JPH1089779A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH1089779A
JPH1089779A JP24036396A JP24036396A JPH1089779A JP H1089779 A JPH1089779 A JP H1089779A JP 24036396 A JP24036396 A JP 24036396A JP 24036396 A JP24036396 A JP 24036396A JP H1089779 A JPH1089779 A JP H1089779A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
target
evaporator
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24036396A
Other languages
Japanese (ja)
Inventor
Koichi Kita
宏一 北
Nobuo Domyo
伸夫 道明
Kazuyuki Nishikawa
和幸 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP24036396A priority Critical patent/JPH1089779A/en
Publication of JPH1089779A publication Critical patent/JPH1089779A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which can maintain high freezing capacity under wide driving conditions in the conditioner having a refrigerant circuit for supercooling main flow refrigerant by heat exchanging the main refrigerant with a bypass flow refrigerant. SOLUTION: A refrigerant circuit 1 has a main circuit 6 in which refrigerant sequentially flows in order a compressor 2, a condenser 3, a supercooling heat exchanger 10, a motor driven expansion valve 4 for constituting a first expansion mechanism, an evaporator 5, and a bypass circuit 11 branched from the circuit 6 between the condenser 3 and the valve 4 and in which the refrigerant sequentially flows a capillary tube 12 for constituting a second expansion mechanism and a supercooling heat exchanger 10 to combine with the circuit 6 at a suction side of the compressor 2. The main flow refrigerant passing an outlet of the evaporator 5 is controlled by the valve 4 to become predetermined superheat degree irrespective of the state of the bypass flow refrigerant passing a bypass side outlet of the exchanger 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は空気調和機に関す
る。より詳しくは、主流冷媒とバイパス流冷媒との間で
熱交換を行って上記主流冷媒を過冷却する冷媒回路を備
えた空気調和機に関する。
The present invention relates to an air conditioner. More specifically, the present invention relates to an air conditioner including a refrigerant circuit that performs heat exchange between a mainstream refrigerant and a bypass flow refrigerant to supercool the mainstream refrigerant.

【0002】[0002]

【従来の技術】図3に示すように、この種の空気調和機
の冷媒回路310としては、圧縮機302、凝縮器30
3、過冷却用の二重管式熱交換器310、電動膨張弁3
04、蒸発器305、四路切換弁309およびアキュム
レータ308をこの順に有する主回路306と、上記凝
縮器303と過冷却用熱交換器310との間の分岐点3
41で主回路306から分岐して、キャピラリチューブ
312と過冷却用熱交換器310とを通り、上記アキュ
ムレータ308の入口近傍の合流点342で主回路30
6と合流するバイパス回路(破線で示す)313とを含
むものが知られている。冷媒としては、HCFC(ハイ
ドロクロロフルオロカーボン)22等の単一冷媒が用い
られている。圧縮機302から吐出された冷媒は、凝縮
器(例えば室外空気に放熱する)303によって凝縮さ
れ、分岐点341で主回路306を流れる主流冷媒とバ
イパス回路313を流れるバイパス流冷媒とに別れる。
この主流冷媒は、過冷却用熱交換器310において、キ
ャピラリチューブ312通過後の上記バイパス流冷媒と
の熱交換によって過冷却された後、電動膨張弁304に
よって減圧される。そして、主流冷媒は、蒸発器(例え
ば室内空気から吸熱する)305によって蒸発され、四
路切換弁309および気液分離を行うアキュムレータ3
08を通して圧縮機302に吸い込まれる。一方、バイ
パス流冷媒は、上記キャピラリチューブ312を通過し
て減圧された後、過冷却用熱交換器310において主流
冷媒との熱交換によって蒸発される。この後、バイパス
流冷媒は、アキュムレータ308の入口近傍の合流点3
42で主流冷媒と合流する。
2. Description of the Related Art As shown in FIG. 3, a refrigerant circuit 310 of this type of air conditioner includes a compressor 302, a condenser 30
3. Double-tube heat exchanger 310 for supercooling, electric expansion valve 3
04, a main circuit 306 having an evaporator 305, a four-way switching valve 309, and an accumulator 308 in this order, and a branch point 3 between the condenser 303 and the supercooling heat exchanger 310.
At 41, the main circuit 306 branches, passes through the capillary tube 312 and the subcooling heat exchanger 310, and at the junction 342 near the inlet of the accumulator 308, the main circuit 30
6 and a bypass circuit 313 (shown by a dashed line) that joins the known bypass circuit. As the refrigerant, a single refrigerant such as HCFC (hydrochlorofluorocarbon) 22 is used. The refrigerant discharged from the compressor 302 is condensed by a condenser (for example, radiates heat to outdoor air) 303 and is separated into a mainstream refrigerant flowing through a main circuit 306 and a bypass refrigerant flowing through a bypass circuit 313 at a branch point 341.
The mainstream refrigerant is supercooled in the subcooling heat exchanger 310 by heat exchange with the bypass-flow refrigerant after passing through the capillary tube 312, and then decompressed by the electric expansion valve 304. Then, the mainstream refrigerant is evaporated by an evaporator (for example, absorbing heat from indoor air) 305, and the four-way switching valve 309 and the accumulator 3 that performs gas-liquid separation
08 to the compressor 302. On the other hand, the bypass flow refrigerant is depressurized by passing through the capillary tube 312 and then evaporated by heat exchange with the main flow refrigerant in the supercooling heat exchanger 310. Thereafter, the bypass refrigerant flows into the junction 3 near the inlet of the accumulator 308.
At 42, it merges with the mainstream refrigerant.

【0003】このように過冷却用熱交換器310で主流
冷媒を過冷却することにより、過冷却を行わない場合に
比して主流冷媒による冷凍効果を増大できる。また、冷
媒の流れからバイパス流を分岐させることによって主流
冷媒の体積流量が減少するので、図5(b)の圧力−比エ
ンタルピ線図(以下「Ph線図」という。)に示すよう
に、蒸発器305内および圧縮機302の吸入側配管で
の圧力損失ΔPを減少させることができる(比較のた
め、過冷却を行わない場合(基本回路)の圧力損失ΔP
を図5(a)に示している。)。したがって、システム
の冷凍能力を向上させることができる。なお、図5(b)
中にA,B,Cで示す箇所は、図3の冷媒回路301に
おける合流点342近傍の点A,B,Cの状態に対応し
ている。図5(b)を部分的に拡大して示す図5(c)によっ
て良く分かるように、点Aに達したバイパス流冷媒と点
Bに達した主流冷媒とが合流して、点Cの状態が得られ
る。
[0003] By supercooling the mainstream refrigerant with the subcooling heat exchanger 310 in this way, the refrigeration effect of the mainstream refrigerant can be increased as compared with a case where supercooling is not performed. In addition, since the volume flow rate of the mainstream refrigerant is reduced by branching the bypass flow from the flow of the refrigerant, as shown in a pressure-specific enthalpy diagram (hereinafter, referred to as a “Ph diagram”) in FIG. The pressure loss ΔP in the evaporator 305 and the suction-side pipe of the compressor 302 can be reduced (for comparison, the pressure loss ΔP when supercooling is not performed (basic circuit))
0 is shown in FIG. ). Therefore, the refrigeration capacity of the system can be improved. FIG. 5 (b)
The portions indicated by A, B, and C in the drawing correspond to the states of points A, B, and C near the junction 342 in the refrigerant circuit 301 in FIG. As can be clearly understood from FIG. 5C, which is a partially enlarged view of FIG. 5B, the bypass refrigerant reaching point A and the mainstream refrigerant reaching point B merge to form a state at point C. Is obtained.

【0004】従来、主流冷媒とバイパス流冷媒の流量
は、主回路306に設けられた電動膨張弁304の絞り
量を変化させることによって調整されている。具体的に
は、凝縮器出口の温度センサ332が検出した温度Tc
と、蒸発器入口の温度センサ333が検出した温度Te
との関数fとして、図4に示すように圧縮機出口の目標
温度Td(target)=f(Te,Tc)を設定する。な
お、この関数fは、過冷却を行わない基本回路(バイパ
ス回路313を持たず、主回路306のみを有する)に
適合された公知のものである。そして、図示しない制御
手段によって圧縮機出口(吐出管)の温度センサ331
が検出した実際の吐出管温度Tdがその目標温度Td
(target)となるように、電動膨張弁304の絞り量を
調整している。すなわち、吐出管温度Tdが目標温度T
d(target)よりも低下したときは、電動膨張弁304
を閉じる向きに制御して主流冷媒の流量を減らし、逆
に、吐出管温度Tdが目標温度Td(target)よりも上
昇したときは、電動膨張弁304を開く向きに制御して
主流冷媒の流量を増やすようにしている。一方、バイパ
ス回路313に設けられたキャピラリチューブ312の
絞り量(管の寸法によって定まる)は、室外気温が35
℃で、かつ室内気温が27℃である条件(以下「冷房標
準条件」という。なお、この明細書を通して、温度は乾
球温度(DB)を意味する。)下で冷凍能力(成績係数
COP)が最大となるように設定されている。すなわ
ち、上記冷房標準条件下で、上記蒸発器305の出口で
主流冷媒が飽和状態となるときに、過冷却用熱交換器3
10のバイパス側出口温度が冷媒の飽和温度となる(バ
イパス流冷媒が飽和状態となる)ように設定されてい
る。
Conventionally, the flow rates of the mainstream refrigerant and the bypass refrigerant have been adjusted by changing the throttle amount of an electric expansion valve 304 provided in a main circuit 306. Specifically, the temperature Tc detected by the temperature sensor 332 at the condenser outlet
And the temperature Te detected by the temperature sensor 333 at the evaporator inlet.
As shown in FIG. 4, a target temperature Td (target) = f (Te, Tc) at the outlet of the compressor is set as a function f. The function f is a known function adapted to a basic circuit that does not perform supercooling (having only the main circuit 306 without the bypass circuit 313). Then, the temperature sensor 331 at the compressor outlet (discharge pipe) is controlled by control means (not shown).
Is the actual discharge pipe temperature Td detected by the target temperature Td.
The throttle amount of the electric expansion valve 304 is adjusted so as to be (target). That is, the discharge pipe temperature Td is equal to the target temperature T.
When it is lower than d (target), the electric expansion valve 304
When the discharge pipe temperature Td rises above the target temperature Td (target), the electric expansion valve 304 is controlled to open to control the mainstream refrigerant flow rate. I try to increase. On the other hand, the amount of restriction of the capillary tube 312 provided in the bypass circuit 313 (determined by the size of the tube) is as follows.
° C and a room temperature of 27 ° C (hereinafter referred to as “cooling standard condition”. Throughout this specification, the temperature means dry-bulb temperature (DB)) and the refrigerating capacity (coefficient of performance COP). Is set to be the maximum. That is, when the mainstream refrigerant is saturated at the outlet of the evaporator 305 under the cooling standard conditions, the supercooling heat exchanger 3
The bypass-side outlet temperature of 10 is set to be the saturation temperature of the refrigerant (the bypass-flow refrigerant becomes saturated).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
方式では、運転条件が変化したとき次のような問題が生
ずる。
However, in the above-mentioned system, the following problems occur when the operating conditions change.

【0006】例えば冷房標準条件よりも室外気温が低い
運転条件になると、図6(a)のPh線図に示すように、
冷凍サイクルにおける高低差圧が小さくなる(図6(b)
のS1)。この状態では、過冷却用熱交換器310を通
る主流冷媒とバイパス流冷媒との間の温度差が小さくな
って、過冷却用熱交換器310における熱交換量が小さ
くなるため、過冷却用熱交換器310のバイパス側出口
を通るバイパス流冷媒の状態Aが湿り側に移行する(S
2)。すると、圧縮機302の吐出管温度Tdが低下す
るため(S3)、それを防ぐように電動膨張弁304が
閉じる向きに制御される(S4)。この結果、主流冷媒
の流量が減って、蒸発器305の出口を通る主流冷媒の
状態Eが過熱側に移行するとともに、バイパス流冷媒の
流量が増えて、過冷却用熱交換器310のバイパス側出
口を通るバイパス流冷媒の状態Aがますます湿り側に移
行する(S5)。このような冷媒流量制御上の悪循環が
生ずる結果、システムの冷凍能力が低下する(S6)。
[0006] For example, under an operating condition in which the outdoor temperature is lower than the cooling standard condition, as shown in the Ph diagram of FIG.
The differential pressure in the refrigeration cycle becomes smaller (Fig. 6 (b)
S1). In this state, the temperature difference between the mainstream refrigerant and the bypass refrigerant flowing through the subcooling heat exchanger 310 is reduced, and the amount of heat exchange in the subcooling heat exchanger 310 is reduced. The state A of the bypass refrigerant flowing through the bypass outlet of the exchanger 310 shifts to the wet side (S
2). Then, since the discharge pipe temperature Td of the compressor 302 decreases (S3), the electric expansion valve 304 is controlled to close so that the discharge pipe temperature Td is prevented (S4). As a result, the flow rate of the mainstream refrigerant decreases, the state E of the mainstream refrigerant passing through the outlet of the evaporator 305 shifts to the superheat side, and the flow rate of the bypass refrigerant increases. The state A of the bypass flow refrigerant passing through the outlet shifts more and more to the wet side (S5). As a result of such a vicious cycle in refrigerant flow control, the refrigeration capacity of the system is reduced (S6).

【0007】一方、冷房標準条件よりも室外気温が高い
運転条件になると、図7(a)のPh線図に示すように、
冷凍サイクルにおける高低差圧が大きくなる(図7(b)
のS11)。この状態では、過冷却用熱交換器310を
通る主流冷媒とバイパス流冷媒との間の温度差が大きく
なって、過冷却用熱交換器310における熱交換量が大
きくなるため、過冷却用熱交換器310のバイパス側出
口を通るバイパス流冷媒の状態Aが過熱側に移行する
(S12)。すると、圧縮機302の吐出管温度Tdが
上昇するため(S13)、それを防ぐように電動膨張弁
304が開く向きに制御される(S14)。この結果、
主流冷媒の流量が増えて、蒸発器305の出口を通る主
流冷媒の状態Eが湿り側に移行するとともに、バイパス
流冷媒の流量が増えて、過冷却用熱交換器310のバイ
パス側出口を通るバイパス流冷媒の状態Aがますます過
熱側に移行する(S15)。このような冷媒流量制御上
の悪循環が生ずる結果、上の場合と同様に、システムの
冷凍能力が低下する(S16)。
[0007] On the other hand, when the operating condition is such that the outdoor temperature is higher than the cooling standard condition, as shown in the Ph diagram of FIG.
The differential pressure in the refrigeration cycle increases (Fig. 7 (b)
S11). In this state, the temperature difference between the mainstream refrigerant passing through the supercooling heat exchanger 310 and the bypass refrigerant increases, and the amount of heat exchange in the supercooling heat exchanger 310 increases. The state A of the bypass refrigerant flowing through the bypass outlet of the exchanger 310 shifts to the superheat side (S12). Then, since the discharge pipe temperature Td of the compressor 302 rises (S13), the electric expansion valve 304 is controlled to open so as to prevent it (S14). As a result,
The flow rate of the mainstream refrigerant increases, and the state E of the mainstream refrigerant passing through the outlet of the evaporator 305 shifts to the wet side, and the flow rate of the bypass flow refrigerant increases, passing through the bypass-side outlet of the supercooling heat exchanger 310. The state A of the bypass flow refrigerant further shifts to the superheated side (S15). As a result of such a vicious cycle in refrigerant flow control, the refrigeration capacity of the system is reduced as in the above case (S16).

【0008】そこで、この発明の目的は、主流冷媒とバ
イパス流冷媒との間で熱交換を行って主流冷媒を過冷却
する冷媒回路を備えた空気調和機において、広い運転条
件にわたって、従来に比して高い冷凍能力を維持できる
空気調和機を提供することにある。
Accordingly, an object of the present invention is to provide an air conditioner having a refrigerant circuit for supercooling a mainstream refrigerant by exchanging heat between the mainstream refrigerant and a bypass flow refrigerant, over a wide range of operating conditions. To provide an air conditioner that can maintain high refrigeration capacity.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の空気調和機は、圧縮機、凝縮器、
過冷却用熱交換器、第1の膨張機構を構成する電動膨張
弁および蒸発器の順に冷媒を流す主回路と、上記凝縮器
と電動膨張弁との間で上記主回路から分岐して、第2の
膨張機構を構成するキャピラリチューブ、上記過冷却用
熱交換器の順に冷媒を流し、上記圧縮機の吸入側で上記
主回路と合流するバイパス回路とを含む冷媒回路を備
え、上記過冷却用熱交換器は、上記主回路を流れる主流
冷媒と、上記キャピラリチューブ通過後の上記バイパス
回路を流れるバイパス流冷媒との間で熱交換を行って、
上記主流冷媒を過冷却する空気調和機において、上記過
冷却用熱交換器のバイパス側出口を通るバイパス流冷媒
の状態にかかわらず、上記電動膨張弁によって上記蒸発
器の出口を通る主流冷媒が所定の過熱度になるように制
御することを特徴とする。
In order to achieve the above object, an air conditioner according to claim 1 comprises a compressor, a condenser,
A main circuit for flowing a refrigerant in the order of a supercooling heat exchanger, an electric expansion valve and an evaporator constituting a first expansion mechanism, and a branch from the main circuit between the condenser and the electric expansion valve. A refrigerant circuit including a capillary tube forming an expansion mechanism of No. 2 and a bypass circuit for flowing a refrigerant in the order of the supercooling heat exchanger and merging with the main circuit on the suction side of the compressor. The heat exchanger performs heat exchange between the mainstream refrigerant flowing through the main circuit and the bypass refrigerant flowing through the bypass circuit after passing through the capillary tube,
In the air conditioner for subcooling the mainstream refrigerant, regardless of the state of the bypass refrigerant flowing through the bypass side outlet of the supercooling heat exchanger, the main expansion refrigerant passing through the outlet of the evaporator is determined by the electric expansion valve. Is controlled so that the degree of superheat is increased.

【0010】この請求項1の空気調和機は、上記過冷却
用熱交換器のバイパス側出口を通るバイパス流冷媒の状
態にかかわらず、上記電動膨張弁によって上記蒸発器の
出口を通る主流冷媒が所定の過熱度(典型的には過熱度
ゼロ(飽和状態))になるように制御するので、冷房標
準条件から外れた運転条件、すなわち冷房標準条件より
も室外気温が低い運転条件や冷房標準条件よりも室外気
温が高い運転条件となっても、従来のような冷媒流量制
御上の悪循環が生じない。しかも、バイパス回路に設け
られたキャピラリチューブは固定絞りであるから、シス
テムの冷凍能力の最高点は、ほぼ蒸発器の出口を通る主
流冷媒が飽和状態になるときに現れる。したがって、広
い運転条件にわたって、従来に比して高い冷凍能力が維
持される。
In the air conditioner of the present invention, the main expansion refrigerant passing through the outlet of the evaporator is controlled by the electric expansion valve regardless of the state of the refrigerant flowing through the bypass on the bypass side of the subcooling heat exchanger. Since the control is performed so as to be a predetermined superheat degree (typically, the superheat degree is zero (saturated state)), the operation condition deviates from the cooling standard condition, that is, the operation condition where the outdoor temperature is lower than the cooling standard condition or the cooling standard condition Even under the operating condition in which the outdoor air temperature is higher than that, the vicious cycle in the refrigerant flow rate control unlike the related art does not occur. Moreover, since the capillary tube provided in the bypass circuit is a fixed throttle, the highest point of the refrigerating capacity of the system appears almost when the mainstream refrigerant passing through the outlet of the evaporator is saturated. Therefore, high refrigeration capacity is maintained over a wide range of operating conditions.

【0011】請求項2に記載の空気調和機は、請求項1
に記載の空気調和機において、上記凝縮器の出口温度
(Tc)、上記蒸発器の入口温度(Te)および上記圧
縮機の吐出管温度(Td)を検出する温度センサと、上
記温度センサが検出した上記凝縮器の出口温度(Tc)
および上記蒸発器の入口温度(Te)に基づいて、上記
主回路のみからなる基本回路についての上記圧縮機の吐
出管の目標温度(Td(target))を算出し、上記冷媒
回路の上記蒸発器の出口を通る主流冷媒が飽和状態にな
るように、この目標温度(Td(target))に対して、
上記凝縮器の出口温度と上記蒸発器の入口温度との差
(Tc−Te)に応じて補正を行う吐出管目標温度算出
部と、上記温度センサが検出した上記吐出管温度(T
d)が上記吐出管目標温度算出部による上記補正後の目
標温度(Td′(target))となるように、上記電動膨
張弁の絞り量を調整する主電動弁制御部を備えたことを
特徴とする。
[0011] The air conditioner according to the second aspect is the first aspect.
Wherein the temperature sensor detects the outlet temperature (Tc) of the condenser, the inlet temperature (Te) of the evaporator, and the discharge pipe temperature (Td) of the compressor, and the temperature sensor detects the temperature. Outlet temperature of the above condenser (Tc)
And calculating a target temperature (Td (target)) of the discharge pipe of the compressor with respect to the basic circuit including only the main circuit based on the inlet temperature (Te) of the evaporator, and calculating the target temperature (Td (target)) of the refrigerant circuit. The target temperature (Td (target)) is set so that the mainstream refrigerant passing through the outlet of
A discharge pipe target temperature calculation unit for performing correction in accordance with the difference (Tc-Te) between the outlet temperature of the condenser and the inlet temperature of the evaporator; and the discharge pipe temperature (T
a main electric valve control unit that adjusts the throttle amount of the electric expansion valve so that d) becomes the corrected target temperature (Td ′ (target)) by the discharge pipe target temperature calculation unit. And

【0012】この請求項2の空気調和機では、吐出管目
標温度算出部は、上記温度センサが検出した上記凝縮器
の出口温度(Tc)および上記蒸発器の入口温度(T
e)に基づいて、上記主回路のみからなる基本回路につ
いての上記圧縮機の吐出管の目標温度(Td(targe
t))を算出する。さらに、吐出管目標温度算出部は、
上記冷媒回路の上記蒸発器の出口を通る主流冷媒が飽和
状態になるように、この目標温度(Td(target))に
対して、上記凝縮器の出口温度と上記蒸発器の入口温度
との差(Tc−Te)に応じて補正を行う。そして、主
電動弁制御部は、上記温度センサが検出した上記吐出管
温度が上記吐出管目標温度算出部による上記補正後の目
標温度(Td′(target))となるように、上記電動膨
張弁の絞り量を調整する。この結果、上記過冷却用熱交
換器のバイパス側出口を通るバイパス流冷媒の状態にか
かわらず、上記蒸発器の出口を通る主流冷媒が飽和状態
になる。
In the air conditioner according to the present invention, the discharge pipe target temperature calculating section calculates the outlet temperature (Tc) of the condenser detected by the temperature sensor and the inlet temperature (Tc) of the evaporator.
e), the target temperature (Td (targe) of the discharge pipe of the compressor for the basic circuit consisting of only the main circuit
t)) is calculated. Furthermore, the discharge pipe target temperature calculation unit
The difference between the outlet temperature of the condenser and the inlet temperature of the evaporator with respect to the target temperature (Td (target)) so that the mainstream refrigerant passing through the outlet of the evaporator of the refrigerant circuit is saturated. Correction is performed according to (Tc-Te). Then, the main motorized valve control section controls the electric expansion valve so that the discharge pipe temperature detected by the temperature sensor becomes the corrected target temperature (Td ′ (target)) by the discharge pipe target temperature calculation section. Adjust the aperture amount of. As a result, the mainstream refrigerant passing through the outlet of the evaporator is saturated regardless of the state of the bypass refrigerant flowing through the bypass-side outlet of the subcooling heat exchanger.

【0013】請求項3に記載の空気調和機は、請求項1
に記載の空気調和機において、上記凝縮器の出口温度
(Tc)、上記蒸発器の入口温度(Te)、上記圧縮機
の吐出管温度(Td)、室外気温(To)および室内気
温(Tr)を検出する温度センサと、上記温度センサが
検出した上記凝縮器の出口温度(Tc)および上記蒸発
器の入口温度(Te)に基づいて、上記主回路のみから
なる基本回路についての上記圧縮機の吐出管の目標温度
(Td(target))を算出し、上記冷媒回路の上記蒸発
器の出口を通る主流冷媒が飽和状態になるように、この
目標温度(Td(target))に対して、上記温度センサ
が検出した室外気温と室内気温との差(To−Tr)に
応じて補正を行う吐出管目標温度算出部と、上記温度セ
ンサが検出した上記吐出管温度(Td)が上記吐出管目
標温度算出部による上記補正後の目標温度(Td′(ta
rget))となるように、上記電動膨張弁の絞り量を調整
する主電動弁制御部を備えたことを特徴とする。
[0013] The air conditioner according to the third aspect is the first aspect.
, The outlet temperature of the condenser (Tc), the inlet temperature of the evaporator (Te), the discharge pipe temperature of the compressor (Td), the outdoor air temperature (To), and the indoor air temperature (Tr). Based on the temperature of the condenser and the temperature of the outlet of the condenser (Tc) and the temperature of the inlet of the evaporator (Te) detected by the temperature sensor. The target temperature (Td (target)) of the discharge pipe is calculated, and the target temperature (Td (target)) is set so as to saturate the mainstream refrigerant passing through the outlet of the evaporator of the refrigerant circuit. A discharge pipe target temperature calculation unit for performing correction in accordance with the difference (To-Tr) between the outdoor temperature and the indoor temperature detected by the temperature sensor, and the discharge pipe temperature (Td) detected by the temperature sensor is used as the discharge pipe target. The above by the temperature calculation unit Positive after the target temperature (Td '(ta
rget)), characterized in that a main electric valve control unit for adjusting the throttle amount of the electric expansion valve is provided.

【0014】この請求項3の空気調和機では、吐出管目
標温度算出部は、上記温度センサが検出した上記凝縮器
の出口温度(Tc)および上記蒸発器の入口温度(T
e)に基づいて、上記主回路のみからなる基本回路につ
いての上記圧縮機の吐出管の目標温度(Td(targe
t))を算出する。さらに、吐出管目標温度算出部は、
上記冷媒回路の上記蒸発器の出口を通る主流冷媒が飽和
状態になるように、この目標温度(Td(target))に
対して、上記凝縮器の出口温度と上記蒸発器の入口温度
との差(Tc−Te)に応じて補正を行う。そして、主
電動弁制御部は、上記温度センサが検出した上記吐出管
温度(Td)が上記吐出管目標温度算出部による上記補
正後の目標温度(Td′(target))となるように、上
記電動膨張弁の絞り量を調整する。この結果、上記過冷
却用熱交換器のバイパス側出口を通るバイパス流冷媒の
状態にかかわらず、上記蒸発器の出口を通る主流冷媒が
飽和状態になる。
In the air conditioner of the present invention, the discharge pipe target temperature calculating section may calculate the outlet temperature of the condenser (Tc) and the inlet temperature of the evaporator (Tc) detected by the temperature sensor.
e), the target temperature (Td (targe) of the discharge pipe of the compressor for the basic circuit consisting of only the main circuit
t)) is calculated. Furthermore, the discharge pipe target temperature calculation unit
The difference between the outlet temperature of the condenser and the inlet temperature of the evaporator with respect to the target temperature (Td (target)) so that the mainstream refrigerant passing through the outlet of the evaporator of the refrigerant circuit is saturated. Correction is performed according to (Tc-Te). Then, the main motorized valve control unit controls the discharge pipe temperature (Td) detected by the temperature sensor to the corrected target temperature (Td ′ (target)) by the discharge pipe target temperature calculation unit. Adjust the throttle amount of the electric expansion valve. As a result, the mainstream refrigerant passing through the outlet of the evaporator is saturated regardless of the state of the bypass refrigerant flowing through the bypass-side outlet of the subcooling heat exchanger.

【0015】[0015]

【発明の実施の形態】以下、この発明の実施の形態を詳
細に説明する。
Embodiments of the present invention will be described below in detail.

【0016】図1は一実施形態の空気調和機の、主回路
6とバイパス回路(破線で示す)11とを含む冷媒回路
1を示している。
FIG. 1 shows a refrigerant circuit 1 including a main circuit 6 and a bypass circuit (shown by a broken line) 11 of an air conditioner according to one embodiment.

【0017】主回路6は、圧縮機2、凝縮器3、過冷却
用の二重管式熱交換器10、第1の膨張機構を構成する
電動膨張弁4、蒸発器5、四路切換弁9およびアキュム
レータ8をこの順に有している。バイパス回路11は、
凝縮器3と過冷却用熱交換器10との間の分岐点41で
主回路6から分岐して、第2の膨張機構を構成するキャ
ピラリチューブ12と過冷却用熱交換器10とを通り、
アキュムレータ8の入口近傍の合流点42で主回路6と
合流している。過冷却用熱交換器10は、主回路6を流
れる主流冷媒と、キャピラリチューブ12通過後の上記
バイパス回路11を流れるバイパス流冷媒との間で熱交
換を行う。つまり、キャピラリチューブ12通過後のバ
イパス流冷媒を利用して、簡単な回路構成でもって主流
冷媒を過冷却するようになっている。
The main circuit 6 includes a compressor 2, a condenser 3, a double-tube heat exchanger 10 for supercooling, an electric expansion valve 4, which constitutes a first expansion mechanism, an evaporator 5, and a four-way switching valve. 9 and an accumulator 8 in this order. The bypass circuit 11
Branching off from the main circuit 6 at a branch point 41 between the condenser 3 and the subcooling heat exchanger 10, passing through the capillary tube 12 and the subcooling heat exchanger 10 constituting the second expansion mechanism,
It joins the main circuit 6 at a junction 42 near the inlet of the accumulator 8. The subcooling heat exchanger 10 exchanges heat between the mainstream refrigerant flowing through the main circuit 6 and the bypass refrigerant flowing through the bypass circuit 11 after passing through the capillary tube 12. In other words, the mainstream refrigerant is supercooled with a simple circuit configuration using the bypass refrigerant flowing through the capillary tube 12.

【0018】この空気調和機には、電動膨張弁4を制御
するために、吐出管目標温度算出部26、比較部27お
よび主電動弁制御部23が設けられている。温度センサ
32,33,31,38,39は、それぞれ凝縮器3の
出口温度Tc、蒸発器5の入口温度Te、圧縮機2の吐
出管温度Td、室外気温To、室内気温Trを検出し、
また、アキュムレータ8の入口側に取り付けられた圧力
センサ40は、圧縮機2の吸入側の圧力を検出する。な
お、これらの温度センサ32,33,31,38,39
や圧力センサ40は、空気調和機に一般的に設けられて
いるものであるから、特別に追加する必要はない。
The air conditioner is provided with a discharge pipe target temperature calculating section 26, a comparing section 27 and a main motorized valve control section 23 for controlling the electric expansion valve 4. The temperature sensors 32, 33, 31, 38, and 39 detect an outlet temperature Tc of the condenser 3, an inlet temperature Te of the evaporator 5, a discharge pipe temperature Td of the compressor 2, an outdoor air temperature To, and an indoor air temperature Tr, respectively.
Further, a pressure sensor 40 mounted on the inlet side of the accumulator 8 detects the pressure on the suction side of the compressor 2. These temperature sensors 32, 33, 31, 38, 39
Since the pressure sensor 40 and the pressure sensor 40 are generally provided in an air conditioner, there is no need to add them.

【0019】運転時に、圧縮機2から吐出された冷媒
は、凝縮器(例えば室外空気に放熱する)3によって凝
縮され、分岐点41で主回路6を流れる主流冷媒とバイ
パス回路11を流れるバイパス流冷媒とに別れる。この
主流冷媒は、熱交換器10において、キャピラリチュー
ブ12通過後の上記バイパス流冷媒との熱交換によって
過冷却された後、電動膨張弁4によって減圧される。そ
して、主流冷媒は、蒸発器(例えば室内空気から吸熱す
る)5によって蒸発され、四路切換弁9および気液分離
を行うアキュムレータ8を通して圧縮機2に吸い込まれ
る。一方、バイパス流冷媒は、所定の絞り量を与えるキ
ャピラリチューブ12を通過して減圧された後、熱交換
器10において主流冷媒との熱交換によって蒸発され
る。この後、バイパス流冷媒は、アキュムレータ8の入
口近傍の合流点42で主流冷媒と合流する。
During operation, the refrigerant discharged from the compressor 2 is condensed by a condenser (for example, radiating heat to outdoor air) 3, and the main refrigerant flowing through the main circuit 6 at a branch point 41 and the bypass refrigerant flowing through the bypass circuit 11 Divided into refrigerant. The mainstream refrigerant is supercooled by heat exchange with the bypass-flow refrigerant after passing through the capillary tube 12 in the heat exchanger 10, and then decompressed by the electric expansion valve 4. Then, the mainstream refrigerant is evaporated by an evaporator (for example, absorbing heat from indoor air) 5, and is sucked into the compressor 2 through a four-way switching valve 9 and an accumulator 8 for performing gas-liquid separation. On the other hand, the bypass-flow refrigerant is depressurized by passing through the capillary tube 12 that provides a predetermined throttle amount, and is then evaporated in the heat exchanger 10 by heat exchange with the mainstream refrigerant. Thereafter, the bypass-flow refrigerant merges with the mainstream refrigerant at a junction 42 near the inlet of the accumulator 8.

【0020】このように熱交換器10で主流冷媒を過冷
却することにより、過冷却を行わない場合に比して主流
冷媒による冷凍効果を増大できる。また、冷媒の流れか
らバイパス流を分岐させることによって主流冷媒の体積
流量が減少するので、図5(b)に示したのと同様に、過
冷却を行わない場合(図5(a)参照)に比して、蒸発器
5内および圧縮機2の吸入側配管での圧力損失ΔPを減
少させることができる。したがって、システムの冷凍能
力を向上させることができる。
By supercooling the mainstream refrigerant in the heat exchanger 10 as described above, the refrigerating effect of the mainstream refrigerant can be increased as compared with a case where supercooling is not performed. In addition, since the volume flow of the mainstream refrigerant is reduced by branching the bypass flow from the flow of the refrigerant, the supercooling is not performed as shown in FIG. 5B (see FIG. 5A). , The pressure loss ΔP in the evaporator 5 and in the suction-side pipe of the compressor 2 can be reduced. Therefore, the refrigeration capacity of the system can be improved.

【0021】この空気調和機では、電動膨張弁4の絞り
量の調整は次のようにして行われる。
In this air conditioner, the adjustment of the throttle amount of the electric expansion valve 4 is performed as follows.

【0022】 まず、吐出管目標温度算出部26は、
温度センサ32,33が検出した凝縮器3の出口温度T
cおよび蒸発器5の入口温度Teに基づいて、主回路6
のみからなる基本回路についての圧縮機2の吐出管の目
標温度Td(target)を算出する。すなわち、凝縮器3
の出口温度Tcと、蒸発器5の入口温度Teとの関数f
として、吐出管の目標温度Td(target)=f(Te,
Tc)を設定する。既に述べたように、この関数fは公
知のものである。
First, the discharge pipe target temperature calculator 26 calculates
The outlet temperature T of the condenser 3 detected by the temperature sensors 32 and 33
c and the main circuit 6 based on the inlet temperature Te of the evaporator 5.
The target temperature Td (target) of the discharge pipe of the compressor 2 for the basic circuit consisting only of the above is calculated. That is, the condenser 3
F between the outlet temperature Tc of the evaporator 5 and the inlet temperature Te of the evaporator 5
The target temperature of the discharge pipe Td (target) = f (Te,
Tc) is set. As already mentioned, this function f is known.

【0023】 さらに、吐出管目標温度算出部26
は、冷媒回路1の蒸発器5の出口を通る主流冷媒が飽和
状態になるように、この目標温度Td(target)に対し
て、凝縮器3の出口温度と蒸発器5の入口温度との差
(Tc−Te)に応じて補正を行う。具体的には、上記
目標温度Td(target)に補正値αを加えて、新たな目
標温度 Td′(target)=Td(target)+α を算出する。この補正値αの求め方については後述す
る。
Further, a discharge pipe target temperature calculating section 26
Is the difference between the outlet temperature of the condenser 3 and the inlet temperature of the evaporator 5 with respect to the target temperature Td (target) so that the mainstream refrigerant passing through the outlet of the evaporator 5 of the refrigerant circuit 1 is saturated. Correction is performed according to (Tc-Te). Specifically, a correction value α is added to the target temperature Td (target) to calculate a new target temperature Td ′ (target) = Td (target) + α. How to obtain the correction value α will be described later.

【0024】 そして、比較部27は、温度センサ3
1が検出した実際の吐出管温度Tdと上記補正後の目標
温度Td′(target)との差(Td−Td′(targe
t))を算出し、主電動弁制御部23は、この差(Td
−Td′(target))がゼロとなるように、電動膨張弁
4の絞り量を調整する。この結果、過冷却用熱交換器1
0のバイパス側出口を通るバイパス流冷媒の状態にかか
わらず、蒸発器5の出口を通る主流冷媒を飽和状態にす
ることができる。
Then, the comparing unit 27 is provided with the temperature sensor 3
1 (Td−Td ′ (targe) between the actual detected discharge pipe temperature Td and the corrected target temperature Td ′ (target).
t)), and the main motorized valve control unit 23 calculates the difference (Td
-The throttle amount of the electric expansion valve 4 is adjusted so that -Td '(target)) becomes zero. As a result, the subcooling heat exchanger 1
The mainstream refrigerant passing through the outlet of the evaporator 5 can be saturated regardless of the state of the bypass refrigerant flowing through the bypass-side outlet 0.

【0025】したがって、冷房標準条件(室外気温が3
5℃で、かつ室内気温が27℃)から外れた運転条件、
すなわち冷房標準条件よりも室外気温が低い運転条件や
冷房標準条件よりも室外気温が高い運転条件となって
も、従来のような冷媒流量制御上の悪循環が生じるのを
防止することができる。しかも、バイパス回路11に設
けられたキャピラリチューブ12は固定絞りであるか
ら、システムの冷凍能力の最高点は、ほぼ蒸発器5の出
口を通る主流冷媒が飽和状態になるときに現れる。した
がって、この空気調和機によれば、広い運転条件にわた
って、従来に比して高い冷凍能力を維持することができ
る。
Therefore, the standard cooling condition (the outdoor temperature is 3
Operating conditions at 5 ° C and room temperature outside of 27 ° C)
That is, even under the operating condition in which the outdoor temperature is lower than the cooling standard condition or the operating condition in which the outdoor temperature is higher than the cooling standard condition, it is possible to prevent the conventional vicious circulation in the refrigerant flow control from occurring. In addition, since the capillary tube 12 provided in the bypass circuit 11 is a fixed throttle, the highest point of the refrigerating capacity of the system appears when the mainstream refrigerant passing through the outlet of the evaporator 5 is almost saturated. Therefore, according to this air conditioner, it is possible to maintain a higher refrigerating capacity as compared with the related art over a wide range of operating conditions.

【0026】次に、上記補正値αの求め方を説明する。Next, a method of obtaining the correction value α will be described.

【0027】(i)冷房標準条件から外れた様々な運転
条件を設定して、凝縮器3の出口温度と蒸発器5の入口
温度との差(Tc−Te)を変化させる。そして、各運
転条件下で、吐出管目標温度算出部26によって、温度
センサ32,33が検出した凝縮器3の出口温度Tcお
よび蒸発器5の入口温度Teに基づいて、上記基本回路
についての圧縮機2の吐出管の目標温度Td(target)
=f(Te,Tc)を算出する。そして、比較部27お
よび主電動弁制御部23によって、温度センサ31が検
出した実際の吐出管温度Tdがその目標温度Td(targ
et)となるように、電動膨張弁4の絞り量を調整する。
このようにした場合、バイパス回路11の影響によっ
て、冷媒回路1の蒸発器5の出口を通る主流冷媒が、運
転条件に応じて飽和状態から過熱側または湿り側の状態
に移行する。
(I) Various operating conditions deviating from the standard cooling conditions are set, and the difference (Tc-Te) between the outlet temperature of the condenser 3 and the inlet temperature of the evaporator 5 is changed. Then, under each operating condition, the discharge pipe target temperature calculation unit 26 performs compression on the basic circuit based on the outlet temperature Tc of the condenser 3 and the inlet temperature Te of the evaporator 5 detected by the temperature sensors 32 and 33. Temperature Td (target) of the discharge pipe of machine 2
= F (Te, Tc). The actual discharge pipe temperature Td detected by the temperature sensor 31 is compared with the target temperature Td (targ) by the comparison unit 27 and the main motorized valve control unit 23.
The throttle amount of the electric expansion valve 4 is adjusted so as to satisfy (et).
In this case, due to the influence of the bypass circuit 11, the mainstream refrigerant passing through the outlet of the evaporator 5 of the refrigerant circuit 1 shifts from a saturated state to a superheated side or a wet side depending on the operating conditions.

【0028】(ii)そこで、蒸発器5の出口の温度セン
サ36によって蒸発器5の出口温度Teoを検出する。
一方、アキュムレータ8の入口側に取り付けた圧力セン
サ40によって圧縮機2の吸入側の圧力Psを検出し、
この圧力Psに相当する冷媒の相当飽和温度Tsを算出
する。そして、蒸発器5の出口温度Teoと相当飽和温
度Tsとの差(Teo−Ts)を相殺するように、実験
によって上記補正値αを求める。
(Ii) Then, the outlet temperature Teo of the evaporator 5 is detected by the temperature sensor 36 at the outlet of the evaporator 5.
On the other hand, the pressure Ps on the suction side of the compressor 2 is detected by the pressure sensor 40 attached to the inlet side of the accumulator 8,
The equivalent saturation temperature Ts of the refrigerant corresponding to the pressure Ps is calculated. Then, the correction value α is obtained by an experiment so as to cancel the difference (Teo−Ts) between the outlet temperature Teo of the evaporator 5 and the equivalent saturation temperature Ts.

【0029】図2は、冷房標準条件から外れた様々な運
転条件を設定して、凝縮器3の出口温度と蒸発器5の入
口温度との差(Tc−Te)を変化させ、実験によって
求めた補正値αを示している。図2中の□印は、キャピ
ラリチューブ12の絞り量(寸法、すなわち径と長さに
より定まる)を、冷房標準条件下で、蒸発器5の出口で
主流冷媒が飽和状態となるときに、過冷却用熱交換器1
0のバイパス側出口温度がが飽和状態となるように設定
したときのデータ点を示している。また、図2中の◇印
は、キャピラリチューブ12の絞り量を、冷房標準条件
下で、蒸発器5の出口で主流冷媒が飽和状態となるとき
に、過冷却用熱交換器10のバイパス側出口でのバイパ
ス流冷媒の過熱度が約4.5degとなるように設定し
たときのデータ点を示している。いずれのキャピラリチ
ューブを用いた場合も、温度差(Tc−Te)と補正値
αとは、それぞれ一定の曲線に乗るような対応関係を示
している。したがって、この温度差(Tc−Te)に応
じて、吐出管の目標温度Td(target)に対する補正値
αを求めることができる。例えば、前者のキャピラリチ
ューブを用いた場合、温度差(Tc−Te)が20℃の
とき、吐出管の目標温度Td(target)に対する補正値
αは−8℃と求められる。
FIG. 2 shows various experimental conditions which are different from the standard cooling conditions, and the difference (Tc-Te) between the outlet temperature of the condenser 3 and the inlet temperature of the evaporator 5 is changed. Is shown. In FIG. 2, the symbol □ indicates that the throttle amount of the capillary tube 12 (determined by the size, that is, the diameter and the length) is excessive when the mainstream refrigerant is saturated at the outlet of the evaporator 5 under the standard cooling condition. Heat exchanger for cooling 1
Data points when the bypass-side exit temperature of 0 is set to be in a saturated state are shown. In FIG. 2, the mark “◇” indicates that the throttle amount of the capillary tube 12 is set to the bypass side of the supercooling heat exchanger 10 when the mainstream refrigerant is saturated at the outlet of the evaporator 5 under the standard cooling condition. The data points are shown when the degree of superheat of the bypass flow refrigerant at the outlet is set to be about 4.5 deg. Regardless of which capillary tube is used, the temperature difference (Tc-Te) and the correction value α show a corresponding relationship such that they respectively ride on a certain curve. Therefore, the correction value α for the target temperature Td (target) of the discharge pipe can be obtained according to the temperature difference (Tc−Te). For example, when the former capillary tube is used, when the temperature difference (Tc−Te) is 20 ° C., the correction value α for the target temperature Td (target) of the discharge pipe is obtained as −8 ° C.

【0030】なお、吐出管目標温度算出部26は、吐出
管の目標温度Td(target)に対して、温度センサ(3
8,39)が検出した室外気温と室内気温との差(To
−Tr)に応じて補正を行うようになっていても良い。
すなわち、冷房標準条件から外れた様々な運転条件を設
定したとき、凝縮器3の出口温度と蒸発器5の入口温度
との差(Tc−Te)と同様に、室外気温と室内気温と
の差(To−Tr)も変化する。そこで、温度差(Tc
−Te)を温度差(To−Tr)に代えて、図2と同様
のデータを実験によって取得し、補正値αを求めるよう
にしても良い。このようにした場合も、上の場合と同様
に、過冷却用熱交換器10のバイパス側出口を通るバイ
パス流冷媒の状態にかかわらず、蒸発器5の出口を通る
主流冷媒を飽和状態にすることができる。したがって、
広い運転条件にわたって、従来に比して高い冷凍能力を
維持することができる。
The discharge pipe target temperature calculating section 26 calculates a temperature sensor (3) for the discharge pipe target temperature Td (target).
8, 39) detects the difference between the outdoor temperature and the indoor temperature (To
−Tr), the correction may be performed.
That is, when various operating conditions deviating from the cooling standard conditions are set, the difference between the outdoor air temperature and the indoor air temperature is similar to the difference (Tc−Te) between the outlet temperature of the condenser 3 and the inlet temperature of the evaporator 5. (To-Tr) also changes. Then, the temperature difference (Tc
Instead of the temperature difference (To−Tr), the same data as in FIG. 2 may be obtained by an experiment to determine the correction value α. Also in this case, as in the above case, the mainstream refrigerant passing through the outlet of the evaporator 5 is saturated regardless of the state of the bypass refrigerant flowing through the bypass-side outlet of the subcooling heat exchanger 10. be able to. Therefore,
Higher refrigeration capacity than before can be maintained over a wide range of operating conditions.

【0031】以上は主に冷房条件に関して具体的に説明
したが、暖房時の使用に関しても定性的には同じことで
あり、本発明はそのまま利用できる。また、本発明は、
冷媒としてHFC407CやHFC410Aなどの非共
沸混合冷媒を用いた場合でも有効である。
Although the above has mainly described the cooling conditions specifically, the same applies qualitatively to the use during heating, and the present invention can be used as it is. Also, the present invention
It is effective even when a non-azeotropic mixed refrigerant such as HFC407C or HFC410A is used as the refrigerant.

【0032】また、上述の実施形態では、バイパス回路
11は、凝縮器3と過冷却用熱交換器10との間で主回
路から分岐するものとしたが、これに限られるものでは
ない。バイパス回路は、過冷却用熱交換器10と電動膨
張弁4との間で主回路から分岐して、キャピラリチュー
ブ12、過冷却用熱交換器10の順にバイパス流冷媒を
流すようになっていても良い。この場合も同様の作用効
果を奏することができる。
In the above-described embodiment, the bypass circuit 11 branches off from the main circuit between the condenser 3 and the supercooling heat exchanger 10. However, the present invention is not limited to this. The bypass circuit branches off from the main circuit between the subcooling heat exchanger 10 and the electric expansion valve 4, and allows the bypass refrigerant to flow in the order of the capillary tube 12 and the subcooling heat exchanger 10. Is also good. In this case, the same operation and effect can be obtained.

【0033】[0033]

【発明の効果】以上より明らかなように、請求項1の空
気調和機では、過冷却用熱交換器のバイパス側出口を通
るバイパス流冷媒の状態にかかわらず、主回路に設けら
れた電動膨張弁によって蒸発器の出口を通る主流冷媒が
所定の過熱度(典型的には過熱度ゼロ(飽和状態))に
なるように制御するので、冷房標準条件から外れた運転
条件、すなわち冷房標準条件よりも室外気温が低い運転
条件や冷房標準条件よりも室外気温が高い運転条件とな
っても、従来のような冷媒流量制御上の悪循環が生じな
い。しかも、バイパス回路に設けられたキャピラリチュ
ーブは固定絞りであるから、システムの冷凍能力の最高
点は、ほぼ蒸発器の出口を通る主流冷媒が飽和状態にな
るときに現れる。したがって、広い運転条件にわたっ
て、従来に比して高い冷凍能力を維持することができ
る。
As is apparent from the above description, in the air conditioner of the first aspect, the electric expansion provided in the main circuit irrespective of the state of the bypass-flow refrigerant passing through the bypass-side outlet of the subcooling heat exchanger. The main refrigerant flowing through the outlet of the evaporator is controlled by the valve so that the superheat degree becomes a predetermined superheat degree (typically, the superheat degree is zero (saturated state)). Even when the operating condition is such that the outdoor temperature is lower than the outdoor temperature or the operating temperature is higher than the cooling standard condition, the conventional vicious circulation in the refrigerant flow control does not occur. Moreover, since the capillary tube provided in the bypass circuit is a fixed throttle, the highest point of the refrigerating capacity of the system appears almost when the mainstream refrigerant passing through the outlet of the evaporator is saturated. Therefore, higher refrigeration capacity than before can be maintained over a wide range of operating conditions.

【0034】請求項2に記載の空気調和機では、吐出管
目標温度算出部は、上記温度センサが検出した上記凝縮
器の出口温度(Tc)および上記蒸発器の入口温度(T
e)に基づいて、上記主回路のみからなる基本回路につ
いての上記圧縮機の吐出管の目標温度(Td(targe
t))を算出し、さらに、上記冷媒回路の上記蒸発器の
出口を通る主流冷媒が飽和状態になるように、この目標
温度(Td(target))に対して、上記凝縮器の出口温
度と上記蒸発器の入口温度との差(Tc−Te)に応じ
て補正を行うので、上記過冷却用熱交換器のバイパス側
出口を通るバイパス流冷媒の状態にかかわらず、上記蒸
発器の出口を通る主流冷媒が飽和状態になる。
In the air conditioner according to the present invention, the discharge pipe target temperature calculating section calculates the outlet temperature (Tc) of the condenser and the inlet temperature (Tc) of the evaporator detected by the temperature sensor.
e), the target temperature (Td (targe) of the discharge pipe of the compressor for the basic circuit consisting of only the main circuit
t)), and further, with respect to this target temperature (Td (target)), the outlet temperature of the condenser and the outlet temperature of the condenser so that the mainstream refrigerant passing through the outlet of the evaporator of the refrigerant circuit becomes saturated. Since the correction is performed in accordance with the difference (Tc-Te) from the inlet temperature of the evaporator, the outlet of the evaporator is connected regardless of the state of the bypass refrigerant flowing through the bypass-side outlet of the subcooling heat exchanger. The passing mainstream refrigerant becomes saturated.

【0035】請求項3に記載の空気調和機では、吐出管
目標温度算出部は、上記温度センサが検出した上記凝縮
器の出口温度(Tc)および上記蒸発器の入口温度(T
e)に基づいて、上記主回路のみからなる基本回路につ
いての上記圧縮機の吐出管の目標温度(Td(targe
t))を算出し、さらに、上記冷媒回路の上記蒸発器の
出口を通る主流冷媒が飽和状態になるように、この目標
温度(Td(target))に対して、上記凝縮器の出口温
度と上記蒸発器の入口温度との差(Tc−Te)に応じ
て補正を行うので、上記過冷却用熱交換器のバイパス側
出口を通るバイパス流冷媒の状態にかかわらず、上記蒸
発器の出口を通る主流冷媒が飽和状態になる。
In the air conditioner according to the third aspect, the discharge pipe target temperature calculating section calculates the outlet temperature (Tc) of the condenser and the inlet temperature (Tc) of the condenser detected by the temperature sensor.
e), the target temperature (Td (targe) of the discharge pipe of the compressor for the basic circuit consisting of only the main circuit
t)), and further, with respect to this target temperature (Td (target)), the outlet temperature of the condenser and the outlet temperature of the condenser so that the mainstream refrigerant passing through the outlet of the evaporator of the refrigerant circuit becomes saturated. Since the correction is performed in accordance with the difference (Tc-Te) from the inlet temperature of the evaporator, the outlet of the evaporator is connected regardless of the state of the bypass refrigerant flowing through the bypass-side outlet of the subcooling heat exchanger. The passing mainstream refrigerant becomes saturated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の一実施形態の空気調和機の冷媒回
路の概略構成を示す図である。
FIG. 1 is a diagram illustrating a schematic configuration of a refrigerant circuit of an air conditioner according to an embodiment of the present invention.

【図2】 凝縮器の出口温度と蒸発器の入口温度との差
(Tc−Te)と、基本回路についての圧縮機2の吐出
管の目標温度Td(target)に対する補正値αとの対応
関係を示す図である。
FIG. 2 shows the correspondence between the difference (Tc−Te) between the outlet temperature of the condenser and the inlet temperature of the evaporator and the correction value α for the target temperature Td (target) of the discharge pipe of the compressor 2 for the basic circuit. FIG.

【図3】 主流冷媒とバイパス流冷媒との間で熱交換を
行って主流冷媒を過冷却する、従来の空気調和機の冷媒
回路の概略構成を示す図である。
FIG. 3 is a diagram illustrating a schematic configuration of a refrigerant circuit of a conventional air conditioner that performs heat exchange between a mainstream refrigerant and a bypass flow refrigerant to supercool the mainstream refrigerant.

【図4】 過冷却を行わない基本回路について、凝縮器
の出口温度Tcと蒸発器の入口温度Teとから圧縮機の
吐出管の目標温度Td(target)を算出する仕方
を模式的に示す図である。
FIG. 4 is a diagram schematically showing a method of calculating a target temperature Td (target) of a discharge pipe of a compressor from a condenser outlet temperature Tc and an evaporator inlet temperature Te for a basic circuit that does not perform supercooling. It is.

【図5】 (a)は過冷却を行わない基本回路の冷凍サイ
クルを示すPh線図、(b)は図10に示した従来の冷媒
回路による冷凍サイクルを示すPh線図、(c)は(b)の部
分拡大図である。
5A is a Ph diagram showing a refrigeration cycle of a basic circuit that does not perform supercooling, FIG. 5B is a Ph diagram showing a refrigeration cycle using the conventional refrigerant circuit shown in FIG. 10, and FIG. It is the elements on larger scale of (b).

【図6】 冷房標準条件よりも室外気温が低い運転条件
での、従来の冷媒回路による冷媒流量制御上の問題を説
明する図である。
FIG. 6 is a diagram illustrating a problem in controlling a refrigerant flow rate by a conventional refrigerant circuit under an operating condition in which the outdoor air temperature is lower than a cooling standard condition.

【図7】 冷房標準条件よりも室外気温が高い運転条件
での、従来の冷媒回路による冷媒流量制御上の問題を説
明する図である。
FIG. 7 is a diagram illustrating a problem in controlling a refrigerant flow rate by a conventional refrigerant circuit under an operating condition in which an outdoor air temperature is higher than a cooling standard condition.

【符号の説明】[Explanation of symbols]

1 冷媒回路 2 圧縮機 3 凝縮器 4 電動膨張弁 5 蒸発器 6 主回路 10 過冷却用熱交換器 11 バイパス回路 12 キャピラリチューブ DESCRIPTION OF SYMBOLS 1 Refrigerant circuit 2 Compressor 3 Condenser 4 Electric expansion valve 5 Evaporator 6 Main circuit 10 Supercooling heat exchanger 11 Bypass circuit 12 Capillary tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(2)、凝縮器(3)、過冷却用
熱交換器(10)、第1の膨張機構を構成する電動膨張
弁(4)および蒸発器(5)の順に冷媒を流す主回路
(6)と、上記凝縮器(3)と電動膨張弁(4)との間
で上記主回路(6)から分岐して、第2の膨張機構を構
成するキャピラリチューブ(12)、上記過冷却用熱交
換器(10)の順に冷媒を流し、上記圧縮機(2)の吸
入側で上記主回路(6)と合流するバイパス回路(1
1)とを含む冷媒回路(1)を備え、上記過冷却用熱交
換器(10)は、上記主回路(6)を流れる主流冷媒
と、上記キャピラリチューブ(12)通過後の上記バイ
パス回路(11)を流れるバイパス流冷媒との間で熱交
換を行って、上記主流冷媒を過冷却する空気調和機にお
いて、 上記過冷却用熱交換器(10)のバイパス側出口を通る
バイパス流冷媒の状態にかかわらず、上記電動膨張弁
(4)によって上記蒸発器(5)の出口を通る主流冷媒
が所定の過熱度になるように制御することを特徴とする
空気調和機。
1. A refrigerant in the order of a compressor (2), a condenser (3), a supercooling heat exchanger (10), an electric expansion valve (4) constituting a first expansion mechanism, and an evaporator (5). And a capillary tube (12) that branches off from the main circuit (6) between the condenser (3) and the electric expansion valve (4) to form a second expansion mechanism. The refrigerant flows in the order of the subcooling heat exchanger (10), and the bypass circuit (1) joins the main circuit (6) on the suction side of the compressor (2).
1), and the subcooling heat exchanger (10) includes a mainstream refrigerant flowing through the main circuit (6) and the bypass circuit (2) after passing through the capillary tube (12). 11) In an air conditioner for supercooling the mainstream refrigerant by performing heat exchange with the bypass refrigerant flowing through the bypass refrigerant, the state of the bypass refrigerant flowing through the bypass side outlet of the supercooling heat exchanger (10). Irrespective of the above, an air conditioner characterized in that the main expansion refrigerant passing through the outlet of the evaporator (5) is controlled by the electric expansion valve (4) to a predetermined degree of superheat.
【請求項2】 請求項1に記載の空気調和機において、 上記凝縮器(3)の出口温度(Tc)、上記蒸発器
(5)の入口温度(Te)および上記圧縮機(2)の吐
出管温度(Td)を検出する温度センサ(32,33,
31)と、 上記温度センサ(32,33)が検出した上記凝縮器
(3)の出口温度(Tc)および上記蒸発器(5)の入
口温度(Te)に基づいて、上記主回路(6)のみから
なる基本回路についての上記圧縮機(2)の吐出管の目
標温度(Td(target))を算出し、上記冷媒回路
(1)の上記蒸発器(5)の出口を通る主流冷媒が飽和
状態になるように、この目標温度(Td(target))に
対して、上記凝縮器(3)の出口温度と上記蒸発器
(5)の入口温度との差(Tc−Te)に応じて補正を
行う吐出管目標温度算出部(26)と、 上記温度センサ(31)が検出した上記吐出管温度(T
d)が上記吐出管目標温度算出部(26)による上記補
正後の目標温度(Td′(target))となるように、上
記電動膨張弁(4)の絞り量を調整する主電動弁制御部
(23)を備えたことを特徴とする空気調和機。
2. The air conditioner according to claim 1, wherein an outlet temperature (Tc) of the condenser (3), an inlet temperature (Te) of the evaporator (5), and a discharge of the compressor (2). Temperature sensors (32, 33,
31) and the main circuit (6) based on the outlet temperature (Tc) of the condenser (3) and the inlet temperature (Te) of the evaporator (5) detected by the temperature sensors (32, 33). The target temperature (Td (target)) of the discharge pipe of the compressor (2) for the basic circuit consisting only of the compressor is calculated, and the mainstream refrigerant passing through the outlet of the evaporator (5) of the refrigerant circuit (1) is saturated. The target temperature (Td (target)) is corrected according to the difference (Tc-Te) between the outlet temperature of the condenser (3) and the inlet temperature of the evaporator (5) so as to be in a state. And a discharge pipe target temperature calculating section (26) for performing the discharge pipe temperature (T) detected by the temperature sensor (31).
a main electric valve control unit that adjusts the throttle amount of the electric expansion valve (4) so that d) becomes the corrected target temperature (Td ′ (target)) by the discharge pipe target temperature calculation unit (26). An air conditioner comprising (23).
【請求項3】 請求項1に記載の空気調和機において、 上記凝縮器(3)の出口温度(Tc)、上記蒸発器
(5)の入口温度(Te)、上記圧縮機(2)の吐出管
温度(Td)、室外気温(To)および室内気温(T
r)を検出する温度センサ(32,33,31,38,
39)と、 上記温度センサ(32,33)が検出した上記凝縮器
(3)の出口温度(Tc)および上記蒸発器(5)の入
口温度(Te)に基づいて、上記主回路(6)のみから
なる基本回路についての上記圧縮機(2)の吐出管の目
標温度(Td(target))を算出し、上記冷媒回路
(1)の上記蒸発器(5)の出口を通る主流冷媒が飽和
状態になるように、この目標温度(Td(target))に
対して、上記温度センサ(38,39)が検出した室外
気温と室内気温との差(To−Tr)に応じて補正を行
う吐出管目標温度算出部(26)と、 上記温度センサ(31)が検出した上記吐出管温度(T
d)が上記吐出管目標温度算出部(26)による上記補
正後の目標温度(Td′(target))となるように、上
記電動膨張弁(4)の絞り量を調整する主電動弁制御部
(23)を備えたことを特徴とする空気調和機。
3. The air conditioner according to claim 1, wherein an outlet temperature (Tc) of the condenser (3), an inlet temperature (Te) of the evaporator (5), and a discharge of the compressor (2). Tube temperature (Td), outdoor temperature (To) and indoor temperature (T
r) to detect the temperature sensors (32, 33, 31, 38,
39) and the main circuit (6) based on the outlet temperature (Tc) of the condenser (3) and the inlet temperature (Te) of the evaporator (5) detected by the temperature sensors (32, 33). The target temperature (Td (target)) of the discharge pipe of the compressor (2) for the basic circuit consisting only of the compressor is calculated, and the mainstream refrigerant passing through the outlet of the evaporator (5) of the refrigerant circuit (1) is saturated. The target temperature (Td (target)) is corrected in accordance with the difference (To-Tr) between the outdoor temperature and the indoor temperature detected by the temperature sensors (38, 39) so that the target temperature (Td (target)) is obtained. A pipe target temperature calculator (26); and the discharge pipe temperature (T) detected by the temperature sensor (31).
a main electric valve control unit that adjusts the throttle amount of the electric expansion valve (4) so that d) becomes the corrected target temperature (Td ′ (target)) by the discharge pipe target temperature calculation unit (26). An air conditioner comprising (23).
JP24036396A 1996-09-11 1996-09-11 Air conditioner Pending JPH1089779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24036396A JPH1089779A (en) 1996-09-11 1996-09-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24036396A JPH1089779A (en) 1996-09-11 1996-09-11 Air conditioner

Publications (1)

Publication Number Publication Date
JPH1089779A true JPH1089779A (en) 1998-04-10

Family

ID=17058385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24036396A Pending JPH1089779A (en) 1996-09-11 1996-09-11 Air conditioner

Country Status (1)

Country Link
JP (1) JPH1089779A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227823A (en) * 2000-02-17 2001-08-24 Daikin Ind Ltd Refrigerating device
JP2007093097A (en) * 2005-09-28 2007-04-12 Mitsubishi Electric Corp Heat pump water heater and control method of the same
EP1965154A2 (en) * 2007-03-02 2008-09-03 STIEBEL ELTRON GmbH & Co. KG Heat pump device
CN100432551C (en) * 2005-01-27 2008-11-12 Lg电子株式会社 Capacity-variable air conditioner
JP2012067967A (en) * 2010-09-24 2012-04-05 Panasonic Corp Refrigeration cycle apparatus and hot water heating apparatus
JP2014152962A (en) * 2013-02-06 2014-08-25 Panasonic Corp Freezer
JP2014185818A (en) * 2013-03-25 2014-10-02 Fujitsu General Ltd Air conditioner
JP6958769B1 (en) * 2021-02-02 2021-11-02 三菱電機株式会社 Refrigeration cycle equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227823A (en) * 2000-02-17 2001-08-24 Daikin Ind Ltd Refrigerating device
CN100432551C (en) * 2005-01-27 2008-11-12 Lg电子株式会社 Capacity-variable air conditioner
JP2007093097A (en) * 2005-09-28 2007-04-12 Mitsubishi Electric Corp Heat pump water heater and control method of the same
EP1965154A2 (en) * 2007-03-02 2008-09-03 STIEBEL ELTRON GmbH & Co. KG Heat pump device
EP1965154A3 (en) * 2007-03-02 2009-07-08 STIEBEL ELTRON GmbH & Co. KG Heat pump device
EP2345858A3 (en) * 2007-03-02 2013-05-15 STIEBEL ELTRON GmbH & Co. KG Heat pump device
JP2012067967A (en) * 2010-09-24 2012-04-05 Panasonic Corp Refrigeration cycle apparatus and hot water heating apparatus
JP2014152962A (en) * 2013-02-06 2014-08-25 Panasonic Corp Freezer
JP2014185818A (en) * 2013-03-25 2014-10-02 Fujitsu General Ltd Air conditioner
JP6958769B1 (en) * 2021-02-02 2021-11-02 三菱電機株式会社 Refrigeration cycle equipment
WO2022168153A1 (en) * 2021-02-02 2022-08-11 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
EP2378215B1 (en) Air conditioner
EP1524475B1 (en) Apparatus and method for controlling the super-heating degree in a heat pump system
WO2019146070A1 (en) Refrigeration cycle device
JP5100416B2 (en) Reheat dehumidifier and air conditioner
JP5213817B2 (en) Air conditioner
EP2730859B1 (en) Refrigeration cycle device
JP4718904B2 (en) Air conditioning apparatus and control method thereof
CN112050399B (en) Air conditioner
KR100618212B1 (en) Control system and method for refrigerant temperature of air conditioner
WO2006013938A1 (en) Freezing apparatus
JP3835453B2 (en) Air conditioner
JPH1089779A (en) Air conditioner
JP6625265B2 (en) Air conditioner
JP2000018737A (en) Air-conditioner
WO2020189586A1 (en) Refrigeration cycle device
JP3668750B2 (en) Air conditioner
JP5874754B2 (en) Refrigeration equipment
JPH04340046A (en) Operation control device of air conditioner
JP2017101857A (en) Freezing device
CN213089945U (en) Air conditioner
JP3627101B2 (en) Air conditioner
JPH08226721A (en) Operation controller for air conditioning equipment for multiple room
CN112444003A (en) Air conditioner
US20220049869A1 (en) Air-conditioning apparatus
JP5424705B2 (en) Refrigeration air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214