JP2001227823A - Refrigerating device - Google Patents
Refrigerating deviceInfo
- Publication number
- JP2001227823A JP2001227823A JP2000039467A JP2000039467A JP2001227823A JP 2001227823 A JP2001227823 A JP 2001227823A JP 2000039467 A JP2000039467 A JP 2000039467A JP 2000039467 A JP2000039467 A JP 2000039467A JP 2001227823 A JP2001227823 A JP 2001227823A
- Authority
- JP
- Japan
- Prior art keywords
- discharge temperature
- refrigerant
- temperature
- heat exchanger
- supercooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
Landscapes
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、R32(化学式
CH2F2)冷媒を含む作動冷媒を用いた冷凍装置に関す
る。TECHNICAL FIELD The present invention relates to a refrigeration apparatus using a working refrigerant containing R32 (chemical formula CH 2 F 2) refrigerant.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】従
来、冷凍装置としては、HCFC系冷媒を用いたヒート
ポンプ方式のものがある。この冷凍装置は、圧縮機と凝
縮器と電動弁と蒸発器を環状に接続した冷媒回路を有す
ると共に、凝縮器と電動弁との間に過冷却熱交換器を有
し、その過冷却熱交換器からのガス冷媒を圧縮機の液イ
ンジェクションや圧縮機の吸入側に戻している。しかし
ながら、上記冷凍装置では、冷媒をバイパスすることに
よって、冷媒循環量が低下するために成績係数COP(c
oefficient of performance)が低下するという問題があ
る。また、HCFC系冷媒は、オゾン層破壊係数やGW
P(地球温暖化係数)が大きく地球環境を悪化させるとい
う問題もある。2. Description of the Related Art Conventionally, as a refrigerating apparatus, there is a heat pump type using an HCFC-based refrigerant. This refrigerating apparatus has a refrigerant circuit in which a compressor, a condenser, a motor-operated valve, and an evaporator are connected in a ring shape, and has a supercooling heat exchanger between the condenser and the motor-operated valve. The gas refrigerant from the compressor is returned to the liquid injection of the compressor or to the suction side of the compressor. However, in the above-described refrigeration apparatus, since the refrigerant circulating amount is reduced by bypassing the refrigerant, the coefficient of performance COP (c
oefficient of performance). HCFC-based refrigerants have an ozone depletion potential and GW
There is also a problem that P (global warming potential) is large and deteriorates the global environment.
【0003】そこで、高COPを実現できると共に、オ
ゾン層を破壊しない低GWPのHFC系冷媒としてR3
2冷媒を用いることが考えられる。しかしながら、R3
2冷媒は、冷媒物性上、吐出温度がHCFC系冷媒に比
べて高いため、冷凍機油を劣化させて、信頼性が低下す
るという問題がある。[0003] Therefore, R3 is used as a low GWP HFC-based refrigerant which can realize a high COP and does not destroy the ozone layer.
It is conceivable to use two refrigerants. However, R3
Since the refrigerant 2 has a higher discharge temperature than the HCFC-based refrigerant due to the physical properties of the refrigerant, there is a problem that the refrigerating machine oil is deteriorated and the reliability is reduced.
【0004】そこで、この発明の目的は、R32冷媒を
含む作動媒体を用いて、効率を低下させることなく圧縮
機の吐出温度を最適にでき、COPと信頼性を向上でき
る冷凍装置を提供することにある。Accordingly, an object of the present invention is to provide a refrigeration apparatus which can optimize the discharge temperature of a compressor without lowering efficiency and improve COP and reliability by using a working medium containing R32 refrigerant. It is in.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するた
め、請求項1の冷凍装置は、圧縮機,凝縮器,主減圧手段
および蒸発器が環状に接続された冷媒回路と、上記凝縮
器と上記主減圧手段との間に配設された過冷却熱交換器
と、上記過冷却熱交換器を介して上記冷媒回路のガス側
と液側とをバイパスするバイパス配管と、上記バイパス
配管の上記過冷却熱交換器の上流側に配設された過冷却
用減圧手段とを備えた冷凍装置であって、R32冷媒ま
たはR32を少なくとも70重量%以上含む混合冷媒を
用いると共に、上記圧縮機の吐出温度を検出する吐出温
度センサと、上記吐出温度センサにより検出された吐出
温度を判定する吐出温度判定部と、上記吐出温度判定部
の判定結果に基づいて上記過冷却用減圧手段を制御し
て、上記バイパス配管に流れる冷媒量を制御する制御部
とを備えたことを特徴としている。According to a first aspect of the present invention, there is provided a refrigeration apparatus comprising: a refrigerant circuit in which a compressor, a condenser, a main pressure reducing means, and an evaporator are connected in a ring; A supercooling heat exchanger disposed between the main pressure reducing means, a bypass pipe for bypassing a gas side and a liquid side of the refrigerant circuit via the supercooling heat exchanger, What is claimed is: 1. A refrigerating apparatus comprising: a subcooling depressurizing means disposed upstream of a subcooling heat exchanger, wherein the refrigerant uses an R32 refrigerant or a mixed refrigerant containing at least 70% by weight or more of R32 and discharges the compressor. A discharge temperature sensor for detecting a temperature, a discharge temperature determining unit for determining a discharge temperature detected by the discharge temperature sensor, and controlling the supercooling pressure reducing means based on a determination result of the discharge temperature determining unit, Above bypass piping It is characterized in that a control unit for controlling the amount of coolant flowing through.
【0006】上記請求項1の冷凍装置によれば、上記圧
縮機から吐出されたR32冷媒(またはR32を少なく
とも70重量%以上含む混合冷媒)は、凝縮器で凝縮さ
れた後、上記主減圧手段で減圧された冷媒は上記蒸発器
で蒸発して、圧縮機の吸入側に戻る。このとき、上記過
冷却用減圧手段により減圧された冷媒は、上記バイパス
配管により過冷却熱交換器を介して冷媒回路のガス側か
ら蒸発器の下流の液側にバイパスされ、過冷却熱交換器
で凝縮器から主減圧手段に流れる冷媒を過冷却する。そ
して、上記吐出温度センサにより検出された吐出温度を
上記吐出温度判定部により判定し、その判定結果に基づ
いて上記制御部により過冷却用減圧手段を制御して、吐
出温度の高低に応じてバイパス配管に流れる冷媒量を大
小に制御することによって、吐出温度が高いときはバイ
パス冷媒量を多くして吐出温度を下げることが可能とな
る。したがって、冷媒物性上、吐出温度がHCFC系冷
媒に比べて高いR32冷媒(またはR32を少なくとも
70重量%以上含む混合冷媒)を用いても、効率を低下
させることなく最適な吐出温度にでき、COPと信頼性
を向上できる。なお、上記過冷却用減圧手段として電動
弁を用いて、電動弁の開度を制御してバイパス冷媒量を
制御してもよいし、過冷却用減圧手段として電磁弁とキ
ャピラリを組み合わせて、電磁弁の開閉によりバイパス
冷媒量を制御してもよい。According to the refrigerating apparatus of the first aspect, the R32 refrigerant (or the mixed refrigerant containing at least 70% by weight of R32) discharged from the compressor is condensed in a condenser and then the main decompression means. The refrigerant decompressed in step evaporates in the evaporator and returns to the suction side of the compressor. At this time, the refrigerant depressurized by the subcooling decompression means is bypassed from the gas side of the refrigerant circuit to the liquid side downstream of the evaporator via the subcooling heat exchanger by the bypass pipe, and the subcooling heat exchanger Supercools the refrigerant flowing from the condenser to the main pressure reducing means. Then, the discharge temperature detected by the discharge temperature sensor is determined by the discharge temperature determining unit, and the control unit controls the supercooling decompression unit based on the determination result. By controlling the amount of refrigerant flowing through the pipe to be large or small, when the discharge temperature is high, the amount of bypass refrigerant can be increased to lower the discharge temperature. Therefore, even if an R32 refrigerant (or a mixed refrigerant containing at least 70% by weight or more of R32) having a discharge temperature higher than that of the HCFC-based refrigerant is used in terms of refrigerant physical properties, the optimum discharge temperature can be obtained without lowering the efficiency. And reliability can be improved. In addition, an electric valve may be used as the supercooling pressure reducing means, the opening degree of the electric valve may be controlled to control the amount of the bypass refrigerant, or an electromagnetic valve and a capillary may be combined as the supercooling pressure reducing means, The amount of the bypass refrigerant may be controlled by opening and closing the valve.
【0007】また、請求項2の冷凍装置は、請求項1の
冷凍装置において、上記制御部は、上記吐出温度判定部
が上記吐出温度が上限設定値を越えたと判定すると、上
記バイパス配管に流れる冷媒量が多くなるように上記過
冷却用減圧手段を制御する一方、上記吐出温度判定部が
上記吐出温度が下限設定値未満であると判定すると、上
記バイパス配管に流れる冷媒量が少なくなるように上記
過冷却用減圧手段を制御することを特徴としている。According to a second aspect of the present invention, in the refrigerating apparatus according to the first aspect, the control section flows to the bypass pipe when the discharge temperature determining section determines that the discharge temperature has exceeded an upper limit set value. While controlling the supercooling pressure reducing means so that the refrigerant amount increases, if the discharge temperature determination unit determines that the discharge temperature is less than the lower limit set value, the refrigerant amount flowing through the bypass pipe is reduced. It is characterized in that the supercooling pressure reducing means is controlled.
【0008】上記請求項2の冷凍装置によれば、上記吐
出温度判定部が上記吐出温度が上限設定値を越えたと判
定すると、上記制御部によりバイパス配管に流れる冷媒
量が多くなるように上記過冷却用減圧手段を制御する。
一方、上記吐出温度判定部が上記吐出温度が下限設定値
未満であると判定すると、上記制御部は、バイパス配管
に流れる冷媒量が少なくなるように上記過冷却用減圧手
段を制御する。そうすることによって、効率を低下させ
ることなく、より最適な吐出温度制御ができる。According to the refrigerating apparatus of the second aspect, when the discharge temperature determining section determines that the discharge temperature has exceeded the upper limit set value, the control section controls the excess temperature so as to increase the amount of refrigerant flowing through the bypass pipe. The cooling pressure reducing means is controlled.
On the other hand, when the discharge temperature determination section determines that the discharge temperature is lower than the lower limit set value, the control section controls the supercooling pressure reducing means so that the amount of refrigerant flowing through the bypass pipe is reduced. By doing so, more optimal discharge temperature control can be performed without lowering the efficiency.
【0009】また、請求項3の冷凍装置は、請求項1ま
たは2の冷凍装置において、上記過冷却用減圧手段は、
過冷却用電動弁であって、上記凝縮器の凝縮温度を検出
する凝縮温度センサと、上記蒸発器の蒸発温度を検出す
る蒸発温度センサと、上記凝縮温度センサにより検出さ
れた凝縮温度と、上記蒸発温度センサにより検出された
蒸発温度と、上記過冷却用電動弁の開度に基づいて、目
標吐出温度を算出する目標吐出温度算出部とを備え、上
記制御部は、上記圧縮機の吐出温度が上記目標吐出温度
になるように、上記主減圧手段を制御することを特徴と
している。The refrigeration apparatus according to claim 3 is the refrigeration apparatus according to claim 1 or 2, wherein the subcooling decompression means comprises:
A motor valve for supercooling, a condensing temperature sensor for detecting a condensing temperature of the condenser, an evaporating temperature sensor for detecting an evaporating temperature of the evaporator, a condensing temperature detected by the condensing temperature sensor, A target discharge temperature calculating section for calculating a target discharge temperature based on an evaporating temperature detected by an evaporating temperature sensor and an opening of the electric motor valve for supercooling, wherein the control section controls a discharge temperature of the compressor. Is characterized in that the main pressure reducing means is controlled so as to reach the target discharge temperature.
【0010】上記請求項3の冷凍装置によれば、上記凝
縮温度センサにより検出された上記凝縮器の凝縮温度
と、上記蒸発温度センサにより検出された上記蒸発器の
蒸発温度と、上記過冷却用電動弁の開度に基づいて、上
記目標吐出温度算出部により運転状況(冷房/暖房および
圧縮機の運転周波数等)に適した目標吐出温度を算出す
る。上記目標吐出温度算出部により算出された目標吐出
温度に基づいて、上記制御部により上記主減圧手段を制
御して、上記冷媒回路に流れる冷媒量を制御することに
よって、圧縮機の吐出温度を目標吐出温度になるように
する。したがって、バイパス配管に流れる冷媒量すなわ
ち過冷却度に応じた最適な吐出温度に制御できる。According to the refrigeration apparatus of the third aspect, the condensation temperature of the condenser detected by the condensation temperature sensor, the evaporation temperature of the evaporator detected by the evaporation temperature sensor, and the Based on the opening degree of the motor-operated valve, the target discharge temperature calculating section calculates a target discharge temperature suitable for an operating condition (cooling / heating and operating frequency of the compressor, etc.). On the basis of the target discharge temperature calculated by the target discharge temperature calculation unit, the control unit controls the main pressure reducing unit to control the amount of refrigerant flowing in the refrigerant circuit, thereby setting the discharge temperature of the compressor to a target value. The discharge temperature is set. Therefore, it is possible to control the discharge temperature to an optimum value according to the amount of refrigerant flowing through the bypass pipe, that is, the degree of supercooling.
【0011】また、請求項4の冷凍装置は、請求項3の
冷凍装置において、上記蒸発器の蒸発器出口温度を検出
する蒸発器出口温度センサを備え、上記制御部は、上記
目標吐出温度算出部により算出された目標吐出温度およ
び上記蒸発器出口温度センサにより検出された蒸発器出
口温度に基づいて、上記主減圧手段および上記過冷却用
電動弁を制御することを特徴としている。The refrigerating apparatus according to a fourth aspect of the present invention is the refrigerating apparatus according to the third aspect, further comprising an evaporator outlet temperature sensor for detecting an evaporator outlet temperature of the evaporator, and the control unit calculates the target discharge temperature. The main pressure reducing means and the supercooling electric valve are controlled based on the target discharge temperature calculated by the section and the evaporator outlet temperature detected by the evaporator outlet temperature sensor.
【0012】上記請求項4の冷凍装置によれば、上記蒸
発器出口温度センサにより蒸発器の蒸発器出口温度を検
出し、上記目標吐出温度算出部により算出された目標吐
出温度および上記蒸発器出口温度センサにより検出され
た蒸発器出口温度に基づいて、上記制御部により主減圧
手段および過冷却用減圧手段を制御する。上記蒸発器出
口温度を圧縮機の吐出温度制御に用いることによって、
バイパス配管に流れる冷媒量すなわち過冷却度の制御性
を向上できる。According to the refrigeration apparatus of the fourth aspect, the evaporator outlet temperature sensor detects the evaporator outlet temperature of the evaporator, and the target discharge temperature calculated by the target discharge temperature calculator and the evaporator outlet temperature. Based on the evaporator outlet temperature detected by the temperature sensor, the control unit controls the main decompression unit and the subcooling decompression unit. By using the evaporator outlet temperature for controlling the discharge temperature of the compressor,
The controllability of the amount of refrigerant flowing through the bypass pipe, that is, the degree of supercooling, can be improved.
【0013】[0013]
【発明の実施の形態】以下、この発明の冷凍装置を図示
の実施の形態により詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The refrigeration system of the present invention will be described below in detail with reference to the embodiments shown in the drawings.
【0014】(第1実施形態)図1はこの発明の第1実
施形態の冷凍装置としてのヒートポンプ式の空気調和機
の概略構成を示す回路図であり、1は圧縮機、2は上記
圧縮機1の吐出側と接続された四路切換弁、3は上記四
路切換弁2と一端が接続された室外熱交換器、4は整流
手段としてのブリッジ回路、5は室内熱交換器5は上記
室内熱交換器5と四路切換弁2を介して接続されたアキ
ュムレータである。(First Embodiment) FIG. 1 is a circuit diagram showing a schematic configuration of a heat pump type air conditioner as a refrigeration apparatus according to a first embodiment of the present invention, wherein 1 is a compressor, and 2 is the compressor. 1 is a four-way switching valve connected to the discharge side, 3 is an outdoor heat exchanger having one end connected to the four-way switching valve 2, 4 is a bridge circuit as rectifying means, 5 is the indoor heat exchanger 5 is An accumulator connected to the indoor heat exchanger 5 via the four-way switching valve 2.
【0015】また、上記ブリッジ回路4は、一方向にの
み冷媒の流れを許容する逆止弁4A,4B,4C,4Dを
有し、入出力ポート2つと入力ポート,出力ポートを各
1つ有している。上記ブリッジ回路4の一方の入出力ポ
ートに室外熱交換器3を接続し、他方の入出力ポートに
室内熱交換器5を接続している。上記室外熱交換器3か
らの冷媒の流れを許容する方向に、逆止弁4Aを一方の
入出力ポートに接続し、室内熱交換器5からの冷媒の流
れを許容する方向に、逆止弁4Bを他方の入出力ポート
に接続すると共に、逆止弁4A,4Bを互いにつき合わ
せて出力ポートに接続している。一方、上記室内熱交換
器5への冷媒の流れを許容する方向に、逆止弁4Cを逆
止弁4Bが接続されている入出力ポートに接続し、室外
熱交換器3への冷媒の流れを許容する方向に、逆止弁4
Dを逆止弁4Aが接続されている入出力ポートに接続す
ると共に、逆止弁4C,4Dを互いにつき合わせて入力
ポートに接続している。The bridge circuit 4 has check valves 4A, 4B, 4C and 4D that allow the flow of the refrigerant only in one direction, and has two input / output ports, one input port and one output port. are doing. The outdoor heat exchanger 3 is connected to one input / output port of the bridge circuit 4, and the indoor heat exchanger 5 is connected to the other input / output port. The check valve 4A is connected to one of the input / output ports in a direction allowing the flow of the refrigerant from the outdoor heat exchanger 3, and the check valve is connected in a direction allowing the flow of the refrigerant from the indoor heat exchanger 5. 4B is connected to the other input / output port, and the check valves 4A and 4B are connected to the output port in contact with each other. On the other hand, the check valve 4C is connected to the input / output port to which the check valve 4B is connected in a direction allowing the flow of the refrigerant to the indoor heat exchanger 5, and the flow of the refrigerant to the outdoor heat exchanger 3 Check valve 4
D is connected to the input / output port to which the check valve 4A is connected, and the check valves 4C and 4D are connected to the input port in contact with each other.
【0016】そして、上記ブリッジ回路4の出力ポート
に配管31の一端を接続し、配管31の他端を過冷却熱
交換器11の外管11aの一端に接続している。一方、
上記ブリッジ回路4の入力ポートに配管32の一端を接
続し、配管32の他端を過冷却熱交換器11の外管11
aの他端に接続している。上記配管32に主減圧手段と
しての主電動弁EV1を配設している。そして、上記配
管31を過冷却用減圧手段としてのバイパス電動弁EV
2が配設されたバイパス配管33を介して過冷却熱交換
器11の内管11bの一端に接続している。一方上記過
冷却熱交換器11の内管11bの他端を、四路切換弁2
とアキュムレータ6との間にバイパス配管34を介して
接続している。こうして、上記ブリッジ回路4は、冷房
運転と暖房運転の切り替えにより室外熱交換器3と室内
熱交換器5との間で冷媒がどちらの方向に流れても、過
冷却熱交換器11から主電動弁EV1の方向のみに冷媒
が流れる。Then, one end of a pipe 31 is connected to the output port of the bridge circuit 4, and the other end of the pipe 31 is connected to one end of an outer pipe 11 a of the subcooling heat exchanger 11. on the other hand,
One end of the pipe 32 is connected to the input port of the bridge circuit 4, and the other end of the pipe 32 is connected to the outer pipe 11 of the subcooling heat exchanger 11.
Connected to the other end of a. A main motor-operated valve EV1 as main pressure reducing means is provided in the pipe 32. The pipe 31 is provided with a bypass electric valve EV as a subcooling pressure reducing means.
2 is connected to one end of an inner pipe 11b of the subcooling heat exchanger 11 via a bypass pipe 33 provided. On the other hand, the other end of the inner pipe 11b of the supercooling heat exchanger 11 is connected to the four-way switching valve 2
And the accumulator 6 via a bypass pipe 34. In this way, the bridge circuit 4 switches the main motor from the subcooling heat exchanger 11 regardless of the direction in which the refrigerant flows between the outdoor heat exchanger 3 and the indoor heat exchanger 5 by switching between the cooling operation and the heating operation. Refrigerant flows only in the direction of the valve EV1.
【0017】上記圧縮機1,四路切換弁2,室外熱交換器
3,主電動弁EV1,室内熱交換器5およびアキュムレー
タ6で冷媒回路を構成すると共に、作動媒体にR32冷
媒を用いている。The compressor 1, the four-way switching valve 2, the outdoor heat exchanger 3, the main motor-operated valve EV1, the indoor heat exchanger 5, and the accumulator 6 constitute a refrigerant circuit and use R32 refrigerant as a working medium. .
【0018】また、上記空気調和機には、圧縮機1の吐
出側の吐出温度を検出する吐出温度センサ21と、室外
熱交換器3に設けられ、室外熱交換器3の冷媒温度を検
出する凝縮温度センサまたは蒸発温度センサとしての温
度センサ22と、室内熱交換器5に設けられ、室内熱交
換器5の冷媒温度を検出する蒸発温度センサまたは凝縮
温度センサとしての温度センサ23と、各温度センサ2
2,23,24からの信号を受けて、冷房,暖房運転の制
御を行う制御部10とを備えている。なお、上記制御部
10は、マイクロコンピュータと入出力回路等で構成さ
れており、圧縮機1,主電動弁EV1およびバイパス電
動弁EV2等を制御する制御部10aと、温度センサ2
1により検出された吐出温度を判定する吐出温度判定部
10bと、温度センサ21〜23により検出された吐出
温度,凝縮温度および蒸発温度に基づいて、目標吐出温
度を算出する目標吐出温度算出部10cとを有してい
る。The air conditioner is provided with a discharge temperature sensor 21 for detecting the discharge temperature on the discharge side of the compressor 1 and the outdoor heat exchanger 3, and detects the refrigerant temperature of the outdoor heat exchanger 3. A temperature sensor 22 as a condensation temperature sensor or an evaporation temperature sensor; a temperature sensor 23 provided in the indoor heat exchanger 5 and detecting a refrigerant temperature of the indoor heat exchanger 5 as an evaporation temperature sensor or a condensation temperature sensor; Sensor 2
And a control unit 10 that receives signals from the control units 2, 23, and 24 and controls the cooling and heating operations. The control unit 10 includes a microcomputer, an input / output circuit, and the like. The control unit 10a controls the compressor 1, the main electric valve EV1, the bypass electric valve EV2, and the like, and the temperature sensor 2
And a target discharge temperature calculator 10c for calculating a target discharge temperature based on the discharge temperature, condensation temperature and evaporation temperature detected by the temperature sensors 21 to 23. And
【0019】上記構成の空気調和機において、冷房運転
を行う場合、四路切換弁2を実線で示す切り換え位置に
して、圧縮機1を起動すると、圧縮機1からの高温,高
圧の吐出冷媒は、四路切換弁2、室外熱交換器3、ブリ
ッジ回路4の逆止弁4A、過冷却熱交換器11、電動弁
13と流れる。そして、上記電動弁13で減圧された冷
媒は、ブリッジ回路4の逆止弁4D、室内熱交換器5、
四路切換弁2と流れ、四路切換弁2からアキュムレータ
6に戻る。このとき、上記過冷却熱交換器11におい
て、電動弁13に流入する冷媒を過冷却する。また、蒸
発器として機能する室内熱交換器5では、低温低圧の液
冷媒が蒸発し、蒸発後のガス冷媒は出口側から排出され
る。In the air conditioner having the above configuration, when performing the cooling operation, when the four-way switching valve 2 is set to the switching position shown by the solid line and the compressor 1 is started, the high-temperature, high-pressure discharge refrigerant from the compressor 1 is discharged. , The four-way switching valve 2, the outdoor heat exchanger 3, the check valve 4A of the bridge circuit 4, the supercooling heat exchanger 11, and the electric valve 13. The refrigerant decompressed by the electric valve 13 is supplied to the check valve 4D of the bridge circuit 4, the indoor heat exchanger 5,
It flows with the four-way switching valve 2 and returns to the accumulator 6 from the four-way switching valve 2. At this time, in the supercooling heat exchanger 11, the refrigerant flowing into the electric valve 13 is supercooled. In the indoor heat exchanger 5 functioning as an evaporator, the low-temperature and low-pressure liquid refrigerant evaporates, and the evaporated gas refrigerant is discharged from the outlet side.
【0020】また、暖房運転を行う場合、四路切換弁2
を点線で示す切り換え位置にして、圧縮機1を起動する
と、圧縮機1からの高温,高圧の吐出冷媒は、四路切換
弁2、室内熱交換器6、逆止弁5B、過冷却熱交換器1
1、電動弁13と流れる。そして、上記電動弁13で減
圧された冷媒は、ブリッジ回路4の逆止弁4C、室外熱
交換器3、四路切換弁2と流れ、四路切換弁2からアキ
ュムレータ6に戻る。このとき、上記過冷却熱交換器1
1の上流側の高温,高圧の液冷媒は、バイパス電動弁E
V2により膨張して、低温,低圧のガス冷媒となり、過
冷却熱交換器11内を流れて、電動弁13に流入する冷
媒を過冷却する。When performing the heating operation, the four-way switching valve 2
When the compressor 1 is started up with the switch position indicated by a dotted line, the high-temperature, high-pressure discharge refrigerant from the compressor 1 is supplied to the four-way switching valve 2, the indoor heat exchanger 6, the check valve 5B, and the supercooling heat exchange. Vessel 1
1. Flow with the electric valve 13. The refrigerant decompressed by the electric valve 13 flows through the check valve 4C of the bridge circuit 4, the outdoor heat exchanger 3, and the four-way switching valve 2, and returns to the accumulator 6 from the four-way switching valve 2. At this time, the supercooling heat exchanger 1
The high-temperature, high-pressure liquid refrigerant on the upstream side of 1 is supplied to the bypass electric valve E
The refrigerant is expanded by V2 to become a low-temperature, low-pressure gas refrigerant, flows through the subcooling heat exchanger 11, and subcools the refrigerant flowing into the electric valve 13.
【0021】このように、上記ブリッジ回路4によっ
て、冷房,暖房運転において、過冷却熱交換器11を常
に電動弁13の上流側に配置して、その過冷却熱交換器
11により電動弁13に流入する冷媒の過冷却を増大し
て、運転効率を向上する。As described above, the supercooling heat exchanger 11 is always arranged on the upstream side of the motor-operated valve 13 in the cooling and heating operations by the bridge circuit 4. The operation efficiency is improved by increasing the supercooling of the flowing refrigerant.
【0022】以下、上記制御部10の動作を図2のフロ
ーチャートに従って説明する。なお、図2では、冷房運
転について説明するが、暖房運転時は、凝縮器と蒸発器
が入れ替わって、それに伴い凝縮温度Tcと蒸発温度Te
を検出する温度センサ22,23が入れ替わるだけで同
様に処理する。Hereinafter, the operation of the control unit 10 will be described with reference to the flowchart of FIG. Although the cooling operation is described with reference to FIG. 2, during the heating operation, the condenser and the evaporator are switched, and condensing temperature Tc and evaporating temperature Te are accordingly changed.
The same processing is performed only by exchanging the temperature sensors 22 and 23 for detecting the temperature.
【0023】図2において、冷房運転をスタートする
と、ステップS1で吐出温度Tdと凝縮温度Tcと蒸発温
度Teを検出する。すなわち、温度センサ21により圧
縮機1の吐出側の吐出温度Tdを検出し、温度センサ2
2により凝縮器としての室外熱交換器3の凝縮温度Tc
を検出し、蒸発器としての室内熱交換器5の蒸発温度T
eを検出するのである。In FIG. 2, when the cooling operation is started, a discharge temperature Td, a condensing temperature Tc, and an evaporation temperature Te are detected in step S1. That is, the discharge temperature Td on the discharge side of the compressor 1 is detected by the temperature sensor 21 and the temperature sensor 2
2, the condensation temperature Tc of the outdoor heat exchanger 3 as a condenser
Is detected, and the evaporation temperature T of the indoor heat exchanger 5 as the evaporator is detected.
It detects e.
【0024】次に、ステップS2に進み、制御装置10
の吐出温度判定部10bにより吐出温度Tdが上限設定値
を越えているか否かを判定して、吐出温度Tdが上限設
定値を越えていると判定すると、ステップS3に進み、
バイパス電動弁EV2を所定開度開けて、ステップS4
に進む。Next, the process proceeds to step S2, where the control device 10
It is determined whether or not the discharge temperature Td exceeds the upper limit set value by the discharge temperature determination unit 10b. If it is determined that the discharge temperature Td exceeds the upper limit set value, the process proceeds to step S3.
Open the bypass motor-operated valve EV2 by a predetermined opening degree, and execute Step S4.
Proceed to.
【0025】一方、ステップS2で吐出温度Tdが上限設
定値以下であると判定すると、ステップS11に進み、
吐出温度判定部10bにより吐出温度Tdが下限設定値未
満か否かを判定して、吐出温度Tdが下限設定値未満で
あると判定すると、ステップS12に進む一方、吐出温
度Tdが下限設定値以上であると判定すると、ステップS
4に進む。On the other hand, if it is determined in step S2 that the discharge temperature Td is equal to or lower than the upper limit set value, the process proceeds to step S11,
The discharge temperature determination unit 10b determines whether or not the discharge temperature Td is lower than the lower limit set value. If it is determined that the discharge temperature Td is lower than the lower limit set value, the process proceeds to step S12, while the discharge temperature Td is equal to or higher than the lower limit set value. If it is determined that
Proceed to 4.
【0026】そして、ステップS12でバイパス運転中
か否かを判定して、バイパス運転中であると判定する
と、ステップS13に進み、バイパス電動弁EV2を現
在開度から所定開度閉じる。一方、ステップS12でバ
イパス運転中でないと判定すると、ステップS4に進
む。Then, in step S12, it is determined whether or not the bypass operation is being performed. If it is determined that the bypass operation is being performed, the process proceeds to step S13, where the bypass motor-operated valve EV2 is closed by a predetermined opening from the current opening. On the other hand, if it is determined in step S12 that the bypass operation is not being performed, the process proceeds to step S4.
【0027】次に、ステップS4で目標吐出温度算出部
10cにより目標吐出温度Tkを算出する。上記目標吐出
温度Tkは、ステップS1で検出された凝縮温度Tcと蒸
発温度Teとバイパス電動弁EV2の開度に基づいて算
出する。Next, in step S4, the target discharge temperature Tk is calculated by the target discharge temperature calculator 10c. The target discharge temperature Tk is calculated based on the condensation temperature Tc, the evaporation temperature Te, and the opening of the bypass electric valve EV2 detected in step S1.
【0028】次に、ステップS5に進み、ステップS1で
検出された吐出温度Tdが目標吐出温度Tkを越えるか否
か判定して、吐出温度Tdが目標吐出温度Tkを越えると
判定すると、ステップS6に進み、主電動弁EV1を開
ける。一方、ステップS5で吐出温度Tdが目標吐出温度
Tk以下であると判定すると、ステップS7に進み、主電
動弁EV1を閉める。Next, proceeding to step S5, it is determined whether or not the discharge temperature Td detected in step S1 exceeds the target discharge temperature Tk. If it is determined that the discharge temperature Td exceeds the target discharge temperature Tk, step S6 is performed. To open the main motor-operated valve EV1. On the other hand, if it is determined in step S5 that the discharge temperature Td is equal to or lower than the target discharge temperature Tk, the process proceeds to step S7, and the main electric valve EV1 is closed.
【0029】図3は上記空気調和機における縦軸を圧力
P、横軸をエンタルピーIとするモリエル線図を示して
いる。図3において、比較のために過冷却熱交換器の無
い場合(バイパス無)と過冷却熱交換器11が有る場合
(バイパス有)について説明する。FIG. 3 is a Mollier diagram of the above air conditioner, with the vertical axis representing pressure P and the horizontal axis representing enthalpy I. In FIG. 3, for comparison, the case where there is no supercooling heat exchanger (no bypass) and the case where there is a supercooling heat exchanger 11
(With bypass) will be described.
【0030】まず、上記過冷却熱交換器が無い場合の通
常サイクルは、図3の実線で示すように変化する。これ
に対して、上記過冷却熱交換器11が有る場合の熱交換
器付サイクルは、図3の実線(および太い実線)で示すよ
うに変化する。つまり、上記圧縮機1の入力側の状態A
(蒸発器出口)の冷媒を圧縮機1により高圧の状態Bに変
化させ、その状態Bの冷媒を室外熱交換器3での凝縮に
よりエンタルピーが小さい状態C(分岐)に変化させる。
さらに、上記室外熱交換器3の出口側の冷媒を過冷却熱
交換器11により過冷却して状態Diする。First, the normal cycle without the supercooling heat exchanger changes as shown by the solid line in FIG. On the other hand, the cycle with the heat exchanger when the supercooling heat exchanger 11 is provided changes as shown by the solid line (and the thick solid line) in FIG. That is, the state A on the input side of the compressor 1
The refrigerant at the (evaporator outlet) is changed to a high-pressure state B by the compressor 1, and the refrigerant in the state B is changed to a state C (branch) having a small enthalpy by condensation in the outdoor heat exchanger 3.
Further, the refrigerant on the outlet side of the outdoor heat exchanger 3 is supercooled by the supercooling heat exchanger 11 to be in the state Di.
【0031】そして、上記過冷却熱交換器11により過
冷却された冷媒を、電動弁EV1での膨張により圧力が
低くなった状態Eに変化させ、その状態の冷媒を、室内
熱交換器5での蒸発により圧力略一定のまま外気からの
熱吸収によりエンタルピーが大きくなった状態Aに変化
させる。さらに、上記室内熱交換器5の出口側と過冷却
熱交換器11のバイパス配管の出口側とを合流させて、
状態Aから状態Yにすることによって、圧縮機1の吐出
温度が低下する。Then, the refrigerant supercooled by the supercooling heat exchanger 11 is changed to a state E in which the pressure is reduced by expansion of the electric valve EV1, and the refrigerant in that state is changed by the indoor heat exchanger 5. The state is changed to the state A in which the enthalpy is increased by the absorption of heat from the outside air while the pressure is kept substantially constant due to the evaporation. Further, the outlet side of the indoor heat exchanger 5 and the outlet side of the bypass pipe of the subcooling heat exchanger 11 are joined,
By changing from the state A to the state Y, the discharge temperature of the compressor 1 decreases.
【0032】このように、上記吐出温度センサ21によ
り検出された吐出温度Tdを吐出温度判定部10dにより
判定し、その判定結果に基づいて過冷却用電動弁EV2
を制御して、吐出温度の高低に応じてバイパス配管3
3,34に流れる冷媒量を大小に制御することによっ
て、吐出温度が高いときはバイパス冷媒量を多くして吐
出温度を下げることができる。したがって、冷媒物性
上、吐出温度がHCFC系冷媒に比べて高いR32冷媒
を用いても、効率を低下させることなく圧縮機1の吐出
温度を最適にでき、COPと信頼性を向上できる。As described above, the discharge temperature Td detected by the discharge temperature sensor 21 is determined by the discharge temperature determining section 10d, and the supercooling electric valve EV2 is determined based on the determination result.
To control the bypass pipe 3 according to the level of the discharge temperature.
By controlling the amount of the refrigerant flowing to 3, 34, the discharge temperature can be reduced by increasing the bypass refrigerant amount when the discharge temperature is high. Therefore, even when the R32 refrigerant having a higher discharge temperature than the HCFC-based refrigerant is used in terms of refrigerant physical properties, the discharge temperature of the compressor 1 can be optimized without lowering the efficiency, and the COP and reliability can be improved.
【0033】また、上記吐出温度判定部10bにより吐
出温度と上限設定値および下限設定値を比較した結果に
従って、制御部10aにより過冷却用電動弁EV2を制
御して、バイパス配管33,34に流れる冷媒量を的確
に制御することによって、より最適な吐出温度制御を行
うことができる。The supercooling electric valve EV2 is controlled by the control unit 10a in accordance with the result of comparison between the discharge temperature and the upper limit set value and the lower limit set value by the discharge temperature determination unit 10b, and flows to the bypass pipes 33 and 34. By appropriately controlling the amount of the refrigerant, more optimal discharge temperature control can be performed.
【0034】また、凝縮温度Tc,蒸発温度Teおよび過
冷却用電動弁EV2の開度に基づいて、目標吐出温度算
出部10cにより運転状況(冷房/暖房および圧縮機の運
転周波数等)に適した目標吐出温度Tkを算出して、その
目標吐出温度Tkに基づいて、制御部10aにより主電動
弁EV1の開度を制御するので、過冷却用電動弁EV2
の制御と相俟って圧縮機1の吐出温度制御をさらに的確
に行うことができる。Further, based on the condensing temperature Tc, the evaporating temperature Te, and the opening of the supercooling electric valve EV2, the target discharge temperature calculating section 10c is suitable for the operating conditions (cooling / heating and operating frequency of the compressor, etc.). Since the target discharge temperature Tk is calculated and the opening of the main electric valve EV1 is controlled by the control unit 10a based on the target discharge temperature Tk, the subcooling electric valve EV2
The control of the discharge temperature of the compressor 1 can be performed more accurately in conjunction with the control of the above.
【0035】(第2実施形態)図4はこの発明の第2実
施形態の冷凍装置としてのヒートポンプ式の空気調和機
の概略構成を示す回路図であり、温度センサ24,25
および制御装置10の動作を除いて第1実施形態の空気
調和機と同一の構成をしており、同一構成部は同一参照
番号を付して説明を省略する。(Second Embodiment) FIG. 4 is a circuit diagram showing a schematic configuration of a heat pump type air conditioner as a refrigeration apparatus according to a second embodiment of the present invention.
The configuration is the same as that of the air conditioner of the first embodiment except for the operation of the control device 10, and the same components are denoted by the same reference numerals and description thereof is omitted.
【0036】図4に示すように、この空気調和機は、室
外熱交換器3に設けられ、蒸発器出口温度センサとして
の温度センサ24と、室内熱交換器5に設けられ、蒸発
器出口温度センサとしての温度センサ25とを備えてい
る。上記温度センサ24,25は、室外熱交換器3,室内
熱交換器5のそれぞれのガス側から熱交換器全体の1/
3以内の位置に取り付けられる。As shown in FIG. 4, the air conditioner is provided in the outdoor heat exchanger 3 and is provided in the indoor heat exchanger 5 as a temperature sensor 24 as an evaporator outlet temperature sensor. And a temperature sensor 25 as a sensor. The temperature sensors 24 and 25 are connected to each of the outdoor heat exchanger 3 and the indoor heat exchanger 5 from the respective gas sides by 1 / of the entire heat exchanger.
Attached to a position within 3
【0037】また、上記制御部10は、マイクロコンピ
ュータと入出力回路等で構成されており、圧縮機1,主
電動弁EV1およびバイパス電動弁EV2等を制御する
制御部10aと、温度センサ21により検出された吐出
温度を上限設定値および下限設定値と比較する吐出温度
判定部10bと、温度センサ21〜23により検出され
た吐出温度,凝縮温度および蒸発温度に基づいて、目標
吐出温度を算出する目標吐出温度算出部10cと、温度
センサ22または温度センサ23により検出された蒸発
温度に基づいて、目標蒸発器出口温度算出部10dとを
有している。The control unit 10 includes a microcomputer, an input / output circuit, and the like. The control unit 10a controls the compressor 1, the main electric valve EV1, the bypass electric valve EV2, and the like. The target discharge temperature is calculated based on the discharge temperature, the condensation temperature, and the evaporation temperature detected by the discharge temperature determination unit 10b that compares the detected discharge temperature with the upper limit set value and the lower limit set value, and the temperature sensors 21 to 23. It has a target discharge temperature calculating section 10c and a target evaporator outlet temperature calculating section 10d based on the evaporation temperature detected by the temperature sensor 22 or 23.
【0038】上記構成の空気調和機において、上記制御
部10の動作は、第1実施形態の空気調和機の図2のフ
ローチャートのステップS1〜S4,S11〜S13と同
じ動作をし、ステップS5〜S7のみが異なる。この異
なる動作のフローチャートを図5に示している。In the air conditioner having the above configuration, the operation of the control unit 10 is the same as that of steps S1 to S4 and S11 to S13 in the flowchart of FIG. Only S7 is different. FIG. 5 shows a flowchart of this different operation.
【0039】図2のステップS4で目標吐出温度Tkを算
出した後、図5のステップS21で蒸発器出口温度Ts
を検出する。この場合、冷房運転では、蒸発器となる室
内熱交換器5の出口側の冷媒温度を温度センサ25によ
り検出する一方、暖房運転では、蒸発器となる室外熱交
換器3の出口側の冷媒温度を温度センサ24により検出
する。After calculating the target discharge temperature Tk in step S4 of FIG. 2, the evaporator outlet temperature Ts is calculated in step S21 of FIG.
Is detected. In this case, in the cooling operation, the refrigerant temperature on the outlet side of the indoor heat exchanger 5 serving as an evaporator is detected by the temperature sensor 25, while in the heating operation, the refrigerant temperature on the outlet side of the outdoor heat exchanger 3 serving as an evaporator is detected. Is detected by the temperature sensor 24.
【0040】次に、ステップS22で目標蒸発器出口温
度算出部10dにより目標蒸発器出口温度Tjを算出す
る。この目標蒸発器出口温度Tjは、 Tj = 蒸発温度Te+A より求める(Aは、冷房/暖房の運転条件および圧縮機
の運転周波数に応じて作成したテーブルにより決定す
る)。Next, in step S22, the target evaporator outlet temperature Tj is calculated by the target evaporator outlet temperature calculator 10d. The target evaporator outlet temperature Tj is obtained from Tj = evaporation temperature Te + A (A is determined by a table created according to the cooling / heating operating conditions and the compressor operating frequency).
【0041】次に、ステップS23で吐出温度Tdが目
標吐出温度Tkを越えるか否かを判定して、吐出温度Td
が目標吐出温度Tkを越えたと判定すると、ステップS
24に進む一方、吐出温度Tdが目標吐出温度Tk以下で
あると判定すると、ステップS28に進む。Next, at step S23, it is determined whether or not the discharge temperature Td exceeds the target discharge temperature Tk.
Is determined to have exceeded the target discharge temperature Tk, step S
On the other hand, if it is determined that the discharge temperature Td is equal to or lower than the target discharge temperature Tk, the process proceeds to step S28.
【0042】そして、ステップS24で蒸発器出口温度
Tsが目標蒸発器出口温度Tjを越えるか否かを判定し
て、蒸発器出口温度Tsが目標蒸発器出口温度Tjを越え
たと判定すると、ステップS25に進み、制御部10a
により主電動弁EV1を現在開度から所定開度さらに開
ける。一方、ステップS24で蒸発器出口温度Tsが目
標蒸発器出口温度Tj以下であると判定すると、ステッ
プS26に進み、制御部10aにより主電動弁EV1を
現在開度から所定開度閉じると共に、ステップS27で
バイパス電動弁EV2を現在開度から所定開度さらに開
ける。以下、図2のステップS1に戻る。Then, in step S24, it is determined whether or not the evaporator outlet temperature Ts exceeds the target evaporator outlet temperature Tj. If it is determined that the evaporator outlet temperature Ts has exceeded the target evaporator outlet temperature Tj, step S25 is performed. To control section 10a
Thereby, the main motor-operated valve EV1 is further opened by a predetermined opening from the current opening. On the other hand, if it is determined in step S24 that the evaporator outlet temperature Ts is equal to or lower than the target evaporator outlet temperature Tj, the process proceeds to step S26, in which the control unit 10a closes the main motor-operated valve EV1 from the current opening by a predetermined opening, and proceeds to step S27. To open the bypass motor-operated valve EV2 by a predetermined opening from the current opening. Hereinafter, the process returns to step S1 of FIG.
【0043】一方、ステップS28で蒸発器出口温度T
sが目標蒸発器出口温度Tjを越えるか否かを判定して、
蒸発器出口温度Tsが目標蒸発器出口温度Tj以下である
と判定すると、ステップS29に進み、制御部10aに
より主電動弁EV1を現在開度から所定開度閉じる。一
方、ステップS28で蒸発器出口温度Tsが目標蒸発器
出口温度Tjを越えたと判定すると、ステップS30に
進み、制御部10aにより主電動弁EV1を現在開度か
ら所定開度さらに開けると共に、ステップS31でバイ
パス電動弁EV2を現在開度から所定開度閉じる。以
下、図2のステップS1に戻る。On the other hand, in step S28, the evaporator outlet temperature T
It is determined whether or not s exceeds the target evaporator outlet temperature Tj, and
If it is determined that the evaporator outlet temperature Ts is equal to or lower than the target evaporator outlet temperature Tj, the process proceeds to step S29, and the main motor-operated valve EV1 is closed by a predetermined opening from the current opening by the control unit 10a. On the other hand, if it is determined in step S28 that the evaporator outlet temperature Ts has exceeded the target evaporator outlet temperature Tj, the process proceeds to step S30, and the control unit 10a further opens the main motor-operated valve EV1 by a predetermined opening from the current opening, and proceeds to step S31. To close the bypass motor-operated valve EV2 by a predetermined opening from the current opening. Hereinafter, the process returns to step S1 of FIG.
【0044】このように、上記空気調和機では、第1実
施形態の空気調和機と同様の効果を有すると共に、蒸発
器出口温度Tsを圧縮機1の吐出温度制御に用いること
によって、バイパス配管に流れる冷媒量すなわち過冷却
度の制御性を向上できる。As described above, the air conditioner has the same effects as the air conditioner of the first embodiment, and also uses the evaporator outlet temperature Ts for controlling the discharge temperature of the compressor 1 so that it can be connected to the bypass pipe. The controllability of the flowing refrigerant amount, that is, the degree of supercooling, can be improved.
【0045】上記第1,第2実施形態では、冷凍装置と
して空気調和機について説明したが、他の冷凍装置にこ
の発明を適用してもよい。In the first and second embodiments, the air conditioner has been described as the refrigerating device, but the present invention may be applied to other refrigerating devices.
【0046】また、上記第1,第2実施形態では、R3
2冷媒を用いた冷凍装置としての空気調和機について説
明したが、冷凍装置に用いられる冷媒はこれに限らず、
R32を少なくとも70重量%以上含む混合冷媒でもよ
い。例えば、R32冷媒とCO2との混合冷媒であっ
て、CO2に対してR32冷媒が70重量%以上かつ9
0重量%以下の混合冷媒でもよし、R32冷媒とR22
冷媒との混合冷媒であって、R22冷媒に対してR32
冷媒が70重量%以上かつ90重量%以下の混合冷媒で
もよい。In the first and second embodiments, R3
Although the air conditioner as the refrigeration apparatus using the two refrigerants has been described, the refrigerant used in the refrigeration apparatus is not limited to this.
A mixed refrigerant containing at least 70% by weight or more of R32 may be used. For example, a mixed refrigerant of R32 refrigerant and CO 2 , wherein the R32 refrigerant is 70% by weight or more based on CO 2 and 9% by weight.
0% by weight or less of the mixed refrigerant may be used.
A refrigerant mixed with a refrigerant, wherein R32 refrigerant is mixed with R32
The refrigerant may be a mixed refrigerant of 70% by weight or more and 90% by weight or less.
【0047】また、上記第1,第2実施形態では、図1,
図4に示す冷媒回路と過冷却回路とを備えた冷凍装置と
しての空気調和機について説明したが、冷凍装置の構成
はこれに限らないのは勿論である。例えば、図6に示す
ように、図1の構成からブリッジ回路を除いた構成の冷
凍装置でもよい。この場合、暖房運転時のみ過冷却用電
動弁EV2を開いて、冷媒をバイパスする。また、図7
に示すように、図1の過冷却用電動弁の代わりに過冷却
用減圧手段として電磁弁61とキャピラリ62を用いた
構成の冷凍装置でもよい。また、図8に示すように、過
冷却熱交換器11からのガス冷媒を圧縮機71の中間圧
部分にバイパス配管35を介して注入するインジェクシ
ョン回路を備えたものでもよい。なお、図6〜図8にお
いて、図1の冷凍装置と同一構成部は同一参照番号を付
している。In the first and second embodiments, FIG.
Although the air conditioner as the refrigerating apparatus including the refrigerant circuit and the supercooling circuit shown in FIG. 4 has been described, the configuration of the refrigerating apparatus is not limited to this. For example, as shown in FIG. 6, a refrigeration apparatus having a configuration in which a bridge circuit is removed from the configuration of FIG. 1 may be used. In this case, the supercooling electric valve EV2 is opened only during the heating operation to bypass the refrigerant. FIG.
As shown in FIG. 1, a refrigerating apparatus having a configuration using an electromagnetic valve 61 and a capillary 62 as a subcooling depressurizing means instead of the supercooling electric valve of FIG. 1 may be used. As shown in FIG. 8, an injection circuit for injecting the gas refrigerant from the subcooling heat exchanger 11 into the intermediate pressure portion of the compressor 71 via the bypass pipe 35 may be provided. 6 to 8, the same components as those of the refrigeration apparatus of FIG. 1 are denoted by the same reference numerals.
【0048】[0048]
【発明の効果】以上より明らかなように、請求項1の発
明の冷凍装置は、圧縮機,凝縮器,主減圧手段および蒸発
器が環状に接続された冷媒回路と、凝縮器と主減圧手段
との間に配設された過冷却熱交換器と、過冷却熱交換器
を介して冷媒回路のガス側と液側とをバイパスするバイ
パス配管と、バイパス配管の過冷却熱交換器の上流側に
配設された過冷却用減圧手段とを備えた冷凍装置であっ
て、R32冷媒またはR32を少なくとも70重量%以
上含む混合冷媒を用いると共に、吐出温度センサにより
検出された圧縮機の吐出温度を吐出温度判定部により判
定して、その吐出温度判定部の判定結果に基づいて制御
部により過冷却用減圧手段を制御することにより、バイ
パス配管に流れる冷媒量を制御するものである。As is apparent from the above description, the refrigeration apparatus according to the first aspect of the present invention comprises a refrigerant circuit in which a compressor, a condenser, a main decompression means and an evaporator are connected in a ring, a condenser and a main decompression means. And a bypass pipe that bypasses the gas side and the liquid side of the refrigerant circuit via the subcooling heat exchanger, and an upstream side of the subcooling heat exchanger of the bypass pipe. Refrigeration apparatus provided with a supercooling depressurizing means disposed in the compressor, wherein R32 refrigerant or a mixed refrigerant containing at least 70% by weight or more of R32 is used, and the discharge temperature of the compressor detected by the discharge temperature sensor is used. The amount of refrigerant flowing through the bypass pipe is controlled by making a determination by the discharge temperature determining section and controlling the supercooling decompression means by the control section based on the determination result of the discharge temperature determining section.
【0049】したがって、請求項1の発明の冷凍装置に
よれば、上記吐出温度判定部の判定結果に基づいて上記
制御部により過冷却用減圧手段を制御して、吐出温度の
高低に応じてバイパス配管に流れる冷媒量を大小に制御
することによって、吐出温度が高いときはバイパス冷媒
量を多くして吐出温度を下げることが可能となるので、
冷媒物性上、吐出温度がHCFC系冷媒に比べて高いR
32冷媒(またはR32を少なくとも70重量%以上含
む混合冷媒)を用いても、効率を低下させることなく最
適な吐出温度にでき、COPと信頼性を向上できる。Therefore, according to the refrigeration apparatus of the first aspect of the present invention, the control unit controls the supercooling pressure reducing means based on the determination result of the discharge temperature determination unit, and the bypass is controlled according to the level of the discharge temperature. By controlling the amount of refrigerant flowing through the pipe to be large or small, when the discharge temperature is high, it is possible to increase the bypass refrigerant amount and lower the discharge temperature,
Due to the physical properties of the refrigerant, the discharge temperature is higher than that of the HCFC refrigerant.
Even if 32 refrigerant (or a mixed refrigerant containing at least 70% by weight of R32) is used, the optimum discharge temperature can be achieved without lowering the efficiency, and the COP and reliability can be improved.
【0050】また、請求項2の発明の冷凍装置によれ
ば、上記吐出温度判定部が上記吐出温度が上限設定値を
越えたと判定すると、上記制御部によりバイパス配管に
流れる冷媒量が多くなるように上記過冷却用減圧手段を
制御する一方、吐出温度判定部が上記吐出温度が下限設
定値未満であると判定すると、上記制御部によりバイパ
ス配管に流れる冷媒量が少なくなるように上記過冷却用
減圧手段を制御することによって、効率を低下させるこ
となく、より最適な吐出温度制御ができる。According to the refrigeration apparatus of the second aspect of the present invention, when the discharge temperature determination section determines that the discharge temperature has exceeded the upper limit set value, the control section increases the amount of refrigerant flowing through the bypass pipe. On the other hand, when the discharge temperature determination unit determines that the discharge temperature is less than the lower limit set value, the control unit controls the supercooling pressure reducing unit to reduce the amount of refrigerant flowing through the bypass pipe. By controlling the pressure reducing means, more optimal discharge temperature control can be performed without lowering the efficiency.
【0051】また、請求項3の発明の冷凍装置によれ
ば、凝縮温度センサにより検出された凝縮器の凝縮温度
と、蒸発温度センサにより検出された蒸発器の蒸発温度
と、過冷却用減圧手段である過冷却用電動弁の開度に基
づいて、目標吐出温度算出部により運転状況(冷房/暖房
および圧縮機の運転周波数等)に適した目標吐出温度を
算出し、その算出された目標吐出温度に基づいて、上記
制御部により主減圧手段を制御することにより上記冷媒
回路に流れる冷媒量を制御して、圧縮機の吐出温度を目
標吐出温度になるようにすることによって、バイパス配
管に流れる冷媒量すなわち過冷却度に応じた最適な吐出
温度に制御することができる。According to the refrigeration apparatus of the third aspect of the present invention, the condensation temperature of the condenser detected by the condensation temperature sensor, the evaporation temperature of the evaporator detected by the evaporation temperature sensor, and the supercooling decompression means Based on the opening degree of the electric motor valve for supercooling, the target discharge temperature calculation unit calculates a target discharge temperature suitable for an operating condition (cooling / heating and operating frequency of the compressor, etc.), and calculates the calculated target discharge temperature. Based on the temperature, the main controller controls the main pressure reducing means to control the amount of refrigerant flowing in the refrigerant circuit so that the discharge temperature of the compressor becomes the target discharge temperature, thereby flowing to the bypass pipe. The optimum discharge temperature can be controlled in accordance with the amount of refrigerant, that is, the degree of supercooling.
【0052】また、請求項4の発明の冷凍装置によれ
ば、蒸発器出口温度センサにより蒸発器の蒸発器出口温
度を検出し、上記目標吐出温度算出部により算出された
目標吐出温度および上記蒸発器出口温度に基づいて、上
記制御部により主減圧手段および過冷却用減圧手段を制
御して、蒸発器出口温度を圧縮機の吐出温度制御に用い
ることによって、バイパス配管に流れる冷媒量すなわち
過冷却度の制御性を向上できる。Further, according to the refrigerating apparatus of the present invention, the evaporator outlet temperature of the evaporator is detected by the evaporator outlet temperature sensor, and the target discharge temperature calculated by the target discharge temperature calculating section and the evaporation temperature are calculated. The controller controls the main pressure reducing means and the supercooling pressure reducing means based on the outlet temperature of the compressor, and uses the outlet temperature of the evaporator for controlling the discharge temperature of the compressor. The controllability of the degree can be improved.
【図1】 図1はこの発明の第1実施形態の冷凍装置と
してのヒートポンプ式の空気調和機の回路図である。FIG. 1 is a circuit diagram of a heat pump type air conditioner as a refrigeration apparatus according to a first embodiment of the present invention.
【図2】 図2は上記空気調和機の制御装置の動作を説
明するフローチャートである。FIG. 2 is a flowchart illustrating an operation of the control device of the air conditioner.
【図3】 図3は上記空気調和機のモリエル線図であ
る。FIG. 3 is a Mollier diagram of the air conditioner.
【図4】 図4はこの発明の第2実施形態空気調和機の
回路図である。FIG. 4 is a circuit diagram of an air conditioner according to a second embodiment of the present invention.
【図5】 図5は上記空気調和機の制御装置の動作を説
明するフローチャートである。FIG. 5 is a flowchart illustrating an operation of the control device for the air conditioner.
【図6】 図6はブリッジ回路を有しない空気調和機の
回路図である。FIG. 6 is a circuit diagram of an air conditioner having no bridge circuit.
【図7】 図7は過冷却用減圧手段として電磁弁とキャ
ピラリを用いた空気調和機の回路図である。FIG. 7 is a circuit diagram of an air conditioner using a solenoid valve and a capillary as a subcooling decompression means.
【図8】 図8はインジェクション回路を用いた空気調
和機の回路図である。FIG. 8 is a circuit diagram of an air conditioner using an injection circuit.
1…圧縮機、 2…四路切換弁、 3…室外熱交換器、 4…ブリッジ回路、 4A〜4D…逆止弁、 5…室内熱交換器、 6…アキュムレータ、 EV1…主電動弁、 EV2…過冷却用電動弁、 10…制御装置、 10a…制御部、 10b…吐出温度判定部、 10c…目標吐出温度算出部、 10d…目標蒸発器出口温度算出部、 21…吐出温度センサ、 22〜25…温度センサ、 33,34…バイパス配管、 61…電磁弁、 62…キャピラリ。 DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four way switching valve, 3 ... Outdoor heat exchanger, 4 ... Bridge circuit, 4A-4D ... Check valve, 5 ... Indoor heat exchanger, 6 ... Accumulator, EV1 ... Main motorized valve, EV2 ... Electric valve for supercooling, 10 ... Control device, 10a ... Control unit, 10b ... Discharge temperature judgment unit, 10c ... Target discharge temperature calculation unit, 10d ... Target evaporator outlet temperature calculation unit, 21 ... Discharge temperature sensor, 22- 25: temperature sensor, 33, 34: bypass piping, 61: solenoid valve, 62: capillary.
Claims (4)
(EV1)および蒸発器(5,3)が環状に接続された冷媒
回路と、上記凝縮器(3,5)と上記主減圧手段(EV1)
との間に配設された過冷却熱交換器(11)と、上記過冷
却熱交換器(11)を介して上記冷媒回路のガス側と液側
とをバイパスするバイパス配管(33,34)と、上記バ
イパス配管(33,34)の上記過冷却熱交換器(11)の
上流側に配設された過冷却用減圧手段とを備えた冷凍装
置であって、 R32冷媒またはR32を少なくとも70重量%以上含
む混合冷媒を用いると共に、 上記圧縮機(1)の吐出温度を検出する吐出温度センサ
(21)と、 上記吐出温度センサ(21)により検出された吐出温度を
判定する吐出温度判定部(10b)と、 上記吐出温度判定部(10b)の判定結果に基づいて上記
過冷却用減圧手段を制御して、上記バイパス配管に流れ
る冷媒量を制御する制御部(10a)とを備えたことを特
徴とする冷凍装置。1. Compressor (1), condenser (3, 5), main pressure reducing means
(EV1) and a refrigerant circuit in which the evaporators (5, 3) are connected in a ring shape, the condenser (3, 5) and the main pressure reducing means (EV1).
And a bypass pipe (33, 34) for bypassing the gas side and the liquid side of the refrigerant circuit via the supercooling heat exchanger (11). A refrigerating apparatus comprising: a subcooling depressurizing means disposed upstream of the subcooling heat exchanger (11) in the bypass pipe (33, 34); A discharge temperature sensor for detecting the discharge temperature of the compressor (1) while using a mixed refrigerant containing at least
(21), a discharge temperature determination unit (10b) for determining a discharge temperature detected by the discharge temperature sensor (21), and the supercooling pressure reducing unit based on a determination result of the discharge temperature determination unit (10b). And a controller (10a) for controlling the amount of the refrigerant flowing through the bypass pipe by controlling the refrigerant flow.
記吐出温度が上限設定値を越えたと判定すると、上記バ
イパス配管(33,34)に流れる冷媒量が多くなるよう
に上記過冷却用減圧手段を制御する一方、上記吐出温度
判定部(10b)が上記吐出温度が下限設定値未満である
と判定すると、上記バイパス配管に流れる冷媒量が少な
くなるように上記過冷却用減圧手段を制御することを特
徴とする冷凍装置。2. The refrigeration system according to claim 1, wherein the control unit (10a) determines that the discharge temperature has exceeded the upper limit set value by the discharge temperature determination unit (10b). , 34) while controlling the supercooling decompression means so that the amount of refrigerant flowing through the bypass pipe increases when the discharge temperature determination unit (10b) determines that the discharge temperature is lower than the lower limit set value. A refrigeration system characterized by controlling the supercooling pressure reducing means so that the amount of flowing refrigerant is reduced.
いて、 上記過冷却用減圧手段は、過冷却用電動弁(EV2)であ
って、 上記凝縮器(3,5)の凝縮温度を検出する凝縮温度セン
サ(22,23)と、 上記蒸発器(5,3)の蒸発温度を検出する蒸発温度セン
サ(23,22)と、 上記凝縮温度センサ(22,23)により検出された凝縮
温度と、上記蒸発温度センサ(23,22)により検出さ
れた蒸発温度と、上記過冷却用電動弁(EV2)の開度に
基づいて、目標吐出温度を算出する目標吐出温度算出部
(10c)とを備え、 上記制御部(10a)は、上記圧縮機(1)の吐出温度が上
記目標吐出温度になるように、上記主減圧手段(EV1)
を制御することを特徴とする冷凍装置。3. The refrigerating apparatus according to claim 1, wherein the subcooling pressure reducing means is a subcooling electric valve (EV2), and detects a condensing temperature of the condenser (3, 5). Condensing temperature sensors (22, 23), evaporating temperature sensors (23, 22) for detecting evaporating temperatures of the evaporators (5, 3), and condensing temperatures detected by the condensing temperature sensors (22, 23). A target discharge temperature calculating section for calculating a target discharge temperature based on the evaporating temperature detected by the evaporating temperature sensors (23, 22) and the opening degree of the supercooling electric valve (EV2).
(10c), wherein the control unit (10a) controls the main pressure reducing means (EV1) so that the discharge temperature of the compressor (1) becomes the target discharge temperature.
A refrigeration apparatus characterized by controlling the temperature.
出口温度センサ(24,25)を備え、 上記制御部(10)は、上記目標吐出温度算出部(10c)
により算出された目標吐出温度および上記蒸発器出口温
度センサ(24,25)により検出された蒸発器出口温度
に基づいて、上記主減圧手段(EV1)および上記過冷却
用電動弁(EV2)を制御することを特徴とする冷凍装
置。4. The refrigerating apparatus according to claim 3, further comprising an evaporator outlet temperature sensor (24, 25) for detecting an evaporator outlet temperature of the evaporator (3, 5), wherein the controller (10). Is the target discharge temperature calculator (10c)
The main pressure reducing means (EV1) and the supercooling electric valve (EV2) are controlled based on the target discharge temperature calculated by the above and the evaporator outlet temperature detected by the evaporator outlet temperature sensor (24, 25). A refrigeration device characterized by performing:
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000039467A JP3440910B2 (en) | 2000-02-17 | 2000-02-17 | Refrigeration equipment |
EP06025814.2A EP1762794B1 (en) | 1999-10-18 | 2000-10-12 | Refrigerating device |
KR10-2002-7004959A KR100482539B1 (en) | 1999-10-18 | 2000-10-12 | Refrigerating device |
PCT/JP2000/007067 WO2001029489A1 (en) | 1999-10-18 | 2000-10-12 | Refrigerating device |
ES00966426T ES2296645T3 (en) | 1999-10-18 | 2000-10-12 | REFRIGERATION DEVICE |
AU76841/00A AU773284B2 (en) | 1999-10-18 | 2000-10-12 | Refrigerating device |
CNB008145148A CN1149366C (en) | 1999-10-18 | 2000-10-12 | Refrigerating device |
DE60037445T DE60037445T2 (en) | 1999-10-18 | 2000-10-12 | COOLING DEVICE |
ES06025814.2T ES2620815T3 (en) | 1999-10-18 | 2000-10-12 | Cooling device |
EP00966426A EP1225400B1 (en) | 1999-10-18 | 2000-10-12 | Refrigerating device |
AT00966426T ATE380987T1 (en) | 1999-10-18 | 2000-10-12 | REFRIGERATOR |
US10/110,930 US6581397B1 (en) | 1999-10-18 | 2000-10-12 | Refrigerating device |
CNB031603777A CN100449224C (en) | 1999-10-18 | 2000-10-12 | Freezing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000039467A JP3440910B2 (en) | 2000-02-17 | 2000-02-17 | Refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001227823A true JP2001227823A (en) | 2001-08-24 |
JP3440910B2 JP3440910B2 (en) | 2003-08-25 |
Family
ID=18563025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000039467A Expired - Lifetime JP3440910B2 (en) | 1999-10-18 | 2000-02-17 | Refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3440910B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006078048A (en) * | 2004-09-08 | 2006-03-23 | Matsushita Electric Ind Co Ltd | Heat pump heater |
JP2006125738A (en) * | 2004-10-29 | 2006-05-18 | Sanyo Electric Co Ltd | Refrigeration unit |
JP2007187407A (en) * | 2006-01-16 | 2007-07-26 | Mitsubishi Electric Corp | Refrigeration cycle device and operation method for refrigeration cycle device |
CN100425928C (en) * | 2005-03-28 | 2008-10-15 | 爱信精机株式会社 | Engine driven type air conditioner |
JP2012067967A (en) * | 2010-09-24 | 2012-04-05 | Panasonic Corp | Refrigeration cycle apparatus and hot water heating apparatus |
JP2012189238A (en) * | 2011-03-09 | 2012-10-04 | Mitsubishi Electric Corp | Refrigerating air conditioning apparatus |
JP2013053849A (en) * | 2012-12-17 | 2013-03-21 | Mitsubishi Electric Corp | Heat pump device, and outdoor unit thereof |
WO2013088734A1 (en) * | 2011-12-14 | 2013-06-20 | パナソニック株式会社 | Air conditioner |
JP2014152962A (en) * | 2013-02-06 | 2014-08-25 | Panasonic Corp | Freezer |
WO2014129472A1 (en) | 2013-02-19 | 2014-08-28 | 三菱電機株式会社 | Air conditioning device |
WO2014129473A1 (en) | 2013-02-19 | 2014-08-28 | 三菱電機株式会社 | Air conditioning device |
WO2014141374A1 (en) | 2013-03-12 | 2014-09-18 | 三菱電機株式会社 | Air conditioner |
WO2014141373A1 (en) | 2013-03-12 | 2014-09-18 | 三菱電機株式会社 | Air conditioner |
WO2014141375A1 (en) | 2013-03-12 | 2014-09-18 | 三菱電機株式会社 | Air conditioner |
US8899058B2 (en) | 2006-03-27 | 2014-12-02 | Mitsubishi Electric Corporation | Air conditioner heat pump with injection circuit and automatic control thereof |
US20150128629A1 (en) * | 2012-05-23 | 2015-05-14 | Daikin Industries, Ltd. | Refrigeration apparatus |
WO2015140950A1 (en) * | 2014-03-19 | 2015-09-24 | 三菱電機株式会社 | Air conditioner |
JP2017181001A (en) * | 2016-03-31 | 2017-10-05 | ダイキン工業株式会社 | Air conditioning device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5440100B2 (en) * | 2009-11-04 | 2014-03-12 | パナソニック株式会社 | Refrigeration cycle apparatus and hot water heater using the same |
JP5278452B2 (en) | 2011-01-27 | 2013-09-04 | パナソニック株式会社 | Refrigeration cycle apparatus and hot water heater using the same |
JP2013002800A (en) | 2011-06-22 | 2013-01-07 | Panasonic Corp | Refrigeration cycle apparatus, and hydronic heater having the refrigeration cycle apparatus |
JP6288146B2 (en) * | 2016-04-01 | 2018-03-07 | ダイキン工業株式会社 | Refrigeration equipment |
WO2020130756A1 (en) | 2018-12-21 | 2020-06-25 | Samsung Electronics Co., Ltd. | Air conditioner |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06265232A (en) * | 1993-03-11 | 1994-09-20 | Mitsubishi Electric Corp | Device for air conditioning |
JPH1038399A (en) * | 1996-07-24 | 1998-02-13 | Daikin Ind Ltd | Control method for freezer, and freezer |
JPH1057616A (en) * | 1996-08-20 | 1998-03-03 | Eagle:Kk | Dice game machine |
JPH1068553A (en) * | 1996-08-27 | 1998-03-10 | Daikin Ind Ltd | Air conditioner |
JPH1089779A (en) * | 1996-09-11 | 1998-04-10 | Daikin Ind Ltd | Air conditioner |
JPH1144461A (en) * | 1997-07-24 | 1999-02-16 | Daikin Ind Ltd | Refrigerating machine |
-
2000
- 2000-02-17 JP JP2000039467A patent/JP3440910B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06265232A (en) * | 1993-03-11 | 1994-09-20 | Mitsubishi Electric Corp | Device for air conditioning |
JPH1038399A (en) * | 1996-07-24 | 1998-02-13 | Daikin Ind Ltd | Control method for freezer, and freezer |
JPH1057616A (en) * | 1996-08-20 | 1998-03-03 | Eagle:Kk | Dice game machine |
JPH1068553A (en) * | 1996-08-27 | 1998-03-10 | Daikin Ind Ltd | Air conditioner |
JPH1089779A (en) * | 1996-09-11 | 1998-04-10 | Daikin Ind Ltd | Air conditioner |
JPH1144461A (en) * | 1997-07-24 | 1999-02-16 | Daikin Ind Ltd | Refrigerating machine |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006078048A (en) * | 2004-09-08 | 2006-03-23 | Matsushita Electric Ind Co Ltd | Heat pump heater |
JP4631365B2 (en) * | 2004-09-08 | 2011-02-16 | パナソニック株式会社 | Heat pump heating device |
JP2006125738A (en) * | 2004-10-29 | 2006-05-18 | Sanyo Electric Co Ltd | Refrigeration unit |
JP4601392B2 (en) * | 2004-10-29 | 2010-12-22 | 三洋電機株式会社 | Refrigeration equipment |
CN100425928C (en) * | 2005-03-28 | 2008-10-15 | 爱信精机株式会社 | Engine driven type air conditioner |
JP2007187407A (en) * | 2006-01-16 | 2007-07-26 | Mitsubishi Electric Corp | Refrigeration cycle device and operation method for refrigeration cycle device |
US8899058B2 (en) | 2006-03-27 | 2014-12-02 | Mitsubishi Electric Corporation | Air conditioner heat pump with injection circuit and automatic control thereof |
JP2012067967A (en) * | 2010-09-24 | 2012-04-05 | Panasonic Corp | Refrigeration cycle apparatus and hot water heating apparatus |
JP2012189238A (en) * | 2011-03-09 | 2012-10-04 | Mitsubishi Electric Corp | Refrigerating air conditioning apparatus |
WO2013088734A1 (en) * | 2011-12-14 | 2013-06-20 | パナソニック株式会社 | Air conditioner |
US9989284B2 (en) | 2012-05-23 | 2018-06-05 | Daikin Industries, Ltd. | Refrigeration apparatus |
EP2873935A4 (en) * | 2012-05-23 | 2016-04-13 | Daikin Ind Ltd | Freezer |
US20150128629A1 (en) * | 2012-05-23 | 2015-05-14 | Daikin Industries, Ltd. | Refrigeration apparatus |
JP2013053849A (en) * | 2012-12-17 | 2013-03-21 | Mitsubishi Electric Corp | Heat pump device, and outdoor unit thereof |
JP2014152962A (en) * | 2013-02-06 | 2014-08-25 | Panasonic Corp | Freezer |
WO2014129473A1 (en) | 2013-02-19 | 2014-08-28 | 三菱電機株式会社 | Air conditioning device |
US9857088B2 (en) | 2013-02-19 | 2018-01-02 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2014129472A1 (en) | 2013-02-19 | 2014-08-28 | 三菱電機株式会社 | Air conditioning device |
US10107533B2 (en) | 2013-02-19 | 2018-10-23 | Mitsubishi Electric Corporation | Air-conditioning apparatus with subcooling heat exchanger |
WO2014141375A1 (en) | 2013-03-12 | 2014-09-18 | 三菱電機株式会社 | Air conditioner |
WO2014141373A1 (en) | 2013-03-12 | 2014-09-18 | 三菱電機株式会社 | Air conditioner |
WO2014141374A1 (en) | 2013-03-12 | 2014-09-18 | 三菱電機株式会社 | Air conditioner |
US9869501B2 (en) | 2013-03-12 | 2018-01-16 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
US10088205B2 (en) | 2013-03-12 | 2018-10-02 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
US10168068B2 (en) | 2013-03-12 | 2019-01-01 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2015140950A1 (en) * | 2014-03-19 | 2015-09-24 | 三菱電機株式会社 | Air conditioner |
JP2017181001A (en) * | 2016-03-31 | 2017-10-05 | ダイキン工業株式会社 | Air conditioning device |
Also Published As
Publication number | Publication date |
---|---|
JP3440910B2 (en) | 2003-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001227823A (en) | Refrigerating device | |
KR100482539B1 (en) | Refrigerating device | |
JP4675927B2 (en) | Air conditioner | |
JP4459776B2 (en) | Heat pump device and outdoor unit of heat pump device | |
JP4906894B2 (en) | Heat pump device and outdoor unit of heat pump device | |
JP3894221B1 (en) | Air conditioner | |
EP2905559B1 (en) | Cascade refrigeration equipment | |
EP1826513A1 (en) | Refrigerating air conditioner | |
WO2007110908A9 (en) | Refrigeration air conditioning device | |
JP5434460B2 (en) | Heat pump equipment | |
JP4905018B2 (en) | Refrigeration equipment | |
JP2002081767A (en) | Air conditioner | |
JP2010164257A (en) | Refrigerating cycle device and method of controlling the refrigerating cycle device | |
JP2013015264A (en) | Air conditioner | |
JP2010071544A (en) | Air-conditioning system | |
JP4868049B2 (en) | Refrigeration equipment | |
JP2007155143A (en) | Refrigerating device | |
JP5682606B2 (en) | Refrigeration equipment | |
JP2010159967A (en) | Heat pump device and outdoor unit for the heat pump device | |
JP2004347272A (en) | Refrigerating plant | |
JP2001241797A (en) | Refrigerating cycle | |
JP2019207104A (en) | Refrigeration cycle device | |
JP5062079B2 (en) | Refrigeration equipment | |
JP2007163011A (en) | Refrigeration unit | |
JP6588645B2 (en) | Refrigeration cycle equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R151 | Written notification of patent or utility model registration |
Ref document number: 3440910 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |