat medium from the intermediate heat exchanger 61b flows into the load-side heat exchanger 51 is determined.
  • the accumulator 6 is connected by the refrigerant
  • the heat medium flow path of the intermediate heat exchanger 61, the pump 71, the first heat medium flow switching device 72, the heat medium flow control device 74, the load side heat exchanger 51, and the second heat medium flow switching device. 73 are connected by a pipe 500 to constitute a heat medium circulation circuit B. That is, a plurality of load-side heat exchangers 51 are connected in parallel to each of the heat exchangers between heat media 61, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 40 and the heat medium converter 60 are connected via the heat exchanger related to heat medium 61a and the heat exchanger related to heat medium 61b provided in the heat medium converter 60.
  • the heat medium converter 60 and the indoor unit 50 are also connected via the heat exchanger related to heat medium 61a and the heat exchanger related to heat medium 61b. That is, in the air conditioner 102, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 61a and the intermediate heat exchanger 61b. It is supposed to be.
  • the air conditioner 102 can perform a cooling operation or a heating operation in the indoor unit 50 based on an instruction from each indoor unit 50. That is, the air conditioner 102 can perform the same operation for all the indoor units 50 and can perform different operations for each of the indoor units 50.
  • the air conditioner 102 has a cooling operation mode in which all of the driven indoor units 50 perform a cooling operation, a heating operation mode in which all of the driven indoor units 50 perform a heating operation, and a cooling load.
  • a cooling main operation mode with a larger heating capacity and a heating main operation mode with a larger heating load can be performed.
  • the pipe diameter of the low-pressure gas pipe is reduced as in the first and second embodiments. 1 to 2 ranks can be made thinner. As a result, it is possible to reduce piping costs and construction costs, further reduce energy loss due to disposal, and contribute to environmental conservation. Moreover, since pressure loss can be reduced, an energy efficient operation can be performed, and an energy saving effect can also be obtained.
  • the heat medium converter 60 may be divided into a parent heat medium converter having a gas-liquid separator and a throttle device and a child heat medium converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention obtains an air conditioner device that is able to have more minute low-pressure gas piping even when a refrigerant having a low refrigerant density at low pressures is used. The present invention is provided with: a refrigerant cycling circuit (10) that comprises a compressor (1), a heat-source-side heat exchanger (3), a throttle device (20), and a use-side heat exchanger (21) connected by piping, and that cycles a refrigerant having a saturated refrigerant gas density at 0°C that is 35-65% of that of R410A refrigerant; and a supercooling means (supercooling heat exchanger (4), throttle device (5), and bypass circuit (7)) that, during a cooling operation, causes the solution temperature of high-pressure liquid refrigerant sent from the heat-source-side heat exchanger (3) to the throttle device (20) to be no greater than 5°C.

Description

空気調和装置Air conditioner
 本発明は、空気調和装置に関する。 The present invention relates to an air conditioner.
 従来より、過冷却手段を備え、凝縮器から絞り装置に送られる冷媒を、バイパス側冷媒により冷却するようにした空気調和装置がある(例えば、特許文献1参照)。このような過冷却手段を備えた空気調和装置では、絞り装置に送られる冷媒循環量が低減されるため、絞り装置の後段の蒸発器及び延長配管の圧力損失を低減することができる。 2. Description of the Related Art Conventionally, there is an air conditioner that includes a supercooling unit and that cools a refrigerant sent from a condenser to a throttling device with a bypass-side refrigerant (see, for example, Patent Document 1). In the air conditioner provided with such a supercooling means, the amount of refrigerant circulating to the expansion device is reduced, so that the pressure loss of the evaporator and the extension pipe at the rear stage of the expansion device can be reduced.
特開平6-265232号公報(図1、第6頁)JP-A-6-265232 (FIG. 1, page 6)
 ところで、近年、地球温暖化の観点から、地球温暖化係数が高いHFC系冷媒(例えば、R410Aや、R404A、R407C、R134a等)の使用を制限する動きがあり、地球温暖化係数が小さい冷媒(例えば、HFO1234yf、二酸化炭素等)を用いた空気調和装置が提案されている。HFO1234yfは、R410Aに比べて低圧での冷媒密度が大幅に小さく、同じ温度のもとでの圧力特性がR410Aに比べて非常に低い。このような低圧での冷媒密度が小さい冷媒を空気調和装置に用いて冷房運転を行った場合、低圧ガス配管における圧力損失の影響が極めて大きい。したがって、圧力損失を小さくするために配管径を大きくしなければならないという問題があった。 By the way, in recent years, from the viewpoint of global warming, there has been a movement to limit the use of HFC refrigerants with high global warming potential (for example, R410A, R404A, R407C, R134a, etc.), and refrigerants with low global warming potential ( For example, an air conditioner using HFO1234yf, carbon dioxide, etc.) has been proposed. HFO1234yf has a significantly lower refrigerant density at low pressure than R410A, and its pressure characteristics at the same temperature are much lower than R410A. When cooling operation is performed using such a refrigerant having a low refrigerant density at low pressure in the air conditioner, the influence of pressure loss in the low-pressure gas piping is extremely large. Therefore, there has been a problem that the pipe diameter has to be increased in order to reduce the pressure loss.
 特に、ビル用マルチエアコン(10HP)のように大きなシステムでは、R410Aを使用した場合、低圧ガス配管の直径はφ22.2mm程度であるが、低圧での冷媒密度が小さい冷媒を使用した場合、その約2倍のφ44.5mm程度にもなる。したがって、配管を曲げたりするのが非常に困難になり、加工コストが大幅に上昇する。また、このように太い配管径の冷媒配管は、通常、ほとんど市場で使われないため、コストが大幅にアップする。そこで、低圧ガス配管の配管径を細くすることが、低圧での冷媒密度が小さい冷媒を使用する場合の大きな課題の一つとされている。 In particular, in a large system such as a building multi-air conditioner (10HP), when R410A is used, the diameter of the low-pressure gas pipe is about 22.2 mm, but when a refrigerant with low refrigerant density at low pressure is used, About twice as much as φ44.5mm. Therefore, it is very difficult to bend the pipe, and the processing cost is greatly increased. In addition, the refrigerant pipe having such a large pipe diameter is usually hardly used in the market, so that the cost is greatly increased. Thus, reducing the pipe diameter of the low-pressure gas pipe is considered as one of the major problems when using a refrigerant having a low refrigerant density at low pressure.
 特許文献1の空気調和装置は、上述したように圧力損失の低減に効果的である。しかし、作動冷媒として低圧での冷媒密度が小さい冷媒を使用することを想定しておらず、圧力損失の低減効果は十分ではない。よって、単にこの空気調和装置に低圧での冷媒密度が小さい冷媒を適用しただけでは、上述したように低圧ガス配管の大幅な大径化の問題を解消できなかった。 The air conditioner of Patent Document 1 is effective in reducing pressure loss as described above. However, it is not assumed that a refrigerant having a low refrigerant density at low pressure is used as the working refrigerant, and the effect of reducing pressure loss is not sufficient. Therefore, simply applying a refrigerant having a low refrigerant density at a low pressure to the air conditioner cannot solve the problem of a large increase in the diameter of the low-pressure gas pipe as described above.
 本発明は、上記の課題を解決するためになされたもので、低圧での冷媒密度が小さい冷媒を用いた場合でも、低圧ガス配管を細くすることが可能な空気調和装置を得ることを目的とする。 The present invention has been made to solve the above-described problem, and an object of the present invention is to obtain an air conditioner that can make a low-pressure gas pipe thin even when a refrigerant having a low refrigerant density at low pressure is used. To do.
 本発明に係る空気調和装置は、圧縮機と、熱源側熱交換器と、絞り装置と、利用側熱交換器とが配管接続され、0℃における飽和冷媒ガス密度がR410A冷媒の35~65%である冷媒が循環する冷媒循環回路と、冷房運転時において、熱源側熱交換器から絞り装置に送られる高圧液冷媒の液温を5℃以下にする過冷却手段とを備えたものである。 In the air conditioner according to the present invention, the compressor, the heat source side heat exchanger, the expansion device, and the use side heat exchanger are connected by piping, and the saturated refrigerant gas density at 0 ° C. is 35 to 65% of the R410A refrigerant. And a supercooling means for setting the liquid temperature of the high-pressure liquid refrigerant sent to the expansion device from the heat source side heat exchanger to 5 ° C. or less during the cooling operation.
 本発明によれば、冷房運転時において、熱源側熱交換器から絞り装置に送られる高圧液冷媒の液温を5℃以下にするため、冷凍効果を上昇させることができ、冷媒流量を減らすことができる。よって、低圧配管を細くすることができる。 According to the present invention, since the liquid temperature of the high-pressure liquid refrigerant sent from the heat source side heat exchanger to the expansion device is 5 ° C. or lower during the cooling operation, the refrigeration effect can be increased and the refrigerant flow rate can be reduced. Can do. Therefore, the low pressure pipe can be made thin.
本発明の実施の形態1に係る空気調和装置の回路構成の一例を示す概略回路構成図である。It is a schematic circuit block diagram which shows an example of the circuit structure of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の冷房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the air_conditioning | cooling operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 二重管式過冷却熱交換器の構造例を示す図である。It is a figure which shows the structural example of a double tube | pipe type supercooling heat exchanger. 液温と流量比との関係を示すグラフである。It is a graph which shows the relationship between a liquid temperature and a flow rate ratio. 液温と圧力損失比との関係を示すグラフである。It is a graph which shows the relationship between a liquid temperature and a pressure loss ratio. 液温と配管径比との関係を示すグラフである。It is a graph which shows the relationship between liquid temperature and piping diameter ratio. 本発明の実施の形態1に係る空気調和装置の暖房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the heating operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置の回路構成の一例を示す概略回路構成図である。It is a schematic circuit block diagram which shows an example of the circuit structure of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置の冷房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of the air_conditioning | cooling operation mode of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3(冷暖同時タイプ)に係る空気調和装置の回路構成図である。It is a circuit block diagram of the air conditioning apparatus which concerns on Embodiment 3 (cooling / heating simultaneous type) of this invention.
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の回路構成の一例を示す概略回路構成図である。図1に基づいて、空気調和装置の詳しい回路構成について説明する。図1では、室内機20が4台接続されている場合を例に示している。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air-conditioning apparatus according to Embodiment 1 of the present invention. A detailed circuit configuration of the air conditioner will be described with reference to FIG. FIG. 1 shows an example in which four indoor units 20 are connected. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. In FIG. 1 and the drawings to be described later, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification. Furthermore, the form of the constituent elements appearing in the whole specification is merely an example, and is not limited to these descriptions.
 図1に示すように、空気調和装置100は、室外機(熱源機)10と室内機20a~室内機20d(以下、室内機20と総称する場合がある)とが、延長配管400a及び延長400b(以下、延長配管400と総称する場合がある)で接続されて構成されている。つまり、空気調和装置100では、複数台の室内機20が室外機10に対して並列となるように接続されている。なお、延長配管400は、冷媒(熱源側冷媒)を導通する冷媒配管である。また、空気調和装置100には、冷媒としてHFO1234yf又はHFO1234zeが封入されているものとする。 As shown in FIG. 1, an air conditioner 100 includes an outdoor unit (heat source unit) 10, an indoor unit 20a to an indoor unit 20d (hereinafter, may be collectively referred to as an indoor unit 20), an extension pipe 400a and an extension 400b. (Hereinafter, it may be collectively referred to as an extension pipe 400). That is, in the air conditioner 100, a plurality of indoor units 20 are connected to the outdoor unit 10 in parallel. The extension pipe 400 is a refrigerant pipe that conducts the refrigerant (heat source side refrigerant). Further, it is assumed that HFO1234yf or HFO1234ze is enclosed in the air conditioner 100 as a refrigerant.
[室外機10]
 室外機10は、圧縮機1と、四方弁等の流路切替装置2と、熱源側熱交換器3と、過冷却熱交換器4と、アキュムレーター6とを備え、室内機20の後述の利用側熱交換器21及び絞り装置22と共に配管で接続され、冷媒が循環する冷媒循環回路を構成している。室外機10は更に、熱源側熱交換器3と絞り装置22との間に過冷却熱交換器4を備えている。また、室外機10は、過冷却熱交換器4と絞り装置22との間から分岐し、絞り装置5及び過冷却熱交換器4の低圧側を介してアキュムレーター6の入口側に接続されたバイパス回路7を有している。過冷却熱交換器4は、熱源側熱交換器3と絞り装置22との間の高圧側冷媒と、高圧側冷媒の一部を絞り装置5で減圧した低圧側冷媒とを熱交換させて高圧側冷媒を冷却する。
[Outdoor unit 10]
The outdoor unit 10 includes a compressor 1, a flow switching device 2 such as a four-way valve, a heat source side heat exchanger 3, a supercooling heat exchanger 4, and an accumulator 6. A refrigerant circulation circuit in which refrigerant is circulated is connected to the user side heat exchanger 21 and the expansion device 22 by piping. The outdoor unit 10 further includes a supercooling heat exchanger 4 between the heat source side heat exchanger 3 and the expansion device 22. The outdoor unit 10 branches from between the supercooling heat exchanger 4 and the expansion device 22, and is connected to the inlet side of the accumulator 6 through the expansion device 5 and the low pressure side of the supercooling heat exchanger 4. A bypass circuit 7 is provided. The supercooling heat exchanger 4 exchanges heat between the high-pressure side refrigerant between the heat source side heat exchanger 3 and the expansion device 22 and the low-pressure side refrigerant obtained by decompressing a part of the high-pressure side refrigerant with the expansion device 5 to increase the pressure. Cool the side refrigerant.
 圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして冷媒循環回路に搬送するものであり、例えば容量制御可能なインバータ圧縮機等で構成するとよい。流路切替装置2は、暖房運転モードにおける冷媒の流れと冷房運転モードおける冷媒の流れとを切り替えるものである。 The compressor 1 sucks the refrigerant, compresses the refrigerant to be brought into a high-temperature and high-pressure state, and conveys the refrigerant to a refrigerant circulation circuit. For example, the compressor 1 may be composed of an inverter compressor capable of controlling capacity. The flow path switching device 2 switches the refrigerant flow in the heating operation mode and the refrigerant flow in the cooling operation mode.
 熱源側熱交換器(室外側熱交換器)3は、暖房運転時には蒸発器として機能し、冷房運転時には放熱器として機能し、図示省略のファン等の送風機から供給される空気と冷媒との間で熱交換を行なうものである。アキュムレーター6は、圧縮機1の吸入側に設けられており、暖房運転モード時と冷房運転モード時の違いによる余剰冷媒、過渡的な運転の変化(例えば、室内機20の運転台数の変化)に対する余剰冷媒を蓄えるものである。 The heat source side heat exchanger (outdoor heat exchanger) 3 functions as an evaporator during heating operation, functions as a radiator during cooling operation, and is provided between air and refrigerant supplied from a blower such as a fan (not shown). Heat exchange. The accumulator 6 is provided on the suction side of the compressor 1, and surplus refrigerant due to a difference between the heating operation mode and the cooling operation mode, a change in transient operation (for example, a change in the number of operating indoor units 20). The excess refrigerant is stored.
 また、過冷却熱交換器4の出口(液側)には圧力センサー8と温度センサー9とが設けられている。室外機10には更に、圧縮機1の吸入温度及び吐出温度を検出するセンサー(図示せず)等、各種センサーが設けられている。 Further, a pressure sensor 8 and a temperature sensor 9 are provided at the outlet (liquid side) of the supercooling heat exchanger 4. The outdoor unit 10 is further provided with various sensors such as a sensor (not shown) for detecting the suction temperature and the discharge temperature of the compressor 1.
 また、室外機10には制御装置10Aが設けられている。制御装置10Aは室外機10内の各種センサ及び室内機20内の後述の各種センサーの検出信号を受けることができるように接続されている。制御装置10Aは、各種センサーからの検出信号に基づき、絞り装置5及び絞り装置22の開度等を調整する等の制御を行う。また、制御装置10Aは、流路切替装置2の切り替えにより、冷房運転モード及び暖房運転モードの運転を行う。なお、図1では室外機10のみに制御装置10Aを設けた構成を示しているが、各室内機20に制御装置10Aの機能の一部を持つサブ制御装置を設け、制御装置10Aとサブ制御装置との間でデータ通信を行うことにより連携処理を行う構成にしてもよい。 In addition, the outdoor unit 10 is provided with a control device 10A. The control device 10A is connected so as to receive detection signals of various sensors in the outdoor unit 10 and various sensors described later in the indoor unit 20. The control device 10A performs control such as adjusting the opening degree of the expansion device 5 and the expansion device 22 based on detection signals from various sensors. Further, the control device 10 </ b> A performs the cooling operation mode and the heating operation mode by switching the flow path switching device 2. Although FIG. 1 shows a configuration in which the control device 10A is provided only in the outdoor unit 10, a sub-control device having a part of the function of the control device 10A is provided in each indoor unit 20, and the control device 10A and sub-control are provided. You may make it the structure which performs a cooperation process by performing data communication between apparatuses.
[室内機20]
 室内機20は、利用側熱交換器(室内側熱交換器)21(21a~21d)及び絞り装置22(22a~22d)が直列に接続され、冷媒循環回路の一部を構成している。利用側熱交換器21は、暖房運転時には放熱器として機能し、冷房運転時には蒸発器として機能し、図示省略のファン等の送風機から供給される空気と冷媒との間で熱交換を行ない、空調対象空間に供給するための暖房用空気あるいは冷房用空気を生成するものである。絞り装置22は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、例えば電子式膨張弁等で構成するとよい。
[Indoor unit 20]
In the indoor unit 20, a use side heat exchanger (indoor side heat exchanger) 21 (21a to 21d) and an expansion device 22 (22a to 22d) are connected in series to constitute a part of a refrigerant circulation circuit. The use-side heat exchanger 21 functions as a radiator during heating operation, functions as an evaporator during cooling operation, performs heat exchange between air supplied from a blower such as a fan (not shown) and the refrigerant, and is air-conditioned. Heating air or cooling air to be supplied to the target space is generated. The throttling device 22 has a function as a pressure reducing valve or an expansion valve, expands the refrigerant by depressurizing it, and may be constituted by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
 実施の形態1では、4台の室内機20が接続されている場合を例に示しており、紙面左側から室内機20a、室内機20b、室内機20c、室内機20dとして図示している。また、室内機20a~室内機20dに応じて、利用側熱交換器21も、紙面左側から利用側熱交換器21a、利用側熱交換器21b、利用側熱交換器21c、利用側熱交換器21dとして図示している。同様に、絞り装置22も、紙面左側から絞り装置22a、絞り装置22b、絞り装置22c、絞り装置22dとして図示している。なお、室内機20の接続台数を4台に限定するものではない。 Embodiment 1 shows an example in which four indoor units 20 are connected, and are illustrated as an indoor unit 20a, an indoor unit 20b, an indoor unit 20c, and an indoor unit 20d from the left side of the page. Further, according to the indoor unit 20a to the indoor unit 20d, the use side heat exchanger 21 also uses the use side heat exchanger 21a, the use side heat exchanger 21b, the use side heat exchanger 21c, and the use side heat exchanger from the left side of the page. It is illustrated as 21d. Similarly, the diaphragm device 22 is also illustrated as a diaphragm device 22a, a diaphragm device 22b, a diaphragm device 22c, and a diaphragm device 22d from the left side of the drawing. Note that the number of connected indoor units 20 is not limited to four.
 また、室内機20において利用側熱交換器21の冷媒出入口には温度センサー23a~23d、24a~24dが設けられている。温度センサー23a~23d、24a~24dの検出信号は制御装置10Aに出力される。なお、本実施の形態では、室外機に制御装置10Aで室内機の制御を実施しているが、各室内機に制御装置を設け、その制御装置にて室内機20a~20dを制御しても良い。 In the indoor unit 20, temperature sensors 23 a to 23 d and 24 a to 24 d are provided at the refrigerant inlet / outlet of the use side heat exchanger 21. Detection signals from the temperature sensors 23a to 23d and 24a to 24d are output to the control device 10A. In this embodiment, the indoor unit is controlled by the control unit 10A for the outdoor unit. However, a control unit is provided for each indoor unit, and the indoor units 20a to 20d are controlled by the control unit. good.
 空気調和装置100では、上述したように、冷媒に、低圧冷媒であるHFO1234yf又はHFO1234zeを用いている。これらの冷媒の0℃における飽和ガス密度は表1に示すとおりである。表1より、R410Aのガス密度に対し、HFO1234yfは58%、HFO1234zeは38%であることがわかる。すなわち、この冷媒は現在多くの空気調和装置に用いられているR410A冷媒に比べて、低圧のガス密度が35~65%程度である。なお、値はNIST(National Institute of Standards and Technology)が発売しているREFPROP Version 8.0から得られたものである。 In the air conditioner 100, as described above, the low-pressure refrigerant HFO1234yf or HFO1234ze is used as the refrigerant. The saturated gas density at 0 ° C. of these refrigerants is as shown in Table 1. Table 1 shows that HFO1234yf is 58% and HFO1234ze is 38% with respect to the gas density of R410A. That is, this refrigerant has a low-pressure gas density of about 35 to 65% compared to the R410A refrigerant currently used in many air conditioners. The values are obtained from REFPROP Version 8.0 released by NIST (National Institute of Standards and Technology).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、ガス密度が小さい冷媒を用いた場合、単純に同一冷媒流量(kg/hr)を配管に流した場合、HFO1234yfの流速は、R410Aに比べ約2倍になる。圧力損失はおおよそ流速の2乗に比例するため、HFO1234yfの圧力損失はR410Aに比べ、約4倍になる。その結果、R410A冷媒と同じ配管径を用いた場合は、圧力損失が4倍になるため、性能の低下が大きくなってしまう。HFO1234yf冷媒を従来冷媒(R410A)と同等の圧力損失による性能低下に抑えるためには、従来冷媒に対して、配管径を2倍にする必要がある。HFO1234yfとHFO1234zeとは、ほぼ同じ密度であるため、HFO1234yfとHFO1234zeの圧力損失は、ほぼ同等の値を示す。 Thus, when a refrigerant with a low gas density is used, when the same refrigerant flow rate (kg / hr) is simply flowed through the pipe, the flow rate of HFO1234yf is about twice that of R410A. Since the pressure loss is roughly proportional to the square of the flow velocity, the pressure loss of HFO1234yf is about four times that of R410A. As a result, when the same pipe diameter as that of the R410A refrigerant is used, the pressure loss is quadrupled, resulting in a large deterioration in performance. In order to suppress the HFO1234yf refrigerant to decrease in performance due to a pressure loss equivalent to that of the conventional refrigerant (R410A), it is necessary to double the pipe diameter of the conventional refrigerant. Since HFO1234yf and HFO1234ze have substantially the same density, the pressure loss of HFO1234yf and HFO1234ze shows substantially the same value.
 ルームエアコンのような小さい容量のシステムでは配管径を2倍しても、元の配管径が小さいので、加工上、特に問題にはならない。しかし、ビル用マルチエアコン(10HP)のように大きな容量のシステムでは、従来技術でも説明したように、配管径がφ44.5mm程度にもなり、工事性や加工コスト面での悪影響が大きい。 In a small capacity system such as a room air conditioner, even if the pipe diameter is doubled, the original pipe diameter is small, so there is no particular problem in processing. However, in a system with a large capacity such as a multi air conditioner for buildings (10HP), as described in the prior art, the pipe diameter becomes as large as φ44.5 mm, which has a great adverse effect on workability and processing cost.
 そこで、本実施の形態1では、冷房運転モードにおいて放熱器となる熱源側熱交換器3から絞り装置22に送られる高圧液冷媒の温度を5℃以下まで低くするようにしている。この点が本実施の形態1のポイントである。なお、本例では凝縮温度を49℃としており、高圧液冷媒の液温の目標温度を5℃以下とするときの過冷却度は44℃以上となる。このように高圧液冷媒の液温を5℃以下とすることにより、例えば液温を44℃(過冷却度5℃)とした場合に比べ、冷凍効果を上昇させることができる。その結果、冷媒流量を減らすことができ、配管サイズをダウンすることが可能となる。 Therefore, in the first embodiment, the temperature of the high-pressure liquid refrigerant sent to the expansion device 22 from the heat source side heat exchanger 3 serving as a radiator in the cooling operation mode is lowered to 5 ° C. or lower. This is the point of the first embodiment. In this example, the condensation temperature is 49 ° C., and the degree of supercooling when the target temperature of the liquid temperature of the high-pressure liquid refrigerant is 5 ° C. or less is 44 ° C. or more. In this way, by setting the liquid temperature of the high-pressure liquid refrigerant to 5 ° C. or lower, the refrigeration effect can be increased as compared with, for example, a case where the liquid temperature is set to 44 ° C. (supercooling degree 5 ° C.). As a result, the refrigerant flow rate can be reduced, and the pipe size can be reduced.
 以下、空気調和装置100が実行する各運転モードについて説明する。
[冷房運転モード]
 図2は、空気調和装置100の冷房運転モード時における冷媒の流れを示す冷媒回路図である。図2では、室内機20の全部が駆動している場合を例に説明する。なお、図2では、冷媒の流れ方向を矢印で示している。
Hereinafter, each operation mode which the air conditioning apparatus 100 performs is demonstrated.
[Cooling operation mode]
FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling operation mode. In FIG. 2, the case where all of the indoor units 20 are driven will be described as an example. In FIG. 2, the flow direction of the refrigerant is indicated by arrows.
 低温・低圧の冷媒が圧縮機1によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機1から吐出された高温・高圧のガス冷媒は、流路切替装置2を通り、熱源側熱交換器3に流入する。 A low temperature / low pressure refrigerant is compressed by the compressor 1 and discharged as a high temperature / high pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching device 2 and flows into the heat source side heat exchanger 3.
 熱源側熱交換器3に流入した高温・高圧のガス冷媒は、図示省略の送風機から供給される空気と熱交換することで液状態となって熱源側熱交換器3から流出する。熱源側熱交換器3から流出した液状状態の冷媒は過冷却熱交換器4の高圧側に流入する。過冷却熱交換器4の低圧側には、過冷却熱交換器4を通過した冷媒の一部がバイパス回路7の絞り装置5で減圧されて低圧の気液二相となった冷媒が流入している。よって、過冷却熱交換器4の高圧側の液冷媒は、低圧側の冷媒と熱交換して冷却され、液温が低下(過冷却度を増大する)して過冷却熱交換器4から流出する。過冷却熱交換器4の低圧側の低圧二相冷媒は、高圧側の冷媒と熱交換して低圧のガス冷媒となって、過冷却熱交換器4から出て、アキュムレーター6に向かう。 The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 3 becomes liquid by exchanging heat with air supplied from a blower (not shown) and flows out of the heat source side heat exchanger 3. The liquid refrigerant flowing out of the heat source side heat exchanger 3 flows into the high pressure side of the supercooling heat exchanger 4. On the low pressure side of the supercooling heat exchanger 4, a part of the refrigerant that has passed through the supercooling heat exchanger 4 is decompressed by the expansion device 5 of the bypass circuit 7 and flows into a low-pressure gas-liquid two-phase refrigerant. ing. Therefore, the liquid refrigerant on the high pressure side of the supercooling heat exchanger 4 is cooled by exchanging heat with the refrigerant on the low pressure side, and the liquid temperature decreases (increases the degree of supercooling) and flows out of the supercooling heat exchanger 4. To do. The low pressure two-phase refrigerant on the low pressure side of the supercooling heat exchanger 4 exchanges heat with the refrigerant on the high pressure side to become a low pressure gas refrigerant, exits the supercooling heat exchanger 4, and travels toward the accumulator 6.
 ここで、上述したように本例では絞り装置5の開度を調整し、過冷却熱交換器4の出口の高圧液冷媒の液温が5℃程度まで低くなるようにしている。これにより冷凍効果が上昇するため、絞り装置5の開度は例えば過冷却度を5℃とした場合に比べて小さくなる。よって、利用側熱交換器21への冷媒供給量は低減する。その結果、配管サイズをダウンすることができる。なお、絞り装置5の開度調整は、圧力センサー8及び温度センサー9の検出信号に基づいて制御装置10Aにより行われる。 Here, as described above, in this example, the opening degree of the expansion device 5 is adjusted so that the liquid temperature of the high-pressure liquid refrigerant at the outlet of the supercooling heat exchanger 4 is lowered to about 5 ° C. As a result, the refrigeration effect is increased, so that the opening degree of the expansion device 5 becomes smaller than when the degree of supercooling is set to 5 ° C. Therefore, the refrigerant supply amount to the use side heat exchanger 21 is reduced. As a result, the piping size can be reduced. The opening degree of the expansion device 5 is adjusted by the control device 10A based on detection signals from the pressure sensor 8 and the temperature sensor 9.
 ところで、本実施の形態1の過冷却熱交換器4は、図3に示すように、二重管方式を採用しており、環状部に高圧側冷媒である高圧液冷媒、内管には低圧側冷媒である気液二相冷媒を流している。これは、環状部に気液二相冷媒を流した場合、液冷媒が環状部の底部に偏ってしまい、熱交換性能が低下してしまうためである。 By the way, as shown in FIG. 3, the supercooling heat exchanger 4 of this Embodiment 1 employs a double-pipe system, a high-pressure liquid refrigerant that is a high-pressure side refrigerant in the annular part, and a low-pressure in the inner pipe. A gas-liquid two-phase refrigerant that is a side refrigerant is flowing. This is because when the gas-liquid two-phase refrigerant is caused to flow through the annular part, the liquid refrigerant is biased toward the bottom part of the annular part and the heat exchange performance is deteriorated.
 なお、過冷却熱交換器4は二重管方式に限られず、プレート式熱交換器を用いても良い。このプレート式熱交換器を用いた場合、低圧気液二相冷媒は下から上に、高圧液冷媒は上から下に流れるようにすることによって(対交流)、熱交換器性能を有効に発揮することができる。 In addition, the supercooling heat exchanger 4 is not limited to a double tube system, and a plate heat exchanger may be used. When this plate heat exchanger is used, the heat exchanger performance is effectively demonstrated by allowing the low-pressure gas-liquid two-phase refrigerant to flow from bottom to top and the high-pressure liquid refrigerant from top to bottom (to AC). can do.
 過冷却熱交換器4から流出した液冷媒は、延長配管400aを通って室内機20に向かい、室内機20a~室内機20dのそれぞれに流入する。室内機20a~室内機20dに流入した冷媒は、絞り装置22a~絞り装置22dのそれぞれで膨張(減圧)させられて低温・低圧の気液二相状態となる。この気液二相状態の冷媒は、利用側熱交換器21a~利用側熱交換器21dのそれぞれに流入する。利用側熱交換器21a~利用側熱交換器21dに流入した気液二相状態の冷媒は、図示省略の送風機から供給される空気(室内空気)と熱交換することで空気から吸熱し、低圧のガス冷媒となって利用側熱交換器21a~利用側熱交換器21dから流出する。 The liquid refrigerant that has flowed out of the supercooling heat exchanger 4 passes through the extension pipe 400a toward the indoor unit 20 and flows into each of the indoor units 20a to 20d. The refrigerant flowing into the indoor unit 20a to the indoor unit 20d is expanded (depressurized) by each of the expansion devices 22a to 22d to be in a low-temperature / low-pressure gas-liquid two-phase state. The gas-liquid two-phase refrigerant flows into the use side heat exchanger 21a to the use side heat exchanger 21d. The gas-liquid two-phase refrigerant flowing into the use side heat exchanger 21a to the use side heat exchanger 21d absorbs heat from the air by exchanging heat with air (indoor air) supplied from a blower (not shown). The refrigerant flows out of the use side heat exchanger 21a to the use side heat exchanger 21d.
 ここで、利用側熱交換器21への冷媒供給量は、利用側熱交換器21の冷媒出入口に設けられている温度センサー23a~23d、24a~24dからの温度情報を利用して調整されている。具体的には、制御装置10Aがそれらの温度センサー23a~23d、24a~24dからの情報を取得し、取得した情報に基づいて過熱度(出口側における冷媒温度-入口における冷媒温度)を算出する。そして、その過熱度が2~5℃程度になるように、絞り装置22の開度を決定し、利用側熱交換器21への冷媒供給量を調整している。 Here, the refrigerant supply amount to the use side heat exchanger 21 is adjusted using temperature information from the temperature sensors 23 a to 23 d and 24 a to 24 d provided at the refrigerant inlet / outlet of the use side heat exchanger 21. Yes. Specifically, the control device 10A acquires information from the temperature sensors 23a to 23d and 24a to 24d, and calculates the degree of superheat (refrigerant temperature on the outlet side−refrigerant temperature on the inlet side) based on the acquired information. . Then, the opening degree of the expansion device 22 is determined so that the degree of superheat is about 2 to 5 ° C., and the refrigerant supply amount to the use side heat exchanger 21 is adjusted.
 利用側熱交換器21a~利用側熱交換器21dから流出した低圧ガス冷媒は、室内機20a~室内機20dから流出し、延長配管400bを通って室外機10に流れ込む。室外機10に流入した冷媒は、流路切替装置2を通り、アキュムレーター6に流れ込む。アキュムレーター6に流れ込んだ冷媒は、液冷媒とガス冷媒とが分離され、ガス冷媒が再び圧縮機1に吸い込まれる。 The low-pressure gas refrigerant that has flowed out of the use side heat exchanger 21a to the use side heat exchanger 21d flows out of the indoor unit 20a to the indoor unit 20d, and flows into the outdoor unit 10 through the extension pipe 400b. The refrigerant flowing into the outdoor unit 10 passes through the flow path switching device 2 and flows into the accumulator 6. The refrigerant flowing into the accumulator 6 is separated from the liquid refrigerant and the gas refrigerant, and the gas refrigerant is sucked into the compressor 1 again.
 このような冷房運転モードでは、各室内機20において過熱度制御が行われ、過熱度がプラス域となるようにしているので、液状態の冷媒がアキュムレーター6に流れ込まない。しかしながら、過渡的な状態や、停止している室内機20があるときは、少量の液状態(乾き度0.95程度)の冷媒がアキュムレーター6に流れ込むことがある。アキュムレーター6に流れ込んだ液冷媒は、蒸発して圧縮機1に吸引されたり、アキュムレーター6の出口配管に設けられている油戻し穴(図示省略)を介して圧縮機1に吸引されたりする。 In such a cooling operation mode, the superheat degree control is performed in each indoor unit 20 so that the superheat degree is in the positive range, so that the liquid refrigerant does not flow into the accumulator 6. However, when there is a transitional state or when the indoor unit 20 is stopped, a small amount of refrigerant (dryness of about 0.95) may flow into the accumulator 6. The liquid refrigerant that has flowed into the accumulator 6 is evaporated and sucked into the compressor 1 or is sucked into the compressor 1 through an oil return hole (not shown) provided in the outlet pipe of the accumulator 6. .
 次に、過冷却熱交換器4の出口の高圧液冷媒温度を5℃程度まで低くすることによる効果を説明する。図4に過冷却熱交換器出口の液温度と冷媒流量の低減比率との関係を示す。液温44℃(過冷却度5℃)のときの冷媒流量比率を1としている。また、その他の計算の試算条件は、蒸発温度0℃、凝縮温度49℃である。
 図4から分かるように、過冷却熱交換器4の出口液温度を5℃程度にすることによって、流量は液温44℃(過冷却度5℃)の時の66%程度となり、延長配管400a、400bに流れる冷媒流量を34%も低減することが分かる。
Next, the effect of reducing the high-pressure liquid refrigerant temperature at the outlet of the supercooling heat exchanger 4 to about 5 ° C. will be described. FIG. 4 shows the relationship between the liquid temperature at the outlet of the supercooling heat exchanger and the reduction rate of the refrigerant flow rate. The refrigerant flow rate ratio is 1 when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.). Further, other calculation conditions are an evaporation temperature of 0 ° C. and a condensation temperature of 49 ° C.
As can be seen from FIG. 4, by setting the outlet liquid temperature of the supercooling heat exchanger 4 to about 5 ° C., the flow rate is about 66% when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.), and the extension pipe 400a. It can be seen that the refrigerant flow rate flowing through 400b is reduced by 34%.
 図5は、過冷却熱交換器出口の液温度と配管の圧力損失の低減比率との関係を示す図である。液温44℃(過冷却度5℃)のときの圧力損失比率を1としている。図5から分かるように、過冷却熱交換器4の出口液温度を5℃程度にすることによって、圧力損失は液温44℃(過冷却度5℃)の時の44%程度となり、延長配管400a、400bでの圧力損失を56%も低減することが分かる。 FIG. 5 is a graph showing the relationship between the liquid temperature at the outlet of the supercooling heat exchanger and the reduction ratio of the pressure loss of the piping. The pressure loss ratio when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.) is 1. As can be seen from FIG. 5, by setting the outlet liquid temperature of the supercooling heat exchanger 4 to about 5 ° C., the pressure loss becomes about 44% when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.). It can be seen that the pressure loss at 400a and 400b is reduced by 56%.
 図6は、過冷却熱交換器出口の液温度と配管径の低減比率との関係を示す図である。液温44℃(過冷却度5℃)のときの配管径比率を1としている。図6から分かるように、過冷却熱交換器4の出口液温度を5℃程度にすることによって、配管径は液温44℃(過冷却度5℃)の時の80%程度となり、延長配管400a、400bでの配管径を20%も低減することが分かる。すなわち、配管径を1ランクから2ランク小さくすることが可能となり、延長配管400a、400bを細くすることができる。ガス冷媒が通過する低圧配管となる延長配管400bは圧力損失の影響が大きく、延長配管400aに比べ太くする。よって、延長配管400bの配管径を1~2ランク細くできることは、配管コストの低減、工事性の向上、工事コストといった効果が得られ、非常に効果的である。 FIG. 6 is a graph showing the relationship between the liquid temperature at the outlet of the supercooling heat exchanger and the pipe diameter reduction ratio. The pipe diameter ratio when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.) is 1. As can be seen from FIG. 6, by setting the outlet liquid temperature of the supercooling heat exchanger 4 to about 5 ° C., the pipe diameter becomes about 80% when the liquid temperature is 44 ° C. (supercooling degree 5 ° C.). It can be seen that the pipe diameters at 400a and 400b are reduced by 20%. That is, the pipe diameter can be reduced from one rank to two ranks, and the extension pipes 400a and 400b can be made thin. The extension pipe 400b, which is a low-pressure pipe through which the gas refrigerant passes, is greatly affected by pressure loss, and is thicker than the extension pipe 400a. Therefore, reducing the pipe diameter of the extension pipe 400b by one or two ranks is very effective since the effects of reducing the pipe cost, improving the workability, and the work cost can be obtained.
[暖房運転モード]
 図7は、空気調和装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。図7では、室内機20の全部が駆動している場合を例に説明する。なお、図7では、冷媒の流れ方向を矢印で示している。なお、暖房運転モードでは、絞り装置5は閉じられている。
[Heating operation mode]
FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating operation mode. In FIG. 7, the case where all the indoor units 20 are driven will be described as an example. In FIG. 7, the flow direction of the refrigerant is indicated by arrows. In the heating operation mode, the expansion device 5 is closed.
 低温・低圧の冷媒が圧縮機1によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機1から吐出された高温・高圧のガス冷媒は、流路切替装置2を通って室外機10から流出し、延長配管400bを通って室内機20a~室内機20dのそれぞれに流入する。 A low temperature / low pressure refrigerant is compressed by the compressor 1 and discharged as a high temperature / high pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows out of the outdoor unit 10 through the flow path switching device 2, and flows into each of the indoor units 20a to 20d through the extension pipe 400b.
 室内機20a~室内機20dに流入した高温・高圧のガス冷媒は、利用側熱交換器21a~利用側熱交換器21dで、図示省略の送風機から供給される空気(室内空気)と熱交換することで空気に放熱して、液状態となって利用側熱交換器21a~利用側熱交換器21dから流出する。この高圧の液状態の冷媒は、絞り装置22a~絞り装置22dのそれぞれで膨張(減圧)させられて、低温・低圧の気液二相状態となり、室内機20a~室内機20dから流出する。 The high-temperature and high-pressure gas refrigerant flowing into the indoor unit 20a to the indoor unit 20d exchanges heat with air (indoor air) supplied from a blower (not shown) in the use side heat exchanger 21a to the use side heat exchanger 21d. As a result, heat is radiated to the air, and the liquid is converted into a liquid state and flows out from the use side heat exchanger 21a to the use side heat exchanger 21d. The high-pressure liquid refrigerant is expanded (depressurized) by each of the expansion devices 22a to 22d to be in a low-temperature and low-pressure gas-liquid two-phase state, and flows out from the indoor units 20a to 20d.
 利用側熱交換器21への冷媒供給量は、利用側熱交換器21の冷媒出口に設けられている温度センサー23a~23d及び圧力センサー(図示せず)からの情報を利用して調整されている。具体的には、それらのセンサーからの情報で過冷却度(出口側における冷媒の検知圧力から換算された飽和温度-出口側における冷媒温度)を算出し、その過冷却度が2~5℃程度になるように、絞り装置22の開度を決定し、熱源側熱交換器3への冷媒供給量を調整している。 The refrigerant supply amount to the use side heat exchanger 21 is adjusted using information from temperature sensors 23a to 23d and pressure sensors (not shown) provided at the refrigerant outlet of the use side heat exchanger 21. Yes. Specifically, the degree of supercooling (saturation temperature converted from the detected pressure of refrigerant on the outlet side-refrigerant temperature on the outlet side) is calculated from information from these sensors, and the degree of supercooling is about 2 to 5 ° C. Thus, the opening degree of the expansion device 22 is determined, and the refrigerant supply amount to the heat source side heat exchanger 3 is adjusted.
 室内機20a~室内機20dから流出した低温・低圧の気液二相状態の冷媒は、延長配管400aを通って、室外機10に流れ込む。この冷媒は過冷却熱交換器4をそのまま通過して熱源側熱交換器3に流入する。熱源側熱交換器3に流入した低温・定圧の気液二相状態の冷媒は、図示省略の送風機から供給される空気と熱交換することで、空気から吸熱して、乾き度が徐々に大きくなる。そして、熱源側熱交換器3の出口では乾き度の大きい状態の気液二相冷媒となって、熱源側熱交換器3から流出する。熱源側熱交換器3から流出した冷媒は、流路切替装置2を通ってアキュムレーター6に流れ込む。アキュムレーター6に流れ込んだ冷媒は、液冷媒とガス冷媒とが分離され、ガス冷媒が再び圧縮機1に吸い込まれる。 The low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed out of the indoor unit 20a to the indoor unit 20d flows into the outdoor unit 10 through the extension pipe 400a. This refrigerant passes through the supercooling heat exchanger 4 as it is and flows into the heat source side heat exchanger 3. The low-temperature / constant-pressure gas-liquid two-phase refrigerant flowing into the heat source side heat exchanger 3 absorbs heat from the air by exchanging heat with air supplied from a blower (not shown), and gradually increases in dryness. Become. Then, at the outlet of the heat source side heat exchanger 3, it becomes a gas-liquid two-phase refrigerant with a high degree of dryness and flows out of the heat source side heat exchanger 3. The refrigerant flowing out of the heat source side heat exchanger 3 flows into the accumulator 6 through the flow path switching device 2. The refrigerant flowing into the accumulator 6 is separated from the liquid refrigerant and the gas refrigerant, and the gas refrigerant is sucked into the compressor 1 again.
 本実施の形態1の回路では、暖房運転モードにおいて、延長配管400bに流れ込む冷媒流量を低減させることはできないが、延長配管400bには高圧のガス冷媒が流れるため(密度が大きい冷媒)、圧力損失の影響が小さく、過冷却熱交換器4には冷媒を流さない。なお、過冷却熱交換器4に冷媒を流した場合は、室外機10の低圧配管(過冷却熱交換器4の出口→蒸発器→アキュムレーター6の入口までの配管)も細くすることができる。また、暖房運転モードにおいても、利用側熱交換器21から絞り装置22に送られる高圧液冷媒の液温を5℃以下又は過冷却度を44℃以上とするようにしてもよい。 In the circuit of the first embodiment, in the heating operation mode, the flow rate of the refrigerant flowing into the extension pipe 400b cannot be reduced. However, since a high-pressure gas refrigerant flows through the extension pipe 400b (a refrigerant having a high density), the pressure loss The refrigerant does not flow through the supercooling heat exchanger 4. In addition, when a refrigerant | coolant is flowed to the supercooling heat exchanger 4, the low-pressure piping (outlet of the supercooling heat exchanger 4-> evaporator-> piping to the inlet of the accumulator 6) of the outdoor unit 10 can also be made thin. . Also in the heating operation mode, the liquid temperature of the high-pressure liquid refrigerant sent from the use side heat exchanger 21 to the expansion device 22 may be 5 ° C. or lower, or the degree of supercooling may be 44 ° C. or higher.
 以上説明したように本実施の形態1によれば、冷房運転モード時に、過冷却手段(過冷却熱交換器4、絞り装置5及びバイパス回路7)によって高圧液温度を5℃程度に低くすることで、延長配管(低圧ガス配管)400bの配管径を1~2ランク細くできる。その結果、配管コストと工事コストの低減、さらには廃棄に伴うエネルギー損失を低減でき環境保全にも貢献することが可能となる。また、圧力損失を低減できるため、エネルギー効率の高い運転を行うことができ、省エネ効果も得ることができる。 As described above, according to the first embodiment, the high-pressure liquid temperature is lowered to about 5 ° C. by the supercooling means (the supercooling heat exchanger 4, the expansion device 5, and the bypass circuit 7) in the cooling operation mode. Thus, the pipe diameter of the extension pipe (low pressure gas pipe) 400b can be reduced by one or two ranks. As a result, it is possible to reduce piping costs and construction costs, further reduce energy loss due to disposal, and contribute to environmental conservation. Moreover, since pressure loss can be reduced, an energy efficient operation can be performed, and an energy saving effect can also be obtained.
実施の形態2.
 実施の形態1では、過冷却熱交換器4、絞り装置5及びバイパス回路7により過冷却手段を構成していたが、実施の形態2では、過冷却用の冷媒循環回路によって過冷却手段を構成したものである。
Embodiment 2. FIG.
In the first embodiment, the supercooling means is configured by the supercooling heat exchanger 4, the expansion device 5, and the bypass circuit 7, but in the second embodiment, the supercooling means is configured by the supercooling refrigerant circulation circuit. It is a thing.
 図8は、本発明の実施の形態2に係る空気調和装置の概略図である。この空気調和装置101は、冷媒循環回路101Aと過冷却用回路101Bとを備えている。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付す。また、実施の形態1と同様の構成部分について適用される具体例及び変形例は、本実施の形態についても同様に適用される。この点は後述の実施の形態においても同様である。 FIG. 8 is a schematic diagram of an air-conditioning apparatus according to Embodiment 2 of the present invention. The air conditioner 101 includes a refrigerant circulation circuit 101A and a supercooling circuit 101B. In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment are denoted by the same reference numerals. In addition, specific examples and modifications applied to the same components as those in the first embodiment are similarly applied to the present embodiment. This also applies to embodiments described later.
[冷媒循環回路101A]
 冷媒循環回路101Aは、圧縮機1と、四方弁等の流路切替装置2と、熱源側熱交換器3と、アキュムレーター6とを備え、室内機20の利用側熱交換器21及び絞り装置22と共に配管で接続され、冷媒が循環する冷凍サイクルを構成している。
[Refrigerant circulation circuit 101A]
The refrigerant circulation circuit 101A includes a compressor 1, a flow switching device 2 such as a four-way valve, a heat source side heat exchanger 3, and an accumulator 6, and includes a use side heat exchanger 21 and a throttle device of the indoor unit 20. The refrigeration cycle in which refrigerant is circulated is connected with the pipe 22 together.
[過冷却用回路101B]
 過冷却用回路101Bは、圧縮機31と、凝縮器32と、絞り装置33と、過冷却熱交換器34とを備え、これらが配管で接続されて冷媒が循環し、過冷却手段として機能する冷凍サイクルを構成している。過冷却熱交換器34は、過冷却用回路101Bを循環する低圧側冷媒と、冷媒循環回路101Aの熱源側熱交換器3と絞り装置22との間の高圧側冷媒との熱交換を行う。
[Supercooling circuit 101B]
The supercooling circuit 101B includes a compressor 31, a condenser 32, a throttling device 33, and a supercooling heat exchanger 34, which are connected by piping so that the refrigerant circulates and functions as supercooling means. It constitutes the refrigeration cycle. The supercooling heat exchanger 34 performs heat exchange between the low-pressure side refrigerant circulating in the supercooling circuit 101B and the high-pressure side refrigerant between the heat source side heat exchanger 3 and the expansion device 22 of the refrigerant circulation circuit 101A.
 冷媒循環回路101Aにおいて利用側熱交換器21及び絞り装置22を除く各機器と、過冷却用回路101Bは、同一の筐体内に設置され、室外機30を構成している。また過冷却用回路101Bの圧縮機31には、圧縮機1に比べて小さい容量の圧縮機が搭載されている。 In the refrigerant circulation circuit 101A, each device excluding the use side heat exchanger 21 and the expansion device 22 and the supercooling circuit 101B are installed in the same casing, and constitute an outdoor unit 30. Further, the compressor 31 of the subcooling circuit 101B is equipped with a compressor having a smaller capacity than the compressor 1.
 また、室外機30には制御装置30Aが設けられている。制御装置30Aは室外機30内の各種センサ及び室内機20内の後述の各種センサーの検出信号を受けることができるように接続されている。制御装置30Aは、各種センサーからの検出信号に基づき、絞り装置33及び絞り装置22の開度を調整する等の制御を行う。また、制御装置30Aは、流路切替装置2の切り替えにより、冷房運転モード及び暖房運転モードの運転を行う。なお、図8では室外機30のみに制御装置30Aを設けた構成を示しているが、各室内機20に制御装置30Aの機能の一部を持つサブ制御装置を設け、制御装置30Aとサブ制御装置との間でデータ通信を行うことにより連携処理を行う構成にしてもよい。 Further, the outdoor unit 30 is provided with a control device 30A. The control device 30 </ b> A is connected so as to receive detection signals of various sensors in the outdoor unit 30 and various sensors described later in the indoor unit 20. The control device 30A performs control such as adjusting the opening degree of the expansion device 33 and the expansion device 22 based on detection signals from various sensors. The control device 30 </ b> A performs the cooling operation mode and the heating operation mode by switching the flow path switching device 2. Although FIG. 8 shows a configuration in which the control device 30A is provided only in the outdoor unit 30, a sub-control device having a part of the function of the control device 30A is provided in each indoor unit 20, and the control device 30A and sub-control are provided. You may make it the structure which performs a cooperation process by performing data communication between apparatuses.
 以下、空気調和装置101が実行する各運転モードについて説明する。
[冷房運転モード]
 図9は、本発明の実施の形態2に係る空気調和装置の冷房運転モード時における冷媒の流れを示す冷媒回路図である。図9では、室内機20の全部が駆動している場合を例に説明する。なお、図9では、冷媒の流れ方向を矢印で示している。
Hereinafter, each operation mode which the air conditioning apparatus 101 performs is demonstrated.
[Cooling operation mode]
FIG. 9 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus according to Embodiment 2 of the present invention is in the cooling operation mode. In FIG. 9, the case where all the indoor units 20 are driven will be described as an example. In FIG. 9, the flow direction of the refrigerant is indicated by arrows.
 まず、冷媒循環回路101Aの動作について説明する。低温・低圧の冷媒が圧縮機1によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機1から吐出された高温・高圧のガス冷媒は流路切替装置2を通り、熱源側熱交換器3に流入する。 First, the operation of the refrigerant circulation circuit 101A will be described. The low-temperature and low-pressure refrigerant is compressed by the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching device 2 and flows into the heat source side heat exchanger 3.
 熱源側熱交換器3に流入した高温・高圧のガス冷媒は、図示省略の送風機から供給される空気と熱交換することで液状態となって熱源側熱交換器3から流出し、過冷却熱交換器34に流れ込む。過冷却熱交換器34に流れ込んだ液冷媒は、過冷却用回路101Bで生成された気液二相冷媒によって冷却され、液温が低下(過冷却度を増大する)して過冷却熱交換器34から流出する。 The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 3 becomes a liquid state by exchanging heat with air supplied from a blower (not shown) and flows out of the heat source side heat exchanger 3, and the supercooling heat It flows into the exchanger 34. The liquid refrigerant that has flowed into the supercooling heat exchanger 34 is cooled by the gas-liquid two-phase refrigerant generated in the supercooling circuit 101B, and the liquid temperature decreases (increases the degree of supercooling) so that the supercooling heat exchanger. 34 flows out.
 ここで、実施の形態2においても、実施の形態1と同様に過冷却熱交換器34の出口の高圧液冷媒の温度が5℃程度まで低くなるようにしている。この高圧液冷媒の温度は過冷却熱交換器34における熱交換量に依存する。よって、過冷却用回路101Bの絞り装置33の開度や、圧縮機31の回転数の調整によって、過冷却熱交換器34の出口の高圧液冷媒の温度が5℃程度まで低くなるようにしている。その結果、実施の形態1と同様の効果を得ることができる。 Here, also in the second embodiment, as in the first embodiment, the temperature of the high-pressure liquid refrigerant at the outlet of the supercooling heat exchanger 34 is lowered to about 5 ° C. The temperature of the high-pressure liquid refrigerant depends on the heat exchange amount in the supercooling heat exchanger 34. Therefore, the temperature of the high-pressure liquid refrigerant at the outlet of the supercooling heat exchanger 34 is lowered to about 5 ° C. by adjusting the opening degree of the expansion device 33 of the subcooling circuit 101B and the rotation speed of the compressor 31. Yes. As a result, the same effect as in the first embodiment can be obtained.
 過冷却熱交換器34から流出した液冷媒は、延長配管400aを通って室内機20に向かい、室内機20a~室内機20dのそれぞれに流入する。室内機20a~室内機20dに流入した冷媒は、絞り装置22a~絞り装置22dのそれぞれで膨張(減圧)させられて、低温・低圧の気液二相状態となる。この気液二相状態の冷媒は、利用側熱交換器21a~利用側熱交換器21dのそれぞれに流入する。利用側熱交換器21a~利用側熱交換器21dに流入した気液二相状態の冷媒は、図示省略の送風機から供給される空気(室内空気)と熱交換することで、空気から吸熱して、低圧のガス冷媒となって利用側熱交換器21a~利用側熱交換器21dから流出する。 The liquid refrigerant that has flowed out of the supercooling heat exchanger 34 goes to the indoor unit 20 through the extension pipe 400a and flows into each of the indoor units 20a to 20d. The refrigerant flowing into the indoor unit 20a to the indoor unit 20d is expanded (depressurized) by each of the expansion devices 22a to 22d to be in a low-temperature / low-pressure gas-liquid two-phase state. The gas-liquid two-phase refrigerant flows into the use side heat exchanger 21a to the use side heat exchanger 21d. The gas-liquid two-phase refrigerant flowing into the use side heat exchanger 21a to the use side heat exchanger 21d absorbs heat from the air by exchanging heat with air (indoor air) supplied from a blower (not shown). Then, it becomes a low-pressure gas refrigerant and flows out from the use side heat exchanger 21a to the use side heat exchanger 21d.
 ここで、利用側熱交換器21への冷媒供給量は、利用側熱交換器21の冷媒出入口に設けられている温度センサー23a~23d、24a~24dからの温度情報を利用して調整されている。具体的には、制御装置30Aがそれらの温度センサー23a~23d、24a~24dからの情報で過熱度(出口側における冷媒温度-入口における冷媒温度)を算出する。そして、実施の形態1と同様に、その過熱度が2~5℃程度になるように、絞り装置22の開度を決定し、利用側熱交換器21への冷媒供給量を調整している。 Here, the refrigerant supply amount to the use side heat exchanger 21 is adjusted using temperature information from the temperature sensors 23 a to 23 d and 24 a to 24 d provided at the refrigerant inlet / outlet of the use side heat exchanger 21. Yes. Specifically, the control device 30A calculates the degree of superheat (refrigerant temperature on the outlet side−refrigerant temperature on the inlet side) based on information from the temperature sensors 23a to 23d and 24a to 24d. As in the first embodiment, the opening degree of the expansion device 22 is determined so that the degree of superheat is about 2 to 5 ° C., and the refrigerant supply amount to the use side heat exchanger 21 is adjusted. .
 利用側熱交換器21a~利用側熱交換器21dから流出した低圧ガス冷媒は、室内機20a~室内機20dから流出し、延長配管400bを通って、室外機10に流れ込む。室外機10に流入した冷媒は、流路切替装置2を通り、アキュムレーター6に流れ込む。アキュムレーター6に流れ込んだ冷媒は、液冷媒とガス冷媒とが分離され、ガス冷媒が再び圧縮機1に吸い込まれる。 The low-pressure gas refrigerant that has flowed out of the use side heat exchanger 21a to the use side heat exchanger 21d flows out of the indoor unit 20a to the indoor unit 20d, and flows into the outdoor unit 10 through the extension pipe 400b. The refrigerant flowing into the outdoor unit 10 passes through the flow path switching device 2 and flows into the accumulator 6. The refrigerant flowing into the accumulator 6 is separated from the liquid refrigerant and the gas refrigerant, and the gas refrigerant is sucked into the compressor 1 again.
 このような冷房運転モードでは、各室内機20において過熱度制御が行なわれているので、液状態の冷媒がアキュムレーター6に流れ込まない。しかしながら、過渡的な状態や、停止している室内機20があるときは、少量の液状態(乾き度0.95程度)の冷媒がアキュムレーター6に流れ込むことがある。アキュムレーター6に流れ込んだ液冷媒は、蒸発して圧縮機1に吸引されたり、アキュムレーター6の出口配管に設けられている油戻し穴(図示省略)を介して圧縮機1に吸引されたりする。 In such a cooling operation mode, since the superheat degree control is performed in each indoor unit 20, the liquid refrigerant does not flow into the accumulator 6. However, when there is a transitional state or when the indoor unit 20 is stopped, a small amount of refrigerant (dryness of about 0.95) may flow into the accumulator 6. The liquid refrigerant that has flowed into the accumulator 6 is evaporated and sucked into the compressor 1 or is sucked into the compressor 1 through an oil return hole (not shown) provided in the outlet pipe of the accumulator 6. .
 次に過冷却用回路101Bの動作について説明する。冷媒が圧縮機31によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機31から吐出された高温・高圧のガス冷媒は、凝縮器32に流入する。凝縮器32に流入した高温・高圧のガス冷媒は、図示省略の送風機から供給される空気と熱交換することで液状態となって凝縮器32から流出し、絞り装置33に流れ込む。絞り装置33の開度は、上述したように過冷却熱交換器34の出口の高圧液冷媒の温度が5℃程度まで低くなるように調整されている。絞り装置33に流れ込んだ冷媒は、低圧の気液二相流に減圧され、過冷却熱交換器34に流れ込む。過冷却熱交換器34に流れ込んだ液冷媒は、冷媒循環回路101Aで生成された高圧液冷媒と熱交換する。熱交換した気液二相冷媒は低圧のガス冷媒となって、過冷却熱交換器34から流出され、再び圧縮機31に吸引される。 Next, the operation of the supercooling circuit 101B will be described. The refrigerant is compressed by the compressor 31 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 flows into the condenser 32. The high-temperature and high-pressure gas refrigerant that has flowed into the condenser 32 becomes a liquid state by exchanging heat with air supplied from a blower (not shown), flows out of the condenser 32, and flows into the expansion device 33. The opening degree of the expansion device 33 is adjusted so that the temperature of the high-pressure liquid refrigerant at the outlet of the supercooling heat exchanger 34 is lowered to about 5 ° C. as described above. The refrigerant flowing into the expansion device 33 is depressurized into a low-pressure gas-liquid two-phase flow and flows into the supercooling heat exchanger 34. The liquid refrigerant that has flowed into the supercooling heat exchanger 34 exchanges heat with the high-pressure liquid refrigerant generated in the refrigerant circuit 101A. The heat-exchanged gas-liquid two-phase refrigerant becomes a low-pressure gas refrigerant, flows out of the supercooling heat exchanger 34, and is sucked into the compressor 31 again.
 実施の形態2においても、実施の形態1と同じように過冷却熱交換器34から流出する高圧液冷媒の温度を、過冷却熱交換器34で5℃程度まで低下させる。その結果、実施の形態1と同じように、延長配管(低圧ガス配管)400bの配管径を1~2ランク程度細くすることができ、配管コストと工事コストを低減することが可能となる。 Also in the second embodiment, the temperature of the high-pressure liquid refrigerant flowing out of the supercooling heat exchanger 34 is reduced to about 5 ° C. by the supercooling heat exchanger 34 as in the first embodiment. As a result, as in the first embodiment, the pipe diameter of the extension pipe (low pressure gas pipe) 400b can be reduced by about 1 to 2 ranks, and the pipe cost and the construction cost can be reduced.
 本実施の形態2の回路では、実施の形態1と同様に、暖房運転モードにおいて、延長配管400bに流れ込む冷媒流量を低減させることはできないが、高圧のガス冷媒が流れるため(密度が大きい冷媒)、圧力損失の影響が小さく、過冷却熱交換器34には冷媒を流さない。すなわち、過冷却用回路101Bを運転させない。 In the circuit of the second embodiment, as in the first embodiment, in the heating operation mode, the flow rate of the refrigerant flowing into the extension pipe 400b cannot be reduced, but a high-pressure gas refrigerant flows (a refrigerant having a high density). The effect of pressure loss is small, and no refrigerant flows through the supercooling heat exchanger 34. That is, the supercooling circuit 101B is not operated.
 なお、本実施の形態2では、冷媒循環回路101Aと過冷却用回路101Bに同じ冷媒HFO1234yf又はHFO1234zeを使用しているが、過冷却用回路101Bを別の地球温暖化係数の小さい冷媒、例えば二酸化炭素、HC冷媒などを用いて良い。 In the second embodiment, the same refrigerant HFO1234yf or HFO1234ze is used for the refrigerant circulation circuit 101A and the supercooling circuit 101B, but the supercooling circuit 101B is replaced with another refrigerant having a low global warming potential, for example, dioxide dioxide. Carbon, HC refrigerant or the like may be used.
実施の形態3.
 実施の形態3の空気調和装置は、冷房と暖房を同時にすることができるタイプの空気調和装置の室外機40に、図1に示した実施の形態1の室外機10又は図8に示した実施の形態2の室外機30を適用したものである。
Embodiment 3 FIG.
The air conditioner of the third embodiment is the same as the outdoor unit 10 of the first embodiment shown in FIG. 1 or the implementation shown in FIG. 8. The outdoor unit 30 of the form 2 is applied.
 図10は、本発明の実施の形態3に係る空気調和装置の概略構成図である。図10には、室外機10又は室外機30のうち、室外機10を備えた場合を示している。
 この空気調和装置102は、大きく分けて、熱源機(室外機)40と、熱媒体変換機60と、室内機50とから構成されている。室外機40と熱媒体変換機60とが、熱媒体変換機60に備えられている熱媒体間熱交換器61a及び熱媒体間熱交換器61bを介して冷媒配管401で接続されている。熱媒体変換機60と室内機50もまた、熱媒体間熱交換器61a及び熱媒体間熱交換器61bを介して配管500で接続されている。
FIG. 10 is a schematic configuration diagram of an air-conditioning apparatus according to Embodiment 3 of the present invention. In FIG. 10, the case where the outdoor unit 10 is provided among the outdoor unit 10 or the outdoor unit 30 is shown.
The air conditioner 102 is roughly composed of a heat source unit (outdoor unit) 40, a heat medium converter 60, and an indoor unit 50. The outdoor unit 40 and the heat medium converter 60 are connected by a refrigerant pipe 401 via a heat medium heat exchanger 61 a and a heat medium heat exchanger 61 b provided in the heat medium converter 60. The heat medium converter 60 and the indoor unit 50 are also connected by a pipe 500 via the heat exchanger related to heat medium 61a and the heat exchanger related to heat medium 61b.
[室外機40]
 室外機40は、上述したように、図1に示した実施の形態1の室外機10を構成する各機器及び各種センサを備え、実施の形態1及び実施の形態2と同様、高圧液冷媒の液温度を5℃程度まで低くするようにしている。そして、室外機40には更に、冷媒の流れを一方向にするために、4つの逆止弁41a~41dを設けている。このような回路にした場合は、冷房運転のみ高圧液冷媒の温度を低くすることができる。
[Outdoor unit 40]
As described above, the outdoor unit 40 includes each device and various sensors that constitute the outdoor unit 10 of the first embodiment shown in FIG. 1, and, like the first and second embodiments, the high-pressure liquid refrigerant is provided. The liquid temperature is lowered to about 5 ° C. The outdoor unit 40 is further provided with four check valves 41a to 41d in order to make the refrigerant flow in one direction. In the case of such a circuit, the temperature of the high-pressure liquid refrigerant can be lowered only in the cooling operation.
 逆止弁41dは、熱媒体変換機60と流路切替装置2との間における冷媒配管401に設けられ、所定の方向(熱媒体変換機60から室外機40への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁41aは、熱源側熱交換器12と熱媒体変換機60との間における冷媒配管401に設けられ、所定の方向(室外機40から熱媒体変換機60への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁41bは、第1接続配管42aに設けられ、暖房運転時において圧縮機1から吐出された熱源側冷媒を熱媒体変換機60に流通させるものである。逆止弁41cは、第2接続配管42bに設けられ、暖房運転時において熱媒体変換機60から戻ってきた熱源側冷媒を圧縮機1の吸入側に流通させるものである。 The check valve 41d is provided in the refrigerant pipe 401 between the heat medium converter 60 and the flow path switching device 2, and is a heat source side refrigerant only in a predetermined direction (direction from the heat medium converter 60 to the outdoor unit 40). Is allowed. The check valve 41a is provided in the refrigerant pipe 401 between the heat source side heat exchanger 12 and the heat medium converter 60, and only in a predetermined direction (direction from the outdoor unit 40 to the heat medium converter 60). The refrigerant flow is allowed. The check valve 41b is provided in the first connection pipe 42a, and causes the heat source side refrigerant discharged from the compressor 1 during the heating operation to flow to the heat medium converter 60. The check valve 41 c is provided in the second connection pipe 42 b and causes the heat source side refrigerant returned from the heat medium converter 60 during the heating operation to flow to the suction side of the compressor 1.
 第1接続配管42aは、室外機40内において、流路切替装置2と逆止弁41dとの間における冷媒配管401と、逆止弁41aと熱媒体変換機60との間における冷媒配管401と、を接続するものである。第2接続配管42bは、室外機40内において、逆止弁41dと熱媒体変換機60との間における冷媒配管401と、熱源側熱交換器12と逆止弁41aとの間における冷媒配管401と、を接続するものである。なお、図10では、第1接続配管42a、第2接続配管42b、逆止弁41a、逆止弁41b、逆止弁41c及び逆止弁41dを設けた場合を例に示しているが、これに限定するものではなく、これらを必ずしも設ける必要はない。 In the outdoor unit 40, the first connection pipe 42a includes a refrigerant pipe 401 between the flow path switching device 2 and the check valve 41d, and a refrigerant pipe 401 between the check valve 41a and the heat medium relay unit 60. , Are to be connected. In the outdoor unit 40, the second connection pipe 42b includes a refrigerant pipe 401 between the check valve 41d and the heat medium relay 60, and a refrigerant pipe 401 between the heat source side heat exchanger 12 and the check valve 41a. Are connected to each other. FIG. 10 shows an example in which the first connection pipe 42a, the second connection pipe 42b, the check valve 41a, the check valve 41b, the check valve 41c, and the check valve 41d are provided. However, these are not necessarily provided.
 また、室外機40には制御装置40Aが設けられている。制御装置40Aは室外機40、室内機50及び熱媒体変換機60内の各種センサーの検出信号を受けることができるように接続されている。制御装置40Aは、各種センサーからの検出信号に基づき、絞り装置5及び絞り装置22の開度を調整する等の制御を行う。また、制御装置10Aは、流路切替装置2の切り替えにより、冷房運転モード及び暖房運転モードの運転を行う。なお、図10では室外機40のみに制御装置40Aを設けた構成を示しているが、各室内機50及び熱媒体変換機60に、制御装置40Aの機能の一部を持つサブ制御装置を設け、制御装置30Aとサブ制御装置との間でデータ通信を行うことにより連携処理を行う構成にしてもよい。また、制御装置30Aはユニット毎に設けてもよく、熱媒体変換機60に設けてもよい。 In addition, the outdoor unit 40 is provided with a control device 40A. The control device 40A is connected so as to receive detection signals from various sensors in the outdoor unit 40, the indoor unit 50, and the heat medium relay unit 60. The control device 40A performs control such as adjusting the opening degree of the expansion device 5 and the expansion device 22 based on detection signals from various sensors. Further, the control device 10 </ b> A performs the cooling operation mode and the heating operation mode by switching the flow path switching device 2. Although FIG. 10 shows a configuration in which the control device 40A is provided only in the outdoor unit 40, each indoor unit 50 and heat medium converter 60 is provided with a sub-control device having a part of the function of the control device 40A. A configuration may be adopted in which cooperative processing is performed by performing data communication between the control device 30A and the sub-control device. Further, the control device 30A may be provided for each unit, or may be provided in the heat medium converter 60.
[室内機50]
 室内機50には、それぞれ負荷側熱交換器51(51a~51d)が搭載されている。この負荷側熱交換器51は、配管500によって熱媒体変換機60の熱媒体流量調整装置74(74a~74d)と第2熱媒体流路切替装置73(73a~73d)に接続するようになっている。この負荷側熱交換器51は、図示省略のファン等の送風機から供給される空調対象空間に係る空気と熱媒体との間で熱交換を行ない、室内空間に供給するための暖房用空気あるいは冷房用空気を生成するものである。
[Indoor unit 50]
Each of the indoor units 50 is equipped with a load side heat exchanger 51 (51a to 51d). The load-side heat exchanger 51 is connected to the heat medium flow control devices 74 (74a to 74d) and the second heat medium flow switching devices 73 (73a to 73d) of the heat medium converter 60 through the pipe 500. ing. The load-side heat exchanger 51 performs heat exchange between air and air in the air-conditioning target space supplied from a fan such as a fan (not shown) and supplies the air to the indoor space. It produces working air.
 この図10では、4台の室内機50が熱媒体変換機60に接続されている場合を例に示しており、紙面下から室内機50a、室内機50b、室内機50c、室内機50dとして図示している。また、室内機50a~室内機50dに応じて、負荷側熱交換器51も、紙面下側から負荷側熱交換器51a、負荷側熱交換器51b、負荷側熱交換器51c、負荷側熱交換器51dとして図示している。なお、図1及び図2と同様に、室内機50の接続台数を図10に示す4台に限定するものではない。 FIG. 10 shows an example in which four indoor units 50 are connected to the heat medium converter 60, and are illustrated as an indoor unit 50a, an indoor unit 50b, an indoor unit 50c, and an indoor unit 50d from the bottom of the page. Show. Further, depending on the indoor unit 50a to the indoor unit 50d, the load-side heat exchanger 51 also loads the load-side heat exchanger 51a, the load-side heat exchanger 51b, the load-side heat exchanger 51c, and the load-side heat exchanger from the lower side of the page. It is shown as a container 51d. 1 and 2, the number of indoor units 50 connected is not limited to four as shown in FIG.
[熱媒体変換機60]
 熱媒体変換機60には、2つの熱媒体間熱交換器61(61a、61b)と、2つの絞り装置62(62a、62b)と、2つの開閉装置63(63a、63b)と、2つの流路切替装置64(64a、64b)と、2つのポンプ71(71a、71b)と、4つの第1熱媒体流路切替装置72(72a~72d)と、4つの第2熱媒体流路切替装置73(73a~73d)と、4つの熱媒体流量調整装置74(74a~74d)と、が搭載されている。熱媒体間熱交換器61は、上記実施の形態1、2の冷媒循環回路を構成する利用側熱交換器に相当するものである。
[Heat medium converter 60]
The heat medium relay 60 includes two heat medium heat exchangers 61 (61a, 61b), two expansion devices 62 (62a, 62b), two opening / closing devices 63 (63a, 63b), and two Channel switching device 64 (64a, 64b), two pumps 71 (71a, 71b), four first heat medium channel switching devices 72 (72a-72d), and four second heat medium channel switching A device 73 (73a to 73d) and four heat medium flow control devices 74 (74a to 74d) are mounted. The heat exchanger related to heat medium 61 corresponds to the use side heat exchanger constituting the refrigerant circulation circuit of the first and second embodiments.
 2つの熱媒体間熱交換器61(熱媒体間熱交換器61a、熱媒体間熱交換器61b)は、凝縮器(放熱器)又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機40で生成され熱源側冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器61aは、冷媒循環回路Aにおける絞り装置62aと流路切替装置64aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。また、熱媒体間熱交換器61bは、冷媒循環回路Aにおける絞り装置62bと流路切替装置64bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。ここでは2台の熱媒体間熱交換器61を設置しているが、1台設置するようにしてもよいし、3台以上設置するようにしてもよい。 The two heat exchangers between heat media 61 (heat medium heat exchanger 61a, heat medium heat exchanger 61b) function as a condenser (heat radiator) or an evaporator, and heat is generated by the heat source side refrigerant and the heat medium. Exchange is performed, and the cold or warm heat generated in the outdoor unit 40 and stored in the heat source side refrigerant is transmitted to the heat medium. The heat exchanger related to heat medium 61a is provided between the expansion device 62a and the flow path switching device 64a in the refrigerant circulation circuit A, and serves to heat the heat medium in the cooling / heating mixed operation mode. Further, the heat exchanger related to heat medium 61b is provided between the expansion device 62b and the flow path switching device 64b in the refrigerant circuit A and serves to cool the heat medium in the cooling / heating mixed operation mode. . Here, two heat exchangers for heat medium 61 are installed, but one may be installed, or three or more may be installed.
 2つの絞り装置62(絞り装置62a、絞り装置62b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置62aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器61aの上流側に設けられている。絞り装置62bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器61bの上流側に設けられている。2つの絞り装置62は、開度が可変に制御可能なもの、例えば電子式膨張弁等で構成するとよい。 The two expansion devices 62 (the expansion device 62a and the expansion device 62b) have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure. The expansion device 62a is provided on the upstream side of the heat exchanger related to heat medium 61a in the flow of the heat source side refrigerant during the cooling operation. The expansion device 62b is provided on the upstream side of the heat exchanger related to heat medium 61b in the flow of the heat source side refrigerant during the cooling operation. The two throttling devices 62 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
 2つの開閉装置63(開閉装置63a、開閉装置63b)は、二方弁等で構成されており、冷媒配管401を開閉するものである。開閉装置63aは、熱源側冷媒の入口側における冷媒配管401に設けられている。開閉装置63bは、熱源側冷媒の入口側と出口側の冷媒配管401を接続した配管に設けられている。2つの流路切替装置64(流路切替装置64a、流路切替装置64b)は、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。流路切替装置64aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器61aの下流側に設けられている。流路切替装置64bは、全冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器61bの下流側に設けられている。 The two opening / closing devices 63 (the opening / closing device 63a and the opening / closing device 63b) are constituted by two-way valves or the like, and open / close the refrigerant pipe 401. The opening / closing device 63a is provided in the refrigerant pipe 401 on the inlet side of the heat source side refrigerant. The opening / closing device 63b is provided in a pipe connecting the refrigerant pipe 401 on the inlet side and outlet side of the heat source side refrigerant. The two flow path switching devices 64 (the flow path switching device 64a and the flow path switching device 64b) are configured by a four-way valve or the like, and switch the flow of the heat source side refrigerant according to the operation mode. The flow path switching device 64a is provided on the downstream side of the heat exchanger related to heat medium 61a in the flow of the heat source side refrigerant during the cooling operation. The flow path switching device 64b is provided on the downstream side of the heat exchanger related to heat medium 61b in the flow of the heat source side refrigerant during the cooling only operation.
 熱媒体送出装置である2つのポンプ71(ポンプ71a、ポンプ71b)は、配管500を導通する熱媒体を循環させるものである。ポンプ71aは、熱媒体間熱交換器61aと第2熱媒体流路切替装置73との間における配管500に設けられている。ポンプ71bは、熱媒体間熱交換器61bと第2熱媒体流路切替装置73との間における配管500に設けられている。2つのポンプ71は、例えば容量制御可能なポンプ等で構成するとよい。 The two pumps 71 (pump 71a and pump 71b), which are heat medium delivery devices, circulate the heat medium conducted through the pipe 500. The pump 71 a is provided in the pipe 500 between the heat exchanger related to heat medium 61 a and the second heat medium flow switching device 73. The pump 71 b is provided in the pipe 500 between the heat exchanger related to heat medium 61 b and the second heat medium flow switching device 73. The two pumps 71 may be constituted by, for example, pumps capable of capacity control.
 4つの第1熱媒体流路切替装置72(第1熱媒体流路切替装置72a~第1熱媒体流路切替装置72d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置72は、室内機50の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置72は、三方のうちの一つが熱媒体間熱交換器61aに、三方のうちの一つが熱媒体間熱交換器61bに、三方のうちの一つが熱媒体流量調整装置74に、それぞれ接続され、負荷側熱交換器51の熱媒体流路の出口側に設けられている。なお、室内機50に対応させて、紙面下側から第1熱媒体流路切替装置72a、第1熱媒体流路切替装置72b、第1熱媒体流路切替装置72c、第1熱媒体流路切替装置72dとして図示している。 The four first heat medium flow switching devices 72 (the first heat medium flow switching device 72a to the first heat medium flow switching device 72d) are configured by three-way valves or the like, and switch the heat medium flow channels. Is. The number of first heat medium flow switching devices 72 (four here) according to the number of indoor units 50 installed is provided. In the first heat medium flow switching device 72, one of the three sides is in the heat exchanger 61a, one of the three is in the heat exchanger 61b, and one of the three is in the heat medium flow rate. Each is connected to the adjusting device 74 and provided on the outlet side of the heat medium flow path of the load side heat exchanger 51. In correspondence with the indoor unit 50, the first heat medium flow switching device 72 a, the first heat medium flow switching device 72 b, the first heat medium flow switching device 72 c, and the first heat medium flow channel from the lower side of the drawing. This is illustrated as a switching device 72d.
 4つの第2熱媒体流路切替装置73(第2熱媒体流路切替装置73a~第2熱媒体流路切替装置73d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置73は、室内機50の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置73は、三方のうちの一つが熱媒体間熱交換器61aに、三方のうちの一つが熱媒体間熱交換器61bに、三方のうちの一つが負荷側熱交換器51に、それぞれ接続され、負荷側熱交換器51の熱媒体流路の入口側に設けられている。なお、室内機50に対応させて、紙面下側から第2熱媒体流路切替装置73a、第2熱媒体流路切替装置73b、第2熱媒体流路切替装置73c、第2熱媒体流路切替装置73dとして図示している。 The four second heat medium flow switching devices 73 (second heat medium flow switching device 73a to second heat medium flow switching device 73d) are configured by three-way valves or the like, and switch the flow path of the heat medium. Is. The number of the second heat medium flow switching devices 73 is set according to the number of indoor units 50 installed (four in this case). In the second heat medium flow switching device 73, one of the three sides is in the heat exchanger related to heat medium 61a, one of the three is in the heat exchanger related to heat medium 61b, and one of the three is in the load side heat. Each is connected to the exchanger 51 and provided on the inlet side of the heat medium flow path of the load side heat exchanger 51. In correspondence with the indoor unit 50, the second heat medium flow switching device 73a, the second heat medium flow switching device 73b, the second heat medium flow switching device 73c, and the second heat medium flow from the lower side of the drawing. This is illustrated as a switching device 73d.
 4つの熱媒体流量調整装置74(熱媒体流量調整装置74a~熱媒体流量調整装置74d)は、開口面積を制御できる二方弁等で構成されており、配管500に流れる流量を制御するものである。熱媒体流量調整装置74は、室内機50の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置74は、一方が負荷側熱交換器51に、他方が第1熱媒体流路切替装置72に、それぞれ接続され、負荷側熱交換器51の熱媒体流路の出口側に設けられている。なお、室内機50に対応させて、紙面下側から熱媒体流量調整装置74a、熱媒体流量調整装置74b、熱媒体流量調整装置74c、熱媒体流量調整装置74dとして図示している。また、熱媒体流量調整装置74を負荷側熱交換器51の熱媒体流路の入口側に設けてもよい。 The four heat medium flow control devices 74 (the heat medium flow control device 74a to the heat medium flow control device 74d) are configured by two-way valves or the like that can control the opening area, and control the flow rate flowing through the pipe 500. is there. The number of the heat medium flow control devices 74 (four here) according to the number of installed indoor units 50 is provided. One of the heat medium flow control devices 74 is connected to the load side heat exchanger 51, and the other is connected to the first heat medium flow switching device 72, and is connected to the outlet side of the heat medium flow path of the load side heat exchanger 51. Is provided. In correspondence with the indoor unit 50, the heat medium flow rate adjustment device 74a, the heat medium flow rate adjustment device 74b, the heat medium flow rate adjustment device 74c, and the heat medium flow rate adjustment device 74d are illustrated from the lower side of the drawing. Further, the heat medium flow control device 74 may be provided on the inlet side of the heat medium flow path of the load side heat exchanger 51.
 また、熱媒体変換機60には、各種検出装置(2つの第1温度センサー81、4つの第2温度センサー82、4つの第3温度センサー83及び圧力センサー84)が設けられている。これらの検出装置の検出に係る信号は、例えば制御装置40Aに送られ、圧縮機1の駆動周波数、送風機(図示せず)の回転数、流路切替装置2の切り替え、ポンプ71の駆動周波数、流路切替装置64の切り替え、熱媒体の流路の切替等の制御に利用されることになる。 Further, the heat medium converter 60 is provided with various detection devices (two first temperature sensors 81, four second temperature sensors 82, four third temperature sensors 83, and a pressure sensor 84). Signals related to the detection of these detection devices are sent to, for example, the control device 40A, the driving frequency of the compressor 1, the rotational speed of the blower (not shown), the switching of the flow path switching device 2, the driving frequency of the pump 71, This is used for control such as switching of the flow path switching device 64 and switching of the flow path of the heat medium.
 2つの第1温度センサー81(第1温度センサー81a、第1温度センサー81b)は、熱媒体間熱交換器61から流出した熱媒体、つまり熱媒体間熱交換器61の出口における熱媒体の温度を検出するものであり、例えばサーミスター等で構成するとよい。第1温度センサー81aは、ポンプ71aの入口側における配管500に設けられている。第1温度センサー81bは、ポンプ71bの入口側における配管500に設けられている。 The two first temperature sensors 81 (first temperature sensor 81a and first temperature sensor 81b) are the heat medium flowing out from the heat exchanger related to heat medium 61, that is, the temperature of the heat medium at the outlet of the heat exchanger related to heat medium 61. For example, a thermistor may be used. The first temperature sensor 81a is provided in the pipe 500 on the inlet side of the pump 71a. The first temperature sensor 81b is provided in the pipe 500 on the inlet side of the pump 71b.
 4つの第2温度センサー82(第2温度センサー82a~第2温度センサー82d)は、第1熱媒体流路切替装置72と熱媒体流量調整装置74との間に設けられ、負荷側熱交換器51から流出した熱媒体の温度を検出するものであり、サーミスター等で構成するとよい。第2温度センサー82は、室内機50の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機50に対応させて、紙面下側から第2温度センサー82a、第2温度センサー82b、第2温度センサー82c、第2温度センサー82dとして図示している。 The four second temperature sensors 82 (second temperature sensor 82a to second temperature sensor 82d) are provided between the first heat medium flow switching device 72 and the heat medium flow control device 74, and are used for the load-side heat exchanger. The temperature of the heat medium flowing out from 51 is detected, and a thermistor or the like may be used. The number of the second temperature sensors 82 is set according to the number of installed indoor units 50 (here, four). In correspondence with the indoor unit 50, the second temperature sensor 82a, the second temperature sensor 82b, the second temperature sensor 82c, and the second temperature sensor 82d are illustrated from the lower side of the drawing.
 4つの第3温度センサー83(第3温度センサー83a~第3温度センサー83d)は、熱媒体間熱交換器61の熱源側冷媒の入口側又は出口側に設けられ、熱媒体間熱交換器61に流入する熱源側冷媒の温度又は熱媒体間熱交換器61から流出した熱源側冷媒の温度を検出するものであり、サーミスター等で構成するとよい。第3温度センサー83aは、熱媒体間熱交換器61aと流路切替装置64aとの間に設けられている。第3温度センサー83bは、熱媒体間熱交換器61aと絞り装置62aとの間に設けられている。第3温度センサー83cは、熱媒体間熱交換器61bと流路切替装置64bとの間に設けられている。第3温度センサー83dは、熱媒体間熱交換器61bと絞り装置62bとの間に設けられている。 The four third temperature sensors 83 (third temperature sensor 83a to third temperature sensor 83d) are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 61, and the heat exchanger related to heat medium 61. The temperature of the heat source side refrigerant flowing into the heat source or the temperature of the heat source side refrigerant flowing out of the heat exchanger related to heat medium 61 is detected, and may be composed of a thermistor or the like. The third temperature sensor 83a is provided between the heat exchanger related to heat medium 61a and the flow path switching device 64a. The third temperature sensor 83b is provided between the heat exchanger related to heat medium 61a and the expansion device 62a. The third temperature sensor 83c is provided between the heat exchanger related to heat medium 61b and the flow path switching device 64b. The third temperature sensor 83d is provided between the heat exchanger related to heat medium 61b and the expansion device 62b.
 圧力センサー84は、第3温度センサー83dの設置位置と同様に、熱媒体間熱交換器61bと絞り装置62bとの間に設けられ、熱媒体間熱交換器61bと絞り装置62bとの間を流れる熱源側冷媒の圧力を検出するものである。 Similarly to the installation position of the third temperature sensor 83d, the pressure sensor 84 is provided between the heat exchanger related to heat medium 61b and the expansion device 62b, and between the heat exchanger related to heat medium 61b and the expansion device 62b. The pressure of the flowing heat source side refrigerant is detected.
 熱媒体を導通する配管500は、熱媒体間熱交換器61aに接続されるものと、熱媒体間熱交換器61bに接続されるものと、で構成されている。配管500は、熱媒体変換機60に接続される室内機50の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管500は、第1熱媒体流路切替装置72及び第2熱媒体流路切替装置73で接続されている。第1熱媒体流路切替装置72及び第2熱媒体流路切替装置73を制御することで、熱媒体間熱交換器61aからの熱媒体を負荷側熱交換器51に流入させるか、熱媒体間熱交換器61bからの熱媒体を負荷側熱交換器51に流入させるかが決定されるようになっている。 The pipe 500 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 61a and one that is connected to the heat exchanger related to heat medium 61b. The pipe 500 is branched (here, four branches) in accordance with the number of indoor units 50 connected to the heat medium relay unit 60. The pipe 500 is connected by the first heat medium flow switching device 72 and the second heat medium flow switching device 73. By controlling the first heat medium flow switching device 72 and the second heat medium flow switching device 73, the heat medium from the heat exchanger related to heat medium 61a flows into the load-side heat exchanger 51, or the heat medium Whether the heat medium from the intermediate heat exchanger 61b flows into the load-side heat exchanger 51 is determined.
 そして、空気調和装置102では、圧縮機1、流路切替装置2、熱源側熱交換器3、開閉装置63、流路切替装置64、熱媒体間熱交換器61の冷媒流路、絞り装置62及びアキュムレーター6を、冷媒配管401で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器61の熱媒体流路、ポンプ71、第1熱媒体流路切替装置72、熱媒体流量調整装置74、負荷側熱交換器51及び第2熱媒体流路切替装置73を、配管500で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器61のそれぞれに複数台の負荷側熱交換器51が並列に接続され、熱媒体循環回路Bを複数系統としているのである。 In the air conditioner 102, the compressor 1, the flow path switching device 2, the heat source side heat exchanger 3, the switching device 63, the flow path switching device 64, the refrigerant flow path of the heat exchanger related to heat medium 61, and the expansion device 62. And the accumulator 6 is connected by the refrigerant | coolant piping 401, and the refrigerant | coolant circulation circuit A is comprised. Further, the heat medium flow path of the intermediate heat exchanger 61, the pump 71, the first heat medium flow switching device 72, the heat medium flow control device 74, the load side heat exchanger 51, and the second heat medium flow switching device. 73 are connected by a pipe 500 to constitute a heat medium circulation circuit B. That is, a plurality of load-side heat exchangers 51 are connected in parallel to each of the heat exchangers between heat media 61, and the heat medium circulation circuit B has a plurality of systems.
 よって、空気調和装置102では、室外機40と熱媒体変換機60とが、熱媒体変換機60に設けられている熱媒体間熱交換器61a及び熱媒体間熱交換器61bを介して接続され、熱媒体変換機60と室内機50とも、熱媒体間熱交換器61a及び熱媒体間熱交換器61bを介して接続されている。すなわち、空気調和装置102では、熱媒体間熱交換器61a及び熱媒体間熱交換器61bで、冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。 Therefore, in the air conditioner 102, the outdoor unit 40 and the heat medium converter 60 are connected via the heat exchanger related to heat medium 61a and the heat exchanger related to heat medium 61b provided in the heat medium converter 60. The heat medium converter 60 and the indoor unit 50 are also connected via the heat exchanger related to heat medium 61a and the heat exchanger related to heat medium 61b. That is, in the air conditioner 102, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 61a and the intermediate heat exchanger 61b. It is supposed to be.
 この空気調和装置102は、各室内機50からの指示に基づいて、その室内機50で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置102は、室内機50の全部で同一運転をすることができるとともに、室内機50のそれぞれで異なる運転をすることができるようになっている。 The air conditioner 102 can perform a cooling operation or a heating operation in the indoor unit 50 based on an instruction from each indoor unit 50. That is, the air conditioner 102 can perform the same operation for all the indoor units 50 and can perform different operations for each of the indoor units 50.
 空気調和装置102は、駆動している室内機50の全てが冷房運転を実行する全冷房運転モード、駆動している室内機50の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房主体運転モード、および、暖房負荷の方が大きい暖房主体運転モードを実行できる。 The air conditioner 102 has a cooling operation mode in which all of the driven indoor units 50 perform a cooling operation, a heating operation mode in which all of the driven indoor units 50 perform a heating operation, and a cooling load. A cooling main operation mode with a larger heating capacity and a heating main operation mode with a larger heating load can be performed.
 以上説明したように、実施の形態3によれば、冷房と暖房を同時にすることができるタイプの空気調和装置においても、実施の形態1及び実施の形態2と同様、低圧ガス配管の配管径を1~2ランク細くできる。その結果、配管コストと工事コストの低減、さらには廃棄に伴うエネルギー損失を低減でき環境保全にも貢献することが可能となる。また、圧力損失を低減できるため、エネルギー効率の高い運転を行うことができ、省エネ効果も得ることができる。 As described above, according to the third embodiment, also in the air conditioner of the type capable of simultaneously performing cooling and heating, the pipe diameter of the low-pressure gas pipe is reduced as in the first and second embodiments. 1 to 2 ranks can be made thinner. As a result, it is possible to reduce piping costs and construction costs, further reduce energy loss due to disposal, and contribute to environmental conservation. Moreover, since pressure loss can be reduced, an energy efficient operation can be performed, and an energy saving effect can also be obtained.
 なお、熱媒体変換機60は、気液分離器及び絞り装置とを有する親熱媒体変換機と子熱媒体変換機とに分けた構成としてもよい。 The heat medium converter 60 may be divided into a parent heat medium converter having a gas-liquid separator and a throttle device and a child heat medium converter.
 1 圧縮機、2 流路切替装置、3 熱源側熱交換器、4 過冷却熱交換器、5 絞り装置、6 アキュムレーター、7 バイパス回路、7 室内空間、8 圧力センサー、9 温度センサー、10 室外機、10A 制御装置、20(20a~20d) 室内機、21(21a~21d) 利用側熱交換器、22(22a~22d) 絞り装置、23a~23d 温度センサー、24a~24d 温度センサー、30 室外機、30A 制御装置、31 圧縮機、32 凝縮器、33 絞り装置、34 過冷却熱交換器、40 室外機、40A 制御装置、41a~41d 逆止弁、42a 第1接続配管、42b 第2接続配管、50(50a~50d) 室内機、51(51a~51d) 負荷側熱交換器、60 熱媒体変換機、61(61a、61b) 熱媒体間熱交換器、62(62a、62b) 絞り装置、63(63a、63b) 開閉装置、64(64a、64b) 流路切替装置、71(71a、71b) ポンプ、72(72a~72d) 第1熱媒体流路切替装置、73(73a~73d) 第2熱媒体流路切替装置、74(74a~74d) 熱媒体流量調整装置、81(81a、81b) 第1温度センサー、82(82a~84d) 第2温度センサー、83(83a~83d) 第3温度センサー、84 圧力センサー、100 空気調和装置、101 空気調和装置、101A 冷媒回路、101B 過冷却用回路、102 空気調和装置、400(400a、400b) 延長配管、401 冷媒配管、500 配管、A 冷媒循環回路、B 熱媒体循環回路。 1 compressor, 2 flow switching device, 3 heat source side heat exchanger, 4 supercooling heat exchanger, 5 expansion device, 6 accumulator, 7 bypass circuit, 7 indoor space, 8 pressure sensor, 9 temperature sensor, 10 outdoor Machine, 10A control device, 20 (20a-20d) indoor unit, 21 (21a-21d) use side heat exchanger, 22 (22a-22d) expansion device, 23a-23d temperature sensor, 24a-24d temperature sensor, 30 outdoor Machine, 30A control device, 31 compressor, 32 condenser, 33 throttling device, 34 supercooling heat exchanger, 40 outdoor unit, 40A control device, 41a-41d check valve, 42a first connection piping, 42b second connection Piping, 50 (50a-50d) indoor unit, 51 (51a-51d) load side heat exchanger, 60 heat medium converter, 6 (61a, 61b) Heat exchanger between heat medium, 62 (62a, 62b) throttle device, 63 (63a, 63b) switchgear, 64 (64a, 64b) flow path switching device, 71 (71a, 71b) pump, 72 (72a to 72d) First heat medium flow switching device, 73 (73a to 73d) Second heat medium flow switching device, 74 (74a to 74d) Heat medium flow control device, 81 (81a, 81b) First temperature Sensor, 82 (82a to 84d) Second temperature sensor, 83 (83a to 83d) Third temperature sensor, 84 Pressure sensor, 100 Air conditioner, 101 Air conditioner, 101A Refrigerant circuit, 101B Subcooling circuit, 102 Air Harmonic device, 400 (400a, 400b) extension piping, 401 refrigerant piping, 500 piping, A refrigerant circulation circuit, B The heat medium circulation circuit.

Claims (9)

  1.  圧縮機と、熱源側熱交換器と、絞り装置と、利用側熱交換器とが配管接続され、0℃における飽和冷媒ガス密度がR410A冷媒の35~65%である冷媒が循環する冷媒循環回路と、
     冷房運転時において、前記熱源側熱交換器から前記絞り装置に送られる高圧液冷媒の液温を5℃以下にする過冷却手段と
    を備えたことを特徴とする空気調和装置。
    A refrigerant circulation circuit in which a compressor, a heat source side heat exchanger, an expansion device, and a use side heat exchanger are connected by piping, and a refrigerant having a saturated refrigerant gas density at 0 ° C. of 35 to 65% of the R410A refrigerant circulates. When,
    An air conditioner comprising: a supercooling unit configured to set a liquid temperature of the high-pressure liquid refrigerant sent from the heat source side heat exchanger to the expansion device during cooling operation to 5 ° C. or less.
  2.  前記過冷却手段は、前記高圧液冷媒の過冷却度を44℃以上とすることを特徴とする請求項1記載の空気調和装置。 The air conditioning apparatus according to claim 1, wherein the supercooling means sets the degree of supercooling of the high-pressure liquid refrigerant to 44 ° C or higher.
  3.  暖房運転時において、前記利用側熱交換器から前記絞り装置に送られる高圧液冷媒の液温を5℃以下又は過冷却度を44℃以上とすることを特徴とする請求項1又は請求項2記載の空気調和装置。 The temperature of the high-pressure liquid refrigerant sent from the use side heat exchanger to the expansion device during the heating operation is set to 5 ° C or lower, or the degree of supercooling is set to 44 ° C or higher. The air conditioning apparatus described.
  4.  前記過冷却手段は、前記熱源側熱交換器と前記絞り装置との間の高圧側冷媒と、前記高圧側冷媒の一部を減圧した低圧側冷媒とを熱交換させて前記高圧側冷媒を冷却する過冷却熱交換器を備えたことを特徴とする請求項1乃至請求項3の何れか1項に記載の空気調和装置。 The supercooling means cools the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant between the heat source side heat exchanger and the expansion device and the low-pressure side refrigerant obtained by reducing a part of the high-pressure side refrigerant. The air-conditioning apparatus according to any one of claims 1 to 3, further comprising a supercooling heat exchanger.
  5.  前記過冷却手段は、圧縮機、凝縮器、絞り装置及び過冷却熱交換器が配管接続され、冷媒が循環する過冷却用回路を備え、前記過冷却熱交換器は、前記過冷却用回路を循環する低圧側冷媒と、前記冷媒循環回路の前記熱源側熱交換器と前記絞り装置との間の高圧側冷媒との熱交換を行うことを特徴とする請求項1乃至請求項3の何れか1項に記載の空気調和装置。 The supercooling means includes a supercooling circuit in which a compressor, a condenser, a throttling device, and a supercooling heat exchanger are connected by piping, and the refrigerant circulates. The supercooling heat exchanger includes the supercooling circuit. 4. The heat exchange is performed between the circulating low-pressure side refrigerant and the high-pressure side refrigerant between the heat source side heat exchanger of the refrigerant circulation circuit and the expansion device. 5. Item 1. An air conditioner according to item 1.
  6.  前記過冷却熱交換器は二重管式熱交換器であり、環状部に高圧側冷媒、内管に低圧側冷媒を流通させることを特徴とする請求項4又は請求項5記載の空気調和装置。 6. The air conditioner according to claim 4 or 5, wherein the supercooling heat exchanger is a double-pipe heat exchanger, and the high-pressure side refrigerant is circulated through the annular portion and the low-pressure side refrigerant is circulated through the inner pipe. .
  7.  前記過冷却熱交換器は前記プレート熱交換器であり、前記高圧側冷媒を上から下に、前記低圧側冷媒を下から上に流通させることを特徴とする請求項4又は請求項5記載の空気調和装置。 The said subcooling heat exchanger is the said plate heat exchanger, The said high voltage | pressure side refrigerant | coolant is distribute | circulated from the top to the bottom, and the said low voltage | pressure side refrigerant | coolant is distribute | circulated from the bottom to the top. Air conditioner.
  8.  前記冷媒にHFO1234yf又はHFO1234zeを用いたことを特徴とする請求項1乃至請求項7の何れか1項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 7, wherein HFO1234yf or HFO1234ze is used as the refrigerant.
  9.  前記冷媒循環回路は、前記冷媒と前記冷媒と異なる熱媒体とを熱交換し、それぞれ異なる温度の熱媒体に熱交換可能な複数の熱媒体間熱交換器を前記利用側熱交換器として有し、
     前記複数の熱媒体間熱交換器の熱交換に係る前記熱媒体をそれぞれ循環させるための複数のポンプ、前記熱媒体と空調対象空間に係る空気との熱交換を行う負荷側熱交換器及び前記複数の熱媒体間熱交換器の通過に係る熱媒体に対し、前記負荷側熱交換器への通過切り替えを行う熱媒体流路切替装置を配管接続して構成する熱媒体循環回路を更に備えることを特徴とする請求項1乃至請求項8の何れか1項に記載の空気調和装置。
    The refrigerant circulation circuit has a plurality of heat exchangers between heat mediums as the use side heat exchangers that exchange heat between the refrigerant and a heat medium different from the refrigerant and can exchange heat with heat mediums having different temperatures. ,
    A plurality of pumps for circulating the heat medium related to heat exchange of the heat exchangers between the plurality of heat mediums, a load side heat exchanger for exchanging heat between the heat medium and the air related to the air-conditioning target space; A heat medium circulation circuit configured to connect a heat medium flow switching device for switching the passage to the load-side heat exchanger with respect to the heat medium related to the passage of the plurality of heat exchangers between heat mediums; The air conditioner according to any one of claims 1 to 8, wherein
PCT/JP2011/000406 2011-01-26 2011-01-26 Air conditioner device WO2012101672A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2011/000406 WO2012101672A1 (en) 2011-01-26 2011-01-26 Air conditioner device
AU2011357097A AU2011357097B2 (en) 2011-01-26 2011-01-26 Air-conditioning apparatus
JP2012554478A JPWO2012101672A1 (en) 2011-01-26 2011-01-26 Air conditioner
US13/882,524 US20130213078A1 (en) 2011-01-26 2011-01-26 Air-conditioning apparatus
CN201180057064.XA CN103229004B (en) 2011-01-26 2011-01-26 Aircondition
EP11856898.9A EP2669598B1 (en) 2011-01-26 2011-01-26 Air conditioner device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000406 WO2012101672A1 (en) 2011-01-26 2011-01-26 Air conditioner device

Publications (1)

Publication Number Publication Date
WO2012101672A1 true WO2012101672A1 (en) 2012-08-02

Family

ID=46580288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000406 WO2012101672A1 (en) 2011-01-26 2011-01-26 Air conditioner device

Country Status (6)

Country Link
US (1) US20130213078A1 (en)
EP (1) EP2669598B1 (en)
JP (1) JPWO2012101672A1 (en)
CN (1) CN103229004B (en)
AU (1) AU2011357097B2 (en)
WO (1) WO2012101672A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145712A1 (en) * 2014-03-28 2015-10-01 日立アプライアンス株式会社 Refrigeration cycle device
WO2015198431A1 (en) * 2014-06-25 2015-12-30 三菱電機株式会社 Refrigeration-cycle device, air conditioner, and method for controlling refrigeration cycle device
US20160146496A1 (en) * 2013-08-28 2016-05-26 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2020188756A1 (en) * 2019-03-19 2020-09-24 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104566809B (en) * 2014-12-22 2018-04-13 珠海格力电器股份有限公司 Air conditioner and control method thereof
CN105387647A (en) * 2015-12-10 2016-03-09 浪潮电子信息产业股份有限公司 Novel high-efficient data center refrigeration air conditioning system
CN108061348A (en) * 2017-12-29 2018-05-22 广东申菱环境系统股份有限公司 A kind of urban track traffic integrated refrigeration station formula evaporative condenser air-conditioning system
US11078896B2 (en) * 2018-02-28 2021-08-03 Treau, Inc. Roll diaphragm compressor and low-pressure vapor compression cycles
CN108775727B (en) * 2018-07-09 2023-10-24 浙江正理生能科技有限公司 Refrigerating circulation system
CN113454408B (en) * 2019-02-27 2022-07-01 三菱电机株式会社 Air conditioning apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265232A (en) 1993-03-11 1994-09-20 Mitsubishi Electric Corp Device for air conditioning
JP2003075026A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigeration unit
JP2009276002A (en) * 2008-05-15 2009-11-26 Daikin Ind Ltd Refrigeration device
JP2009293887A (en) * 2008-06-06 2009-12-17 Daikin Ind Ltd Refrigerating device
JP2009299911A (en) * 2008-06-10 2009-12-24 Hitachi Appliances Inc Refrigeration device
WO2010050002A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
WO2010143521A1 (en) * 2009-06-11 2010-12-16 三菱電機株式会社 Refrigerant compressor and heat pump device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852974A (en) * 1971-12-03 1974-12-10 T Brown Refrigeration system with subcooler
US5065598A (en) * 1989-09-05 1991-11-19 Mitsubishi Denki Kabushiki Kaisha Ice thermal storage apparatus
JP2823297B2 (en) * 1990-02-23 1998-11-11 東芝エー・ブイ・イー株式会社 Air conditioner
JP3334222B2 (en) * 1992-11-20 2002-10-15 ダイキン工業株式会社 Air conditioner
DE69526979T2 (en) * 1994-07-21 2003-02-06 Mitsubishi Denki K.K., Tokio/Tokyo Air conditioner with non-azeotropic refrigerant and control information acquisition device
JPH1054616A (en) * 1996-08-14 1998-02-24 Daikin Ind Ltd Air conditioner
EP1033541B1 (en) * 1997-11-17 2004-07-21 Daikin Industries, Limited Refrigerating apparatus
JP3063742B2 (en) * 1998-01-30 2000-07-12 ダイキン工業株式会社 Refrigeration equipment
JP2000018737A (en) * 1998-06-24 2000-01-18 Daikin Ind Ltd Air-conditioner
ATE380987T1 (en) * 1999-10-18 2007-12-15 Daikin Ind Ltd REFRIGERATOR
US6553778B2 (en) * 2001-01-16 2003-04-29 Emerson Electric Co. Multi-stage refrigeration system
JP4488712B2 (en) * 2003-10-08 2010-06-23 三菱電機株式会社 Air conditioner
EP1701112B1 (en) * 2003-11-28 2017-11-15 Mitsubishi Denki Kabushiki Kaisha Freezer and air conditioner
JP4920432B2 (en) * 2007-01-23 2012-04-18 三菱電機株式会社 Air conditioning system
EP2131122B1 (en) * 2007-03-27 2014-11-12 Mitsubishi Electric Corporation Heat pump device
JP5180680B2 (en) * 2008-05-20 2013-04-10 サンデン株式会社 Refrigeration cycle
JP2010243148A (en) * 2009-03-17 2010-10-28 Panasonic Corp Refrigerating cycle device
JP5396246B2 (en) * 2009-11-18 2014-01-22 株式会社日立製作所 Air conditioner for vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265232A (en) 1993-03-11 1994-09-20 Mitsubishi Electric Corp Device for air conditioning
JP2003075026A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigeration unit
JP2009276002A (en) * 2008-05-15 2009-11-26 Daikin Ind Ltd Refrigeration device
JP2009293887A (en) * 2008-06-06 2009-12-17 Daikin Ind Ltd Refrigerating device
JP2009299911A (en) * 2008-06-10 2009-12-24 Hitachi Appliances Inc Refrigeration device
WO2010050002A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
WO2010143521A1 (en) * 2009-06-11 2010-12-16 三菱電機株式会社 Refrigerant compressor and heat pump device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146496A1 (en) * 2013-08-28 2016-05-26 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2015145712A1 (en) * 2014-03-28 2015-10-01 日立アプライアンス株式会社 Refrigeration cycle device
WO2015198431A1 (en) * 2014-06-25 2015-12-30 三菱電機株式会社 Refrigeration-cycle device, air conditioner, and method for controlling refrigeration cycle device
JP5908177B1 (en) * 2014-06-25 2016-04-26 三菱電機株式会社 Refrigeration cycle apparatus, air conditioner, and control method for refrigeration cycle apparatus
WO2020188756A1 (en) * 2019-03-19 2020-09-24 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JPWO2020188756A1 (en) * 2019-03-19 2021-04-30 日立ジョンソンコントロールズ空調株式会社 Room air conditioner

Also Published As

Publication number Publication date
CN103229004A (en) 2013-07-31
EP2669598A4 (en) 2016-12-07
EP2669598B1 (en) 2019-05-22
CN103229004B (en) 2016-05-04
AU2011357097A1 (en) 2013-06-20
AU2011357097B2 (en) 2015-01-22
US20130213078A1 (en) 2013-08-22
JPWO2012101672A1 (en) 2014-06-30
EP2669598A1 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2012101672A1 (en) Air conditioner device
JP5496217B2 (en) heat pump
JP5745651B2 (en) Air conditioner
WO2014128830A1 (en) Air conditioning device
US9557083B2 (en) Air-conditioning apparatus with multiple operational modes
US20140007607A1 (en) Air-conditioning apparatus
JP2008128565A (en) Air conditioner
KR101901540B1 (en) Air conditioning device
JP2007240025A (en) Refrigerating device
KR102014616B1 (en) Air conditioning apparatus
US9816736B2 (en) Air-conditioning apparatus
JP6067178B2 (en) Heat source side unit and air conditioner
WO2016208042A1 (en) Air-conditioning device
JP6120943B2 (en) Air conditioner
WO2011099074A1 (en) Refrigeration cycle device
JPWO2014132378A1 (en) Air conditioner
US9599380B2 (en) Refrigerant charging method for air-conditioning apparatus and air-conditioning apparatus
JP6576603B1 (en) Air conditioner
WO2015087421A1 (en) Air conditioner
JP2011058749A (en) Air conditioner
JP2015218954A (en) Refrigeration cycle device
WO2022224390A1 (en) Refrigeration cycle device
WO2023119552A1 (en) Air conditioner
KR20130081437A (en) A cascade heat pump
JP2021055960A (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180057064.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856898

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13882524

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012554478

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011856898

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011357097

Country of ref document: AU

Date of ref document: 20110126

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE