JPH06265232A - Device for air conditioning - Google Patents

Device for air conditioning

Info

Publication number
JPH06265232A
JPH06265232A JP5050792A JP5079293A JPH06265232A JP H06265232 A JPH06265232 A JP H06265232A JP 5050792 A JP5050792 A JP 5050792A JP 5079293 A JP5079293 A JP 5079293A JP H06265232 A JPH06265232 A JP H06265232A
Authority
JP
Japan
Prior art keywords
flow rate
control device
heat exchanger
rate control
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5050792A
Other languages
Japanese (ja)
Other versions
JP3541394B2 (en
Inventor
Tomohiko Kasai
智彦 河西
Setsu Nakamura
節 中村
Shuichi Tani
秀一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP05079293A priority Critical patent/JP3541394B2/en
Publication of JPH06265232A publication Critical patent/JPH06265232A/en
Application granted granted Critical
Publication of JP3541394B2 publication Critical patent/JP3541394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To ensure in a specified range the degree of supercooling of the refrigerant on the inflow side of the first flow rate-controlling device by a method wherein a first degree of supercooling, calculated from the results of detection by a second pressure detective means and a second temperature detective means, is preset and a second flow rate-controlling device is so controlled as to have the degree of supercooling within the targeted range. CONSTITUTION:A second pressure detective means 16 is provided in a discharge line from a compressor 1 and a second temperature detective means 18 is provided at an intermediate point in a line connecting a heat exchanger 13a and a first flow rate-controlling device 6. A decision is made as regards a targeted range of control of the first degree of supercooling, which is the degree of supercooling at the outlet of a heat source machine calculated from the pressure detected by a second pressure detective means 16 and from the result of detection by a second temperature detective means. This targeted range controls a second flow rate-controlling device 12a. Another pressure detective means 16 and other temperature detective means 17, 19 also control the second flow rate-controlling device 12a. Therefore the flow rate of the refrigerant flowing into an indoor apparatus can be controlled appropriately by a first flow-rate controller 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧縮機、熱源機側熱
交換器を備えた熱源機と、室内側熱交換器、上記熱源機
側熱交換器に対応する一端に接続された第1の流量制御
装置を備えた室内機とを配管接続して成る空気調和装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat source unit having a compressor and a heat source unit side heat exchanger, an indoor side heat exchanger, and a first unit connected to one end corresponding to the heat source unit side heat exchanger. The present invention relates to an air conditioner which is connected by piping to an indoor unit equipped with the flow control device.

【0002】[0002]

【従来の技術】従来この種の装置として図9に示すもの
がある。図において、Aは熱源機、B,C,Dは後述す
るように互いに並列接続された室内機でそれぞれ同じ構
成となっている。1は圧縮機、2は冷媒流通方向を切り
換える4方弁、3は熱源機側熱交換器、4はアキュムレ
ータであり、これらの機器を配管接続することにより熱
源機Aを構成している。5はそれぞれ室内機B,C,D
の室内側熱交換器、6は室内側熱交換器5の熱源機側熱
交換器3に対応する一端に接続され冷房時は室内側熱交
換器5の冷媒出口側の過熱度、暖房時は過冷却度により
制御される第1の流量制御装置である。7は一端を4方
弁2に接続された熱源機側の第1の接続配管、7b,7
c,7dは一端を室内側熱交換器5の冷房時に出口とな
る室内機の一端に接続された室内側の第1の接続配管、
9は熱源機側の第1の接続配管7の他端と室内側の第1
の接続配管7b,7c,7dの他端とを接続する第1の
接続点、8は一端を熱源機側熱交換器3に接続された熱
源機側の第2の接続配管、8b,8c,8dは一端を第
1の流量制御装置6に接続された室内側の第2の接続配
管、10は熱源機側の第2の接続配管8の他端と室内側
の第2の接続配管8b,8c,8dの他端とを接続する
第2の接続点である。図中、実線矢印は冷房運転時の冷
媒の流れ方向を、また破線矢印は暖房運転時の冷媒の流
れ方向を示している。
2. Description of the Related Art A conventional device of this type is shown in FIG. In the figure, A is a heat source unit, and B, C, and D are indoor units connected in parallel with each other, which will be described later, and have the same configuration. Reference numeral 1 is a compressor, 2 is a four-way valve for switching the direction of refrigerant flow, 3 is a heat source unit side heat exchanger, 4 is an accumulator, and a heat source unit A is configured by connecting these devices by piping. 5 are indoor units B, C, D respectively
The indoor side heat exchanger 6 is connected to one end of the indoor side heat exchanger 5 corresponding to the heat source side heat exchanger 3 and is superheated on the refrigerant outlet side of the indoor side heat exchanger 5 during cooling, and is heated during heating. It is the 1st flow control device controlled by the degree of supercooling. 7 is a first connection pipe on the heat source machine side, one end of which is connected to the four-way valve 2, 7b, 7
c and 7d are indoor first connection pipes, one end of which is connected to one end of an indoor unit that serves as an outlet when the indoor heat exchanger 5 is cooled.
Reference numeral 9 denotes the other end of the first connection pipe 7 on the heat source device side and the first end on the indoor side.
Of the connection pipes 7b, 7c, 7d of the first connection point, 8 is the second connection pipe of the heat source unit side, 8b, 8c, whose one end is connected to the heat source unit side heat exchanger 3 8d is a second connection pipe on the indoor side, one end of which is connected to the first flow control device 6, 10 is the other end of the second connection pipe 8 on the heat source device side, and a second connection pipe 8b on the indoor side, It is a second connection point that connects the other ends of 8c and 8d. In the figure, solid arrows indicate the flow direction of the refrigerant during the cooling operation, and dashed arrows indicate the flow direction of the refrigerant during the heating operation.

【0003】次に、冷房運転時の動作について説明す
る。圧縮機1より吐出された高温高圧のガス冷媒は4方
弁2を経て熱源機側熱交換器3に流入しここで室外空気
などと熱交換して液化する。液化した液冷媒は熱源機側
の第2の接続配管8を経て第2の接続点10に至りここ
で分流して室内側の第2の接続配管8b,8c,8dを
経てそれぞれ室内機B,C,Dに流入する。各室内機
B,C,Dに流入した冷媒は室内側熱交換器5の出口の
過熱度により制御される第1の流量制御装置6により低
圧まで減圧されて室内側熱交換器5で室内空気と熱交換
して蒸発しガス化されて室内を冷房する。そして、この
ガス状態となった冷媒は、室内側の第1の接続配管7
b,7c,7dを経て第1の接続点9にて合流し、熱源
機側の第1の接続配管7、4方弁2、アキュムレータ4
を経て圧縮機1に吸入される。このようにして冷凍サイ
クルが形成される。
Next, the operation during the cooling operation will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source unit side heat exchanger 3 via the four-way valve 2 and exchanges heat with outdoor air or the like to be liquefied. The liquefied liquid refrigerant reaches the second connection point 10 through the second connection pipe 8 on the heat source unit side, is branched there, and passes through the second connection pipes 8b, 8c, 8d on the indoor side to the indoor unit B, respectively. It flows into C and D. The refrigerant flowing into each of the indoor units B, C, D is decompressed to a low pressure by the first flow rate control device 6 controlled by the superheat degree of the outlet of the indoor heat exchanger 5, and the indoor air in the indoor heat exchanger 5 is reduced. It heats and evaporates and is gasified to cool the room. The refrigerant in the gas state is used for the first connection pipe 7 on the indoor side.
b, 7c, 7d and merge at the first connection point 9, and the first connection pipe 7 on the heat source machine side, the 4-way valve 2, the accumulator 4
After that, it is sucked into the compressor 1. In this way, the refrigeration cycle is formed.

【0004】次に、暖房運転時の動作について説明す
る。圧縮機1より吐出された高温高圧のガス冷媒は4方
弁2、熱源機側の第1の接続配管7を経て第1の接続点
9に至り、ここで分流して室内側の第1の接続配管7
b,7c,7dを経てそれぞれ室内機B,C,Dに流入
する。各室内機B,C,Dに流入した冷媒は室内側熱交
換器5で室内空気と熱交換して凝縮し液化されて室内を
暖房する。そして、この液状態となった冷媒は、室内側
熱交換器5の出口の過冷却度により制御される第1の流
量制御装置6により低圧まで減圧されて室内側の第2の
接続配管8b,8c,8dを経て第2の接続点10にて
合流し、熱源機側の第2の接続配管8を経て熱源機側熱
交換器3に流入しここで室外空気などと熱交換してガス
化する。ガス化したガス冷媒は4方弁2、アキュムレー
タ4を経て圧縮機1に吸入される。このようにして冷凍
サイクルが形成される。
Next, the operation during the heating operation will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the first connection point 9 via the four-way valve 2 and the first connection pipe 7 on the heat source device side, and is branched here to be divided into the first indoor side. Connection pipe 7
After passing through b, 7c and 7d, they flow into the indoor units B, C and D, respectively. The refrigerant that has flowed into each of the indoor units B, C and D exchanges heat with the indoor air in the indoor heat exchanger 5 and is condensed and liquefied to heat the room. Then, the refrigerant in the liquid state is depressurized to a low pressure by the first flow rate control device 6 controlled by the degree of supercooling at the outlet of the indoor heat exchanger 5, and the indoor second connection pipe 8b, After joining 8c and 8d at the second connection point 10, they flow through the second connection pipe 8 on the heat source machine side into the heat exchanger 3 on the heat source machine side, where they exchange heat with outdoor air or the like and are gasified. To do. The gasified gas refrigerant is sucked into the compressor 1 via the four-way valve 2 and the accumulator 4. In this way, the refrigeration cycle is formed.

【0005】[0005]

【発明が解決しようとする課題】従来の空気調和装置は
以上のように構成されているので、冷房運転において
は、熱源機に対して室内機が上方に設置されている場合
には、熱源機側熱交換器で液化した冷媒が熱源機側の第
2の接続配管を上昇している間に液ヘッド分の圧力降下
によって気液二相状態となり、室内機に流入する冷媒の
流量を第1の流量制御装置によって制御することが困難
となるという問題点があった。また、冷房運転において
は、熱源機側の第2の接続配管、室内側の第2の接続配
管が長い場合には、熱源機側熱交換器で液化した冷媒が
熱源機側の第2の接続配管、室内側の第2の接続配管を
流れている間に、摩擦損失による圧力降下によって気液
二相状態となり室内機に流入する冷媒の流量を第1の流
量制御装置によって制御することが困難になるという問
題点があった。また、冷房運転においては、冷媒充填量
が多めの場合などには、第1の流量制御装置によって室
内側熱交換器の出口では過熱状態となるように制御され
るため、余剰の冷媒はアキュムレータに分布せず、熱源
機側熱交換器に分布する。したがって、熱源機側熱交換
器の液冷媒の占める割合が増大して熱源機側熱交換器に
おける熱交換量が減少して高圧が上昇し圧縮機の吐出配
管などに設けられた圧力開閉器(図示せず)が作動して
異常停止したり、圧縮機の消費電力が増大するという問
題点があった。また、冷房運転においては、圧縮機が高
圧縮比運転をした場合や、高圧・低圧のいずれも高い過
負荷運転をした場合や、また冷媒が不足気味の場合など
には圧縮機の吐出温度が過昇して寿命が著しく縮減する
など圧縮機の信頼性が著しく低下するという問題点があ
った。
Since the conventional air conditioner is configured as described above, in the cooling operation, when the indoor unit is installed above the heat source unit, the heat source unit is not installed. While the refrigerant liquefied in the side heat exchanger rises in the second connection pipe on the heat source unit side, it becomes a gas-liquid two-phase state due to the pressure drop of the liquid head, and the flow rate of the refrigerant flowing into the indoor unit is first However, there is a problem that it is difficult to control the flow rate control device. Further, in the cooling operation, when the second connection pipe on the heat source device side and the second connection pipe on the indoor side are long, the refrigerant liquefied in the heat source device side heat exchanger is connected to the second connection pipe on the heat source device side. It is difficult to control the flow rate of the refrigerant flowing into the indoor unit into the gas-liquid two-phase state due to the pressure drop due to the friction loss while flowing through the pipe and the second connection pipe on the indoor side by the first flow rate control device. There was a problem that became. Further, in the cooling operation, when the refrigerant charge amount is large, the first flow rate control device controls the outlet of the indoor heat exchanger to be in an overheated state, and thus the excess refrigerant is stored in the accumulator. Not distributed, but distributed in the heat source side heat exchanger. Therefore, the proportion of the liquid refrigerant in the heat source side heat exchanger increases, the heat exchange amount in the heat source side heat exchanger decreases, the high pressure rises, and the pressure switch (such as the discharge pipe of the compressor) ( However, there is a problem in that (not shown) operates abnormally and the power consumption of the compressor increases. Further, in the cooling operation, the discharge temperature of the compressor is changed when the compressor operates at a high compression ratio, when the compressor is overloaded at high pressure and low pressure, or when the refrigerant is running low. There is a problem that the reliability of the compressor is remarkably deteriorated because the temperature rises excessively and the life is remarkably shortened.

【0006】また、暖房運転においては、室内機側の負
荷が小さくかつ熱源機側熱交換器の負荷が大きい場合
(空冷式の熱交換器の場合には熱交換器の吸込空気温
度、水冷式の熱交換器の場合には熱交換器の入口水温が
高い場合など)には、圧縮機の吐出圧力が上昇して圧縮
機の吐出配管などに設けられた圧力開閉器(図示せず)
が作動して異常停止するなど連続運転が不可能であると
いう問題点があった。また、暖房運転においては、圧縮
機が高圧縮比運転をした場合や、高圧・低圧のいずれも
高い過負荷運転をした場合や、また冷媒が不足気味の場
合などには圧縮機の吐出温度が過昇して寿命が著しく縮
減するなど圧縮機の信頼性が著しく低下するという問題
点があった。この発明は上記のような問題点を解消する
ためになされたもので、冷房運転においては、熱源機に
対して室内機が上方に設置されている場合でも、熱源機
側熱交換器で液化した冷媒が熱源機側の第2の接続配管
を上昇している間に液ヘッド分の圧力降下があっても、
また、熱源機側の第2の接続配管、室内側の第2の接続
配管が長い場合でも、熱源機側熱交換器で液化した冷媒
が熱源機側の第2の接続配管、室内側の第2の接続配管
を流れている間に摩擦損失分の圧力降下があっても気液
二相状態とはならずに液状態を保持し、室内機に流入す
る冷媒の流量を第1の流量制御装置によって容易に制御
できる空気調和装置を得ることを目的とする。また、こ
の発明の別の発明は、冷房運転においては、冷媒充填量
が多めの場合などでも熱源機側熱交換器の液冷媒の示す
割合があまり増大せず、したがって高圧が上昇せずに異
常停止することもなく圧縮機の消費電力が増大すること
のない空気調和装置を得ることを目的とする。また、こ
の発明の別の発明は、冷房運転においては、常に圧縮機
の吐出温度が過昇することなく、圧縮機の信頼性の高い
空気調和装置を得ることを目的とする。
In the heating operation, when the load on the indoor unit side is small and the load on the heat source unit side heat exchanger is large (in the case of an air-cooling type heat exchanger, the suction air temperature of the heat exchanger, the water cooling type). If the inlet water temperature of the heat exchanger is high, etc.), the discharge pressure of the compressor rises and the pressure switch (not shown) provided in the discharge pipe of the compressor, etc.
However, there was a problem that continuous operation was impossible, such as the fact that it operated and stopped abnormally. In the heating operation, the discharge temperature of the compressor changes when the compressor operates at a high compression ratio, when the compressor is overloaded at high pressure or low pressure, or when the refrigerant is running low. There is a problem that the reliability of the compressor is remarkably deteriorated because the temperature rises excessively and the life is remarkably shortened. The present invention has been made to solve the above problems, and in the cooling operation, even when the indoor unit is installed above the heat source unit, it is liquefied by the heat source unit side heat exchanger. Even if there is a pressure drop for the liquid head while the refrigerant is rising in the second connection pipe on the heat source unit side,
Even when the second connection pipe on the heat source unit side and the second connection pipe on the indoor side are long, the refrigerant liquefied in the heat exchanger on the heat source unit side is connected to the second connection pipe on the heat source unit side and the indoor side. Even if there is a pressure drop due to friction loss while flowing through the second connecting pipe, the liquid state is not maintained but the gas-liquid two-phase state is maintained, and the flow rate of the refrigerant flowing into the indoor unit is controlled by the first flow rate control. An object is to obtain an air conditioner that can be easily controlled by the device. Further, another invention of the present invention is that in the cooling operation, even when the refrigerant charge amount is large, the ratio of the liquid refrigerant of the heat source side heat exchanger does not increase so much, and therefore the high pressure does not rise and is abnormal. An object of the present invention is to obtain an air conditioner that does not stop and the power consumption of the compressor does not increase. Another object of the present invention is to obtain an air conditioner with high reliability of the compressor in the cooling operation without constantly raising the discharge temperature of the compressor.

【0007】また、この発明の別の発明は、暖房運転に
おいては、室内機側の負荷が小さくかつ熱源機側熱交換
器の負荷が大きい場合(空冷式の熱交換器の場合には熱
交換器の吸込空気温度、水冷式の熱交換器の場合には熱
交換器の入口水温が高い場合など)でも、圧縮機の吐出
圧力が上昇することなく、異常停止せずに連続運転する
ことのできる空気調和装置を得ることを目的とする。ま
た、この発明の別の発明は、暖房運転においては、常に
圧縮機の吐出温度が過昇することなく、圧縮機の信頼性
の高い空気調和装置を得ることを目的とする。
Another aspect of the present invention is that, in heating operation, the load on the indoor unit side is small and the load on the heat source unit side heat exchanger is large (heat exchange in the case of an air-cooling type heat exchanger). Even if the suction air temperature of the compressor and the inlet water temperature of the heat exchanger in the case of a water-cooled heat exchanger are high), the discharge pressure of the compressor does not rise and continuous operation without abnormal stop is possible. The purpose is to obtain a possible air conditioner. Another object of the present invention is to obtain an air conditioner with a highly reliable compressor, in which the discharge temperature of the compressor does not always rise excessively during heating operation.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1に係
る空気調和装置は、圧縮機、熱源機側熱交換器を備えた
熱源機と、室内側熱交換器、上記室内側熱交換器の上記
熱源機側熱交換器に対応する一端に接続された第1の流
量制御装置を備えた室内機とを配管接続した冷媒回路に
おいて、上記熱源機側熱交換器と上記第1の流量制御装
置とを接続する配管途中から分岐し、第2の流量制御装
置を介して上記圧縮機の吸入側低圧配管に到るバイパス
配管と、上記バイパス配管の圧縮機側の一端と上記第2
の流量制御装置とを接続する配管と、上記熱源機側熱交
換器と上記第1の流量制御装置とを接続する配管との間
とで熱交換を行う熱交換部と、上記圧縮機の吐出配管に
設けた第2の圧力検出手段により検出された検出圧力
と、上記熱交換部と上記第1の流量制御装置との間に設
けた第2の温度検出手段により検出された検出温度とか
ら演算される第1の過冷却度が予め設定された目標範囲
内となるように上記第2の流量制御装置を制御する冷房
時流量制御装置制御手段とを設けたものである。
According to a first aspect of the present invention, there is provided an air conditioner, which is a heat source machine having a compressor and a heat source side heat exchanger, an indoor heat exchanger, and the indoor heat exchanger. In a refrigerant circuit in which an indoor unit having a first flow rate controller connected to one end corresponding to the heat source machine side heat exchanger is pipe-connected, the heat source machine side heat exchanger and the first flow rate control A bypass pipe branching from the middle of the pipe connecting the device and reaching the suction side low-pressure pipe of the compressor via the second flow rate control device; one end of the bypass pipe on the compressor side; and the second pipe.
And a heat exchange section for exchanging heat between the heat source unit side heat exchanger and the pipe connecting the first flow rate control device, and the discharge of the compressor. From the detected pressure detected by the second pressure detecting means provided in the pipe and the detected temperature detected by the second temperature detecting means provided between the heat exchange section and the first flow rate control device. The cooling-time flow rate control device control means for controlling the second flow rate control device is provided so that the calculated first subcooling degree falls within a preset target range.

【0009】この発明の請求項2に係る空気調和装置
は、さらに上記熱源機側熱交換器及び上記室内機取付け
位置の高低差に応じて入力する高低差入力手段を設け、
上記高低差入力手段の入力値に応じて上記第1の過冷却
度の目標範囲を決定する過冷却度制御目標範囲決定手段
を設けたものである。この発明の請求項3に係る空気調
和装置は、上記熱源機と上記室内機とを接続する接続配
管の長さに応じて入力する配管長入力手段を設け、上記
配管長入力手段の入力値に応じて上記第1の過冷却度の
目標範囲を決定する過冷却度制御目標範囲決定手段を設
けたものである。
An air conditioner according to a second aspect of the present invention further comprises height difference input means for inputting in accordance with the height difference between the heat source unit side heat exchanger and the indoor unit mounting position,
The subcooling degree control target range determining means for determining the target range of the first supercooling degree according to the input value of the height difference inputting means is provided. An air conditioner according to claim 3 of the present invention is provided with a pipe length input means for inputting in accordance with a length of a connection pipe connecting the heat source unit and the indoor unit, and an input value of the pipe length input unit is set. Accordingly, the subcooling degree control target range determining means for determining the target range of the first supercooling degree is provided.

【0010】この発明の請求項4に係る空気調和装置
は、圧縮機、熱源機側熱交換器を備えた熱源機と、室内
側熱交換器、上記室内側熱交換器の上記熱源機側熱交換
器に対応する一端に接続された第1の流量制御装置を備
えた室内機とを配管接続した冷媒回路において、上記熱
源機側熱交換器と上記第1の流量制御装置とを接続する
配管途中から分岐し、第2の流量制御装置を介して上記
圧縮機の吸入側低圧配管に到るバイパス配管と、上記圧
縮機の吐出配管に設けた第2の圧力検出手段により検出
された検出圧力と、上記熱源機側熱交換器と上記第1の
流量制御装置とを接続する配管に設けた第3の温度検出
手段により検出された検出温度とから演算される第2の
過冷却度に基づき上記第2の流量制御装置を制御する冷
房時流量制御装置制御手段とを設けたものである。この
発明の請求項5に係る空気調和装置は、圧縮機、熱源機
側熱交換器を備えた熱源機と、室内側熱交換器、上記室
内側熱交換器の上記熱源機側熱交換器に対応する一端に
接続された第1の流量制御装置を備えた室内機とを配管
接続した冷媒回路において、上記熱源機側熱交換器と上
記第1の流量制御装置とを接続する配管途中から分岐
し、第2の流量制御装置を介して上記圧縮機の吸入側低
圧配管に到るバイパス配管と、上記バイパス配管の圧縮
機側の一端と上記第2の流量制御装置とを接続する配管
と、上記熱源機側熱交換器と上記第1の流量制御装置と
を接続する配管との間とで熱交換を行う熱交換部と、上
記圧縮機の吐出配管に設けた第4の温度検出手段により
検出された検出温度が予め設定された設定温度を超える
と上記第2の流量制御装置の開度を増加するように制御
する冷房時流量制御装置制御手段とを設けたものであ
る。
According to a fourth aspect of the present invention, there is provided an air conditioner comprising a compressor, a heat source side heat exchanger, an indoor side heat exchanger, and the indoor side heat exchanger. In a refrigerant circuit in which an indoor unit having a first flow rate control device connected to one end corresponding to an exchanger is connected by piping, a pipe connecting the heat source unit side heat exchanger and the first flow rate control device Detected pressure detected by the second pressure detecting means provided in the bypass pipe branched from the middle and reaching the suction side low pressure pipe of the compressor through the second flow rate control device and the discharge pipe of the compressor. And the second degree of supercooling calculated from the detected temperature detected by the third temperature detecting means provided in the pipe connecting the heat source side heat exchanger and the first flow rate control device. Cooling-time flow rate control device control for controlling the second flow rate control device It is provided with a means. An air conditioner according to claim 5 of the present invention includes a heat source device including a compressor and a heat source device side heat exchanger, an indoor heat exchanger, and the heat source device side heat exchanger of the indoor heat exchanger. In a refrigerant circuit in which an indoor unit having a first flow rate control device connected to one end corresponding thereto is connected by piping, a branch is made from the middle of the pipe connecting the heat source unit side heat exchanger and the first flow rate control device. A bypass pipe that reaches the suction-side low-pressure pipe of the compressor via the second flow control device, and a pipe that connects the compressor-side end of the bypass pipe and the second flow control device, With a heat exchange section for exchanging heat between the heat source unit side heat exchanger and a pipe connecting the first flow rate control device, and a fourth temperature detecting means provided in the discharge pipe of the compressor. When the detected temperature detected exceeds a preset temperature, the second flow It is provided with a a cooling time of the flow control device control means for increasing the opening degree of the control device.

【0011】この発明の請求項6に係る空気調和装置
は、圧縮機、切換弁、熱源機側熱交換器を備えた熱源機
と、室内側熱交換器、上記室内側熱交換器の上記熱源機
側熱交換器に対応する一端に接続された第1の流量制御
装置を備えた室内機とを配管接続した冷媒回路におい
て、上記熱源機側熱交換器と上記第1の流量制御装置と
を接続する配管と、上記切換弁と上記室内側熱交換器と
を接続する配管との間を第3の流量制御装置を介して接
続するバイパス配管と、上記圧縮機の吐出配管に設けた
第2の圧力検出手段と、暖房運転時において、上記第2
の圧力検出手段の検出圧力に基づき上記第3の流量制御
装置の開度を制御する暖房時流量制御装置制御手段とを
設けたものである。
An air conditioner according to a sixth aspect of the present invention is a heat source device comprising a compressor, a switching valve, a heat source side heat exchanger, an indoor side heat exchanger, and the indoor side heat exchanger. In a refrigerant circuit in which an indoor unit having a first flow rate control device connected to one end corresponding to the machine side heat exchanger is pipe-connected, the heat source device side heat exchanger and the first flow rate control device are connected to each other. A second pipe provided in the discharge pipe of the compressor, and a bypass pipe connecting the connecting pipe, the pipe connecting the switching valve and the indoor heat exchanger via a third flow control device. Of the second pressure detection means and the second
The heating-time flow rate control device control means for controlling the opening degree of the third flow rate control device based on the pressure detected by the pressure detection device.

【0012】この発明の請求項7に係る空気調和装置
は、圧縮機、切換弁、熱源機側熱交換器を備えた熱源機
と、室内側熱交換器、上記室内側熱交換器の上記熱源機
側熱交換器に対応する一端に接続された第1の流量制御
装置を備えた室内機とを配管接続した冷媒回路におい
て、上記熱源機側熱交換器と上記第1の流量制御装置と
を接続する配管と、上記切換弁と上記室内側熱交換器と
を接続する配管との間を第3の流量制御装置を介して接
続するバイパス配管と、上記圧縮機の吐出配管に第4の
温度検出手段を設け、暖房運転時において、上記第4の
温度検出手段の検出温度が設定温度を超えると上記3の
流量制御装置の開度を増加するように制御する暖房時流
量制御装置制御手段とを設けたものである。
An air conditioner according to a seventh aspect of the present invention is a heat source device comprising a compressor, a switching valve, a heat source side heat exchanger, an indoor side heat exchanger, and the indoor side heat exchanger. In a refrigerant circuit in which an indoor unit having a first flow rate control device connected to one end corresponding to the machine side heat exchanger is pipe-connected, the heat source device side heat exchanger and the first flow rate control device are connected to each other. The bypass pipe connecting the connecting pipe, the pipe connecting the switching valve and the indoor heat exchanger via the third flow control device, and the discharge pipe of the compressor at the fourth temperature. A heating time flow rate control device control means for controlling the opening degree of the flow rate control device to increase when the temperature detected by the fourth temperature detection device exceeds a set temperature during heating operation. Is provided.

【0013】[0013]

【作用】この発明の請求項1による空気調和装置におい
ては、冷房運転時に、熱源機側熱交換器で液化した液冷
媒の一部はバイパス配管に流入し第2の流量制御装置に
よって低圧にまで減圧され低温の気液二相状態となって
熱交換部において熱源機側熱交換器で液化した高温の液
冷媒と熱交換してガス化し、室内側熱交換器でガス化し
た冷媒と合流してアキュムレータに流入する。一方、熱
源機側熱交換器で液化した高温の液冷媒は熱交換部にお
いて第2の流量制御装置によって低圧にまで減圧された
低温の気液二相冷媒によって充分に過冷却され、上記圧
縮機の吐出配管に設けられた第2の圧力検出手段により
検出された圧力と上記熱交換部と上記第1の流量制御装
置との間に設けた第2の温度検出手段により検出された
検出温度とから演算される第1の過冷却度が予め設定さ
れた目標範囲となるように、上記第2の流量制御装置を
制御するから、熱源機に対して室内機が上方に設置され
ている場合でも、熱源機側熱交換器で液化した冷媒が熱
源機側の第2の接続配管を上昇している間に液ヘッド分
の圧力降下があっても、また、熱源機側の第2の接続配
管、室内側の第2の接続配管を流れている間に摩擦損失
分の圧力降下があっても気液二相状態とはならずに液状
体を保持する。
In the air conditioner according to the first aspect of the present invention, during the cooling operation, a part of the liquid refrigerant liquefied in the heat source side heat exchanger flows into the bypass pipe to a low pressure by the second flow control device. It is decompressed and becomes a low-temperature gas-liquid two-phase state. Flows into the accumulator. On the other hand, the high temperature liquid refrigerant liquefied in the heat source side heat exchanger is sufficiently supercooled by the low temperature gas-liquid two-phase refrigerant whose pressure is reduced to a low pressure by the second flow rate control device in the heat exchange section, and The pressure detected by the second pressure detecting means provided in the discharge pipe and the detected temperature detected by the second temperature detecting means provided between the heat exchange section and the first flow rate control device. Even if the indoor unit is installed above the heat source unit, the second flow rate control device is controlled so that the first degree of supercooling calculated from the above becomes a preset target range. Even if there is a pressure drop for the liquid head while the refrigerant liquefied in the heat exchanger on the heat source unit side is rising in the second connecting pipe on the heat source unit side, the second connecting pipe on the heat source unit side , The pressure of the friction loss while flowing through the indoor second connection pipe Even the lower retaining the liquid material does not become a gas-liquid two-phase state.

【0014】この発明の請求項2による空気調和装置に
おいては、冷房運転時に、上記熱源機側熱交換器及び上
記室内機取付け位置の高低差に応じて、上記第1の過冷
却度の目標範囲を決定して、上記第2の流量制御装置を
制御するので、熱源機に対して室内機が上方に設置され
ている場合でも、熱源機側熱交換器で液化した冷媒が熱
源機側の第2の接続配管を上昇している場合に液ヘッド
分の圧力降下があっても気液二相状態とはならずに液状
態を保持する。
In the air conditioner according to the second aspect of the present invention, during the cooling operation, the target range of the first degree of subcooling is determined according to the height difference between the heat source unit side heat exchanger and the indoor unit mounting position. Is determined and the second flow rate control device is controlled, the refrigerant liquefied in the heat source unit side heat exchanger is liquefied in the heat source unit side even when the indoor unit is installed above the heat source unit. When the connection pipe of No. 2 is rising, even if there is a pressure drop for the liquid head, the gas-liquid two-phase state is not obtained and the liquid state is maintained.

【0015】この発明の請求項3による空気調和装置に
おいては、冷房運転時に、上記熱源機と上記室内機とを
接続する接続配管の長さに応じて、上記第1の過冷却度
の目標範囲を決定して、上記第2の流量制御装置を制御
するので、熱源機側の第2の接続配管、室内側の第2の
接続配管を流れている間に摩擦損失分の圧力降下があっ
ても気液二相状態とはならずに液状態を保持する。
In the air conditioner according to claim 3 of the present invention, during the cooling operation, the target range of the first degree of subcooling is determined according to the length of the connecting pipe connecting the heat source unit and the indoor unit. Is determined and the second flow rate control device is controlled, there is a pressure drop corresponding to the friction loss while flowing through the second connection pipe on the heat source unit side and the second connection pipe on the indoor side. Holds the liquid state without becoming the gas-liquid two-phase state.

【0016】この発明の請求項4による空気調和装置に
おいては、冷房運転時に、熱源機側熱交換器で液化され
た冷媒の一部が第2の流量制御装置に流入し、アキュム
レータに流入する。熱源機側熱交換器内に液冷媒が占め
る割合が大きくなると、圧縮機の吐出配管に設けた第2
の圧力検出手段により検出された検出圧力と、熱源機側
熱交換器と第1の流量制御装置とを接続する配管に設け
た第3の温度検出手段により検出された検出温度から演
算される第2の過冷却度が大きくなるため、第2の流量
制御手段の開度を調整して、熱源機側熱交換器内の液冷
媒の一部を第2の流量制御装置を経てアキュムレータに
バイパスさせることができ、熱源機側熱交換器内の液冷
媒の占める割合は一定範囲に保たれる。
In the air conditioner according to the fourth aspect of the present invention, during the cooling operation, part of the refrigerant liquefied in the heat source side heat exchanger flows into the second flow rate control device and flows into the accumulator. When the proportion of the liquid refrigerant in the heat source unit side heat exchanger increases, the second refrigerant provided in the discharge pipe of the compressor
Calculated from the detected pressure detected by the pressure detecting means and the detected temperature detected by the third temperature detecting means provided in the pipe connecting the heat source side heat exchanger and the first flow rate control device. Since the degree of supercooling of No. 2 becomes large, the opening degree of the second flow rate control means is adjusted so that a part of the liquid refrigerant in the heat source side heat exchanger is bypassed to the accumulator via the second flow rate control device. Therefore, the proportion of the liquid refrigerant in the heat source unit side heat exchanger is kept within a certain range.

【0017】この発明の請求項5による空気調和装置に
おいては、冷房運転時に、圧縮機の吐出配管に設けた第
4の温度検出手段の検出温度が上昇すると第2の流量制
御装置の開度を調整して熱源機側熱交換器で液化した液
冷媒のうち、第2の流量制御装置を経てアキュムレータ
へ流入する量を増加させて圧縮機の吸入温度を下げるこ
とができ、圧縮機の吐出温度も低下する。
In the air conditioner according to the fifth aspect of the present invention, when the temperature detected by the fourth temperature detecting means provided in the discharge pipe of the compressor rises during the cooling operation, the opening degree of the second flow control device is changed. Of the liquid refrigerant that has been adjusted and liquefied in the heat source side heat exchanger, the amount that flows into the accumulator through the second flow rate control device can be increased to lower the suction temperature of the compressor, and the discharge temperature of the compressor can be reduced. Also decreases.

【0018】この発明の請求項6による空気調和装置に
おいては、暖房運転時に、第2の圧力検出手段の検出圧
力が上昇すると圧縮機より吐出され、切換弁を通過した
高温高圧のガス冷媒の一部が、第3の流量制御装置によ
って適量だけバイパス配管に流入し、第3の流量制御装
置によって低圧にまで減圧されて室内機を経た冷媒と合
流する。
In the air conditioner according to claim 6 of the present invention, when the pressure detected by the second pressure detecting means rises during the heating operation, one of the high-temperature and high-pressure gas refrigerant discharged from the compressor and passing through the switching valve. The portion flows into the bypass pipe by an appropriate amount by the third flow rate control device, is reduced to a low pressure by the third flow rate control device, and merges with the refrigerant that has passed through the indoor unit.

【0019】この発明の請求項7による空気調和装置に
おいては、暖房運転時に、圧縮機の吐出配管に設けた第
4の温度検出手段により検出された検出温度が上昇する
と、圧縮機より吐出され、切換弁を通過した高温高圧の
ガス冷媒のうち、第3の流量制御装置を通過する量を増
加させ、圧縮機の吐出温度も低下させることができる。
In the air conditioner according to claim 7 of the present invention, when the temperature detected by the fourth temperature detecting means provided in the discharge pipe of the compressor rises during the heating operation, the temperature is discharged from the compressor, Of the high-temperature and high-pressure gas refrigerant that has passed through the switching valve, the amount that passes through the third flow rate control device can be increased, and the discharge temperature of the compressor can also be reduced.

【0020】[0020]

【実施例】【Example】

実施例1.以下、この発明の一実施例について説明す
る。図1はこの発明の一実施例による空気調和装置の冷
媒系を中心とする全体構成図である。図において、A,
B,C,D及び1,3,4,5,6,7,7b,7c,
7d,8,8b,8c,8d,9,10は図9に示す従
来の空気調和装置と同様のものであり、ここでは説明を
省略する。2は切換弁であり、該実施例においては4方
弁を使用している。11aは熱源機側熱交換器3と第1
の流量制御装置6とを接続する配管と、圧縮機の吸入側
低圧配管である4方弁2とアキュムレータ4とを接続す
る配管とを結ぶバイパス配管、12aはバイパス配管1
1aの配管途中に設けられた第2の流量制御装置(ここ
では電気式膨張弁)、13aは熱源機側熱交換器3とバ
イパス配管11aの分岐部11cとを接続する配管と、
バイパス配管11aの第2の流量制御装置12aと圧縮
機1側の一端との間の配管部分との間で熱交換する熱交
換部、14は4方弁2とアキュムレータ4とを接続する
配管途中に設けられた第1の圧力検出手段、15は熱交
換部13aとバイパス配管11aの圧縮機1側の一端と
の間の配管途中に設けられた第1の温度検出手段、16
は圧縮機1の吐出配管に設けられた第2の圧力検出手
段、17は熱源機側熱交換器3と熱交換部13aとを接
続する配管途中に設けられた第3の温度検出手段、18
は上記熱交換部13aと上記第1の流量制御装置6とを
接続する配管途中に設けられた第2の温度検出手段、1
9は圧縮機1の吐出配管に設けられた第4の温度検出手
段である。
Example 1. An embodiment of the present invention will be described below. FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to an embodiment of the present invention. In the figure, A,
B, C, D and 1,3,4,5,6,7,7b, 7c,
7d, 8, 8b, 8c, 8d, 9 and 10 are the same as those of the conventional air conditioner shown in FIG. 9, and the description thereof is omitted here. Reference numeral 2 is a switching valve, and a 4-way valve is used in this embodiment. 11a is the heat source unit side heat exchanger 3 and the first
Bypass pipe connecting the pipe connecting to the flow control device 6 and the pipe connecting the four-way valve 2 which is the suction side low pressure pipe of the compressor and the accumulator 4, 12a indicates the bypass pipe 1
A second flow rate control device (here, an electric expansion valve) provided in the middle of the pipe 1a, and a pipe 13a connecting the heat source unit side heat exchanger 3 and the branch portion 11c of the bypass pipe 11a,
A heat exchange part for exchanging heat between the second flow rate control device 12a of the bypass pipe 11a and a pipe portion between one end of the bypass pipe 11a and the compressor 1, and 14 is an intermediate pipe connecting the four-way valve 2 and the accumulator 4. Is a first pressure detecting means, 15 is a first temperature detecting means provided in the middle of the pipe between the heat exchange part 13a and one end of the bypass pipe 11a on the compressor 1 side, 16
Is a second pressure detecting means provided in the discharge pipe of the compressor 1, 17 is a third temperature detecting means provided in the middle of the pipe connecting the heat source unit side heat exchanger 3 and the heat exchange section 13a, 18
Is a second temperature detecting means provided in the middle of the pipe connecting the heat exchange section 13a and the first flow rate control device 6,
Reference numeral 9 is a fourth temperature detecting means provided in the discharge pipe of the compressor 1.

【0021】尚、図中実線矢印は冷房運転時の冷媒の流
れ方向を示し、破線矢印は暖房運転時の冷媒の流れを方
向を示す。暖房運転時の冷媒側の動作については図9に
示す従来の空気調和装置と全く同様なので説明を省略す
る。また、冷房運転時の冷媒側の動作については熱交換
部13a及びバイパス配管11aに関する部分以外につ
いては図9に示す従来の空気調和装置と全く同様なので
説明を省略し、冷房運転時の熱交換部13a及びバイパ
ス配管11aに関する部分について説明する。すなわ
ち、熱源機側熱交換器3で液化された液冷媒は熱交換部
13aを経た後にその一部がバイパス配管11aに流入
し第2の流量制御装置12aで低圧にまで減圧され低温
の気液二相状態となり、熱交換部13aでガス化されて
室内側熱交換器5でガス化された冷媒と合流してアキュ
ムレータ4に流入する。一方、熱交換部13aにおい
て、熱源機側熱交換器3で液化された高温の液冷媒はバ
イパス配管11aを流れる低温の冷媒によって充分に冷
却され過冷却度の大きな液冷媒となり、その一部はバイ
パス配管11aに流入するが残りの冷媒は熱源機側の第
2の接続配管8に流入して第2の接続点10に至る。熱
交換部13aで充分に冷却され過冷却度の大きな液冷媒
となっているため、熱源機Aに対して室内機B,C,D
が上方に設置されていても液ヘッド分の圧力降下がある
にもかかわらず第2の接続点10及び各第1の流量制御
装置6の入口部では気液二相状態とはならずに液状態を
保持でき、各室内機B,C,Dに流入する冷媒流量を第
1の流量制御装置6で容易に制御することができる。ま
た、熱交換部13aで充分に冷却され過冷却度の大きな
液冷媒となっているため、熱源機側の第2の接続配管
8、室内側の第2の接続配管8b,8c,8dの配管長
が長い場合でも、摩擦による圧力降下があるにもかかわ
らず、第2の接続点10及び各第1の流量制御装置6の
入口部では気液二相状態とはならずに液状態を保持で
き、各室内機B,C,Dに流入する冷媒流量を第1の流
量制御装置6で容易に制御することができる。また、余
剰冷媒が発生するような場合(冷媒が過充填気味の場合
など)には第2の流量制御装置12aの開度を少し増加
させるとバイパス配管11aは高圧の液ラインからアキ
ュムレータ4への液バイパスとなり、熱源機側熱交換器
3の液冷媒の占める割合が減少し、アキュムレータ4に
余剰冷媒が分布する。したがって、熱源機側熱交換器3
の熱交換量が増大し、高圧が低下して圧縮機の消費電力
が低下する。
The solid line arrows in the figure indicate the direction of the refrigerant flow during the cooling operation, and the broken line arrows indicate the direction of the refrigerant flow during the heating operation. The operation on the refrigerant side during the heating operation is completely the same as that of the conventional air conditioner shown in FIG. The operation on the refrigerant side during the cooling operation is exactly the same as that of the conventional air conditioner shown in FIG. 9 except for the portions related to the heat exchange section 13a and the bypass pipe 11a, and therefore the description thereof is omitted. A portion related to 13a and the bypass pipe 11a will be described. That is, the liquid refrigerant liquefied in the heat source unit side heat exchanger 3 passes through the heat exchange section 13a, and then a part thereof flows into the bypass pipe 11a and is depressurized to a low pressure by the second flow rate control device 12a. It becomes a two-phase state, merges with the refrigerant gasified in the heat exchange section 13a and gasified in the indoor heat exchanger 5, and flows into the accumulator 4. On the other hand, in the heat exchange section 13a, the high temperature liquid refrigerant liquefied in the heat source unit side heat exchanger 3 is sufficiently cooled by the low temperature refrigerant flowing through the bypass pipe 11a to become a liquid refrigerant with a high degree of supercooling, and a part of it is The remaining refrigerant flowing into the bypass pipe 11a flows into the second connection pipe 8 on the heat source machine side and reaches the second connection point 10. Since it is a liquid refrigerant that is sufficiently cooled in the heat exchange section 13a and has a large degree of supercooling, the indoor units B, C, and D are different from the heat source unit A.
Even if it is installed above the liquid head, even though there is a pressure drop corresponding to the liquid head, the gas is not in the gas-liquid two-phase state at the second connection point 10 and the inlet portion of each first flow rate control device 6, The state can be maintained, and the flow rate of the refrigerant flowing into each indoor unit B, C, D can be easily controlled by the first flow rate control device 6. In addition, since the liquid refrigerant is sufficiently cooled in the heat exchange section 13a and has a large degree of supercooling, the second connection pipe 8 on the heat source unit side and the second connection pipes 8b, 8c, 8d on the indoor side are connected. Even if the length is long, despite the pressure drop due to friction, the second connection point 10 and the inlet portion of each first flow rate control device 6 do not become a gas-liquid two-phase state but maintain a liquid state. Therefore, the flow rate of the refrigerant flowing into each indoor unit B, C, D can be easily controlled by the first flow rate control device 6. In addition, when excess refrigerant is generated (when the refrigerant is overfilled, etc.), the bypass pipe 11a from the high pressure liquid line to the accumulator 4 is increased by slightly increasing the opening degree of the second flow rate control device 12a. It becomes a liquid bypass, the ratio of the liquid refrigerant in the heat source unit side heat exchanger 3 decreases, and the surplus refrigerant is distributed to the accumulator 4. Therefore, the heat source side heat exchanger 3
The amount of heat exchange of the compressor increases, the high pressure decreases, and the power consumption of the compressor decreases.

【0022】また、第2の流量制御装置12aの開度を
少し増加させると前記の通り、バイパス配管11aは、
高圧の液ラインからアキュムレータ4への液バイパスと
なるので、圧縮機1の吸入ガス冷媒の過熱度が低下して
圧縮機1の吐出温度も低下する。したがって、圧縮機1
の寿命の低下を抑制し圧縮機1の信頼性を向上させるこ
とができる。次に、図2に示すブロック図にそって、第
2の流量制御装置12aの冷房運転時の制御内容につい
て説明する。20は熱源機Aと室内機B,C,Dの高低
差(設置高さの差)を入力する高低差入力手段、21は
熱源機側の第2の接続配管8、室内側の第2の接続配管
8b,8c,8dの長さを入力する配管長入力手段であ
る。22は高低差入力手段22の入力値及び配管長入力
手段21の入力値に応じて、第2の圧力検出手段16の
検出圧力と第2の温度検出手段18の検出温度から演算
される熱源機Aの出口の過冷却度である第1の過冷却度
SCc の制御目標範囲(上限値SCc1と下限値SCc2
を決定する過冷却度制御目標範囲決定手段、23は冷房
時流量制御装置制御手段であり、第1の圧力検出手段1
4の検出圧力と第1の温度検出手段15の検出温度から
演算されるバイパス配管11aを流れる冷媒の熱交換部
13aの出口の過熱度SH0 に基づき、第1の過冷却度
SCc がSCc1≧SCc ≧SCc2となるように第2の流
量制御装置12aを制御し、かつ第2の圧力検出手段1
6の検出圧力と第3の温度検出手段17の検出温度から
演算される熱源機側熱交換器3の出口の過冷却度である
第2の過冷却度SC0 が上限値SC0maxを超えないよう
に(すなわちSC0 ≦SC0maxとなるように)第2の流
量制御装置を制御し、かつ第4の温度検出手段19の検
出温度Td が上限値Tdmaxを超えないように(すなわち
d ≦Tdmaxとなるように)第2の流量制御装置12a
を制御するものである。
When the opening degree of the second flow control device 12a is slightly increased, the bypass pipe 11a is
Since it becomes a liquid bypass from the high-pressure liquid line to the accumulator 4, the superheat degree of the suction gas refrigerant of the compressor 1 decreases and the discharge temperature of the compressor 1 also decreases. Therefore, the compressor 1
It is possible to suppress the decrease in the life of the compressor and improve the reliability of the compressor 1. Next, the control content of the second flow rate control device 12a during the cooling operation will be described with reference to the block diagram shown in FIG. 20 is a height difference input means for inputting the height difference (difference in installation height) between the heat source unit A and the indoor units B, C, D, 21 is the second connection pipe 8 on the heat source unit side, and the second connection pipe on the indoor side. It is a pipe length input means for inputting the lengths of the connection pipes 8b, 8c, 8d. A heat source unit 22 is calculated from the detected pressure of the second pressure detection unit 16 and the detected temperature of the second temperature detection unit 18 according to the input value of the height difference input unit 22 and the input value of the pipe length input unit 21. control target range in the first degree of subcooling SC c is the degree of subcooling at the outlet of the a (upper limit value SC c1 and the lower limit value SC c2)
The subcooling degree control target range determining means, which determines the cooling degree, 23 is a cooling-time flow rate control device controlling means, and the first pressure detecting means 1
Based on the superheat degree SH 0 at the outlet of the heat exchange section 13a of the refrigerant flowing through the bypass pipe 11a calculated from the detected pressure of No. 4 and the detected temperature of the first temperature detecting means 15, the first supercooling degree SC c is SC. The second pressure control device 12a is controlled so that c1 ≧ SC c ≧ SC c2 , and the second pressure detecting means 1
The second degree of supercooling SC 0 , which is the degree of supercooling at the outlet of the heat source unit side heat exchanger 3 calculated from the detected pressure of 6 and the temperature detected by the third temperature detecting means 17, does not exceed the upper limit value SC 0max . (That is, SC 0 ≦ SC 0max ) so that the second flow rate control device is controlled so that the temperature T d detected by the fourth temperature detecting means 19 does not exceed the upper limit value T dmax (that is, T The second flow control device 12a so that d ≦ T dmax )
Is to control.

【0023】第2の接続点10及び各第1の流量制御装
置6の入口部で液状態を保つために必要な第1の過冷却
度SCc は、熱源機Aと各室内機B,C,Dとの高低差
及び熱源機側の第2の接続配管8、室内側の第2の接続
配管8b,8c,8dの長さによって変化するので、高
低差を高低差入力手段20に入力し、配管長を配管長入
力手段21に入力して、それぞれの入力値から過冷却度
制御目標範囲決定手段22にて第1の過冷却度SCc
制御目標範囲(上限値SCc1、下限値SCc2)を決定す
る。また、第2の流量制御装置12aの開度と第1の過
冷却度SCc の関係を図3に示す。第2の流量制御装置
12aの開度が小さい場合は、バイパス配管11aを流
れる冷媒流量が少ないためバイパス配管11aの熱交換
部13aの出口の過熱度SH0 が大きく、熱交換部13
aのバイパス配管11a側の過熱ガスの占める割合が大
きい。したがって、熱交換部13aでの熱交換量は小さ
く、第1の過冷却度SCc は小さい。すなわち、SH0
が大きい領域では、第2の流量制御装置12aの開度を
減少させるとバイパス配管11aを流れる冷媒流量が減
少しSH0 及び熱交換部13aのバイパス配管11a側
の過熱ガスの占める割合が増大して熱交換量が減少する
ため第1の過冷却度SCc は減少するが、逆に第2の流
量制御装置の開度を増加させるとバイパス配管11aを
流れる冷媒流量が増加し、SH0 及び熱交換部13aの
バイパス配管11a側の過熱ガスの占める割合が減少し
て熱交換量が増加するため第1の過冷却度SCc は増加
する(図3の一点鎖線より左側の「過熱領域」)。一
方、第2の流量制御装置12aの開度が大きい場合は、
バイパス配管11aを流れる冷媒流量が多いため。
The first degree of supercooling SC c required to maintain the liquid state at the second connection point 10 and the inlet of each first flow rate control device 6 is determined by the heat source unit A and the indoor units B, C. , D, and the lengths of the second connection pipe 8 on the heat source device side and the second connection pipes 8b, 8c, 8d on the indoor side, the height difference is input to the height difference input means 20. , The pipe length is inputted to the pipe length input means 21, and the control target range (upper limit value SC c1 , lower limit value) of the first supercooling degree SC c is inputted from the respective input values by the supercooling degree control target range determining means 22. SC c2 ) is determined. Further, it shows a relationship between the opening and the first subcooling degree SC c of the second flow rate control device 12a in FIG. When the opening degree of the second flow rate control device 12a is small, the flow rate of the refrigerant flowing through the bypass pipe 11a is small, so that the superheat degree SH 0 at the outlet of the heat exchanging portion 13a of the bypass pipe 11a is large, and the heat exchanging portion 13a.
The proportion of the superheated gas on the side of the bypass pipe 11a of a is large. Therefore, the amount of heat exchange in the heat exchange section 13a is small, and the first degree of supercooling SC c is small. That is, SH 0
In a large area, when the opening degree of the second flow rate control device 12a is decreased, the flow rate of the refrigerant flowing through the bypass pipe 11a is decreased, and the ratio of SH 0 and the superheated gas on the bypass pipe 11a side of the heat exchange section 13a is increased. As a result, the amount of heat exchange decreases, so the first degree of supercooling SC c decreases, but conversely, when the opening degree of the second flow rate control device is increased, the flow rate of the refrigerant flowing through the bypass pipe 11a increases, and SH 0 and The first supercooling degree SC c increases because the proportion of the superheated gas on the bypass pipe 11a side of the heat exchange section 13a decreases and the heat exchange amount increases (the "superheat region" on the left side of the alternate long and short dash line in FIG. 3). ). On the other hand, when the opening degree of the second flow rate control device 12a is large,
Because the flow rate of the refrigerant flowing through the bypass pipe 11a is large.

【0024】バイパス配管11aの熱交換部13aの出
口は湿り状態となり、熱交換部13aのバイパス配管1
1a側には過熱ガス部分はないが、バイパス配管11a
の熱交換部13aの出口が湿り状態ということはすなわ
ち気液二相流ということであり、過熱ガス部分がある場
合と比べて、バイパス配管11aの熱交換部13aの下
流部の配管内の摩擦損失による圧力損失は大きい。この
領域において第2の流量制御装置12aの開度が増加す
るとバイパス配管11aを流れる冷媒の増加に伴って、
バイパス配管11aの熱交換部13aの下流部における
摩擦損失による圧力損失が急増し、バイパス配管11a
の熱交換部13aの代表圧力(静圧)は上昇し、熱交換
部13aの低温側の温度が上昇し、熱交換量は減少す
る。その結果、第1の過冷却度SCc は減少する。とこ
ろが、逆に、第2の流量制御装置12aの開度が減少す
るとバイパス配管11aを流れる冷媒流量が減少するた
めバイパス配管11aの熱交換部13aの下流部におけ
る摩擦損失による圧力損失が小さく、バイパス配管11
aの上流側の温度も低くなり、熱交換量は増加する。そ
の結果、第1の過冷却度SCc が増加する(図3の一点
鎖線より右側の「湿り領域」)。また、この領域(バイ
パス配管11aの熱交換部13aの出口が湿り状態とな
る領域)では、第2の流量制御装置12aの開度が増加
すると熱交換部13aで蒸発可能な量より多い流量がバ
イパス配管11aへ供給され、凝縮部に分布していた液
冷媒は、低圧部に分布するようになり、熱源機側熱交換
器3と熱交換部13aの間で液単相状態ではなくなり、
ガスの混入した気液二相状態となり、熱交換部13aで
の熱交換量が増加していないため、熱交換部13aの出
口の過冷却度すなわち第1の過冷却度SCc は減少す
る。また、この領域では第2の流量制御装置12aの開
度が減少すると、低圧部に分布していた液冷媒が凝縮部
に分布するようになり、熱源機側熱交換器3と熱交換部
13aの間での冷媒状態はガス成分が減少し、第1の過
冷却度SCc は増加する。以上の特性からSH0 がある
一定値SHB より大きい場合(SH0 >SHB )には
「過熱領域」にあると判定して、SCc <SCc2となっ
ていれば、第2の流量制御装置12aの開度を増加させ
て、SCc ≧SCc2とし、SCc >SCc1となっていれ
ば、第2の流量制御装置12aの開度を減少させてSC
c ≦SCc1とすることにより、第1の過冷却度SCc
制御目標範囲内とすることができる。また、SH0 があ
る一定値以下の場合(SH0 ≦SHB )には「湿り状
態」にあると判定してSCc <SCc2となっていれば第
2の流量制御装置12aの開度を減少させてSCc ≧S
c2とし、SCc >SCc1となっていれば第2の流量制
御装置12aの開度を増加させてSCc ≦SCc1とする
ことにより第1の過冷却度SCc を制御目標範囲内とす
ることができる。
The outlet of the heat exchange section 13a of the bypass pipe 11a becomes wet, and the bypass pipe 1 of the heat exchange section 13a
There is no superheated gas portion on the 1a side, but bypass piping 11a
That the outlet of the heat exchange section 13a is wet means that it is a gas-liquid two-phase flow, and friction in the pipe downstream of the heat exchange unit 13a of the bypass pipe 11a is greater than that in the case where there is a superheated gas portion. The pressure loss due to the loss is large. When the opening degree of the second flow rate control device 12a increases in this region, as the refrigerant flowing through the bypass pipe 11a increases,
The pressure loss due to friction loss in the downstream portion of the heat exchange section 13a of the bypass pipe 11a rapidly increases, and the bypass pipe 11a
The representative pressure (static pressure) of the heat exchange section 13a increases, the temperature on the low temperature side of the heat exchange section 13a increases, and the heat exchange amount decreases. As a result, the first supercooling degree SC c decreases. However, conversely, when the opening degree of the second flow rate control device 12a decreases, the flow rate of the refrigerant flowing through the bypass pipe 11a decreases, so that the pressure loss due to the friction loss in the downstream portion of the heat exchange section 13a of the bypass pipe 11a is small, and Piping 11
The temperature on the upstream side of “a” also decreases, and the heat exchange amount increases. As a result, the first supercooling degree SC c increases (“wet area” on the right side of the alternate long and short dash line in FIG. 3). Further, in this region (region where the outlet of the heat exchange unit 13a of the bypass pipe 11a is in a wet state), when the opening degree of the second flow rate control device 12a increases, a flow rate larger than the amount that can be evaporated in the heat exchange unit 13a is generated. The liquid refrigerant supplied to the bypass pipe 11a and distributed in the condensing part comes to be distributed in the low pressure part, and is no longer in a liquid single-phase state between the heat source unit side heat exchanger 3 and the heat exchange part 13a.
Becomes entrained gas-liquid two-phase state of gas, the heat exchange amount of the heat exchange portion 13a is not increased, the degree of supercooling that is, the first degree of subcooling SC c of the outlet of the heat exchange portion 13a is reduced. Further, in this region, when the opening degree of the second flow rate control device 12a is decreased, the liquid refrigerant distributed in the low pressure part is distributed in the condensing part, and the heat source unit side heat exchanger 3 and the heat exchanging part 13a. the refrigerant state between the reduced gas component, the first degree of subcooling SC c increases. From the above characteristics, if SH 0 is greater than a certain value SH B (SH 0 > SH B ), it is determined that the temperature is in the “overheat region”, and if SC c <SC c2 , the second flow rate is determined. If the opening degree of the control device 12a is increased to satisfy SC c ≧ SC c2 and SC c > SC c1 , the opening degree of the second flow rate control device 12a is decreased to SC.
By setting c ≤SC c1 , the first supercooling degree SC c can be set within the control target range. If SH 0 is below a certain value (SH 0 ≦ SH B ), it is determined that the condition is “wet”, and SC c <SC c2 , the opening of the second flow control device 12a. To reduce SC c ≧ S
If C c2 and SC c > SC c1 , then the opening degree of the second flow rate control device 12a is increased to satisfy SC c ≦ SC c1 so that the first supercooling degree SC c falls within the control target range. Can be

【0025】次に、冷房時流量制御装置制御手段23の
制御内容を図4のフローチャートにそって説明する。ス
テップ51にて第1の圧力検出手段14aの検出圧力と
第1の温度検出手段15の検出温度よりSH0 を演算
し、第2の圧力検出手段16の検出圧力と第2の温度検
出手段18の検出温度より第1の過冷却度SCc を演算
し、第2の圧力検出手段16の検出圧力と第3の温度検
出手段17の検出温度より第2の過冷却度Sc0 を演算
してステップ52へ進。ステップ52では、第4の温度
検出手段19の検出温度Td が予め設定された上限値T
dmaxより大きいか否かを判定しTd >Tdmaxならばステ
ップ53へ進み、第2の流量制御装置12aの開度を増
加し、Td ≦Tdmaxならステップ54へ進む。ステップ
54では、第2の過冷却度SC0 が予め設定された上限
値SC0maxより大きいか否かを判定し、SC0 >SC
0maxならばステップ55へ進み第2の流量制御装置12
aの開度を増加し、SC0 ≦SC0maxならばステップ5
6へ進む。ステップ56では、SH0 が予め設定された
SHB より大きいか否かを判定し、SH0 >SHB なら
ばステップ57へ進み、SH0 ≦SHB ならばステップ
62に進む。ステップ57では、第1の過冷却度SCc
が過冷却度制御目標範囲決定手段22により決定された
制御目標範囲の上限値SCc1より大きいか否かを判定
し、SCc >SCc1ならばステップ58へ進み、第2の
流量制御装置12aの開度を減少し、SCc≦SCc1
らばステップ59へ進む。ステップ59では第1の過冷
却度SCc が過冷却度制御目標範囲決定手段22により
決定された制御目標範囲の下限値SCc2より小さいか否
かを判定し、SCc <SCc2ならばステップ60へ進
み、第2の流量制御装置12aの開度を増加し、SCc
≧SCc2ならばステップ61へ進み、第2の流量制御装
置12aの開度を維持する。一方、ステップ62では第
1の過冷却度SCc が過冷却度制御目標範囲決定手段2
2により決定された制御目標範囲の上限値SCc1より大
きいか否かを判定し、SCc >SCc1ならばステップ6
3へ進み、第2の流量制御装置12aの開度を増加し、
SCc ≦SCc1ならばステップ64へ進む。ステップ6
4では、第1の過冷却度SCc が過冷却制御目標範囲決
定手段22により決定された制御目標範囲の下限値SC
c2より小さいか否かを判定し、SCc <SCc2ならばス
テップ65へ進み、第2の流量制御装置12aの開度を
減少し、SCc ≧SCc2ならばステップ66へ進み、第
2の流量制御装置12aの開度を維持する。ステップ5
3,55,58,60,61,63,65,66で第2
の流量制御装置12aの開度を増減・維持した後に、ス
テップ51へ再び戻る。
Next, the control contents of the cooling-time flow rate control device control means 23 will be described with reference to the flowchart of FIG. In step 51, SH 0 is calculated from the detected pressure of the first pressure detecting means 14a and the detected temperature of the first temperature detecting means 15, and the detected pressure of the second pressure detecting means 16 and the second temperature detecting means 18 are calculated. The first supercooling degree SC c is calculated from the detected temperature of No. 2, and the second supercooling degree Sc 0 is calculated from the detected pressure of the second pressure detecting means 16 and the detected temperature of the third temperature detecting means 17. Proceed to step 52. In step 52, the detected temperature T d of the fourth temperature detecting means 19 is set to the preset upper limit value T.
It is determined whether or not it is larger than dmax. If T d > T dmax , the routine proceeds to step 53, where the opening of the second flow control device 12a is increased, and if T d ≤T dmax, the routine proceeds to step 54. In step 54, it is determined whether the second degree of supercooling SC 0 is larger than a preset upper limit value SC 0max , and SC 0 > SC.
If it is 0max , the routine proceeds to step 55, where the second flow rate controller 12
The opening degree of a is increased, and if SC 0 ≦ SC 0max , step 5
Go to 6. In step 56, it is determined whether or not greater than SH B which SH 0 is set in advance, the process proceeds to SH 0> SH B If step 57, the process proceeds to SH 0 ≦ SH B if step 62. In step 57, the first supercooling degree SC c
Is greater than the upper limit value SC c1 of the control target range determined by the supercooling degree control target range determining means 22, and if SC c > SC c1 , the process proceeds to step 58, and the second flow rate controller 12a Is decreased, and if SC c ≦ SC c1 , the routine proceeds to step 59. In step 59, it is judged whether or not the first supercooling degree SC c is smaller than the lower limit value SC c2 of the control target range determined by the supercooling degree control target range determining means 22. If SC c <SC c2 , step 60, the opening degree of the second flow rate control device 12a is increased, and SC c
If ≧ SC c2 , the routine proceeds to step 61, where the opening of the second flow control device 12a is maintained. On the other hand, in step 62, the first subcooling degree SC c is the subcooling degree control target range determining means 2
It is determined whether or not it is larger than the upper limit value SC c1 of the control target range determined by 2. If SC c > SC c1 , step 6
3 to increase the opening degree of the second flow rate control device 12a,
If SC c ≤SC c1 , the process proceeds to step 64. Step 6
4, the first supercooling degree SC c is the lower limit value SC of the control target range determined by the supercooling control target range determining means 22.
It is determined whether or not it is smaller than c2, and if SC c <SC c2 , the routine proceeds to step 65, where the opening of the second flow control device 12a is decreased, and if SC c ≧ SC c2 , the routine proceeds to step 66, where the second The opening degree of the flow rate control device 12a is maintained. Step 5
2nd at 3,55,58,60,61,63,65,66
After increasing / decreasing / maintaining the opening degree of the flow control device 12a, the process returns to step 51 again.

【0026】実施例2.以下、この発明の上記実施例1
とは別の実施例について説明する。図5はこの発明の実
施例2による空気調和装置の冷媒系を中心とする全体構
成図、図6は暖房運転時の制御ブロック図、また、冷房
時の制御ブロック図は図2(実施例1と同じ)である。
図において、A,B,C,D及び1,3,4,5,6,
7,7b,7c,7d,8,8b,8c,8d,9,1
0は図9に示す従来の空気調和装置と同様のものであり
ここでは説明を省略する。2は切換弁であり、この実施
例では4方弁を使用している。11bは熱源機側熱交換
器3と第1の流量制御装置6とを接続する配管と、4方
弁2と室内側熱交換器5とを接続する配管とを結ぶバイ
パス配管、12bはバイパス配管11bの配管途中に設
けられた第3の流量制御装置(ここでは電気式膨張
弁)、13bは熱源機側熱交換器3と第1の流量制御装
置6とを接続する配管と、バイパス配管11bの第3の
流量制御装置12bと4方弁2側の一端との間の配管部
分との間で熱交換する熱交換部、14〜23は実施例1
と同様のものなので、ここでは説明を省略する。24は
暖房運転時において第2の圧力検出手段16の出力信号
及び第2の温度検出手段19の出力信号に基づき第3の
流量制御装置12bを制御する暖房時流量制御装置制御
手段である。
Example 2. Hereinafter, the first embodiment of the present invention will be described.
Another embodiment different from the above will be described. 5 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a second embodiment of the present invention, FIG. 6 is a control block diagram during heating operation, and a control block diagram during cooling is shown in FIG. Same as).
In the figure, A, B, C, D and 1, 3, 4, 5, 6,
7,7b, 7c, 7d, 8,8b, 8c, 8d, 9,1
No. 0 is the same as the conventional air conditioner shown in FIG. 9, and the description thereof is omitted here. Reference numeral 2 is a switching valve, and a four-way valve is used in this embodiment. Reference numeral 11b is a bypass pipe connecting the heat source unit side heat exchanger 3 and the first flow rate control device 6 with a pipe connecting the four-way valve 2 and the indoor side heat exchanger 5, and 12b is a bypass pipe. A third flow rate control device (here, an electric expansion valve) provided in the middle of the pipe 11b, 13b is a pipe connecting the heat source unit side heat exchanger 3 and the first flow rate control device 6, and a bypass pipe 11b. Of the third flow rate control device 12b and one end on the side of the four-way valve 2 for exchanging heat with each other, 14 to 23 are the first embodiment.
Since it is the same as, the description is omitted here. Reference numeral 24 is a heating-time flow rate control device control means for controlling the third flow rate control device 12b based on the output signal of the second pressure detection means 16 and the output signal of the second temperature detection means 19 during the heating operation.

【0027】尚、図中実線矢印は冷房運転時の冷媒の流
れ方向を示し、破線矢印は暖房運転時の冷媒の流れ方向
を示す。冷房運転時の冷媒側の動作については図1に示
す実施例1の空気調和装置と同様なので説明を省略す
る。また、暖房運転時の冷媒側の動作については熱交換
部13b及びバイパス配管11bに関する部分以外につ
いては図9に示す従来の空気調和装置と全く同様なので
説明を省略し、暖房運転時の熱交換部13b及びバイパ
ス配管11bに関する部分について説明する。すなわ
ち、室内機側の負荷が小さくかつ熱源機側熱交換器の負
荷が大きい場合(空冷式の熱交換器の場合には熱交換器
の吸込空気温度、水冷式の熱交換器の場合には熱交換器
の入口水温が高い場合など)には、第2の圧力検出手段
16の検出圧力が一定範囲内となるように第3の流量制
御装置12bは暖房時流量制御装置制御手段24によっ
て制御され、圧縮機1より吐出され4方弁2を通過した
高温高圧のガス冷媒の一部はバイパス配管11bに流入
し、室内機B,C,Dから室内側の第2の接続配管8
b,8c,8d、第2の接続配管10、熱源機側の第2
の接続配管8を経て熱源機Aに流入した低温低圧の気液
二相冷媒と熱交換部13bで熱交換して凝縮液化され、
第3の流量制御装置12bで減圧されて室内機B,C,
Dから熱源機Aに流入した気液二相冷媒と合流する。こ
の結果、一部の冷媒が熱交換部13bで凝縮されるの
で、あたかも凝縮器が増加したように作用して室内機側
の負荷が増加したのと同様の効果があるので圧縮機の吐
出圧力が上昇することなく、異常停止せずに連続運転す
ることができる。また、圧縮機1の吐出温度が上限値を
超えると、暖房時流量制御装置制御手段24により第3
の流量制御装置12bの開度が増加され、圧縮機1より
吐出され4方弁2を通過した高温高圧のガス冷媒の一部
は、バイパス配管11bに流入し室内機B,C,Dから
室内側の第2の接続配管8b,8c,8d、第2の接続
点10、熱源機側の第2の接続配管8を経て熱源機Aに
流入した低温低圧の気液二相冷媒と熱交換部13bで熱
交換して凝縮液化され、第3の流量制御装置12bで減
圧されて室内機B,C,Dから熱源機Aに流入した気液
二相冷媒と合流する。この結果、一部の冷媒が熱交換部
13bで凝縮されるので、あたかも凝縮器が増加したよ
うに作用して室内機側の負荷が増加したのと同様の効果
があるので圧縮機の吐出圧力が低下し、吐出温度も低下
するため圧縮機の寿命も縮減されず、圧縮機の信頼性は
著しく向上する。
The solid arrows in the figure indicate the direction of refrigerant flow during cooling operation, and the broken arrows indicate the direction of refrigerant flow during heating operation. The operation on the refrigerant side during the cooling operation is the same as that of the air conditioner of the first embodiment shown in FIG. The operation on the refrigerant side during the heating operation is exactly the same as that of the conventional air conditioner shown in FIG. 9 except for the portions related to the heat exchange section 13b and the bypass pipe 11b, and therefore the description thereof is omitted. A portion related to 13b and the bypass pipe 11b will be described. That is, when the load on the indoor unit side is small and the load on the heat source unit side heat exchanger is large (in the case of an air-cooled heat exchanger, the intake air temperature of the heat exchanger, and in the case of a water-cooled heat exchanger, When the inlet water temperature of the heat exchanger is high), the third flow rate control device 12b is controlled by the heating flow rate control device control means 24 so that the pressure detected by the second pressure detection means 16 falls within a certain range. Then, a part of the high-temperature high-pressure gas refrigerant discharged from the compressor 1 and passing through the 4-way valve 2 flows into the bypass pipe 11b, and the indoor units B, C, and D are connected to the second connection pipe 8 on the indoor side.
b, 8c, 8d, the second connection pipe 10, the second heat source device side
The low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the heat source unit A through the connection pipe 8 and is condensed and liquefied by the heat exchange section 13b.
After the pressure is reduced by the third flow rate control device 12b, the indoor units B, C,
It joins the gas-liquid two-phase refrigerant flowing from D into the heat source unit A. As a result, since a part of the refrigerant is condensed in the heat exchange section 13b, there is the same effect as if the load on the indoor unit side increased by acting as if the condenser increased, so the discharge pressure of the compressor was increased. It is possible to operate continuously without abnormal stop without rising. Further, when the discharge temperature of the compressor 1 exceeds the upper limit value, the heating-time flow rate control device control means 24 causes the third time.
Of the high-temperature high-pressure gas refrigerant discharged from the compressor 1 and passing through the four-way valve 2 flows into the bypass pipe 11b and is discharged from the indoor units B, C, D The low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the heat source unit A via the second inner connecting pipes 8b, 8c, 8d, the second connecting point 10, and the second connecting pipe 8 on the heat source unit side, and the heat exchange section. The heat is exchanged in 13b to be condensed and liquefied, the pressure is reduced in the third flow rate control device 12b, and the refrigerant is combined with the gas-liquid two-phase refrigerant flowing from the indoor units B, C, and D into the heat source unit A. As a result, since a part of the refrigerant is condensed in the heat exchange section 13b, there is the same effect as if the load on the indoor unit side increased by acting as if the condenser increased, so the discharge pressure of the compressor was increased. And the discharge temperature are also reduced, the life of the compressor is not shortened, and the reliability of the compressor is significantly improved.

【0028】次に、第3の流量制御装置制御手段24の
制御内容を図7のフローチャートにそって説明する。図
7は暖房時流量制御装置制御手段24の制御内容を示す
フローチャートである。ステップ41にて第2の圧力検
出手段16の検出圧力Pd が予め設定された第1の設定
圧力P1 より大きいか否かをまたは第4の温度検出手段
19の検出温度Td が予め設定された上限値Tdmaxより
大きいか否かを判定し、少なくともPd >P1 またはT
d >Tdmaxのいずれかであればステップ42に進んで第
3の流量制御装置12bの開度を増加してステップ41
に戻り、Pd ≦P1 かつTd ≦Tdmaxならばステップ4
3へ進む。ステップ43ではPd が予め第1の設定圧力
1 より小さく設定された第2の設定圧力P2 より小さ
いか否かを判定しPd <P2 ならばステップ44に進ん
で第3の流量制御装置12bの開度を減少してステップ
41に戻り、Pd >P2 ならば第3の流量制御装置12
bの開度はそのままとしてステップ41に戻る。このよ
うにして、第3の流量制御装置12bは第2の圧力検出
手段16の検出圧力Pd が一定範囲内かつ圧縮機の吐出
温度が上限値以下となるように暖房時流量制御装置制御
手段24によって制御される。
Next, the control contents of the third flow rate control device control means 24 will be described with reference to the flowchart of FIG. FIG. 7 is a flowchart showing the control contents of the heating-time flow rate control device control means 24. In step 41, it is determined whether the detected pressure P d of the second pressure detecting means 16 is larger than the preset first set pressure P 1 or the detected temperature T d of the fourth temperature detecting means 19 is preset. Is determined to be greater than the upper limit value T dmax , and at least P d > P 1 or T
If either d > T dmax, the routine proceeds to step 42, where the opening degree of the third flow rate control device 12b is increased, and then step 41
Returning to step 4, if P d ≤P 1 and T d ≤T dmax , step 4
Go to 3. Proceed to the second set pressure P 2 to determine a smaller or not P d <P 2 if step 44 In step 43 P d is set smaller than the first set pressure P 1 in advance third flow rate The opening degree of the control device 12b is decreased and the process returns to step 41. If P d > P 2 , the third flow rate control device 12
The opening of b is left unchanged, and the process returns to step 41. In this way, the third flow rate controller 12b and the second pressure detecting means 16 for detecting the pressure P d is constant range and the heating time of the flow control device controlling means as the discharge temperature of the compressor is equal to or less than the upper limit value Controlled by 24.

【0029】実施例3.尚、上記実施例では熱源機側の
第1の接続配管7と室内側の第1の接続配管7b,7
c,7dは第1の接続点9の一点で接続され、また熱源
機側の第2の接続配管8と室内側の第2の接続配管8
b,8c,8dは第2の接続点10の一点で接続されて
いるが、図8に示すように第1の接続点が複数点、第2
の接続点が複数点である場合でも同様な作用効果を奏
す。
Example 3. In the above embodiment, the first connection pipe 7 on the heat source device side and the first connection pipes 7b, 7 on the indoor side are provided.
c and 7d are connected at one point of the first connection point 9, and the second connection pipe 8 on the heat source unit side and the second connection pipe 8 on the indoor side
Although b, 8c, and 8d are connected at one point of the second connection point 10, as shown in FIG.
Even when there are a plurality of connecting points, the same operational effect is obtained.

【0030】実施例4 尚、上記実施例では1台の熱源機に対して3台の室内機
が接続されているが、室内機の台数は1台でも、また、
2台でも、また4台以上でも同様の作用効果を奏す。
Embodiment 4 In the above embodiment, three indoor units are connected to one heat source unit, but the number of indoor units may be one, or
Similar effects can be obtained with two or more than four units.

【0031】[0031]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0032】請求項1による空気調和装置においては、
熱源機側熱交換器と第1の流量制御装置とを接続する配
管途中から分岐し、第2の流量制御装置を介して圧縮機
の吸入側低圧配管に到るバイパス配管と、このバイパス
配管の圧縮機側の一端と第2の流量制御装置とを接続す
る配管と、熱源機側熱交換器と第1の流量制御装置とを
接続する配管との間とで熱交換を行う熱交換部と、上記
圧縮機の吐出配管に設けた第2の圧力検出手段により検
出された圧力と、上記熱交換部と上記第1の流量制御装
置との間に設けた第2の温度検出手段により検出された
検出温度とから演算される第1の過冷却度が予め設定さ
れた目標範囲内となるように上記第2の流量制御装置を
制御する冷房時流量制御装置制御手段とを設けたことに
より、第1の流量制御装置流入側冷媒の過冷却度を常に
所定の範囲に確保することができ、室内機に流入する冷
媒の流量を第1の流量制御器によって的確に制御するこ
とができる。
In the air conditioner according to claim 1,
A bypass pipe that branches from the middle of the pipe connecting the heat source side heat exchanger and the first flow rate control device and reaches the suction side low pressure pipe of the compressor via the second flow rate control device; A heat exchange section for exchanging heat between a pipe connecting one end of the compressor and the second flow rate control device and a pipe connecting the heat source side heat exchanger and the first flow rate control device; A pressure detected by a second pressure detecting means provided in the discharge pipe of the compressor, and a second temperature detecting means provided between the heat exchange section and the first flow rate control device. By providing the cooling-time flow rate control device control means for controlling the second flow rate control device so that the first degree of supercooling calculated from the detected temperature is within the preset target range, The first flow rate control device always ensures the degree of supercooling of the inflow side refrigerant within a predetermined range Rukoto can, the flow rate of refrigerant flowing into the indoor unit can be accurately controlled by the first flow rate controller.

【0033】請求項2による空気調和装置においては、
さらに熱源機側熱交換器及び室内機取付け位置の高低差
に応じて入力する高低差入力手段と、上記高低差入力手
段の入力値に応じて第1の過冷却度目標範囲を決定する
過冷却度制御目標範囲決定手段とを設けたことにより、
熱源機側熱交換器の取付け位置と、室内機の取付け位置
との高低差が大きくても第1の流量制御装置流入側冷媒
の過冷却度を所定範囲に確保し、常に液単相状態とする
ことができるので室内機に供給する冷媒流量を第1の流
量制御装置によって的確に制御することができる。
In the air conditioner according to claim 2,
Further, a height difference input means for inputting according to the height difference between the heat source side heat exchanger and the indoor unit mounting position, and supercooling for determining the first target subcooling degree range according to the input value of the height difference input means. By providing the degree control target range determination means,
Even if there is a large difference in height between the mounting position of the heat source side heat exchanger and the mounting position of the indoor unit, the subcooling degree of the inflow side refrigerant of the first flow rate control device is ensured within a predetermined range, and the liquid single phase state is always maintained. Therefore, the flow rate of the refrigerant supplied to the indoor unit can be accurately controlled by the first flow rate control device.

【0034】また、請求項3による空気調和装置におい
ては、さらに熱源機側熱交換器と室内機の第1の流量制
御装置とを接続する接続配管の長さに応じて入力する配
管長入力手段と、上記配管長入力手段への入力値に応じ
て上記第1の過冷却度の目標範囲を決定する過冷却度制
御目標範囲決定手段とを設けたことにより、上記接続配
管が長く、摩擦損失による圧力損失があっても第1の流
量制御装置流入側冷媒の過冷却度を所定範囲に確保して
常に液単相状態とすることができるので室内機に供給す
る冷媒流量を第1の流量制御装置によって的確に制御す
ることができる。
Further, in the air conditioner according to the third aspect, the pipe length input means for further inputting in accordance with the length of the connecting pipe connecting the heat source side heat exchanger and the first flow rate control device of the indoor unit. And the supercooling degree control target range determining means for determining the target range of the first supercooling degree in accordance with the input value to the pipe length input means, whereby the connecting pipe is long and the friction loss is large. Even if there is a pressure loss due to the first flow rate control device, it is possible to secure the subcooling degree of the refrigerant on the inflow side of the first flow rate device within a predetermined range and always maintain the liquid single-phase state. It can be precisely controlled by the control device.

【0035】また、請求項4による空気調和装置におい
ては、熱源機側熱交換器と第1の流量制御装置とを接続
する配管途中から分岐し、第2の流量制御装置を介して
圧縮機の吸入側低圧配管に到るバイパス配管と、上記圧
縮機の吐出配管に設けた第2の圧力検出手段により検出
された検出圧力と、上記熱源機側熱交換器と上記第1の
流量制御装置とを接続する配管に設けた第3の温度検出
手段により検出された検出温度とから演算される第2の
過冷却度に基づき上記第2の流量制御装置を制御する冷
房時流量制御装置制御手段とを設けたことにより、熱源
機側熱交換器内に液冷媒が占める割合を一定範囲に抑制
することができ、圧縮機高圧側圧力が過上昇して保護装
置が作動したり、圧縮機の消費電力の増大したりするこ
とを防止することができる。
Further, in the air conditioner according to a fourth aspect of the present invention, the heat source unit side heat exchanger is branched from the middle of the pipe connecting the first flow rate control device to the compressor through the second flow rate control device. By-pass piping reaching the suction-side low-pressure piping, detected pressure detected by second pressure detecting means provided in the discharge piping of the compressor, the heat source side heat exchanger, and the first flow rate control device A cooling-time flow rate control device control means for controlling the second flow rate control device based on a second degree of supercooling calculated from a detected temperature detected by a third temperature detection means provided in a pipe connecting By providing the, it is possible to suppress the proportion of the liquid refrigerant in the heat exchanger on the heat source unit side within a certain range, the pressure on the high pressure side of the compressor rises excessively, and the protective device operates, and the consumption of the compressor is reduced. Preventing an increase in power It can be.

【0036】請求項5による空気調和装置においては、
熱源機側熱交換器と第1の流量制御装置とを接続する配
管途中から分岐し、第2の流量制御装置を介して圧縮機
の吸入側低圧配管に到るバイパス配管と、圧縮機の吐出
配管に設けた第4の温度検出手段により検出された検出
温度が予め設定された設定温度を超えると上記第2の流
量制御装置の開度を増加するように制御する冷房時流量
制御装置制御手段とを設けたことにより、常に圧縮機の
吐出ガス温度が過上昇することなく、圧縮機の信頼性が
向上するという効果がある。
In the air conditioner according to claim 5,
A bypass pipe that branches from the middle of the pipe connecting the heat source side heat exchanger and the first flow rate control device and reaches the suction side low pressure pipe of the compressor via the second flow rate control device, and the discharge of the compressor. When the detected temperature detected by the fourth temperature detecting means provided in the pipe exceeds a preset temperature, the cooling-time flow rate control device control means is controlled to increase the opening degree of the second flow rate control device. The provision of and has the effect that the discharge gas temperature of the compressor does not always rise excessively and the reliability of the compressor is improved.

【0037】請求項6による空気調和装置においては、
熱源機側熱交換器と第1の流量制御装置とを接続する配
管と、上記切換弁と上記室内側熱交換器とを接続する配
管との間を第3の流量制御装置を介して接続するバイパ
ス配管と、上記圧縮機の吐出配管に設けた第2の圧力検
出手段と、暖房運転時において、上記第2の圧力検出手
段の検出圧力に基づき上記第3の流量制御装置の開度を
制御する暖房時流量制御装置制御手段とを設けたことに
より、暖房運転において室内側の負荷が小さく、かつ熱
源機側熱交換器の負荷が大きい場合(空冷式熱交換器の
場合には熱交換器の吸込み空気温度、水冷式熱交換器の
場合には熱交換器の入口水温が高い場合など)でも、圧
縮機の吐出圧力が過上昇することなく、異常停止せずに
運転を継続することができる。
In the air conditioner according to claim 6,
A pipe connecting the heat source unit side heat exchanger and the first flow rate control device and a pipe connecting the switching valve and the indoor side heat exchanger are connected via a third flow rate control device. The bypass pipe, the second pressure detecting means provided in the discharge pipe of the compressor, and the opening degree of the third flow rate control device during heating operation based on the pressure detected by the second pressure detecting means. In the heating operation, the load on the indoor side is small and the load on the heat source unit side heat exchanger is large (in the case of the air-cooling type heat exchanger, the heat exchanger is provided). Even if the intake air temperature of the compressor is high, and in the case of a water-cooled heat exchanger, the inlet water temperature of the heat exchanger is high), the discharge pressure of the compressor does not rise excessively and operation can be continued without abnormal stop. it can.

【0038】請求項7による空気調和装置においては、
熱源機側熱交換器と第1の流量制御装置とを接続する配
管と、切換弁と室内側熱交換器とを接続する配管との間
を第3の流量制御装置を介して接続するバイパス配管
と、上記圧縮機の吐出配管に設けた第4の温度検出手段
と、暖房運転時において、上記第4の温度検出手段の検
出温度が設定温度を超えると上記3の流量制御装置の開
度を増加するように制御する暖房時流量制御装置とを設
けたことにより、暖房運転において、室内機側の負荷が
小さく、かつ熱源機側熱交換器の負荷が大きい場合で
も、圧縮機の吐出ガス温度が過上昇することなく、圧縮
機の信頼性が向上するという効果がある。
In the air conditioner according to claim 7,
By-pass pipe connecting between the pipe connecting the heat source unit side heat exchanger and the first flow rate control device and the pipe connecting the switching valve and the indoor side heat exchanger via the third flow rate control device And a fourth temperature detecting means provided in the discharge pipe of the compressor, and when the temperature detected by the fourth temperature detecting means exceeds a set temperature during the heating operation, the opening degree of the flow rate control device of the third is changed. By providing the heating-time flow rate control device that controls to increase, even in the heating operation, even if the load on the indoor unit side is small and the load on the heat source side heat exchanger is large, the discharge gas temperature of the compressor is increased. There is an effect that the reliability of the compressor is improved without increasing excessively.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a first embodiment of the present invention.

【図2】この発明の実施例1による空気調和装置の第2
の流量制御装置の制御内容を示す制御ブロック図であ
る。
FIG. 2 is a second air conditioner according to the first embodiment of the present invention.
It is a control block diagram showing the control contents of the flow control device.

【図3】この発明の実施例による空気調和装置の第2の
流量制御装置の開度と第1の過冷却度の関係を示す特性
図である。
FIG. 3 is a characteristic diagram showing the relationship between the opening degree of the second flow rate control device of the air conditioner according to the embodiment of the present invention and the first degree of supercooling.

【図4】この発明の実施例1による空気調和装置の冷房
時流量制御装置制御手段の制御内容を示すフローチャー
トである。
FIG. 4 is a flowchart showing the control contents of the cooling-time flow rate control device control means of the air conditioner according to the first embodiment of the present invention.

【図5】この発明の実施例2による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 5 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a second embodiment of the present invention.

【図6】この発明の実施例2による空気調和装置の第3
の流量制御装置の制御内容を示す制御ブロック図であ
る。
FIG. 6 is a third air conditioner according to the second embodiment of the present invention.
It is a control block diagram showing the control contents of the flow control device.

【図7】この発明の実施例2による空気調和装置の暖房
時流量制御装置制御手段の制御内容を示すフローチャー
トである。
FIG. 7 is a flowchart showing the control contents of a heating time flow rate control device control means of an air conditioner according to a second embodiment of the present invention.

【図8】この発明の実施例3による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 8 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a third embodiment of the present invention.

【図9】従来の空気調和装置の冷媒系を中心とする全体
構成図である。
FIG. 9 is an overall configuration diagram centering on a refrigerant system of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 4方弁 3 熱源機側熱交換器 5 室内側熱交換器 6 第1の流量制御装置 11a,11b バイパス配管 12a 第2の流量制御装置 12b 第3の流量制御装置 13a,13b 熱交換部 A 熱源機 B,C,D 室内機 14 第1の圧力検出手段 15 第1の温度検出手段 16 第2の圧力検出手段 17 第3の温度検出手段 18 第2の温度検出手段 19 第4の温度検出手段 20 高低差入力手段 21 配管長入力手段 22 過冷却度制御目標範囲決定手段 23 冷房時流量制御装置制御手段 24 暖房時流量制御装置制御手段 1 Compressor 2 4-way valve 3 Heat source side heat exchanger 5 Indoor side heat exchanger 6 First flow rate control device 11a, 11b Bypass piping 12a Second flow rate control device 12b Third flow rate control device 13a, 13b Heat Exchange unit A Heat source unit B, C, D Indoor unit 14 First pressure detecting unit 15 First temperature detecting unit 16 Second pressure detecting unit 17 Third temperature detecting unit 18 Second temperature detecting unit 19 Fourth Temperature detection means 20 Height difference input means 21 Pipe length input means 22 Supercooling degree control target range determination means 23 Cooling time flow rate control device control means 24 Heating time flow rate control device control means

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱源機側熱交換器を備えた熱源
機と、室内側熱交換器、上記室内側熱交換器の上記熱源
機側熱交換器に対応する一端に接続された第1の流量制
御装置を備えた室内機とを配管接続した冷媒回路におい
て、上記熱源機側熱交換器と上記第1の流量制御装置と
を接続する配管途中から分岐し、第2の流量制御装置を
介して上記圧縮機の吸入側低圧配管に到るバイパス配管
と、上記バイパス配管の圧縮機側の一端と上記第2の流
量制御装置とを接続する配管と、上記熱源機側熱交換器
と上記第1の流量制御装置とを接続する配管との間とで
熱交換を行う熱交換部と、上記圧縮機の吐出配管に設け
た第2の圧力検出手段により検出された検出圧力と、上
記熱交換部と上記第1の流量制御装置との間に設けた第
2の温度検出手段により検出された検出温度とから演算
される第1の過冷却度が予め設定された目標範囲内とな
るように上記第2の流量制御装置を制御する冷房時流量
制御装置制御手段とを設けたことを特徴とする空気調和
装置。
1. A heat source unit including a compressor and a heat source unit side heat exchanger, an indoor side heat exchanger, and a first unit connected to one end of the indoor side heat exchanger corresponding to the heat source unit side heat exchanger. In the refrigerant circuit in which the indoor unit equipped with the first flow rate control device is pipe-connected, the second flow rate control device is branched from the middle of the pipe connecting the heat source unit side heat exchanger and the first flow rate control device. A bypass pipe that reaches the suction side low-pressure pipe of the compressor, a pipe that connects one end of the bypass pipe on the compressor side to the second flow rate control device, and a heat source side heat exchanger. A heat exchange section for exchanging heat with a pipe connecting to the first flow rate control device; a detected pressure detected by a second pressure detecting means provided in the discharge pipe of the compressor; A second temperature detecting means provided between the heat exchange section and the first flow rate control device. And a cooling-time flow rate control device control means for controlling the second flow rate control device so that the first degree of supercooling calculated from the detected temperature detected by the second temperature control device falls within a preset target range. An air conditioner characterized by the above.
【請求項2】 上記熱源機側熱交換器及び上記室内機取
付け位置の高低差に応じて入力する高低差入力手段を設
け、上記高低差入力手段の入力値に応じて上記第1の過
冷却度の目標範囲を決定する過冷却度制御目標範囲決定
手段を設けたことを特徴とする請求項第1項記載の空気
調和装置。
2. A height difference input means for inputting in accordance with a height difference between the heat source side heat exchanger and the indoor unit mounting position is provided, and the first subcooling is performed according to an input value of the height difference input means. The air conditioner according to claim 1, further comprising supercooling degree control target range determining means for determining a target range of the degree of cooling.
【請求項3】 熱源機側熱交換器と室内機の第1の流量
制御装置とを接続する接続配管の長さに応じて入力する
配管長入力手段を設け、上記配管長入力手段の入力値に
応じて上記第1の過冷却度の目標範囲を決定する過冷却
度制御目標範囲決定手段を設けたことを特徴とする請求
項第1項記載の空気調和装置。
3. A pipe length input means for inputting according to the length of a connection pipe connecting the heat source side heat exchanger and the first flow rate control device of the indoor unit is provided, and the input value of the pipe length input means. The air conditioner according to claim 1, further comprising supercooling degree control target range determining means for determining a target range of the first supercooling degree according to the above.
【請求項4】 圧縮機、熱源機側熱交換器を備えた熱源
機と、室内側熱交換器、上記室内側熱交換器の上記熱源
機側熱交換器に対応する一端に接続された第1の流量制
御装置を備えた室内機とを配管接続した冷媒回路におい
て、上記熱源機側熱交換器と上記第1の流量制御装置と
を接続する配管途中から分岐し、第2の流量制御装置を
介して上記圧縮機の吸入側低圧配管に到るバイパス配管
と、上記バイパス配管の圧縮機側の一端と上記第2の流
量制御装置とを接続する配管と、上記熱源機側熱交換器
と上記第1の流量制御装置とを接続する配管との間とで
熱交換を行う熱交換部と、上記圧縮機の吐出配管に設け
た第2の圧力検出手段により検出された検出圧力と、上
記熱源機側熱交換器と上記第1の流量制御装置とを接続
する配管に設けた第3の温度検出手段により検出された
検出温度とから演算される第2の過冷却度に基づき上記
第2の流量制御装置を制御する冷房時流量制御装置制御
手段とを設けたことを特徴とする空気調和装置。
4. A heat source unit including a compressor and a heat source unit side heat exchanger, an indoor side heat exchanger, and a first unit connected to one end of the indoor side heat exchanger corresponding to the heat source unit side heat exchanger. In the refrigerant circuit in which the indoor unit equipped with the first flow rate control device is pipe-connected, the second flow rate control device is branched from the middle of the pipe connecting the heat source unit side heat exchanger and the first flow rate control device. A bypass pipe that reaches the suction side low-pressure pipe of the compressor, a pipe that connects one end of the bypass pipe on the compressor side to the second flow rate control device, and a heat source side heat exchanger. A heat exchange section for exchanging heat with a pipe connecting to the first flow rate control device; a detected pressure detected by a second pressure detecting means provided in the discharge pipe of the compressor; The first provided on the pipe connecting the heat source unit side heat exchanger and the first flow rate control device. The cooling-time flow rate control device control means for controlling the second flow rate control device based on the second degree of supercooling calculated from the temperature detected by the temperature detection means of No. 3 is provided. Air conditioner.
【請求項5】 圧縮機、熱源機側熱交換器を備えた熱源
機と、室内側熱交換器、上記室内側熱交換器の上記熱源
機側熱交換器に対応する一端に接続された第1の流量制
御装置を備えた室内機とを配管接続した冷媒回路におい
て、上記熱源機側熱交換器と上記第1の流量制御装置と
を接続する配管途中から分岐し、第2の流量制御装置を
介して上記圧縮機の吸入側低圧配管に到るバイパス配管
と、上記バイパス配管の圧縮機側の一端と上記第2の流
量制御装置とを接続する配管と、上記熱源機側熱交換器
と上記第1の流量制御装置とを接続する配管との間とで
熱交換を行う熱交換部と、上記圧縮機の吐出配管に設け
た第4の温度検出手段により検出された検出温度が予め
設定された設定温度を超えると上記第2の流量制御装置
の開度を増加するように制御する冷房時流量制御装置制
御手段とを設けたことを特徴とする空気調和装置。
5. A heat source unit having a compressor and a heat source unit side heat exchanger, an indoor side heat exchanger, and a first unit connected to one end of the indoor side heat exchanger corresponding to the heat source unit side heat exchanger. In the refrigerant circuit in which the indoor unit equipped with the first flow rate control device is pipe-connected, the second flow rate control device is branched from the middle of the pipe connecting the heat source unit side heat exchanger and the first flow rate control device. A bypass pipe that reaches the suction side low-pressure pipe of the compressor, a pipe that connects one end of the bypass pipe on the compressor side to the second flow rate control device, and a heat source side heat exchanger. The heat exchange part for exchanging heat with the pipe connecting the first flow rate control device and the temperature detected by the fourth temperature detecting means provided in the discharge pipe of the compressor are preset. If the set temperature is exceeded, the opening degree of the second flow rate control device will be increased. An air conditioner characterized by being provided with a cooling-time flow rate control device control means for performing such control.
【請求項6】 圧縮機、切換弁、熱源機側熱交換器を備
えた熱源機と、室内側熱交換器、上記室内側熱交換器の
上記熱源機側熱交換器に対応する一端に接続された第1
の流量制御装置を備えた室内機とを配管接続した冷媒回
路において、上記熱源機側熱交換器と上記第1の流量制
御装置とを接続する配管と、上記切換弁と上記室内側熱
交換器とを接続する配管との間を第3の流量制御装置を
介して接続するバイパス配管と、上記圧縮機の吐出配管
に設けた第2の圧力検出手段と、暖房運転時において、
上記第2の圧力検出手段の検出圧力に基づき上記第3の
流量制御装置の開度を制御する暖房時流量制御装置制御
手段とを設けたことを特徴とする空気調和装置。
6. A heat source unit including a compressor, a switching valve, and a heat source unit side heat exchanger, and an indoor side heat exchanger, and one end of the indoor side heat exchanger corresponding to the heat source unit side heat exchanger. First done
In a refrigerant circuit pipe-connected to an indoor unit equipped with the flow rate control device, a pipe connecting the heat source unit side heat exchanger and the first flow rate control device, the switching valve and the indoor side heat exchanger By-pass pipe connecting between the pipe connecting with and through the third flow rate control device, second pressure detecting means provided in the discharge pipe of the compressor, and during heating operation,
An air-conditioning apparatus comprising: a heating time flow rate control device control means for controlling the opening of the third flow rate control device based on the pressure detected by the second pressure detection means.
【請求項7】 圧縮機、切換弁、熱源機側熱交換器を備
えた熱源機と、室内側熱交換器、上記室内側熱交換器の
上記熱源機側熱交換器に対応する一端に接続された第1
の流量制御装置を備えた室内機とを配管接続した冷媒回
路において、上記熱源機側熱交換器と上記第1の流量制
御装置とを接続する配管と、上記切換弁と上記室内側熱
交換器とを接続する配管との間を第3の流量制御装置を
介して接続するバイパス配管と、上記圧縮機の吐出配管
に設けた第4の温度検出手段と、暖房運転時において、
上記第4の温度検出手段の検出温度が設定温度を超える
と上記第3の流量制御装置の開度を増加するように制御
する暖房時流量制御装置制御手段とを設けたことを特徴
とする空気調和装置。
7. A heat source unit including a compressor, a switching valve, and a heat source unit side heat exchanger, and an indoor side heat exchanger, and one end of the indoor side heat exchanger corresponding to the heat source unit side heat exchanger. First done
In a refrigerant circuit pipe-connected to an indoor unit equipped with the flow rate control device, a pipe connecting the heat source unit side heat exchanger and the first flow rate control device, the switching valve and the indoor side heat exchanger By-pass pipe connecting between the pipe connecting to and via the third flow rate control device, fourth temperature detecting means provided in the discharge pipe of the compressor, and during heating operation,
An air-flow controller for heating, which controls to increase the opening of the third flow controller when the temperature detected by the fourth temperature detector exceeds a set temperature. Harmony device.
JP05079293A 1993-03-11 1993-03-11 Air conditioner Expired - Lifetime JP3541394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05079293A JP3541394B2 (en) 1993-03-11 1993-03-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05079293A JP3541394B2 (en) 1993-03-11 1993-03-11 Air conditioner

Publications (2)

Publication Number Publication Date
JPH06265232A true JPH06265232A (en) 1994-09-20
JP3541394B2 JP3541394B2 (en) 2004-07-07

Family

ID=12868656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05079293A Expired - Lifetime JP3541394B2 (en) 1993-03-11 1993-03-11 Air conditioner

Country Status (1)

Country Link
JP (1) JP3541394B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009118A1 (en) * 1996-08-27 1998-03-05 Daikin Industries, Ltd. Air conditioner
JP2001227823A (en) * 2000-02-17 2001-08-24 Daikin Ind Ltd Refrigerating device
US6581397B1 (en) 1999-10-18 2003-06-24 Daikin Industries, Ltd. Refrigerating device
WO2005019742A1 (en) * 2003-08-25 2005-03-03 Daikin Industries, Ltd. Freezing apparatus
JP2005121362A (en) * 2003-10-16 2005-05-12 Lg Electronics Inc Controller and method for controlling refrigerant temperature for air conditioner
JP2006125738A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Refrigeration unit
WO2007026620A1 (en) * 2005-08-29 2007-03-08 Daikin Industries, Ltd. Air conditioner
JP2007127302A (en) * 2005-11-01 2007-05-24 Daikin Ind Ltd Refrigeration unit
JP2007163102A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioning system
KR100795568B1 (en) * 2006-11-10 2008-01-21 고려대학교 산학협력단 Apparatus for exchaging heat using electronic expansion valve, external unit using electronic expansion valve and system for multi air-conditioner
WO2008090926A1 (en) * 2007-01-23 2008-07-31 Daikin Industries, Ltd. Air conditioner
WO2008090927A1 (en) * 2007-01-23 2008-07-31 Daikin Industries, Ltd. Air conditioner
JP2009014268A (en) * 2007-07-04 2009-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009014322A (en) * 2007-07-09 2009-01-22 Mitsubishi Electric Corp Air conditioner
JP2009139014A (en) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp Air conditioner and operation control method for it
WO2009139187A1 (en) * 2008-05-15 2009-11-19 ダイキン工業株式会社 Refrigeration device
WO2009150761A1 (en) * 2008-06-13 2009-12-17 三菱電機株式会社 Refrigeration cycle device and control method therefor
WO2010023894A1 (en) * 2008-08-28 2010-03-04 ダイキン工業株式会社 Air-conditioning device
JP2010054118A (en) * 2008-08-28 2010-03-11 Daikin Ind Ltd Air conditioner
JP2010054119A (en) * 2008-08-28 2010-03-11 Daikin Ind Ltd Air conditioner
JP2010065999A (en) * 2009-12-25 2010-03-25 Daikin Ind Ltd Air conditioner
JP2010230288A (en) * 2009-03-30 2010-10-14 Fujitsu General Ltd Branch unit
JP2011047552A (en) * 2009-08-26 2011-03-10 Mitsubishi Electric Corp Refrigerating cycle device and air conditioner
JP2011094810A (en) * 2009-09-30 2011-05-12 Fujitsu General Ltd Heat pump cycle apparatus
JP2011099626A (en) * 2009-11-06 2011-05-19 Panasonic Corp Refrigerating cycle device and hot water heating device using the same
JP2011099571A (en) * 2009-11-04 2011-05-19 Panasonic Corp Refrigerating cycle device and hot-water heating device using the same
KR101042472B1 (en) * 2008-12-30 2011-06-16 세협기계(주) Heat Pump System
JP2011179764A (en) * 2010-03-02 2011-09-15 Panasonic Corp Refrigeration cycle device
JP2011185507A (en) * 2010-03-08 2011-09-22 Panasonic Corp Refrigerating cycle device and hot water heating device including the same
WO2011125111A1 (en) * 2010-04-05 2011-10-13 三菱電機株式会社 Air conditioning and hot-water supply composite system
CN102419024A (en) * 2010-09-24 2012-04-18 松下电器产业株式会社 Refrigeration cycle apparatus and hot-water heating apparatus
WO2012101672A1 (en) 2011-01-26 2012-08-02 三菱電機株式会社 Air conditioner device
JP2012154574A (en) * 2011-01-27 2012-08-16 Panasonic Corp Refrigeration cycle apparatus and hydronic heater using the refrigeration cycle apparatus
JP2014153036A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Refrigerator
ITVI20130257A1 (en) * 2013-10-18 2015-04-19 Carel Ind Spa METHOD OF DRIVING A REFRIGERATED MACHINE EQUIPPED WITH AN ECONOMISER SYSTEM
JP2015117854A (en) * 2013-12-17 2015-06-25 株式会社富士通ゼネラル Air conditioning system
US9303906B2 (en) 2010-11-19 2016-04-05 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2016170575A1 (en) * 2015-04-20 2016-10-27 三菱電機株式会社 Refrigeration cycle apparatus
WO2016174750A1 (en) * 2015-04-28 2016-11-03 三菱電機株式会社 Air-conditioning device
CN104457072B (en) * 2014-11-20 2017-02-22 珠海格力电器股份有限公司 Electronic expansion valve control method and device and refrigeration/heating system
WO2017068649A1 (en) * 2015-10-20 2017-04-27 三菱電機株式会社 Heat pump system
WO2018167866A1 (en) * 2017-03-15 2018-09-20 三菱電機株式会社 Air conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215242A1 (en) * 2021-04-09 2022-10-13 三菱電機株式会社 Outdoor unit and air-conditioning device

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009118A1 (en) * 1996-08-27 1998-03-05 Daikin Industries, Ltd. Air conditioner
US6581397B1 (en) 1999-10-18 2003-06-24 Daikin Industries, Ltd. Refrigerating device
AU773284B2 (en) * 1999-10-18 2004-05-20 Daikin Industries, Ltd. Refrigerating device
JP2001227823A (en) * 2000-02-17 2001-08-24 Daikin Ind Ltd Refrigerating device
AU2004267299B2 (en) * 2003-08-25 2007-01-04 Daikin Industries, Ltd. Refrigeration system
JP2005069566A (en) * 2003-08-25 2005-03-17 Daikin Ind Ltd Freezer
EP1659348A1 (en) * 2003-08-25 2006-05-24 Daikin Industries, Ltd. Freezing apparatus
US7360372B2 (en) 2003-08-25 2008-04-22 Daikin Industries, Ltd. Refrigeration system
EP1659348A4 (en) * 2003-08-25 2013-12-11 Daikin Ind Ltd Freezing apparatus
WO2005019742A1 (en) * 2003-08-25 2005-03-03 Daikin Industries, Ltd. Freezing apparatus
CN100334407C (en) * 2003-08-25 2007-08-29 大金工业株式会社 Freezer apparatus
JP2005121362A (en) * 2003-10-16 2005-05-12 Lg Electronics Inc Controller and method for controlling refrigerant temperature for air conditioner
JP4704728B2 (en) * 2003-10-16 2011-06-22 エルジー エレクトロニクス インコーポレイティド Refrigerant temperature control device and control method for air conditioner
JP2006125738A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Refrigeration unit
JP4601392B2 (en) * 2004-10-29 2010-12-22 三洋電機株式会社 Refrigeration equipment
WO2007026620A1 (en) * 2005-08-29 2007-03-08 Daikin Industries, Ltd. Air conditioner
JP2007064510A (en) * 2005-08-29 2007-03-15 Daikin Ind Ltd Air conditioner
JP2007127302A (en) * 2005-11-01 2007-05-24 Daikin Ind Ltd Refrigeration unit
JP2007163102A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioning system
KR100795568B1 (en) * 2006-11-10 2008-01-21 고려대학교 산학협력단 Apparatus for exchaging heat using electronic expansion valve, external unit using electronic expansion valve and system for multi air-conditioner
WO2008090927A1 (en) * 2007-01-23 2008-07-31 Daikin Industries, Ltd. Air conditioner
WO2008090926A1 (en) * 2007-01-23 2008-07-31 Daikin Industries, Ltd. Air conditioner
US8302413B2 (en) 2007-01-23 2012-11-06 Daikin Industries, Ltd. Air conditioner
US8307668B2 (en) 2007-01-23 2012-11-13 Daikin Industries, Ltd. Air conditioner
JP2009014268A (en) * 2007-07-04 2009-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009014322A (en) * 2007-07-09 2009-01-22 Mitsubishi Electric Corp Air conditioner
JP2009139014A (en) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp Air conditioner and operation control method for it
WO2009139187A1 (en) * 2008-05-15 2009-11-19 ダイキン工業株式会社 Refrigeration device
EP2317250A1 (en) * 2008-05-15 2011-05-04 Daikin Industries, Ltd. Refrigeration device
EP2317250A4 (en) * 2008-05-15 2014-06-04 Daikin Ind Ltd Refrigeration device
US9163865B2 (en) 2008-06-13 2015-10-20 Mitsubishi Electric Corporation Refrigeration cycle device and method of controlling the same
JP5318099B2 (en) * 2008-06-13 2013-10-16 三菱電機株式会社 Refrigeration cycle apparatus and control method thereof
WO2009150761A1 (en) * 2008-06-13 2009-12-17 三菱電機株式会社 Refrigeration cycle device and control method therefor
JP2010054119A (en) * 2008-08-28 2010-03-11 Daikin Ind Ltd Air conditioner
JP2010054118A (en) * 2008-08-28 2010-03-11 Daikin Ind Ltd Air conditioner
WO2010023894A1 (en) * 2008-08-28 2010-03-04 ダイキン工業株式会社 Air-conditioning device
KR101042472B1 (en) * 2008-12-30 2011-06-16 세협기계(주) Heat Pump System
JP2010230288A (en) * 2009-03-30 2010-10-14 Fujitsu General Ltd Branch unit
JP2011047552A (en) * 2009-08-26 2011-03-10 Mitsubishi Electric Corp Refrigerating cycle device and air conditioner
JP2011094810A (en) * 2009-09-30 2011-05-12 Fujitsu General Ltd Heat pump cycle apparatus
JP2011099571A (en) * 2009-11-04 2011-05-19 Panasonic Corp Refrigerating cycle device and hot-water heating device using the same
JP2011099626A (en) * 2009-11-06 2011-05-19 Panasonic Corp Refrigerating cycle device and hot water heating device using the same
JP2010065999A (en) * 2009-12-25 2010-03-25 Daikin Ind Ltd Air conditioner
JP2011179764A (en) * 2010-03-02 2011-09-15 Panasonic Corp Refrigeration cycle device
JP2011185507A (en) * 2010-03-08 2011-09-22 Panasonic Corp Refrigerating cycle device and hot water heating device including the same
CN102844630B (en) * 2010-04-05 2015-01-28 三菱电机株式会社 Air conditioning and hot-water supply composite system
EP2557377A4 (en) * 2010-04-05 2014-12-03 Mitsubishi Electric Corp Air conditioning and hot-water supply composite system
EP2557377A1 (en) * 2010-04-05 2013-02-13 Mitsubishi Electric Corporation Air conditioning and hot-water supply composite system
CN102844630A (en) * 2010-04-05 2012-12-26 三菱电机株式会社 Air conditioning and hot-water supply composite system
WO2011125111A1 (en) * 2010-04-05 2011-10-13 三菱電機株式会社 Air conditioning and hot-water supply composite system
US9068766B2 (en) 2010-04-05 2015-06-30 Mitsubishi Electric Corporation Air-conditioning and hot water supply combination system
JP5634502B2 (en) * 2010-04-05 2014-12-03 三菱電機株式会社 Air conditioning and hot water supply complex system
CN102419024A (en) * 2010-09-24 2012-04-18 松下电器产业株式会社 Refrigeration cycle apparatus and hot-water heating apparatus
US9303906B2 (en) 2010-11-19 2016-04-05 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2012101672A1 (en) * 2011-01-26 2014-06-30 三菱電機株式会社 Air conditioner
WO2012101672A1 (en) 2011-01-26 2012-08-02 三菱電機株式会社 Air conditioner device
CN103229004A (en) * 2011-01-26 2013-07-31 三菱电机株式会社 Air conditioner device
CN103229004B (en) * 2011-01-26 2016-05-04 三菱电机株式会社 Aircondition
JP2012154574A (en) * 2011-01-27 2012-08-16 Panasonic Corp Refrigeration cycle apparatus and hydronic heater using the refrigeration cycle apparatus
JP2014153036A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Refrigerator
ITVI20130257A1 (en) * 2013-10-18 2015-04-19 Carel Ind Spa METHOD OF DRIVING A REFRIGERATED MACHINE EQUIPPED WITH AN ECONOMISER SYSTEM
US10184705B2 (en) 2013-10-18 2019-01-22 Carel Industries S.p.A. Actuation method of a refrigerating machine provided with an economizer apparatus
JP2015117854A (en) * 2013-12-17 2015-06-25 株式会社富士通ゼネラル Air conditioning system
CN104457072B (en) * 2014-11-20 2017-02-22 珠海格力电器股份有限公司 Electronic expansion valve control method and device and refrigeration/heating system
JPWO2016170575A1 (en) * 2015-04-20 2017-12-07 三菱電機株式会社 Refrigeration cycle equipment
CN107532830A (en) * 2015-04-20 2018-01-02 三菱电机株式会社 Refrigerating circulatory device
WO2016170575A1 (en) * 2015-04-20 2016-10-27 三菱電機株式会社 Refrigeration cycle apparatus
CN107532830B (en) * 2015-04-20 2019-12-20 三菱电机株式会社 Refrigeration cycle device
WO2016174750A1 (en) * 2015-04-28 2016-11-03 三菱電機株式会社 Air-conditioning device
JPWO2016174750A1 (en) * 2015-04-28 2017-11-24 三菱電機株式会社 Air conditioner
WO2017068649A1 (en) * 2015-10-20 2017-04-27 三菱電機株式会社 Heat pump system
JPWO2017068649A1 (en) * 2015-10-20 2018-03-29 三菱電機株式会社 Heat pump system
WO2018167866A1 (en) * 2017-03-15 2018-09-20 三菱電機株式会社 Air conditioning device
JPWO2018167866A1 (en) * 2017-03-15 2019-11-07 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP3541394B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
JPH06265232A (en) Device for air conditioning
EP1659348B1 (en) Freezing apparatus
US8353173B2 (en) Refrigerating cycle apparatus and operation control method therefor
KR101158318B1 (en) Air conditioner
JP6479162B2 (en) Air conditioner
CN104807229A (en) Multi-split air conditioner and control method thereof
WO1998009118A1 (en) Air conditioner
JP2006250479A (en) Air conditioner
JP6109307B2 (en) Air conditioner
JP2936961B2 (en) Air conditioner
EP2878899A1 (en) Air conditioner
US7451615B2 (en) Refrigeration device
WO2020070793A1 (en) Refrigeration cycle apparatus
JP2000018737A (en) Air-conditioner
JPH0719641A (en) Air conditioning apparatus
JP7055239B2 (en) Air conditioner
JP3627101B2 (en) Air conditioner
JP7258129B2 (en) air conditioner
JP3482845B2 (en) Air conditioner
JP2018132218A (en) Air conditioning device
JP6716037B2 (en) Air conditioning system
JPH06317360A (en) Multi-chamber type air conditioner
JP2875665B2 (en) Air conditioner
JP3048658B2 (en) Refrigeration equipment
WO2024111432A1 (en) Air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

EXPY Cancellation because of completion of term