WO2020189586A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2020189586A1
WO2020189586A1 PCT/JP2020/011286 JP2020011286W WO2020189586A1 WO 2020189586 A1 WO2020189586 A1 WO 2020189586A1 JP 2020011286 W JP2020011286 W JP 2020011286W WO 2020189586 A1 WO2020189586 A1 WO 2020189586A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
compressor
control
outdoor heat
Prior art date
Application number
PCT/JP2020/011286
Other languages
French (fr)
Japanese (ja)
Inventor
広司 中島
陽 冨山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2020189586A1 publication Critical patent/WO2020189586A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • frost adheres to the outdoor heat exchanger during heating operation in which the outdoor heat exchanger functions as a refrigerant evaporator and the indoor heat exchanger functions as a refrigerant radiator. Therefore, a defrost operation is performed to melt the frost.
  • Patent Document 1 International Publication No. 2015/162696
  • An air conditioner has been proposed in which either defrost operation using a gas bypass circuit or reverse cycle defrost operation is selected and executed.
  • the hot gas bypass defrost operation in which the refrigerant discharged from the compressor is sent to the outdoor heat exchanger via the hot gas bypass circuit and the refrigerant discharged from the compressor are switched in four ways. Either of the reverse cycle defrost operation, which is sent to the outdoor heat exchanger via the valve, is selected and executed according to the amount of frost formed in the outdoor heat exchanger.
  • the hot gas bypass defrost operation and the reverse cycle defrost operation are selectively executed, but when the reverse cycle defrost operation is selected and executed, it is outdoors.
  • the frost on the downstream side of the refrigerant flow in the heat exchanger may remain undissolved.
  • the contents of the present disclosure are intended to provide a refrigeration cycle apparatus capable of sufficiently melting the frost adhering to the outdoor heat exchanger.
  • the refrigeration cycle device includes a refrigerant circuit and a control unit.
  • a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger are connected in this order.
  • Refrigerant circulates inside the refrigerant circuit.
  • the refrigerant circuit has a switching valve. The switching valve can switch between the first state and the second state. In the first state, the refrigerant discharged from the compressor flows through the indoor heat exchanger to make the indoor heat exchanger function as a radiator. In the second state, the refrigerant discharged from the compressor flows through the outdoor heat exchanger to make the outdoor heat exchanger function as a radiator.
  • the refrigerant circuit has a bypass pipe.
  • the bypass pipe connects between the discharge side of the compressor and the switching valve, between the outdoor heat exchanger and the expansion mechanism, or a portion of the outdoor heat exchanger close to the expansion mechanism.
  • the control unit performs the first control when defrosting the outdoor heat exchanger, and performs the second control after the first control.
  • the first control in the first state, the refrigerant discharged from the compressor is sent to the indoor heat exchanger, and the refrigerant is sent from the compressor to the outdoor heat exchanger via the bypass pipe.
  • the second control switches the switching valve to the second state and sends the refrigerant from the compressor to the outdoor heat exchanger.
  • the part closer to the expansion mechanism in the outdoor heat exchanger means that the effective length of the refrigerant path through which the refrigerant flows in the outdoor heat exchanger is closer to the expansion mechanism than the center.
  • This refrigeration cycle apparatus melts the frost in the part of the outdoor heat exchanger near the expansion mechanism by performing the first control of sending the refrigerant from the compressor to the frosted outdoor heat exchanger via the bypass pipe. Can be done. Furthermore, by switching the switching valve to the second state and performing the second control to defrost the outdoor heat exchanger by sending the refrigerant from the compressor to the outdoor heat exchanger, it becomes the expansion mechanism of the outdoor heat exchanger. Frost can be melted from the near part to the far part. This makes it possible to sufficiently melt the frost adhering to the outdoor heat exchanger.
  • the refrigeration cycle device is the refrigeration cycle device according to the first aspect, and the refrigerant circuit further has a control valve.
  • the control valve is provided in the middle of the bypass pipe.
  • This refrigeration cycle device can control the flow of refrigerant in the bypass piping by controlling the control valve.
  • the refrigeration cycle device is the refrigeration cycle device according to the second aspect, and the control valve is an expansion valve whose valve opening degree can be adjusted.
  • This refrigeration cycle device can control the flow rate of the refrigerant in the bypass pipe by adjusting the opening degree of the control valve, so that the refrigerant required for melting the frost can flow.
  • the refrigeration cycle device is the refrigeration cycle device of the second aspect or the third aspect, and the control unit closes the control valve while performing the second control.
  • closing the control valve while performing the second control means closing the control valve at the same time as the start of the second control, or closing the control valve after the start of the second control and before the end of the second control. included.
  • the flow of the refrigerant in the bypass pipe is restricted by closing the control valve during the second control, so that the frost melts in the part of the outdoor heat exchanger far from the part near the expansion mechanism. Can be done efficiently.
  • the refrigerating cycle device is the refrigerating cycle device according to the fourth aspect, and the control unit opens the closed control valve when a predetermined protection condition is satisfied during the second control. ..
  • the prescribed protection conditions are not particularly limited.
  • the predetermined protection condition for example, the temperature of the refrigerant discharged from the compressor, the temperature of the refrigerant sucked into the compressor, and the like may be equal to or less than a predetermined value.
  • This refrigeration cycle device makes it possible to suppress an abnormality in the temperature of the refrigerant discharged from the compressor and the occurrence of liquid compression in the compressor during the second control.
  • the refrigeration cycle apparatus is any refrigeration cycle apparatus from the first aspect to the fifth aspect, and the control unit is a third control for lowering the rotation speed of the compressor while performing the first control. I do.
  • this refrigeration cycle device can reduce the switching noise that may occur in the switching valve when the switching valve is switched to the second state by using the pressure difference of the refrigerant circuit. ..
  • this refrigeration cycle device can reduce the switching noise that may occur in the switching valve when the switching valve is switched to the second state by using the pressure difference of the refrigerant circuit. ..
  • by performing the first control using the time required to reduce the rotation speed of the compressor it is possible to start the second control at an early stage while suppressing the switching sound of the switching valve to be small. ..
  • the refrigeration cycle device is any of the refrigeration cycle devices from the first aspect to the fifth aspect, and the control unit performs the fourth control while performing the first control.
  • the fourth control the rotation speed of the compressor is reduced after maintaining the rotation speed of the compressor.
  • This refrigeration cycle device is provided with a step of maintaining the rotation speed of the compressor before lowering the rotation speed of the compressor during the first control.
  • the refrigeration cycle device is any of the refrigeration cycle devices from the first viewpoint to the seventh viewpoint, and the expansion mechanism is an expansion valve whose valve opening degree can be adjusted.
  • the control unit controls the valve opening of the expansion mechanism to be smaller than the valve opening during operation immediately before the first control.
  • control for making the valve opening of the expansion mechanism smaller than the valve opening during operation immediately before the first control is not particularly limited.
  • the control may be smaller than the fixed opening degree.
  • such a control may be a control that is smaller than the control opening degree when the valve opening degree of the expansion mechanism is controlled during the operation immediately before the first control.
  • the opening degree may be smaller than the target valve opening degree by controlling the expansion mechanism immediately before the first control.
  • the valve opening of the expansion mechanism is controlled to be smaller than the valve opening during the operation immediately before the first control, so that the indoor heat exchanger is used via the expansion mechanism.
  • the amount of refrigerant flowing toward the outdoor heat exchanger is suppressed.
  • the refrigeration cycle device is any of the refrigeration cycle devices from the first aspect to the eighth aspect, and further includes a refrigerant temperature sensor.
  • the refrigerant temperature sensor detects the temperature of the refrigerant flowing in a portion close to the expansion mechanism in the outdoor heat exchanger or the temperature of the refrigerant flowing between the outdoor heat exchanger and the expansion mechanism.
  • the control unit ends the second control when a predetermined time elapses from the start of the second control and the detection value of the refrigerant temperature sensor satisfies the predetermined end condition.
  • This refrigeration cycle device determines the predetermined end condition by using the value detected by the refrigerant temperature sensor after a predetermined time has elapsed from the start of the second control. Therefore, it is possible to prevent the predetermined end condition from being satisfied when the first control is being performed.
  • the refrigeration cycle apparatus is any of the refrigeration cycle apparatuss from the first aspect to the ninth aspect, and the outdoor heat exchanger has a flat heat transfer tube containing aluminum or an aluminum alloy. ..
  • the refrigeration cycle apparatus is any refrigeration cycle apparatus from the first aspect to the tenth aspect, and the outdoor heat exchanger is the first transmission in which a plurality of heat transfer tubes are arranged side by side in the vertical direction. It has a heat tube group and a second heat transfer tube group. The first heat transfer tube group and the second heat transfer tube group are arranged side by side in the horizontal direction.
  • This refrigeration cycle device also suppresses the undissolved frost in the part of the outdoor heat exchanger near the expansion mechanism, even for the outdoor heat exchanger in which the refrigerant flows sequentially through the first heat transfer tube group and the second heat transfer tube group. Becomes possible.
  • FIG. 1 is a schematic configuration diagram of the refrigerant circuit
  • FIG. 2 is a schematic control block configuration diagram.
  • the air conditioning device 1 is a device that harmonizes the air in the target space by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 mainly serves as an outdoor unit 20, an indoor unit 30, a liquid side refrigerant connecting pipe 6 and a gas side refrigerant connecting pipe 5 connecting the outdoor unit 20 and the indoor unit 30, and an input device and an output device. It has a remote controller 8 and a controller 7 that controls the operation of the air conditioner 1.
  • a refrigeration cycle is performed in which the refrigerant sealed in the refrigerant circuit 10 is compressed, dissipated (condensed), depressurized, evaporated, and then compressed again.
  • the refrigerant circuit 10 is filled with a refrigerant for performing a vapor compression refrigeration cycle.
  • Outdoor unit 20 The outdoor unit 20 is connected to the indoor unit 30 via a liquid-side refrigerant connecting pipe 6 and a gas-side refrigerant connecting pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 20 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, a low pressure receiver 26, an outdoor fan 25, a liquid side closing valve 29, and a gas. It has a side closing valve 28 and a bypass pipe 48.
  • the compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle until it reaches a high pressure.
  • a compressor in which a rotary type or scroll type compression element (not shown) is rotationally driven by a compressor motor is used.
  • the compressor motor is for changing the capacity, and the rotation speed can be controlled by an inverter.
  • the four-way switching valve 22 connects the suction side of the compressor 21 and the gas side closing valve 28 while connecting the discharge side of the compressor 21 and the outdoor heat exchanger 23 by switching the connection state in the refrigerant circuit 10. Heating operation connection between the cooling operation connection state (see the solid line in FIG. 1) and the suction side of the compressor 21 and the outdoor heat exchanger 23 while connecting the discharge side of the compressor 21 and the gas side closing valve 28. The state (see the dotted line in FIG. 1) can be switched. More specifically, the four-way switching valve 22 has a discharge pipe 47 extending from the discharge side of the compressor 21 to one of the connection ports of the four-way switching valve 22 and the outdoor heat exchanger 23 in the cooling operation connection state.
  • a second pipe 42 extending from one of the ports to the low pressure receiver 26 is connected.
  • the four-way switching valve 22 connects the third pipe 43 and the second pipe 42 while connecting the discharge pipe 47 and the first pipe 41 in the heating operation connected state.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a radiator or a condenser of a high-pressure refrigerant in a refrigeration cycle during a cooling operation and as an evaporator of a low-pressure refrigerant in a refrigeration cycle during a heating operation.
  • the outdoor fan 25 supplies the outdoor air into the outdoor unit 20 to the outdoor heat exchanger 23, exchanges heat with the refrigerant in the outdoor heat exchanger 23, and then discharges the air flow to the outside of the outdoor unit 20. Give rise.
  • the outdoor fan 25 is rotationally driven by an outdoor fan motor.
  • the outdoor expansion valve 24 is provided between the liquid side end of the outdoor heat exchanger 23 and the liquid side closing valve 29. More specifically, the outdoor expansion valve 24 is provided between the fourth pipe 44 extending from the gas side end of the outdoor heat exchanger 23 and the fifth pipe 45 extending from the liquid side closing valve 29. ..
  • the outdoor expansion valve 24 for example, an electric expansion valve whose valve opening degree can be adjusted by control can be used.
  • the low pressure receiver 26 is provided between the suction side of the compressor 21 and one of the connection ports of the four-way switching valve 22. Inside the low pressure receiver 26, the end of the second pipe 42 extending from one of the connection ports of the four-way switching valve 22 and the end of the suction pipe 46 extending from the suction side of the compressor 21 are located. There is.
  • the low pressure receiver 26 is a refrigerant container capable of storing the surplus refrigerant in the refrigerant circuit 10 as a liquid refrigerant.
  • the liquid side closing valve 29 is a manual valve arranged at a connection portion with the liquid side refrigerant connecting pipe 6 in the outdoor unit 20.
  • the gas side closing valve 28 is a manual valve arranged in the outdoor unit 20 at the connection portion with the gas side refrigerant connecting pipe 5.
  • the bypass pipe 48 constitutes a refrigerant path connecting the discharge pipe 47 and the fourth pipe 44.
  • a capillary tube 48a that functions as a decompression unit for the passing refrigerant is provided in the middle of the bypass pipe 48.
  • a bypass valve 49 which is an electromagnetic on-off valve whose opening and closing is controlled, is provided between the branch portion from the discharge pipe 47 and the capillary tube 48a.
  • the outdoor unit 20 has an outdoor unit control unit 27 that controls the operation of each unit constituting the outdoor unit 20.
  • the outdoor unit control unit 27 has a microcomputer including a CPU, a memory, and the like.
  • the outdoor unit control unit 27 is connected to the indoor unit control unit 34 of each indoor unit 30 via a communication line, and transmits and receives control signals and the like.
  • the outdoor unit 20 is provided with a discharge temperature sensor 83, a suction temperature sensor 84, an outdoor heat exchange temperature sensor 85, an outside air temperature sensor 86, and the like. Each of these sensors is electrically connected to the outdoor unit control unit 27, and transmits a detection signal to the outdoor unit control unit 27.
  • the discharge temperature sensor 83 detects the temperature of the refrigerant flowing through the discharge pipe 47.
  • the suction temperature sensor 84 detects the temperature of the refrigerant flowing through the suction pipe 46.
  • the outdoor heat exchange temperature sensor 85 detects the temperature of the refrigerant flowing through the outlet on the liquid side.
  • the outside air temperature sensor 86 detects the outdoor air temperature before passing through the outdoor heat exchanger 23.
  • FIG. 3 shows an external perspective view of the outdoor heat exchanger 23
  • FIG. 4 shows an explanatory view showing a state of the refrigerant flowing through the outdoor heat exchanger 23 in the cooling operation connected state.
  • the outdoor heat exchanger 23 has a heat exchange unit 50, a gas side header 54, a liquid side header 56, a first folded header 53, and a second folded header 55. All of these elements of the outdoor heat exchanger 23 are made of aluminum or an aluminum alloy.
  • the heat exchange unit 50 is arranged on the downstream side in the air flow direction away from the first heat exchange unit 51 and the first heat exchange unit 51 formed on the upstream side in the air flow direction formed by the outdoor fan 25. It also has a second heat exchange unit 52.
  • the first heat exchange unit 51 and the second heat exchange unit 52 are arranged so as to overlap each other in the air flow direction.
  • the first heat exchange unit 51 has a first upper heat exchange unit 51a and a first lower heat exchange unit 51b located below the first upper heat exchange unit 51a.
  • the second heat exchange unit 52 has a second upper heat exchange unit 52a and a second lower heat exchange unit 52b located below the second upper heat exchange unit 52a.
  • the first heat exchange unit 51 and the second heat exchange unit 52 each have a plurality of flat multi-hole tubes 48 and a plurality of heat transfer fins 59.
  • the plurality of flat multi-hole pipes 58 are arranged side by side in the vertical direction with the flat surface 58a facing the vertical direction.
  • the flat multi-hole pipe 58 has a plurality of refrigerant flow paths 58b configured side by side along the air flow direction.
  • the plurality of heat transfer fins 59 are fixed to the plurality of flat multi-hole tubes.
  • the heat transfer fin 59 has a notch 59a for inserting and fixing the flat multi-hole tube 58.
  • the gas side header 54 is provided so as to connect the third pipe 43 and the first upper heat exchange unit 51a. Specifically, one end of the third pipe 43 is connected to the gas side header 54, and one end of the plurality of flat multi-hole pipes 58 included in the first upper heat exchange portion 51a is connected to the gas side header 54, respectively. There is.
  • the liquid side header 56 is provided so as to connect the fourth pipe 44 and the first lower heat exchange section 51b. Specifically, one end of the fourth pipe 44 is connected to the liquid side header 56, and one end of the plurality of flat multi-hole pipes 58 included in the first lower heat exchange portion 51b is connected to the liquid side header 56, respectively. There is.
  • the first folded header 53 has a first upper folded header 53a and a first downward folded header 53b.
  • the first upper heat exchange header 53a is an end of the first upper heat exchange portion 51a opposite to the gas side header 54 side and an end of the second upper heat exchange portion 52a opposite to the second folded header 55 side. It is provided to contact the department.
  • the first upper folded header 53a of the present embodiment includes a plurality of flat multi-hole pipes 58 of the first upper heat exchange portion 51a and a plurality of flat multi-hole pipes 58 of the second upper heat exchange portion 52a. , Are configured to communicate with each other at the same height position.
  • the first lower heat exchange header 53b has an end of the first lower heat exchange portion 51b opposite to the liquid side header 56 side and an end of the second lower heat exchange portion 52b opposite to the second folded header 55 side. It is provided to contact the department.
  • the first lower folded header 53b of the present embodiment includes a plurality of flat multi-hole pipes 58 of the first lower heat exchange portion 51b and a plurality of flat multi-hole pipes 58 of the second lower heat exchange portion 52b. , Are configured to communicate with each other at the same height position.
  • the second folded header 55 is provided so as to connect the second upper heat exchange unit 52a and the second lower heat exchange unit 52b.
  • the internal space of the second folded header 55 is separated for each height position, and the spaces separated from each other are connected to each other via a plurality of connecting pipes 55a.
  • the refrigerant flows in the direction indicated by the arrow in FIGS. 3 and 4.
  • the refrigerant flowing into the gas side header 54 from the third pipe 43 is diverted in the height direction in the gas side header 54, and is a flat multi-hole pipe at each height position of the first upper heat exchange portion 51a. It flows to 58.
  • the refrigerant that has flowed through the first upper heat exchange section 51a flows into the flat multi-hole pipe 58 at each height position of the second upper heat exchange section 52a while maintaining the height position in the first upper folded header 53a.
  • the refrigerant that has flowed through the second upper heat exchange section 52a flows through the second folded header 55 into the flat multi-hole pipe 58 at each height position of the second lower heat exchange section 52b.
  • the refrigerant that has flowed through the second lower heat exchange section 52b flows into the flat multi-hole pipe 58 at each height position of the first lower heat exchange section 51b while maintaining the height position in the first lower folded header 53b.
  • the refrigerant that has flowed through the first lower heat exchange section 51b merges with the liquid side header 56 and flows into the fourth pipe 44.
  • the indoor unit 30 is installed on the wall surface, ceiling, or the like of the room, which is the target space.
  • the indoor unit 30 is connected to the outdoor unit 20 via a liquid-side refrigerant connecting pipe 6 and a gas-side refrigerant connecting pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 30 has an indoor heat exchanger 31 and an indoor fan 32.
  • the liquid side of the indoor heat exchanger 31 is connected to the liquid side refrigerant connecting pipe 6, and the gas side end is connected to the gas side refrigerant connecting pipe 5.
  • the indoor heat exchanger 31 is a heat exchanger that functions as an evaporator of the low-pressure refrigerant in the refrigeration cycle during the cooling operation and as a radiator or a condenser of the high-pressure refrigerant in the refrigeration cycle during the heating operation.
  • the indoor fan 32 sucks the indoor air, which is the space to be air-conditioned, into the indoor unit 30, exchanges heat with the refrigerant in the indoor heat exchanger 31, and then discharges the air flow to the outside of the indoor unit 30. Give rise.
  • the indoor fan 32 is rotationally driven by the indoor fan motor.
  • the indoor unit 30 has an indoor unit control unit 34 that controls the operation of each unit constituting the indoor unit 30.
  • the indoor unit control unit 34 has a microcomputer including a CPU, a memory, and the like.
  • the indoor unit control unit 34 is connected to the outdoor unit control unit 27 via a communication line, and transmits and receives control signals and the like.
  • the indoor unit 30 is provided with an indoor liquid side heat exchange temperature sensor 91, an indoor air temperature sensor 92, and the like. Each of these sensors is electrically connected to the indoor unit control unit 34, and transmits a detection signal to the indoor unit control unit 34.
  • the indoor liquid side heat exchange temperature sensor 91 detects the temperature of the refrigerant flowing through the liquid side outlet on the side opposite to the side to which the gas side refrigerant connecting pipe 5 is connected in the indoor heat exchanger 31.
  • the indoor air temperature sensor 92 detects the indoor air temperature before passing through the indoor heat exchanger 31.
  • Controller 7 In the air conditioner 1, a controller 7 that controls the operation of the air conditioner 1 is configured by connecting the outdoor unit control unit 27 and the indoor unit control unit 34 via a communication line.
  • the controller 7 mainly has a CPU (Central Processing Unit) and memories such as ROM and RAM. It should be noted that various processes and controls by the controller 7 are realized by the functions of the outdoor unit control unit 27 and / or the indoor unit control unit 34 in an integrated manner.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the remote controller 8 is arranged in a room which is an air-conditioned space or a specific space of a building including the air-conditioned space, and is used by a user or the like to perform an operation control command of the air conditioner 1 and monitor an operating state. ..
  • a cooling operation mode and a heating operation mode are provided.
  • the controller 7 determines whether it is the cooling operation mode or the heating operation mode based on the instruction received from the remote controller 8, and executes it.
  • Cooling operation mode In the cooling operation mode, the air conditioner 1 sets the four-way switching valve 22 in the cooling operation connected state and executes the cooling operation.
  • the rotation speed of the compressor 21 is controlled so that, for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 reaches the target evaporation temperature.
  • the bypass valve 49 is closed during the cooling operation.
  • the gas refrigerant discharged from the compressor 21 flows through the discharge pipe 47, the four-way switching valve 22, and the third pipe 43, and flows into the outdoor heat exchanger 23.
  • the refrigerant flowing through the outdoor heat exchanger 23 dissipates heat or condenses by exchanging heat with the outdoor air, and flows toward the outdoor expansion valve 24.
  • valve opening degree of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition such that the degree of supercooling of the refrigerant flowing through the liquid side outlet of the outdoor heat exchanger 23 becomes a target value.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows into the indoor unit 30 via the liquid side closing valve 29 and the liquid side refrigerant connecting pipe 6, and evaporates in the indoor heat exchanger 31.
  • the refrigerant evaporated in the indoor heat exchanger 31 flows into the outdoor unit 20 from the gas side closing valve 28 via the gas side refrigerant connecting pipe 5.
  • the refrigerant flowing into the outdoor unit 20 is sucked into the compressor 21 again through the second pipe 42, the four-way switching valve 22, the first pipe 41, the low pressure receiver 26, and the suction pipe 46.
  • the liquid refrigerant that could not be completely evaporated in the indoor heat exchanger 31 is stored as a surplus refrigerant.
  • (2-2) Heating operation mode In the heating operation mode, the air conditioner 1 executes while switching between the heating operation and the defrost operation.
  • the number of revolutions of the compressor 21 is controlled so as to generate a predetermined capacity, for example.
  • the rotation speed is controlled so that the condensation temperature of the refrigerant in the refrigerant circuit 10 reaches the target condensation temperature.
  • the bypass valve 49 is closed during the cooling operation.
  • the gas refrigerant discharged from the compressor 21 flows into the indoor unit 30 after flowing through the discharge pipe 47, the four-way switching valve 22, the second pipe 42, and the gas-side refrigerant connecting pipe 5.
  • the refrigerant that has flowed into the indoor unit 30 flows into the indoor heat exchanger 31 and exchanges heat with the indoor air in the indoor heat exchanger 31 to dissipate heat or condense.
  • the refrigerant radiated or condensed by the indoor heat exchanger 31 flows into the outdoor unit 20 from the liquid side closing valve 29 via the liquid side refrigerant connecting pipe 6.
  • the refrigerant that has flowed into the outdoor unit 20 is depressurized by the outdoor expansion valve 24.
  • valve opening degree of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition such that the degree of supercooling of the refrigerant flowing through the liquid side outlet of the indoor heat exchanger 31 becomes a target value.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows into the outdoor heat exchanger 23 and evaporates by exchanging heat with the outdoor air.
  • the refrigerant evaporated in the outdoor heat exchanger 23 is sucked into the compressor 21 again through the third pipe 43, the four-way switching valve 22, the first pipe 41, the low pressure receiver 26, and the suction pipe 46.
  • the low pressure receiver 26 the liquid refrigerant that could not be completely evaporated in the outdoor heat exchanger 23 is stored as a surplus refrigerant.
  • the defrost operation is performed to melt the frost adhering to the outdoor heat exchanger 23.
  • the bypass valve 49 is opened while maintaining the connection state of the four-way switching valve 22 in the heating operation connection state, and the refrigerant discharged from the compressor 21 is bypassed.
  • the hot gas bypass defrost operation of sending to the outdoor heat exchanger 23 via 48 is performed.
  • connection state of the four-way switching valve 22 is switched from the heating operation connection state to the cooling operation connection state, and the reverse cycle defrost operation is performed in which the refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23. Further, when the predetermined defrost end condition is satisfied, the connection state of the four-way switching valve 22 is returned from the cooling operation connection state to the heating operation connection state, and the heating operation is restarted.
  • FIG. 6 shows a timing chart of each element of the air conditioner 1.
  • 7 and 8 show a flowchart of the defrost operation.
  • the portion indicated by “A” in FIG. 7 and the portion indicated by “A” in FIG. 8 indicate that the processing is continuing, and are indicated by the portion indicated by “B” in FIG. 8 and the portion indicated by “B” in FIG. The location indicates that the process is continuing.
  • the column of “compressor” shows the rotation speed of the compressor 21
  • the column of “indoor fan” shows the airflow by the indoor fan 32
  • the column of “outdoor fan” shows the airflow by the outdoor fan 25.
  • the column of “outdoor expansion valve” indicates the valve opening degree of the outdoor expansion valve 24, and all of them indicate that the upper value is higher and the lower value is lower.
  • the column of "four-way switching valve” shows the connection state of the four-way switching valve 22, the upper stage is the heating operation connection state, and the lower stage is the cooling operation connection state. It shows each of them.
  • the column of "bypass valve” shows the open / closed state of the bypass valve 49, that the bypass valve 49 is open in the upper stage and the bypass valve 49 is closed in the lower stage. Are shown respectively.
  • the four-way switching valve 22 is switched to the heating operation connection state, and the bypass valve 49 is closed. Then, during the heating operation, the rotation speed is controlled so that the compressor 21 produces the required capacity, the indoor fan 32 is controlled to have a set air volume, and the outdoor fan 25 has a predetermined air volume.
  • the outdoor expansion valve 24 is controlled so as to have a predetermined valve opening degree. During the heating operation, the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition such that the degree of supercooling of the refrigerant flowing through the liquid side outlet of the indoor heat exchanger 31 becomes a target value.
  • step S10 the controller 7 determines whether or not the predetermined defrost start condition is satisfied.
  • the predetermined defrost start condition is not particularly limited, but may be, for example, a condition to be satisfied when the temperature and / or the outside air temperature of the refrigerant flowing through the outdoor heat exchanger 23 continues to be equal to or lower than a predetermined value for a predetermined time. ..
  • the detection temperature of the outdoor heat exchange temperature sensor 85 can be used
  • the detection temperature of the outside air temperature sensor 86 can be used. ..
  • the process proceeds to step S11, and if it is determined that the condition is not satisfied, the heating operation is continued.
  • step S11 as pre-defrost control, the controller 7 opens the bypass valve 49 and starts the hot gas bypass defrost operation while maintaining the connection state of the four-way switching valve 22 in the heating operation connection state.
  • the refrigerant discharged from the compressor 21 flows in from the gas side end of the outdoor heat exchanger 23 via the bypass circuit 48 having the capillary tube 48a.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 21 and having little heat dissipation loss can be supplied to the gas side region of the outdoor heat exchanger 23, and the frost adhering to the region can be removed. It can be melted.
  • step S12 the controller 7 controls to reduce the rotation speed of the compressor 21. This makes it possible to suppress the switching sound at the time of switching the four-way switching valve 22, which will be described later, to a small value.
  • the controller 7 controls to reduce the valve opening degree of the outdoor expansion valve 24 in accordance with the decrease in the rotation speed of the compressor 21.
  • the outdoor expansion valve 24 is controlled so that the valve opening degree is smaller than the valve opening degree during the heating operation. More specifically, the outdoor expansion valve 24 is opened smaller than the valve opening degree controlled so that the degree of supercooling of the refrigerant flowing through the liquid side outlet of the indoor heat exchanger 31 becomes the target value during the heating operation. It is controlled to be a degree. More specifically, the temperature of the refrigerant after merging the refrigerant flowing through the bypass pipe 48 and the refrigerant flowing through the indoor heat exchanger 31, the liquid side refrigerant connecting pipe 6 and the outdoor expansion valve 24 is predetermined. The valve opening degree of the outdoor expansion valve 24 is controlled so as to reach the target temperature of. In the present embodiment, the valve opening degree of the outdoor expansion valve 24 is controlled so that the detection temperature of the outdoor heat exchange temperature sensor 85 becomes a predetermined target temperature.
  • controller 7 controls to reduce the air volume without stopping the indoor fan 32. As a result, it is possible to continue heating the room, although the capacity corresponds to the decrease in the number of revolutions of the compressor 21.
  • step S13 the controller 7 determines whether or not the rotation speed of the compressor 21 that started to be lowered in step S12 is equal to or less than a predetermined value.
  • the process proceeds to step S14. If the number of revolutions of the compressor 21 is not equal to or less than a predetermined value, processing such as lowering the number of revolutions of the compressor 21 is continued.
  • step S14 the controller 7 closes the bypass valve 49 and ends the hot gas bypass defrost operation.
  • step S15 the controller 7 waits for a predetermined time to elapse after the bypass valve 49 is closed, and then proceeds to step S16.
  • step S16 the controller 7 ends the pre-defrost control and starts the control during the defrost.
  • the controller 7 switches the connection state of the four-way switching valve 22 from the heating operation connection state to the cooling operation connection state, sets the valve opening of the outdoor expansion valve 24 to the fully open state, and stops the indoor fan 32 and the outdoor fan 25. Control to make it.
  • step S17 the controller 7 increases the number of revolutions of the compressor 21 and starts the reverse cycle defrost operation.
  • step S18 the controller 7 waits for a predetermined time to elapse after the hot gas bypass defrost operation is completed, and then proceeds to step S19.
  • step S19 the controller 7 determines whether or not the predetermined defrost end condition is satisfied.
  • the predetermined defrost end condition is not particularly limited, but may be, for example, a condition to be satisfied when the temperature of the refrigerant flowing through the outdoor heat exchanger 23 becomes equal to or higher than the predetermined temperature.
  • the detection temperature of the outdoor heat exchange temperature sensor 85 can be used as the temperature of the refrigerant flowing through the outdoor heat exchanger 23, for example.
  • the detection temperature of the outdoor heat exchange temperature sensor 85 which had risen due to the hot gas bypass defrost operation, decreases as the reverse cycle defrost operation is performed. Then, since the detection temperature of the outdoor heat exchange temperature sensor 85 has decreased due to waiting for the elapse of a predetermined time in step S18, the detection temperature of the outdoor heat exchange temperature sensor 85 raised by the hot gas bypass defrost operation determines the temperature. It is possible to avoid satisfying the defrost termination condition of.
  • step S20 if it is determined that the predetermined defrost end condition is satisfied, the process proceeds to step S20, and if it is determined that the condition is not satisfied, the reverse cycle defrost operation is continued.
  • step S20 the controller 7 ends the reverse cycle defrost operation by lowering the rotation speed of the compressor 21 and reducing the valve opening degree of the outdoor expansion valve 24.
  • step S21 the controller 7 waits for a predetermined time to elapse after the reverse cycle defrost operation is completed, and then proceeds to step S22.
  • step S22 the controller 7 ends the control during defrost and starts the control after defrost.
  • the controller 7 switches the connection state of the four-way switching valve 22 from the cooling operation connection state to the heating operation connection state.
  • step S21 since the rotation speed of the compressor 21 was lowered and a predetermined time was waited after the reverse cycle defrost operation was completed, the height differential pressure in the refrigerant circuit 10 could be reduced, and the four-way switching valve could be reduced. It is possible to suppress the switching sound of 22 to be small.
  • step S23 the controller 7 controls to increase the rotation speed of the compressor 21, increase the valve opening degree of the outdoor expansion valve 24, and increase the air volume of the outdoor fan 25.
  • step S24 the controller 7 restarts the heating operation by increasing the air volume of the indoor fan 32 so that a predetermined capacity can be secured.
  • step S10 After resuming the heating operation, the process returns to step S10 and the above process is repeated.
  • the hot gas bypass defrost operation of sending the refrigerant from the compressor 21 to the frosted outdoor heat exchanger 23 via the bypass pipe 48 is performed to perform the hot gas bypass defrost operation of the outdoor heat exchanger 23.
  • the frost adhering to the portion close to the outdoor expansion valve 24 can be melted. More specifically, the frost adhering to the portion of the outdoor heat exchanger 23 near the liquid side end can be melted.
  • the four-way switching valve 22 is connected to the cooling operation and the reverse cycle defrost operation is performed, so that the outdoor heat exchanger 23 is far from the portion close to the outdoor expansion valve 24.
  • the frost attached to the part can be melted. More specifically, the frost adhering to the portion of the outdoor heat exchanger 23 near the gas side end can be melted.
  • the indoor heat exchanger 31 can function as a radiator or a condenser of the refrigerant. This makes it possible to suppress a decrease in the indoor temperature until the reverse cycle defrost operation is started.
  • the valve opening degree of the outdoor expansion valve 24 is controlled to be smaller than the valve opening degree controlled during the immediately preceding heating operation. Is going.
  • a large amount of the refrigerant discharged from the compressor 21 and radiated or condensed in the indoor heat exchanger 31 is sent to the liquid side of the outdoor heat exchanger 23 via the liquid side refrigerant connecting pipe 6 and the outdoor expansion valve 24. It is possible to suppress this.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 21 and flowing through the bypass pipe 48 passes through the indoor heat exchanger 31, the liquid-side refrigerant connecting pipe 6, and the outdoor expansion valve 24. It is possible to keep the degree of cooling by the refrigerant sent to the liquid side of the outdoor heat exchanger 23 small and to increase the melting efficiency of frost on the liquid side of the outdoor heat exchanger 23.
  • the rotation speed of the compressor 21 is lowered before the four-way switching valve 22 is switched from the heating operation connection state to the cooling operation connection state.
  • the connection state of the four-way switching valve 22 is switched by using the pressure difference of the refrigerant in the refrigerant circuit 10, it is possible to suppress the switching sound generated at the time of switching to be small.
  • the hot gas bypass defrost operation is performed by utilizing the time required for controlling the decrease in the rotation speed of the compressor 21 for suppressing the switching sound of the four-way switching valve 22 to be small.
  • This makes it possible to melt the frost near the gas side end of the outdoor heat exchanger 23. Therefore, the reverse cycle defrost operation can be started early after the defrost start condition is satisfied.
  • the frost near the gas side end of the outdoor heat exchanger 23 has already melted at the start of the reverse cycle defrost operation, the reverse cycle defrost operation can be ended early. As described above, it is possible to shorten the time required from satisfying the defrost start condition to satisfying the defrost end condition, improve the continuity of the heating operation, and suppress the decrease in the indoor temperature. ..
  • the bypass valve 49 of the bypass pipe 48 is closed during the reverse cycle defrost operation. Therefore, the high-temperature and high-pressure refrigerant discharged from the compressor 21 can be efficiently supplied to the gas side end of the outdoor heat exchanger 23.
  • the determination of the predetermined defrost operation end condition is performed not immediately after the end of the hot gas bypass defrost operation but after a predetermined time has elapsed from the start of the reverse cycle defrost operation. ..
  • the detection temperature of the outdoor heat exchange temperature sensor 85 may rise due to the hot gas bypass defrost operation, the detection temperature of the outdoor heat exchange temperature sensor 85 will decrease again due to the subsequent reverse cycle defrost operation.
  • the outdoor heat exchanger 23 has a flat multi-hole tube 58 having a flat shape containing aluminum or an aluminum alloy. Therefore, as compared with the conventional cross-fin tube heat exchanger in which a cylindrical copper heat transfer tube is used, the melted frost tends to remain on the upper surface of the flat multi-hole tube 58, and it is difficult for the frost to flow downward. As described above, even when the outdoor heat exchanger 23 in which the melted frost does not easily flow downward is used, the defrost operation is performed in the air conditioner 1 of the present embodiment, so that the melted frost is lowered. It is possible to keep the degree of difficulty in flowing small. As a result, for example, refreezing due to frost remaining on the upper surface of the flat multi-hole tube 58 can be suppressed.
  • the flat multi-hole pipe 58 included in the outdoor heat exchanger 23 has a flat shape, and a plurality of refrigerant flow paths 58b are provided inside. Therefore, the heat exchange efficiency in the outdoor heat exchanger 23 can be improved.
  • the high temperature and high pressure refrigerant discharged from the compressor 21 is supplied to the outdoor heat exchanger 23 in order to melt the frost adhering during the heating operation. Even in such a case, the refrigerant rapidly loses heat while passing through the inside of the outdoor heat exchanger 23. Therefore, on the side of the outdoor heat exchanger 23 opposite to the inlet side of the high-temperature and high-pressure refrigerant, undissolved frost is particularly likely to occur.
  • the refrigerant discharged from the compressor 21 during the reverse cycle defrost operation is the gas side header 54, the first upper heat exchange section 51a, and the first.
  • the upper folded header 53a, the second upper heat exchange section 52a, the second folded header 55, the second lower heat exchange section 52b, the first lower folded header 53b, the first lower heat exchange section 51b, and the liquid side header 56 flow in this order.
  • the refrigerant that has reached the first lower heat exchange section 51b has already released a large amount of heat, and its temperature tends to be low. For this reason, it tends to be difficult to efficiently melt the frost adhering to the first lower heat exchange portion 51b.
  • the hot gas bypass defrost operation is performed by flowing a high temperature and high pressure refrigerant through the bypass pipe 48 before performing the reverse cycle defrost operation. This makes it possible to efficiently melt the frost adhering to the first lower heat exchange section 51b, which is a portion near the liquid side end portion of the outdoor heat exchanger 23.
  • bypass pipe 48 instead of providing the capillary tube 48a and the bypass valve 49 which is an electromagnetic on-off valve, the bypass valve which is an electric expansion valve capable of controlling the valve opening degree. 49a may be provided.
  • the bypass valve 49 may be controlled to be opened when a predetermined protection condition is satisfied.
  • a part of the refrigerant discharged from the compressor 21 via the bypass pipe 48 can be supplied to the liquid side of the outdoor heat exchanger 23.
  • the indoor fan 32 since the indoor fan 32 is stopped, it may not be possible to sufficiently evaporate the refrigerant in the indoor heat exchanger 31, but even in that case, the indoor heat exchange Since the discharged refrigerant flowing through the bypass pipe 48 can be mixed with the refrigerant sent to the vessel 31, the refrigerant passing through the indoor heat exchanger 31 can be made slightly dry. This makes it possible to suppress the occurrence of liquid compression in the compressor 21.
  • the predetermined protection condition is not particularly limited, and examples thereof include the temperature of the refrigerant discharged from the compressor 21 and the temperature of the refrigerant sucked into the compressor 21 being equal to or less than a predetermined value.
  • the hot gas is controlled to maintain the compressor 21 without lowering the rotation speed before lowering the rotation speed of the compressor 21.
  • the bypass defrost operation may be started.
  • the process of maintaining the rotation speed of the compressor 21 may be performed for a predetermined time, for example, and then the rotation speed of the compressor 21 may be lowered.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 21 maintained at a high rotation speed can be supplied to the liquid side end of the outdoor heat exchanger 23 via the bypass pipe 48. This makes it possible to increase the melting efficiency of frost near the liquid side end of the outdoor heat exchanger 23 at the initial stage of the hot gas bypass defrost operation.
  • the hot gas bypass defrost operation may be executed for a predetermined time and then terminated.
  • a refrigerant temperature sensor is provided near the center of the refrigerant path in the outdoor heat exchanger 23, and when the detection value of the temperature sensor exceeds a predetermined value, the hot gas bypass defrost operation is terminated.
  • a sensor for example, it may be a sensor that detects the temperature of the refrigerant passing through the second folded header 55 of the outdoor heat exchanger 23 of the above embodiment.
  • a sensor for detecting the temperature of the refrigerant flowing between the merging portion with the bypass pipe 48 and the outdoor expansion valve 24 is provided, and the detection value of the sensor is provided. May be used to determine a predetermined defrost termination condition.
  • the sensor since the sensor does not detect the temperature of the high-temperature refrigerant discharged from the compressor 21 during the hot gas bypass defrost operation, it is not necessary to wait for a predetermined time described in step S18 of the above embodiment. It becomes possible to do.
  • Air conditioner (refrigeration cycle device) 4 Liquid side refrigerant communication pipe 5 Gas side refrigerant communication pipe 7 Controller (control unit) 10 Refrigerant circuit 20 Outdoor unit 21 Compressor 22 Four-way switching valve (switching valve) 23 Outdoor heat exchanger 24 Outdoor expansion valve (expansion mechanism, expansion valve) 30 Indoor unit 31 Indoor heat exchanger 41-45 1st to 5th pipes 46 Suction pipe 47 Discharge pipe 48 Bypass pipe 48a Capillary tube 49 Bypass valve (control valve, on / off valve) 49a Bypass valve (control valve, expansion valve) 58 Flat multi-hole tube (flat heat transfer tube) 83 Discharge temperature sensor 84 Suction temperature sensor 85 Outdoor heat exchange temperature sensor (refrigerant temperature sensor) 86 Outside air temperature sensor

Abstract

The purpose of the present invention is to provide a refrigeration cycle device such that it is possible to sufficiently melt frost that is attached to an outdoor heat exchanger. An air-conditioning device (1) comprises: a refrigerant circuit (10) which is configured by a compressor (21), an outdoor heat exchanger (23), an outdoor expansion valve (24), and an indoor heat exchanger (31) being sequentially connected, and has a four-way switching valve (22) that can switch between a cooling operation connection state and a heating operation connection state and a bypass pipe (48) that extends from the discharge side of the compressor (21) to between the outdoor heat exchanger (23) and the outdoor expansion valve (24); and a controller (7). During defrosting of the outdoor heat exchanger (23), the controller (7) performs hot gas bypass defrost operation in which the refrigerant is sent from the compressor (21) to the outdoor heat exchanger (23) through the bypass pipe (48) while the refrigerant discharged from the compressor (21) is sent to the indoor heat exchanger (31) in the heating operation connection state, then switches the four-way switching valve (22) to the cooling operation connection state to perform reverse cycle defrost operation in which the refrigerant is sent from the compressor (21) to the outdoor heat exchanger (23).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
 従来より、空気調和装置等の冷凍サイクル装置では、室外熱交換器を冷媒の蒸発器として機能させ、室内熱交換器を冷媒の放熱器として機能させる暖房運転時に、室外熱交換器に霜が付着することがあるため、当該霜を融解させるためのデフロスト運転が行われている。 Conventionally, in refrigeration cycle devices such as air conditioners, frost adheres to the outdoor heat exchanger during heating operation in which the outdoor heat exchanger functions as a refrigerant evaporator and the indoor heat exchanger functions as a refrigerant radiator. Therefore, a defrost operation is performed to melt the frost.
 例えば、特許文献1(国際公開第2015/162696号)によれば、圧縮機の吐出側と、室外熱交換器と膨張弁との間を接続するホットガスバイパス回路を有しており、当該ホットガスバイパス回路を用いたデフロスト運転と、逆サイクルデフロスト運転と、の何れかを選択して実行させる空気調和装置が提案されている。 For example, according to Patent Document 1 (International Publication No. 2015/162696), there is a hot gas bypass circuit that connects the discharge side of the compressor and the outdoor heat exchanger and the expansion valve, and the hot gas bypass circuit is provided. An air conditioner has been proposed in which either defrost operation using a gas bypass circuit or reverse cycle defrost operation is selected and executed.
 具体的には、当該空気調和装置では、圧縮機から吐出された冷媒をホットガスバイパス回路を介して室外熱交換器に送るホットガスバイパスデフロスト運転と、圧縮機から吐出された冷媒を四路切換弁を介して室外熱交換器に送る逆サイクルデフロスト運転と、の何れかを室外熱交換器の着霜量に応じて選択して実行させている。 Specifically, in the air conditioner, the hot gas bypass defrost operation in which the refrigerant discharged from the compressor is sent to the outdoor heat exchanger via the hot gas bypass circuit and the refrigerant discharged from the compressor are switched in four ways. Either of the reverse cycle defrost operation, which is sent to the outdoor heat exchanger via the valve, is selected and executed according to the amount of frost formed in the outdoor heat exchanger.
 上記特許文献1に記載の空気調和装置では、ホットガスバイパスデフロスト運転と逆サイクルデフロスト運転とが択一的に実行されているが、逆サイクルデフロスト運転が選択されて実行された場合には、室外熱交換器における冷媒流れの下流側の霜が溶け残ってしまうおそれがある。 In the air conditioner described in Patent Document 1, the hot gas bypass defrost operation and the reverse cycle defrost operation are selectively executed, but when the reverse cycle defrost operation is selected and executed, it is outdoors. The frost on the downstream side of the refrigerant flow in the heat exchanger may remain undissolved.
 本開示の内容は、室外熱交換器に付着した霜を十分に融解させることが可能な冷凍サイクル装置を提供することを目的とする。 The contents of the present disclosure are intended to provide a refrigeration cycle apparatus capable of sufficiently melting the frost adhering to the outdoor heat exchanger.
 第1観点に係る冷凍サイクル装置は、冷媒回路と、制御部と、を備えている。冷媒回路は、圧縮機、室外熱交換器、膨張機構、室内熱交換器が順に接続されている。冷媒回路は、内部を冷媒が循環する。冷媒回路は、切換弁を有している。切換弁は、第1状態と第2状態とを切り換え可能である。第1状態では、圧縮機から吐出された冷媒を室内熱交換器に流すことで室内熱交換器を放熱器として機能させる。第2状態では、圧縮機から吐出された冷媒を室外熱交換器に流すことで室外熱交換器を放熱器として機能させる。冷媒回路は、バイパス配管を有している。バイパス配管は、圧縮機の吐出側と切換弁の間と、室外熱交換器と膨張機構の間、または、室外熱交換器における膨張機構に近い部分と、を接続する。制御部は、室外熱交換器の除霜時に、第1制御を行い、第1制御後に、第2制御を行う。第1制御では、第1状態で、圧縮機から吐出された冷媒を室内熱交換器に送りながら、圧縮機からバイパス配管を介して室外熱交換器に冷媒を送る。第2制御は、切換弁を第2状態に切り換えて圧縮機から室外熱交換器に冷媒を送る。 The refrigeration cycle device according to the first aspect includes a refrigerant circuit and a control unit. In the refrigerant circuit, a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger are connected in this order. Refrigerant circulates inside the refrigerant circuit. The refrigerant circuit has a switching valve. The switching valve can switch between the first state and the second state. In the first state, the refrigerant discharged from the compressor flows through the indoor heat exchanger to make the indoor heat exchanger function as a radiator. In the second state, the refrigerant discharged from the compressor flows through the outdoor heat exchanger to make the outdoor heat exchanger function as a radiator. The refrigerant circuit has a bypass pipe. The bypass pipe connects between the discharge side of the compressor and the switching valve, between the outdoor heat exchanger and the expansion mechanism, or a portion of the outdoor heat exchanger close to the expansion mechanism. The control unit performs the first control when defrosting the outdoor heat exchanger, and performs the second control after the first control. In the first control, in the first state, the refrigerant discharged from the compressor is sent to the indoor heat exchanger, and the refrigerant is sent from the compressor to the outdoor heat exchanger via the bypass pipe. The second control switches the switching valve to the second state and sends the refrigerant from the compressor to the outdoor heat exchanger.
 ここで、室外熱交換器における膨張機構に近い部分とは、室外熱交換器中を冷媒が流れる冷媒経路の有効長において、真ん中よりも膨張機構に近いことを意味する。 Here, the part closer to the expansion mechanism in the outdoor heat exchanger means that the effective length of the refrigerant path through which the refrigerant flows in the outdoor heat exchanger is closer to the expansion mechanism than the center.
 この冷凍サイクル装置は、圧縮機からバイパス配管を介して着霜した室外熱交換器に冷媒を送る第1制御を行うことで室外熱交換器のうちの膨張機構に近い部分の霜を融解させることができる。さらに、切換弁を第2状態に切り換えて圧縮機から室外熱交換器に冷媒を送ることで室外熱交換器を除霜する第2制御を行うことで、室外熱交換器のうちの膨張機構に近い部分から遠い部分の霜を融解させることができる。これにより、室外熱交換器に付着した霜を十分に融解させることが可能となる。 This refrigeration cycle apparatus melts the frost in the part of the outdoor heat exchanger near the expansion mechanism by performing the first control of sending the refrigerant from the compressor to the frosted outdoor heat exchanger via the bypass pipe. Can be done. Furthermore, by switching the switching valve to the second state and performing the second control to defrost the outdoor heat exchanger by sending the refrigerant from the compressor to the outdoor heat exchanger, it becomes the expansion mechanism of the outdoor heat exchanger. Frost can be melted from the near part to the far part. This makes it possible to sufficiently melt the frost adhering to the outdoor heat exchanger.
 第2観点に係る冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、冷媒回路は、制御弁をさらに有している。制御弁は、バイパス配管の途中に設けられている。 The refrigeration cycle device according to the second aspect is the refrigeration cycle device according to the first aspect, and the refrigerant circuit further has a control valve. The control valve is provided in the middle of the bypass pipe.
 この冷凍サイクル装置は、制御弁の制御により、バイパス配管における冷媒流れを制御することが可能となる。 This refrigeration cycle device can control the flow of refrigerant in the bypass piping by controlling the control valve.
 第3観点に係る冷凍サイクル装置は、第2観点の冷凍サイクル装置であって、制御弁は、弁開度を調節可能な膨張弁である。 The refrigeration cycle device according to the third aspect is the refrigeration cycle device according to the second aspect, and the control valve is an expansion valve whose valve opening degree can be adjusted.
 この冷凍サイクル装置は、制御弁の開度調節により、バイパス配管における冷媒の流量を制御できるようになるため、霜の融解に必要な冷媒を流すことが可能となる。 This refrigeration cycle device can control the flow rate of the refrigerant in the bypass pipe by adjusting the opening degree of the control valve, so that the refrigerant required for melting the frost can flow.
 第4観点に係る冷凍サイクル装置は、第2観点または第3観点の冷凍サイクル装置であって、制御部は、第2制御を行う間に制御弁を閉じる。 The refrigeration cycle device according to the fourth aspect is the refrigeration cycle device of the second aspect or the third aspect, and the control unit closes the control valve while performing the second control.
 なお、第2制御を行う間に制御弁を閉じるとは、第2制御の開始と同時に制御弁を閉じる場合、第2制御の開始後第2制御の終了前の間に制御弁を閉じる場合が含まれる。 Note that closing the control valve while performing the second control means closing the control valve at the same time as the start of the second control, or closing the control valve after the start of the second control and before the end of the second control. included.
 この冷凍サイクル装置は、第2制御を行う間、制御弁が閉じられることによりバイパス配管における冷媒流れが制限されるため、室外熱交換器のうちの膨張機構に近い部分から遠い部分における霜の融解を効率的に行うことが可能になる。 In this refrigeration cycle device, the flow of the refrigerant in the bypass pipe is restricted by closing the control valve during the second control, so that the frost melts in the part of the outdoor heat exchanger far from the part near the expansion mechanism. Can be done efficiently.
 第5観点に係る冷凍サイクル装置は、第4観点の冷凍サイクル装置であって、制御部は、第2制御を行う間に所定の保護条件を満たした場合に、閉じられている制御弁を開ける。 The refrigerating cycle device according to the fifth aspect is the refrigerating cycle device according to the fourth aspect, and the control unit opens the closed control valve when a predetermined protection condition is satisfied during the second control. ..
 なお、所定の保護条件は、特に限定されない。所定の保護条件としては、例えば、圧縮機から吐出される冷媒の温度や圧縮機に吸入される冷媒の温度等が所定値以下になることが挙げられる。 The prescribed protection conditions are not particularly limited. As the predetermined protection condition, for example, the temperature of the refrigerant discharged from the compressor, the temperature of the refrigerant sucked into the compressor, and the like may be equal to or less than a predetermined value.
 この冷凍サイクル装置は、第2制御中において、圧縮機から吐出される冷媒の温度の異常や圧縮機において液圧縮が生じることを抑制することが可能になる。 This refrigeration cycle device makes it possible to suppress an abnormality in the temperature of the refrigerant discharged from the compressor and the occurrence of liquid compression in the compressor during the second control.
 第6観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、制御部は、第1制御を行う間に、圧縮機の回転数を下げる第3制御を行う。 The refrigeration cycle apparatus according to the sixth aspect is any refrigeration cycle apparatus from the first aspect to the fifth aspect, and the control unit is a third control for lowering the rotation speed of the compressor while performing the first control. I do.
 この冷凍サイクル装置は、圧縮機の回転数を下げることで、冷媒回路の圧力差を用いて切換弁を第2状態に切り換える際に切換弁で生じうる切り換え音を小さく抑制することが可能となる。この場合において、圧縮機の回転数を下げるのに要する時間を用いて第1制御を行うことで、切換弁の切り換え音を小さく抑制しつつ、早期に第2制御を開始させることが可能になる。 By lowering the rotation speed of the compressor, this refrigeration cycle device can reduce the switching noise that may occur in the switching valve when the switching valve is switched to the second state by using the pressure difference of the refrigerant circuit. .. In this case, by performing the first control using the time required to reduce the rotation speed of the compressor, it is possible to start the second control at an early stage while suppressing the switching sound of the switching valve to be small. ..
 第7観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、制御部は、第1制御を行う間に、第4制御を行う。第4制御では、圧縮機の回転数を維持した後に圧縮機の回転数を下げる。 The refrigeration cycle device according to the seventh aspect is any of the refrigeration cycle devices from the first aspect to the fifth aspect, and the control unit performs the fourth control while performing the first control. In the fourth control, the rotation speed of the compressor is reduced after maintaining the rotation speed of the compressor.
 この冷凍サイクル装置は、第1制御を行う間に、圧縮機の回転数を下げる前に、圧縮機の回転数を維持させる段階が設けられている。この第1制御時の圧縮機の回転数の維持により、室外熱交換器の膨張機構に近い部分の霜の融解を効率的に行うことが可能になる。 This refrigeration cycle device is provided with a step of maintaining the rotation speed of the compressor before lowering the rotation speed of the compressor during the first control. By maintaining the rotation speed of the compressor during the first control, it becomes possible to efficiently melt the frost in the portion close to the expansion mechanism of the outdoor heat exchanger.
 第8観点に係る冷凍サイクル装置は、第1観点から第7観点のいずれかの冷凍サイクル装置であって、膨張機構は、弁開度を調節可能な膨張弁である。制御部は、第1制御を行う間に、膨張機構の弁開度を、第1制御の直前の運転時の弁開度よりも小さくする制御を行う。 The refrigeration cycle device according to the eighth viewpoint is any of the refrigeration cycle devices from the first viewpoint to the seventh viewpoint, and the expansion mechanism is an expansion valve whose valve opening degree can be adjusted. During the first control, the control unit controls the valve opening of the expansion mechanism to be smaller than the valve opening during operation immediately before the first control.
 なお、膨張機構の弁開度を第1制御の直前の運転時の弁開度よりも小さくする制御としては、特に限定されない。このような制御としては、例えば、当該第1制御の直前の運転時に膨張機構の弁開度が固定されている場合にその固定開度よりも小さくする制御であってもよい。また、このような制御としては、当該第1制御の直前の運転時に膨張機構の弁開度が制御されている場合にその制御開度よりも小さくする制御であってもよい。例えば、当該第1制御の直前の膨張機構の制御による目標弁開度よりも小さい開度とする制御であってもよい。 Note that the control for making the valve opening of the expansion mechanism smaller than the valve opening during operation immediately before the first control is not particularly limited. As such a control, for example, when the valve opening degree of the expansion mechanism is fixed during the operation immediately before the first control, the control may be smaller than the fixed opening degree. Further, such a control may be a control that is smaller than the control opening degree when the valve opening degree of the expansion mechanism is controlled during the operation immediately before the first control. For example, the opening degree may be smaller than the target valve opening degree by controlling the expansion mechanism immediately before the first control.
 この冷凍サイクル装置は、第1制御を行う間に、膨張機構の弁開度が第1制御の直前の運転時の弁開度よりも小さく制御されるため、室内熱交換器から膨張機構を介して室外熱交換器に向かう冷媒量が抑制される。これにより、室外熱交換器の膨張機構に近い部分に供給される冷媒の温度が、室内熱交換器から膨張機構を介して室外熱交換器に向けて流れる冷媒によって低下する程度を抑制させることが可能になる。 In this refrigeration cycle device, during the first control, the valve opening of the expansion mechanism is controlled to be smaller than the valve opening during the operation immediately before the first control, so that the indoor heat exchanger is used via the expansion mechanism. The amount of refrigerant flowing toward the outdoor heat exchanger is suppressed. As a result, it is possible to suppress the degree to which the temperature of the refrigerant supplied to the portion close to the expansion mechanism of the outdoor heat exchanger is lowered by the refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger via the expansion mechanism. It will be possible.
 第9観点に係る冷凍サイクル装置は、第1観点から第8観点のいずれかの冷凍サイクル装置であって、冷媒温度センサをさらに備えている。冷媒温度センサは、室外熱交換器における膨張機構に近い部分を流れる冷媒の温度、または、室外熱交換器と膨張機構との間を流れる冷媒の温度を検出する。制御部は、第2制御が開始されてから所定の時間が経過した後、冷媒温度センサの検出値が所定終了条件を満たした場合に第2制御を終了させる。 The refrigeration cycle device according to the ninth aspect is any of the refrigeration cycle devices from the first aspect to the eighth aspect, and further includes a refrigerant temperature sensor. The refrigerant temperature sensor detects the temperature of the refrigerant flowing in a portion close to the expansion mechanism in the outdoor heat exchanger or the temperature of the refrigerant flowing between the outdoor heat exchanger and the expansion mechanism. The control unit ends the second control when a predetermined time elapses from the start of the second control and the detection value of the refrigerant temperature sensor satisfies the predetermined end condition.
 この冷凍サイクル装置は、冷媒温度センサの検出値として、第2制御が開始されてから所定の時間が経過した後の値を用いて、所定終了条件の判断を行う。このため、第1制御が行われている際に所定終了条件が満たされてしまうことを抑制することができる。 This refrigeration cycle device determines the predetermined end condition by using the value detected by the refrigerant temperature sensor after a predetermined time has elapsed from the start of the second control. Therefore, it is possible to prevent the predetermined end condition from being satisfied when the first control is being performed.
 第10観点に係る冷凍サイクル装置は、第1観点から第9観点のいずれかの冷凍サイクル装置であって、室外熱交換器は、アルミニウムまたはアルミニウム合金を含む扁平形状の伝熱管を有している。 The refrigeration cycle apparatus according to the tenth aspect is any of the refrigeration cycle apparatuss from the first aspect to the ninth aspect, and the outdoor heat exchanger has a flat heat transfer tube containing aluminum or an aluminum alloy. ..
 一般に、アルミニウムまたはアルミニウム合金を含む扁平形状の伝熱管を有する室外熱交換器では、円筒形状の銅製伝熱管が用いられた従来のクロスフィンチューブ熱交換器と比べて、融解された霜が下に流れにくい。このように、融解された霜が下に流れにくい室外熱交換器を用いる場合であっても、この冷凍サイクル装置によれば、融解された霜が下に流れにくい程度を小さく抑えることが可能になる。 In general, outdoor heat exchangers with flat heat transfer tubes containing aluminum or aluminum alloys have lower melted frost than conventional cross fin tube heat exchangers that use cylindrical copper heat transfer tubes. It is hard to flow. In this way, even when using an outdoor heat exchanger in which the melted frost does not easily flow down, the refrigeration cycle device makes it possible to keep the degree to which the melted frost does not easily flow down. Become.
 第11観点に係る冷凍サイクル装置は、第1観点から第10観点のいずれかの冷凍サイクル装置であって、室外熱交換器は、複数の伝熱管が鉛直方向に並んで配置される第1伝熱管群および第2伝熱管群を有している。第1伝熱管群と第2伝熱管群は、水平方向に並んで配置される。 The refrigeration cycle apparatus according to the eleventh aspect is any refrigeration cycle apparatus from the first aspect to the tenth aspect, and the outdoor heat exchanger is the first transmission in which a plurality of heat transfer tubes are arranged side by side in the vertical direction. It has a heat tube group and a second heat transfer tube group. The first heat transfer tube group and the second heat transfer tube group are arranged side by side in the horizontal direction.
 この冷凍サイクル装置は、第1伝熱管群と第2伝熱管群を順次冷媒が流れる室外熱交換器についても、当該室外熱交換器のうち膨張機構に近い部分における霜の溶け残りを抑制させることが可能になる。 This refrigeration cycle device also suppresses the undissolved frost in the part of the outdoor heat exchanger near the expansion mechanism, even for the outdoor heat exchanger in which the refrigerant flows sequentially through the first heat transfer tube group and the second heat transfer tube group. Becomes possible.
空気調和装置の概略構成図である。It is a schematic block diagram of an air conditioner. 空気調和装置の概略ブロック構成図である。It is a schematic block block diagram of an air conditioner. 室外熱交換器の外観斜視図である。It is an external perspective view of an outdoor heat exchanger. 冷房運転接続状態で室外熱交換器を流れる冷媒の様子を示す説明図である。It is explanatory drawing which shows the state of the refrigerant flowing through the outdoor heat exchanger in the cooling operation connection state. 扁平多穴管と伝熱フィンとの配置構成図である。It is a layout block diagram of a flat multi-hole tube and a heat transfer fin. デフロスト運転のタイムチャートである。It is a time chart of defrost operation. デフロスト運転のフローチャート(その1)である。It is a flowchart of defrost operation (No. 1). デフロスト運転のフローチャート(その2)である。It is a flowchart of defrost operation (No. 2). 変形例Aに係る空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioner which concerns on modification A.
 以下、冷媒回路の概略構成図である図1、概略制御ブロック構成図である図2を参照しつつ、本実施形態に係る冷凍サイクル装置としての空気調和装置1について説明する。 Hereinafter, the air conditioner 1 as the refrigeration cycle device according to the present embodiment will be described with reference to FIG. 1 which is a schematic configuration diagram of the refrigerant circuit and FIG. 2 which is a schematic control block configuration diagram.
 (1)空気調和装置1の概要
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
(1) Outline of Air Conditioning Device 1 The air conditioning device 1 is a device that harmonizes the air in the target space by performing a vapor compression refrigeration cycle.
 空気調和装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、入力装置および出力装置としてのリモコン8と、空気調和装置1の動作を制御するコントローラ7と、を有している。 The air conditioner 1 mainly serves as an outdoor unit 20, an indoor unit 30, a liquid side refrigerant connecting pipe 6 and a gas side refrigerant connecting pipe 5 connecting the outdoor unit 20 and the indoor unit 30, and an input device and an output device. It has a remote controller 8 and a controller 7 that controls the operation of the air conditioner 1.
 空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮、放熱(凝縮)、減圧、蒸発した後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。 In the air conditioner 1, a refrigeration cycle is performed in which the refrigerant sealed in the refrigerant circuit 10 is compressed, dissipated (condensed), depressurized, evaporated, and then compressed again. In the present embodiment, the refrigerant circuit 10 is filled with a refrigerant for performing a vapor compression refrigeration cycle.
 (1-1)室外ユニット20
 室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、低圧レシーバ26と、室外ファン25と、液側閉鎖弁29と、ガス側閉鎖弁28と、バイパス配管48と、を有している。
(1-1) Outdoor unit 20
The outdoor unit 20 is connected to the indoor unit 30 via a liquid-side refrigerant connecting pipe 6 and a gas-side refrigerant connecting pipe 5, and constitutes a part of the refrigerant circuit 10. The outdoor unit 20 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, a low pressure receiver 26, an outdoor fan 25, a liquid side closing valve 29, and a gas. It has a side closing valve 28 and a bypass pipe 48.
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。圧縮機21としては、例えば、ロータリ式やスクロール式等の圧縮要素(図示省略)が圧縮機モータによって回転駆動される圧縮機が使用される。圧縮機モータは、容量を変化させるためのものであり、インバータにより回転数の制御が可能である。 The compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle until it reaches a high pressure. As the compressor 21, for example, a compressor in which a rotary type or scroll type compression element (not shown) is rotationally driven by a compressor motor is used. The compressor motor is for changing the capacity, and the rotation speed can be controlled by an inverter.
 四路切換弁22は、冷媒回路10における接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態(図1の実線参照)と、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態(図1の点線参照)と、を切り換えることができる。より具体的には、四路切換弁22は、冷房運転接続状態では、圧縮機21の吐出側から四路切換弁22の接続ポートの1つまで伸びる吐出配管47と、室外熱交換器23のガス側端部から伸びる第3配管43と、を接続しつつ、ガス側閉鎖弁28と四路切換弁22の接続ポートの1つとを接続する第1配管41と、四路切換弁22の接続ポートの1つから低圧レシーバ26まで伸びる第2配管42と、を接続する。また、四路切換弁22は、暖房運転接続状態では、吐出配管47と第1配管41を接続しつつ、第3配管43と第2配管42を接続する。 The four-way switching valve 22 connects the suction side of the compressor 21 and the gas side closing valve 28 while connecting the discharge side of the compressor 21 and the outdoor heat exchanger 23 by switching the connection state in the refrigerant circuit 10. Heating operation connection between the cooling operation connection state (see the solid line in FIG. 1) and the suction side of the compressor 21 and the outdoor heat exchanger 23 while connecting the discharge side of the compressor 21 and the gas side closing valve 28. The state (see the dotted line in FIG. 1) can be switched. More specifically, the four-way switching valve 22 has a discharge pipe 47 extending from the discharge side of the compressor 21 to one of the connection ports of the four-way switching valve 22 and the outdoor heat exchanger 23 in the cooling operation connection state. Connection of the first pipe 41 and the four-way switching valve 22 for connecting the gas-side closing valve 28 and one of the connection ports of the four-way switching valve 22 while connecting the third pipe 43 extending from the gas side end. A second pipe 42 extending from one of the ports to the low pressure receiver 26 is connected. Further, the four-way switching valve 22 connects the third pipe 43 and the second pipe 42 while connecting the discharge pipe 47 and the first pipe 41 in the heating operation connected state.
 室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の放熱器または凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。 The outdoor heat exchanger 23 is a heat exchanger that functions as a radiator or a condenser of a high-pressure refrigerant in a refrigeration cycle during a cooling operation and as an evaporator of a low-pressure refrigerant in a refrigeration cycle during a heating operation.
 室外ファン25は、室外ユニット20内に室外の空気を室外熱交換器23に供給し、室外熱交換器23において冷媒と熱交換させた後に、室外ユニット20の外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。 The outdoor fan 25 supplies the outdoor air into the outdoor unit 20 to the outdoor heat exchanger 23, exchanges heat with the refrigerant in the outdoor heat exchanger 23, and then discharges the air flow to the outside of the outdoor unit 20. Give rise. The outdoor fan 25 is rotationally driven by an outdoor fan motor.
 室外膨張弁24は、室外熱交換器23の液側端部と液側閉鎖弁29との間に設けられている。より具体的には、室外膨張弁24は、室外熱交換器23のガス側端部から伸びる第4配管44と、液側閉鎖弁29から伸びる第5配管45と、の間に設けられている。室外膨張弁24としては、例えば、制御により弁開度を調節可能な電動膨張弁を用いることができる。 The outdoor expansion valve 24 is provided between the liquid side end of the outdoor heat exchanger 23 and the liquid side closing valve 29. More specifically, the outdoor expansion valve 24 is provided between the fourth pipe 44 extending from the gas side end of the outdoor heat exchanger 23 and the fifth pipe 45 extending from the liquid side closing valve 29. .. As the outdoor expansion valve 24, for example, an electric expansion valve whose valve opening degree can be adjusted by control can be used.
 低圧レシーバ26は、圧縮機21の吸入側と四路切換弁22の接続ポートの1つとの間に設けられている。なお、低圧レシーバ26の内部には、四路切換弁22の接続ポートの1つから伸びる第2配管42の端部と、圧縮機21の吸入側から伸びる吸入配管46の端部が位置している。低圧レシーバ26は、冷媒回路10における余剰冷媒を液冷媒として貯留することが可能な冷媒容器である。 The low pressure receiver 26 is provided between the suction side of the compressor 21 and one of the connection ports of the four-way switching valve 22. Inside the low pressure receiver 26, the end of the second pipe 42 extending from one of the connection ports of the four-way switching valve 22 and the end of the suction pipe 46 extending from the suction side of the compressor 21 are located. There is. The low pressure receiver 26 is a refrigerant container capable of storing the surplus refrigerant in the refrigerant circuit 10 as a liquid refrigerant.
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。 The liquid side closing valve 29 is a manual valve arranged at a connection portion with the liquid side refrigerant connecting pipe 6 in the outdoor unit 20.
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。 The gas side closing valve 28 is a manual valve arranged in the outdoor unit 20 at the connection portion with the gas side refrigerant connecting pipe 5.
 バイパス配管48は、吐出配管47と第4配管44を接続する冷媒経路を構成している。バイパス配管48の途中には、通過する冷媒の減圧部として機能するキャピラリーチューブ48aが設けられている。バイパス配管48のうち、吐出配管47からの分岐部分と、キャピラリーチューブ48aと、の間には、開閉制御される電磁開閉弁であるバイパス弁49が設けられている。 The bypass pipe 48 constitutes a refrigerant path connecting the discharge pipe 47 and the fourth pipe 44. A capillary tube 48a that functions as a decompression unit for the passing refrigerant is provided in the middle of the bypass pipe 48. Of the bypass pipe 48, a bypass valve 49, which is an electromagnetic on-off valve whose opening and closing is controlled, is provided between the branch portion from the discharge pipe 47 and the capillary tube 48a.
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。 The outdoor unit 20 has an outdoor unit control unit 27 that controls the operation of each unit constituting the outdoor unit 20. The outdoor unit control unit 27 has a microcomputer including a CPU, a memory, and the like. The outdoor unit control unit 27 is connected to the indoor unit control unit 34 of each indoor unit 30 via a communication line, and transmits and receives control signals and the like.
 室外ユニット20には、吐出温度センサ83、吸入温度センサ84、室外熱交温度センサ85、外気温度センサ86等が設けられている。これらの各センサは、室外ユニット制御部27と電気的に接続されており、室外ユニット制御部27に対して検出信号を送信する。吐出温度センサ83は、吐出配管47を流れる冷媒の温度を検出する。吸入温度センサ84は、吸入配管46を流れる冷媒の温度を検出する。室外熱交温度センサ85は、液側の出口を流れる冷媒の温度を検出する。外気温度センサ86は、室外熱交換器23を通過する前の屋外の空気温度を検出する。 The outdoor unit 20 is provided with a discharge temperature sensor 83, a suction temperature sensor 84, an outdoor heat exchange temperature sensor 85, an outside air temperature sensor 86, and the like. Each of these sensors is electrically connected to the outdoor unit control unit 27, and transmits a detection signal to the outdoor unit control unit 27. The discharge temperature sensor 83 detects the temperature of the refrigerant flowing through the discharge pipe 47. The suction temperature sensor 84 detects the temperature of the refrigerant flowing through the suction pipe 46. The outdoor heat exchange temperature sensor 85 detects the temperature of the refrigerant flowing through the outlet on the liquid side. The outside air temperature sensor 86 detects the outdoor air temperature before passing through the outdoor heat exchanger 23.
 (1-1-1)室外熱交換器23
 図3に室外熱交換器23の外観斜視図を、図4に冷房運転接続状態で室外熱交換器23を流れる冷媒の様子を示す説明図を、それぞれ示す。
(1-1-1) Outdoor heat exchanger 23
FIG. 3 shows an external perspective view of the outdoor heat exchanger 23, and FIG. 4 shows an explanatory view showing a state of the refrigerant flowing through the outdoor heat exchanger 23 in the cooling operation connected state.
 室外熱交換器23は、熱交換部50と、ガス側ヘッダ54と、液側ヘッダ56と、第1折り返しヘッダ53と、第2折り返しヘッダ55と、を有している。室外熱交換器23のこれらの要素は、いずれもアルミニウムまたはアルミニウム合金により構成されている。 The outdoor heat exchanger 23 has a heat exchange unit 50, a gas side header 54, a liquid side header 56, a first folded header 53, and a second folded header 55. All of these elements of the outdoor heat exchanger 23 are made of aluminum or an aluminum alloy.
 熱交換部50は、室外ファン25により形成される空気流れ方向における上流側に配置された第1熱交換部51と、第1熱交換部51とは離れて空気流れ方向における下流側に配置された第2熱交換部52と、を有している。第1熱交換部51と第2熱交換部52とは、空気流れ方向において互いに重なるように配置されている。第1熱交換部51は、第1上方熱交換部51aと、第1上方熱交換部51aの下方に位置する第1下方熱交換部51bと、を有している。第2熱交換部52は、第2上方熱交換部52aと、第2上方熱交換部52aの下方に位置する第2下方熱交換部52bとを有している。 The heat exchange unit 50 is arranged on the downstream side in the air flow direction away from the first heat exchange unit 51 and the first heat exchange unit 51 formed on the upstream side in the air flow direction formed by the outdoor fan 25. It also has a second heat exchange unit 52. The first heat exchange unit 51 and the second heat exchange unit 52 are arranged so as to overlap each other in the air flow direction. The first heat exchange unit 51 has a first upper heat exchange unit 51a and a first lower heat exchange unit 51b located below the first upper heat exchange unit 51a. The second heat exchange unit 52 has a second upper heat exchange unit 52a and a second lower heat exchange unit 52b located below the second upper heat exchange unit 52a.
 第1熱交換部51と第2熱交換部52とは、図5に示すように、それぞれ、複数の扁平多穴管48と、複数の伝熱フィン59とを有している。第1熱交換部51と第2熱交換部52のそれぞれにおいて、複数の扁平多穴管58は、扁平面58aが鉛直方向を向く姿勢で鉛直方向に並んで配置されている。扁平多穴管58は、空気流れ方向に沿うように並んで構成された複数の冷媒流路58bを有している。第1熱交換部51と第2熱交換部52のそれぞれにおいて、複数の伝熱フィン59は、複数の扁平多穴管に対して固定されている。伝熱フィン59は、扁平多穴管58を挿入固定させるための切り欠き59aを有している。 As shown in FIG. 5, the first heat exchange unit 51 and the second heat exchange unit 52 each have a plurality of flat multi-hole tubes 48 and a plurality of heat transfer fins 59. In each of the first heat exchange section 51 and the second heat exchange section 52, the plurality of flat multi-hole pipes 58 are arranged side by side in the vertical direction with the flat surface 58a facing the vertical direction. The flat multi-hole pipe 58 has a plurality of refrigerant flow paths 58b configured side by side along the air flow direction. In each of the first heat exchange section 51 and the second heat exchange section 52, the plurality of heat transfer fins 59 are fixed to the plurality of flat multi-hole tubes. The heat transfer fin 59 has a notch 59a for inserting and fixing the flat multi-hole tube 58.
 ガス側ヘッダ54は、第3配管43と第1上方熱交換部51aとを連絡するように設けられている。具体的には、第3配管43の一端がガス側ヘッダ54に接続されており、第1上方熱交換部51aが有する複数の扁平多穴管58の一端がそれぞれガス側ヘッダ54に接続されている。 The gas side header 54 is provided so as to connect the third pipe 43 and the first upper heat exchange unit 51a. Specifically, one end of the third pipe 43 is connected to the gas side header 54, and one end of the plurality of flat multi-hole pipes 58 included in the first upper heat exchange portion 51a is connected to the gas side header 54, respectively. There is.
 液側ヘッダ56は、第4配管44と第1下方熱交換部51bとを連絡するように設けられている。具体的には、第4配管44の一端が液側ヘッダ56に接続されており、第1下方熱交換部51bが有する複数の扁平多穴管58の一端がそれぞれ液側ヘッダ56に接続されている。 The liquid side header 56 is provided so as to connect the fourth pipe 44 and the first lower heat exchange section 51b. Specifically, one end of the fourth pipe 44 is connected to the liquid side header 56, and one end of the plurality of flat multi-hole pipes 58 included in the first lower heat exchange portion 51b is connected to the liquid side header 56, respectively. There is.
 第1折り返しヘッダ53は、第1上方折り返しヘッダ53aと第1下方折り返しヘッダ53bを有している。第1上方折り返しヘッダ53aは、第1上方熱交換部51aのガス側ヘッダ54側とは反対側の端部と、第2上方熱交換部52aの第2折り返しヘッダ55側とは反対側の端部と、を連絡するように設けられている。具体的には、本実施形態の第1上方折り返しヘッダ53aは、第1上方熱交換部51aの複数の扁平多穴管58と、第2上方熱交換部52aの複数の扁平多穴管58と、を互いに同じ高さ位置で連絡するように構成されている。第1下方折り返しヘッダ53bは、第1下方熱交換部51bの液側ヘッダ56側とは反対側の端部と、第2下方熱交換部52bの第2折り返しヘッダ55側とは反対側の端部と、を連絡するように設けられている。具体的には、本実施形態の第1下方折り返しヘッダ53bは、第1下方熱交換部51bの複数の扁平多穴管58と、第2下方熱交換部52bの複数の扁平多穴管58と、を互いに同じ高さ位置で連絡するように構成されている。 The first folded header 53 has a first upper folded header 53a and a first downward folded header 53b. The first upper heat exchange header 53a is an end of the first upper heat exchange portion 51a opposite to the gas side header 54 side and an end of the second upper heat exchange portion 52a opposite to the second folded header 55 side. It is provided to contact the department. Specifically, the first upper folded header 53a of the present embodiment includes a plurality of flat multi-hole pipes 58 of the first upper heat exchange portion 51a and a plurality of flat multi-hole pipes 58 of the second upper heat exchange portion 52a. , Are configured to communicate with each other at the same height position. The first lower heat exchange header 53b has an end of the first lower heat exchange portion 51b opposite to the liquid side header 56 side and an end of the second lower heat exchange portion 52b opposite to the second folded header 55 side. It is provided to contact the department. Specifically, the first lower folded header 53b of the present embodiment includes a plurality of flat multi-hole pipes 58 of the first lower heat exchange portion 51b and a plurality of flat multi-hole pipes 58 of the second lower heat exchange portion 52b. , Are configured to communicate with each other at the same height position.
 第2折り返しヘッダ55は、第2上方熱交換部52aと第2下方熱交換部52bとを連絡するように設けられている。なお、本実施形態では、第2折り返しヘッダ55は、内部空間が高さ位置毎に分離されており、互いに分離された空間同士が複数の連絡配管55aを介して接続されている。 The second folded header 55 is provided so as to connect the second upper heat exchange unit 52a and the second lower heat exchange unit 52b. In the present embodiment, the internal space of the second folded header 55 is separated for each height position, and the spaces separated from each other are connected to each other via a plurality of connecting pipes 55a.
 以上の室外熱交換器23は、四路切換弁22が冷房運転接続状態の場合には、図3、図4において矢印で示した方向に冷媒が流れる。具体的には、第3配管43からガス側ヘッダ54に流入した冷媒は、ガス側ヘッダ54内で高さ方向に分流され、第1上方熱交換部51aの各高さ位置の扁平多穴管58に流れていく。第1上方熱交換部51aを流れた冷媒は、第1上方折り返しヘッダ53aにおいて高さ位置を維持しながら第2上方熱交換部52aの各高さ位置の扁平多穴管58に流れていく。第2上方熱交換部52aを流れた冷媒は、第2折り返しヘッダ55を介して、第2下方熱交換部52bの各高さ位置の扁平多穴管58に流れていく。第2下方熱交換部52bを流れた冷媒は、第1下方折り返しヘッダ53bにおいて高さ位置を維持しながら第1下方熱交換部51bの各高さ位置の扁平多穴管58に流れていく。第1下方熱交換部51bを流れた冷媒は、液側ヘッダ56で合流し、第4配管44に流れていく。なお、四路切換弁22が暖房運転接続状態の場合には、上記とは逆の冷媒流れとなる。 In the above outdoor heat exchanger 23, when the four-way switching valve 22 is in the cooling operation connection state, the refrigerant flows in the direction indicated by the arrow in FIGS. 3 and 4. Specifically, the refrigerant flowing into the gas side header 54 from the third pipe 43 is diverted in the height direction in the gas side header 54, and is a flat multi-hole pipe at each height position of the first upper heat exchange portion 51a. It flows to 58. The refrigerant that has flowed through the first upper heat exchange section 51a flows into the flat multi-hole pipe 58 at each height position of the second upper heat exchange section 52a while maintaining the height position in the first upper folded header 53a. The refrigerant that has flowed through the second upper heat exchange section 52a flows through the second folded header 55 into the flat multi-hole pipe 58 at each height position of the second lower heat exchange section 52b. The refrigerant that has flowed through the second lower heat exchange section 52b flows into the flat multi-hole pipe 58 at each height position of the first lower heat exchange section 51b while maintaining the height position in the first lower folded header 53b. The refrigerant that has flowed through the first lower heat exchange section 51b merges with the liquid side header 56 and flows into the fourth pipe 44. When the four-way switching valve 22 is connected to the heating operation, the refrigerant flow is opposite to the above.
 (1-2)室内ユニット30
 室内ユニット30は、対象空間である室内の壁面や天井等に設置されている。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
(1-2) Indoor unit 30
The indoor unit 30 is installed on the wall surface, ceiling, or the like of the room, which is the target space. The indoor unit 30 is connected to the outdoor unit 20 via a liquid-side refrigerant connecting pipe 6 and a gas-side refrigerant connecting pipe 5, and constitutes a part of the refrigerant circuit 10.
 室内ユニット30は、室内熱交換器31と、室内ファン32と、を有している。 The indoor unit 30 has an indoor heat exchanger 31 and an indoor fan 32.
 室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の放熱器または凝縮器として機能する熱交換器である。 The liquid side of the indoor heat exchanger 31 is connected to the liquid side refrigerant connecting pipe 6, and the gas side end is connected to the gas side refrigerant connecting pipe 5. The indoor heat exchanger 31 is a heat exchanger that functions as an evaporator of the low-pressure refrigerant in the refrigeration cycle during the cooling operation and as a radiator or a condenser of the high-pressure refrigerant in the refrigeration cycle during the heating operation.
 室内ファン32は、室内ユニット30内に空調対象空間である室内の空気を吸入して、室内熱交換器31において冷媒と熱交換させた後に、室内ユニット30の外部に排出するための空気流れを生じさせる。室内ファン32は、室内ファンモータによって回転駆動される。 The indoor fan 32 sucks the indoor air, which is the space to be air-conditioned, into the indoor unit 30, exchanges heat with the refrigerant in the indoor heat exchanger 31, and then discharges the air flow to the outside of the indoor unit 30. Give rise. The indoor fan 32 is rotationally driven by the indoor fan motor.
 また、室内ユニット30は、室内ユニット30を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。 Further, the indoor unit 30 has an indoor unit control unit 34 that controls the operation of each unit constituting the indoor unit 30. The indoor unit control unit 34 has a microcomputer including a CPU, a memory, and the like. The indoor unit control unit 34 is connected to the outdoor unit control unit 27 via a communication line, and transmits and receives control signals and the like.
 室内ユニット30には、室内液側熱交温度センサ91、室内空気温度センサ92等が設けられている。これらの各センサは、室内ユニット制御部34と電気的に接続されており、室内ユニット制御部34に対して検出信号を送信する。室内液側熱交温度センサ91は、室内熱交換器31のうちガス側冷媒連絡配管5が接続されている側とは反対側である液側の出口を流れる冷媒の温度を検出する。室内空気温度センサ92は、室内熱交換器31を通過する前の室内の空気温度を検出する。 The indoor unit 30 is provided with an indoor liquid side heat exchange temperature sensor 91, an indoor air temperature sensor 92, and the like. Each of these sensors is electrically connected to the indoor unit control unit 34, and transmits a detection signal to the indoor unit control unit 34. The indoor liquid side heat exchange temperature sensor 91 detects the temperature of the refrigerant flowing through the liquid side outlet on the side opposite to the side to which the gas side refrigerant connecting pipe 5 is connected in the indoor heat exchanger 31. The indoor air temperature sensor 92 detects the indoor air temperature before passing through the indoor heat exchanger 31.
 (1-3)コントローラ7
 空気調和装置1では、室外ユニット制御部27と室内ユニット制御部34が通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
(1-3) Controller 7
In the air conditioner 1, a controller 7 that controls the operation of the air conditioner 1 is configured by connecting the outdoor unit control unit 27 and the indoor unit control unit 34 via a communication line.
 コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。 The controller 7 mainly has a CPU (Central Processing Unit) and memories such as ROM and RAM. It should be noted that various processes and controls by the controller 7 are realized by the functions of the outdoor unit control unit 27 and / or the indoor unit control unit 34 in an integrated manner.
 (1-4)リモコン8
 リモコン8は、空調対象空間である室内または空調対象空間を含む建物の特定の空間に配置されており、空気調和装置1の運転制御指令や運転状態の監視を行うためにユーザ等により使用される。
(1-4) Remote control 8
The remote controller 8 is arranged in a room which is an air-conditioned space or a specific space of a building including the air-conditioned space, and is used by a user or the like to perform an operation control command of the air conditioner 1 and monitor an operating state. ..
 (2)運転モード
 以下、運転モードについて説明する。
(2) Operation mode The operation mode will be described below.
 運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。 As the operation mode, a cooling operation mode and a heating operation mode are provided.
 コントローラ7は、リモコン8から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。 The controller 7 determines whether it is the cooling operation mode or the heating operation mode based on the instruction received from the remote controller 8, and executes it.
 (2-1)冷房運転モード
 空気調和装置1は、冷房運転モードでは、四路切換弁22を冷房運転接続状態とし、冷房運転を実行する。
(2-1) Cooling operation mode In the cooling operation mode, the air conditioner 1 sets the four-way switching valve 22 in the cooling operation connected state and executes the cooling operation.
 冷房運転では、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように回転数が制御される。なお、冷房運転中は、バイパス弁49は閉じられている。 In the cooling operation, the rotation speed of the compressor 21 is controlled so that, for example, the evaporation temperature of the refrigerant in the refrigerant circuit 10 reaches the target evaporation temperature. The bypass valve 49 is closed during the cooling operation.
 圧縮機21から吐出されたガス冷媒は、吐出配管47、四路切換弁22、第3配管43を流れて、室外熱交換器23に流入する。室外熱交換器23を流れる冷媒は、屋外空気と熱交換することにより放熱または凝縮し、室外膨張弁24に向けて流れる。 The gas refrigerant discharged from the compressor 21 flows through the discharge pipe 47, the four-way switching valve 22, and the third pipe 43, and flows into the outdoor heat exchanger 23. The refrigerant flowing through the outdoor heat exchanger 23 dissipates heat or condenses by exchanging heat with the outdoor air, and flows toward the outdoor expansion valve 24.
 ここで、室外膨張弁24は、例えば、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。 Here, the valve opening degree of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition such that the degree of supercooling of the refrigerant flowing through the liquid side outlet of the outdoor heat exchanger 23 becomes a target value.
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31において蒸発した冷媒は、ガス側冷媒連絡配管5を介して、ガス側閉鎖弁28から室外ユニット20に流入する。室外ユニット20に流入した冷媒は、第2配管42、四路切換弁22、第1配管41、低圧レシーバ26、吸入配管46を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ26では、室内熱交換器31において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。 The refrigerant decompressed by the outdoor expansion valve 24 flows into the indoor unit 30 via the liquid side closing valve 29 and the liquid side refrigerant connecting pipe 6, and evaporates in the indoor heat exchanger 31. The refrigerant evaporated in the indoor heat exchanger 31 flows into the outdoor unit 20 from the gas side closing valve 28 via the gas side refrigerant connecting pipe 5. The refrigerant flowing into the outdoor unit 20 is sucked into the compressor 21 again through the second pipe 42, the four-way switching valve 22, the first pipe 41, the low pressure receiver 26, and the suction pipe 46. In the low pressure receiver 26, the liquid refrigerant that could not be completely evaporated in the indoor heat exchanger 31 is stored as a surplus refrigerant.
 (2-2)暖房運転モード
 空気調和装置1は、暖房運転モードでは、暖房運転とデフロスト運転とを切り換えながら実行する。
(2-2) Heating operation mode In the heating operation mode, the air conditioner 1 executes while switching between the heating operation and the defrost operation.
 暖房運転では、圧縮機21は、例えば、所定の能力を生じさせるように回転数が制御される。例えば、冷媒回路10における冷媒の凝縮温度が目標凝縮温度になるように回転数が制御される。なお、冷房運転中は、バイパス弁49は閉じられている。 In the heating operation, the number of revolutions of the compressor 21 is controlled so as to generate a predetermined capacity, for example. For example, the rotation speed is controlled so that the condensation temperature of the refrigerant in the refrigerant circuit 10 reaches the target condensation temperature. The bypass valve 49 is closed during the cooling operation.
 圧縮機21から吐出されたガス冷媒は、吐出配管47、四路切換弁22、第2配管42、ガス側冷媒連絡配管5を流れた後、室内ユニット30に流入する。 The gas refrigerant discharged from the compressor 21 flows into the indoor unit 30 after flowing through the discharge pipe 47, the four-way switching valve 22, the second pipe 42, and the gas-side refrigerant connecting pipe 5.
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において室内空気との間で熱交換を行い、放熱または凝縮する。室内熱交換器31で放熱または凝縮した冷媒は、液側冷媒連絡配管6を経て、液側閉鎖弁29から室外ユニット20に流入する。室外ユニット20に流入した冷媒は、室外膨張弁24において減圧される。 The refrigerant that has flowed into the indoor unit 30 flows into the indoor heat exchanger 31 and exchanges heat with the indoor air in the indoor heat exchanger 31 to dissipate heat or condense. The refrigerant radiated or condensed by the indoor heat exchanger 31 flows into the outdoor unit 20 from the liquid side closing valve 29 via the liquid side refrigerant connecting pipe 6. The refrigerant that has flowed into the outdoor unit 20 is depressurized by the outdoor expansion valve 24.
 ここで、室外膨張弁24は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。 Here, the valve opening degree of the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition such that the degree of supercooling of the refrigerant flowing through the liquid side outlet of the indoor heat exchanger 31 becomes a target value.
 室外膨張弁24で減圧された冷媒は、室外熱交換器23に流入し、屋外空気と熱交換を行うことで蒸発する。室外熱交換器23において蒸発した冷媒は、第3配管43、四路切換弁22、第1配管41、低圧レシーバ26、吸入配管46を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ26では、室外熱交換器23において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。 The refrigerant decompressed by the outdoor expansion valve 24 flows into the outdoor heat exchanger 23 and evaporates by exchanging heat with the outdoor air. The refrigerant evaporated in the outdoor heat exchanger 23 is sucked into the compressor 21 again through the third pipe 43, the four-way switching valve 22, the first pipe 41, the low pressure receiver 26, and the suction pipe 46. In the low pressure receiver 26, the liquid refrigerant that could not be completely evaporated in the outdoor heat exchanger 23 is stored as a surplus refrigerant.
 なお、暖房運転モードにおける暖房運転中に所定のデフロスト開始条件を満たすと、室外熱交換器23に付着した霜を融解させるためにデフロスト運転が行われる。詳細は後述するが、所定のデフロスト開始条件を満たすと、四路切換弁22の接続状態を暖房運転接続状態に維持したままでバイパス弁49を開き、圧縮機21から吐出された冷媒をバイパス配管48を介して室外熱交換器23に送るホットガスバイパスデフロスト運転を行う。その後、四路切換弁22の接続状態を暖房運転接続状態から冷房運転接続状態に切り換えて、圧縮機21から吐出された冷媒を室外熱交換器23に送る逆サイクルデフロスト運転を行う。さらに、所定のデフロスト終了条件を満たした場合には、四路切換弁22の接続状態を冷房運転接続状態から暖房運転接続状態に戻し、暖房運転を再開させる。 If a predetermined defrost start condition is satisfied during the heating operation in the heating operation mode, the defrost operation is performed to melt the frost adhering to the outdoor heat exchanger 23. Although the details will be described later, when a predetermined defrost start condition is satisfied, the bypass valve 49 is opened while maintaining the connection state of the four-way switching valve 22 in the heating operation connection state, and the refrigerant discharged from the compressor 21 is bypassed. The hot gas bypass defrost operation of sending to the outdoor heat exchanger 23 via 48 is performed. After that, the connection state of the four-way switching valve 22 is switched from the heating operation connection state to the cooling operation connection state, and the reverse cycle defrost operation is performed in which the refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23. Further, when the predetermined defrost end condition is satisfied, the connection state of the four-way switching valve 22 is returned from the cooling operation connection state to the heating operation connection state, and the heating operation is restarted.
 (3)デフロスト運転およびその前後の動作の詳細
 以下、暖房運転中にデフロスト運転を行い、再度、暖房運転に復帰するまでの空気調和装置1の動作の詳細を説明する。
(3) Details of Defrost Operation and Operations Before and After Defrost Operation The details of the operation of the air conditioner 1 from performing the defrost operation during the heating operation to returning to the heating operation will be described below.
 図6に、空気調和装置1の各要素のタイミングチャートを示す。図7および図8に、デフロスト運転のフローチャートを示す。なお、図7の「A」で示す箇所と図8の「A」で示す箇所は、処理が続いていることを示し、図8の「B」で示す箇所と図7の「B」で示す箇所は、処理が続いていることを示している。 FIG. 6 shows a timing chart of each element of the air conditioner 1. 7 and 8 show a flowchart of the defrost operation. The portion indicated by "A" in FIG. 7 and the portion indicated by "A" in FIG. 8 indicate that the processing is continuing, and are indicated by the portion indicated by "B" in FIG. 8 and the portion indicated by "B" in FIG. The location indicates that the process is continuing.
 図6において、「圧縮機」の欄は圧縮機21の回転数を示し、「室内ファン」の欄は室内ファン32による風流を示し、「室外ファン」の欄は室外ファン25による風流を示し、「室外膨張弁」の欄は室外膨張弁24の弁開度を示しており、いずれも上の方が高く、下の方が低い値であることを示している。また、図6において、「四路切換弁」の欄は、四路切換弁22の接続状態を示しており、上の段は暖房運転接続状態であり、下の段は冷房運転接続状態であることをそれぞれ示している。また、図6において、「バイパス弁」の欄は、バイパス弁49の開閉状態を示しており、上の段はバイパス弁49が開いていており、下の段はバイパス弁49が閉じていることをそれぞれ示している。 In FIG. 6, the column of "compressor" shows the rotation speed of the compressor 21, the column of "indoor fan" shows the airflow by the indoor fan 32, and the column of "outdoor fan" shows the airflow by the outdoor fan 25. The column of "outdoor expansion valve" indicates the valve opening degree of the outdoor expansion valve 24, and all of them indicate that the upper value is higher and the lower value is lower. Further, in FIG. 6, the column of "four-way switching valve" shows the connection state of the four-way switching valve 22, the upper stage is the heating operation connection state, and the lower stage is the cooling operation connection state. It shows each of them. Further, in FIG. 6, the column of "bypass valve" shows the open / closed state of the bypass valve 49, that the bypass valve 49 is open in the upper stage and the bypass valve 49 is closed in the lower stage. Are shown respectively.
 以下では、暖房運転が行われている状態から説明を始める。 In the following, the explanation will start from the state where the heating operation is being performed.
 暖房運転中は、四路切換弁22は、暖房運転接続状態に切り換えられており、バイパス弁49は閉じられている。そして、暖房運転中は、圧縮機21が要求された能力を生じさせるように回転数が制御され、室内ファン32は設定された風量となるように制御され、室外ファン25は所定の風量となるように制御され、室外膨張弁24は、所定の弁開度となるように制御されている。なお、暖房運転中では、室外膨張弁24は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように制御されている。 During the heating operation, the four-way switching valve 22 is switched to the heating operation connection state, and the bypass valve 49 is closed. Then, during the heating operation, the rotation speed is controlled so that the compressor 21 produces the required capacity, the indoor fan 32 is controlled to have a set air volume, and the outdoor fan 25 has a predetermined air volume. The outdoor expansion valve 24 is controlled so as to have a predetermined valve opening degree. During the heating operation, the outdoor expansion valve 24 is controlled so as to satisfy a predetermined condition such that the degree of supercooling of the refrigerant flowing through the liquid side outlet of the indoor heat exchanger 31 becomes a target value.
 ステップS10では、コントローラ7は、所定のデフロスト開始条件を満たしているか否かを判断する。所定のデフロスト開始条件としては、特に限定されないが、例えば、室外熱交換器23を流れる冷媒の温度および/または外気温が所定の値以下となる状態が所定時間継続した場合に満たす条件としてもよい。ここで、室外熱交換器23を流れる冷媒の温度としては、例えば、室外熱交温度センサ85の検知温度を用いることができ、外気温としては、外気温度センサ86の検知温度を用いることができる。ここで、所定のデフロスト開始条件を満たすと判断された場合にはステップS11に移行し、満たさないと判断された場合には暖房運転を継続させる。 In step S10, the controller 7 determines whether or not the predetermined defrost start condition is satisfied. The predetermined defrost start condition is not particularly limited, but may be, for example, a condition to be satisfied when the temperature and / or the outside air temperature of the refrigerant flowing through the outdoor heat exchanger 23 continues to be equal to or lower than a predetermined value for a predetermined time. .. Here, as the temperature of the refrigerant flowing through the outdoor heat exchanger 23, for example, the detection temperature of the outdoor heat exchange temperature sensor 85 can be used, and as the outside air temperature, the detection temperature of the outside air temperature sensor 86 can be used. .. Here, if it is determined that the predetermined defrost start condition is satisfied, the process proceeds to step S11, and if it is determined that the condition is not satisfied, the heating operation is continued.
 ステップS11では、コントローラ7は、デフロスト前制御として、四路切換弁22の接続状態を暖房運転接続状態に維持しつつ、バイパス弁49を開けて、ホットガスバイパスデフロスト運転を開始する。ホットガスバイパスデフロスト運転では、圧縮機21から吐出された冷媒が、キャピラリーチューブ48aを有するバイパス回路48を介して、室外熱交換器23のガス側端部から流入する。これにより、圧縮機21から吐出され、放熱ロスの少ない状態の高温高圧冷媒を、室外熱交換器23のうちのガス側領域に供給することが可能になり、当該領域に付着している霜を融解させることが可能となる。 In step S11, as pre-defrost control, the controller 7 opens the bypass valve 49 and starts the hot gas bypass defrost operation while maintaining the connection state of the four-way switching valve 22 in the heating operation connection state. In the hot gas bypass defrost operation, the refrigerant discharged from the compressor 21 flows in from the gas side end of the outdoor heat exchanger 23 via the bypass circuit 48 having the capillary tube 48a. As a result, the high-temperature and high-pressure refrigerant discharged from the compressor 21 and having little heat dissipation loss can be supplied to the gas side region of the outdoor heat exchanger 23, and the frost adhering to the region can be removed. It can be melted.
 ステップS12では、コントローラ7は、圧縮機21の回転数を下げていく制御を行う。これにより、後述の四路切換弁22の切り換え時の切り換え音を小さく抑えることが可能になる。 In step S12, the controller 7 controls to reduce the rotation speed of the compressor 21. This makes it possible to suppress the switching sound at the time of switching the four-way switching valve 22, which will be described later, to a small value.
 また、コントローラ7は、圧縮機21の回転数の低下に合わせて、室外膨張弁24の弁開度を小さくしていく制御を行う。ここでは、室外膨張弁24は、暖房運転時の弁開度よりも小さな弁開度となるように制御される。より具体的には、室外膨張弁24は、暖房運転時において室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値となるように制御されていた弁開度よりも小さな開度となるように制御される。さらに具体的には、バイパス配管48を流れた冷媒と、室内熱交換器31と液側冷媒連絡配管6と室外膨張弁24を経由して流れた冷媒と、の合流後の冷媒の温度が所定の目標温度となるように、室外膨張弁24の弁開度が制御される。本実施形態においては、室外膨張弁24は、室外熱交温度センサ85の検知温度が、所定の目標温度となるように、弁開度が制御される。 Further, the controller 7 controls to reduce the valve opening degree of the outdoor expansion valve 24 in accordance with the decrease in the rotation speed of the compressor 21. Here, the outdoor expansion valve 24 is controlled so that the valve opening degree is smaller than the valve opening degree during the heating operation. More specifically, the outdoor expansion valve 24 is opened smaller than the valve opening degree controlled so that the degree of supercooling of the refrigerant flowing through the liquid side outlet of the indoor heat exchanger 31 becomes the target value during the heating operation. It is controlled to be a degree. More specifically, the temperature of the refrigerant after merging the refrigerant flowing through the bypass pipe 48 and the refrigerant flowing through the indoor heat exchanger 31, the liquid side refrigerant connecting pipe 6 and the outdoor expansion valve 24 is predetermined. The valve opening degree of the outdoor expansion valve 24 is controlled so as to reach the target temperature of. In the present embodiment, the valve opening degree of the outdoor expansion valve 24 is controlled so that the detection temperature of the outdoor heat exchange temperature sensor 85 becomes a predetermined target temperature.
 さらに、コントローラ7は、室内ファン32を停止させることなく、その風量を下げる制御を行う。これにより、圧縮機21の回転数の低下に応じた能力ではあるものの、室内の暖房を継続させることができる。 Further, the controller 7 controls to reduce the air volume without stopping the indoor fan 32. As a result, it is possible to continue heating the room, although the capacity corresponds to the decrease in the number of revolutions of the compressor 21.
 以上の各処理を行い、ステップS13に移行する。 Perform each of the above processes and move to step S13.
 ステップS13では、コントローラ7は、ステップS12において下げ始めた圧縮機21の回転数が所定値以下になっているか否かを判断する。ここで、圧縮機21の回転数が所定値以下になっている場合には、ステップS14に移行する。圧縮機21の回転数が所定値以下になっていない場合には、さらに圧縮機21の回転数の低下等の処理を続ける。 In step S13, the controller 7 determines whether or not the rotation speed of the compressor 21 that started to be lowered in step S12 is equal to or less than a predetermined value. Here, when the rotation speed of the compressor 21 is equal to or less than a predetermined value, the process proceeds to step S14. If the number of revolutions of the compressor 21 is not equal to or less than a predetermined value, processing such as lowering the number of revolutions of the compressor 21 is continued.
 ステップS14では、コントローラ7は、バイパス弁49を閉じて、ホットガスバイパスデフロスト運転を終了する。 In step S14, the controller 7 closes the bypass valve 49 and ends the hot gas bypass defrost operation.
 ステップS15では、コントローラ7は、バイパス弁49を閉じられてから所定時間が経過するのを待って、ステップS16に移行する。 In step S15, the controller 7 waits for a predetermined time to elapse after the bypass valve 49 is closed, and then proceeds to step S16.
 ステップS16では、コントローラ7は、デフロスト前制御を終了し、デフロスト中制御を開始する。ここでは、コントローラ7は、四路切換弁22の接続状態を暖房運転接続状態から冷房運転接続状態に切り換え、室外膨張弁24の弁開度を全開状態とし、室内ファン32および室外ファン25を停止させる制御を行う。 In step S16, the controller 7 ends the pre-defrost control and starts the control during the defrost. Here, the controller 7 switches the connection state of the four-way switching valve 22 from the heating operation connection state to the cooling operation connection state, sets the valve opening of the outdoor expansion valve 24 to the fully open state, and stops the indoor fan 32 and the outdoor fan 25. Control to make it.
 ステップS17では、コントローラ7は、圧縮機21の回転数を上げていき、逆サイクルデフロスト運転を開始する。 In step S17, the controller 7 increases the number of revolutions of the compressor 21 and starts the reverse cycle defrost operation.
 ステップS18では、コントローラ7は、ホットガスバイパスデフロスト運転が終了してから所定時間が経過するのを待って、ステップS19に移行する。 In step S18, the controller 7 waits for a predetermined time to elapse after the hot gas bypass defrost operation is completed, and then proceeds to step S19.
 ステップS19では、コントローラ7は、所定のデフロスト終了条件を満たしているか否かを判断する。所定のデフロスト終了条件としては、特に限定されないが、例えば、室外熱交換器23を流れる冷媒の温度が所定温度以上となった場合に満たす条件としてもよい。ここで、室外熱交換器23を流れる冷媒の温度としては、例えば、室外熱交温度センサ85の検知温度を用いることができる。 In step S19, the controller 7 determines whether or not the predetermined defrost end condition is satisfied. The predetermined defrost end condition is not particularly limited, but may be, for example, a condition to be satisfied when the temperature of the refrigerant flowing through the outdoor heat exchanger 23 becomes equal to or higher than the predetermined temperature. Here, as the temperature of the refrigerant flowing through the outdoor heat exchanger 23, for example, the detection temperature of the outdoor heat exchange temperature sensor 85 can be used.
 なお、ホットガスバイパスデフロスト運転によって上昇していた室外熱交温度センサ85の検知温度は、逆サイクルデフロスト運転が行われることで低下する。そして、ステップS18において所定時間の経過を待機したことにより、室外熱交温度センサ85の検知温度は低下しているため、ホットガスバイパスデフロスト運転によって上昇した室外熱交温度センサ85の検知温度により所定のデフロスト終了条件が満たされることを避けることが可能となっている。 The detection temperature of the outdoor heat exchange temperature sensor 85, which had risen due to the hot gas bypass defrost operation, decreases as the reverse cycle defrost operation is performed. Then, since the detection temperature of the outdoor heat exchange temperature sensor 85 has decreased due to waiting for the elapse of a predetermined time in step S18, the detection temperature of the outdoor heat exchange temperature sensor 85 raised by the hot gas bypass defrost operation determines the temperature. It is possible to avoid satisfying the defrost termination condition of.
 ここで、所定のデフロスト終了条件を満たすと判断された場合にはステップS20に移行し、満たさないと判断された場合には逆サイクルデフロスト運転を継続させる。 Here, if it is determined that the predetermined defrost end condition is satisfied, the process proceeds to step S20, and if it is determined that the condition is not satisfied, the reverse cycle defrost operation is continued.
 ステップS20では、コントローラ7は、圧縮機21の回転数を下げて、室外膨張弁24の弁開度を小さくすることで、逆サイクルデフロスト運転を終了する。 In step S20, the controller 7 ends the reverse cycle defrost operation by lowering the rotation speed of the compressor 21 and reducing the valve opening degree of the outdoor expansion valve 24.
 ステップS21では、コントローラ7は、逆サイクルデフロスト運転が終了してから所定時間が経過するのを待って、ステップS22に移行する。 In step S21, the controller 7 waits for a predetermined time to elapse after the reverse cycle defrost operation is completed, and then proceeds to step S22.
 ステップS22では、コントローラ7は、デフロスト中制御を終了し、デフロスト後制御を開始する。ここでは、コントローラ7は、四路切換弁22の接続状態を冷房運転接続状態から暖房運転接続状態に切り換える。ここで、ステップS21において、圧縮機21の回転数を下げて逆サイクルデフロスト運転が終了してから所定時間を待ったことから、冷媒回路10における高低差圧を小さくさせることができ、四路切換弁22の切り換え音を小さく抑制することが可能になっている。 In step S22, the controller 7 ends the control during defrost and starts the control after defrost. Here, the controller 7 switches the connection state of the four-way switching valve 22 from the cooling operation connection state to the heating operation connection state. Here, in step S21, since the rotation speed of the compressor 21 was lowered and a predetermined time was waited after the reverse cycle defrost operation was completed, the height differential pressure in the refrigerant circuit 10 could be reduced, and the four-way switching valve could be reduced. It is possible to suppress the switching sound of 22 to be small.
 ステップS23では、コントローラ7は、圧縮機21の回転数を上げていき、室外膨張弁24の弁開度も上げていき、室外ファン25の風量も上げていく制御を行う。 In step S23, the controller 7 controls to increase the rotation speed of the compressor 21, increase the valve opening degree of the outdoor expansion valve 24, and increase the air volume of the outdoor fan 25.
 ステップS24では、コントローラ7は、室内ファン32の風量を上げていき、所定の能力を確保できる状態とすることで、暖房運転を再開させる。 In step S24, the controller 7 restarts the heating operation by increasing the air volume of the indoor fan 32 so that a predetermined capacity can be secured.
 なお、暖房運転再開後は、再び、ステップS10に戻って、上記処理を繰り返す。 After resuming the heating operation, the process returns to step S10 and the above process is repeated.
 (4)本実施形態の特徴
 (4-1)
 本実施形態の空気調和装置1では、圧縮機21からバイパス配管48を介して着霜した室外熱交換器23に冷媒を送るホットガスバイパスデフロスト運転を行うことで、室外熱交換器23のうちの室外膨張弁24に近い部分に付着した霜を融解させることができる。より具体的には、室外熱交換器23のうち液側端部に近い部分に付着した霜を融解させることができる。
(4) Features of this embodiment (4-1)
In the air conditioner 1 of the present embodiment, the hot gas bypass defrost operation of sending the refrigerant from the compressor 21 to the frosted outdoor heat exchanger 23 via the bypass pipe 48 is performed to perform the hot gas bypass defrost operation of the outdoor heat exchanger 23. The frost adhering to the portion close to the outdoor expansion valve 24 can be melted. More specifically, the frost adhering to the portion of the outdoor heat exchanger 23 near the liquid side end can be melted.
 さらに、ホットガスバイパスデフロスト運転を行った後に、四路切換弁22を冷房運転接続状態として、逆サイクルデフロスト運転を行うことで、室外熱交換器23のうちの室外膨張弁24に近い部分から遠い部分に付着した霜を融解させることができる。より具体的には、室外熱交換器23のうちガス側端部に近い部分に付着した霜を融解させることができる。 Further, after performing the hot gas bypass defrost operation, the four-way switching valve 22 is connected to the cooling operation and the reverse cycle defrost operation is performed, so that the outdoor heat exchanger 23 is far from the portion close to the outdoor expansion valve 24. The frost attached to the part can be melted. More specifically, the frost adhering to the portion of the outdoor heat exchanger 23 near the gas side end can be melted.
 これにより、室外熱交換器23の液側端部に近い部分に付着した霜の溶け残りを抑制させて、室外熱交換器23の各所に付着した霜を全体的に融解させることができる。 As a result, it is possible to suppress the undissolved residue of frost adhering to the portion of the outdoor heat exchanger 23 near the liquid side end portion, and to melt the frost adhering to various parts of the outdoor heat exchanger 23 as a whole.
 なお、ホットガスバイパスデフロスト運転では、必ずしも、室外熱交換器23のうち液側端部に近い部分に付着した霜の全てを融解させる必要はない。ホットガスバイパスデフロスト運転を終えた時点では、室外熱交換器23のうち液側端部に近い部分に霜が残存していたとしても、ある程度融解した状態とすることができているため、その後の逆サイクルデフロスト運転によって融解させやすくなっている。 In the hot gas bypass defrost operation, it is not always necessary to melt all the frost adhering to the portion of the outdoor heat exchanger 23 near the liquid side end. At the time when the hot gas bypass defrost operation is completed, even if frost remains in the part of the outdoor heat exchanger 23 near the liquid side end, it can be in a melted state to some extent. It is easy to melt by reverse cycle defrost operation.
 (4-2)
 本実施形態の空気調和装置1では、ホットガスバイパスデフロスト運転中に、圧縮機21から吐出された冷媒の一部が、室内熱交換器31に送られている。このため、ホットガスバイパスデフロスト運転中においても、室内熱交換器31を冷媒の放熱器または凝縮器として機能させることが可能になっている。これにより、逆サイクルデフロスト運転が開始されるまでの間、室内の温度が低下することを抑制することが可能になっている。
(4-2)
In the air conditioner 1 of the present embodiment, a part of the refrigerant discharged from the compressor 21 is sent to the indoor heat exchanger 31 during the hot gas bypass defrost operation. Therefore, even during the hot gas bypass defrost operation, the indoor heat exchanger 31 can function as a radiator or a condenser of the refrigerant. This makes it possible to suppress a decrease in the indoor temperature until the reverse cycle defrost operation is started.
 また、本実施形態の空気調和装置1では、ホットガスバイパスデフロスト運転を行う際に、室外膨張弁24の弁開度を、直前の暖房運転時に制御されていた弁開度よりも小さくする制御を行っている。これにより、圧縮機21から吐出され、室内熱交換器31において放熱または凝縮した冷媒が、液側冷媒連絡配管6と室外膨張弁24を介して、室外熱交換器23の液側に多く送られることを抑制することが可能になっている。これにより、ホットガスバイパスデフロスト運転中において、圧縮機21から吐出され、バイパス配管48を流れた高温高圧の冷媒が、室内熱交換器31と液側冷媒連絡配管6と室外膨張弁24を介して室外熱交換器23の液側に送られる冷媒によって冷却される度合いを小さく抑え、室外熱交換器23の液側における霜の融解効率を高めることが可能になっている。 Further, in the air conditioner 1 of the present embodiment, when the hot gas bypass defrost operation is performed, the valve opening degree of the outdoor expansion valve 24 is controlled to be smaller than the valve opening degree controlled during the immediately preceding heating operation. Is going. As a result, a large amount of the refrigerant discharged from the compressor 21 and radiated or condensed in the indoor heat exchanger 31 is sent to the liquid side of the outdoor heat exchanger 23 via the liquid side refrigerant connecting pipe 6 and the outdoor expansion valve 24. It is possible to suppress this. As a result, during the hot gas bypass defrost operation, the high-temperature and high-pressure refrigerant discharged from the compressor 21 and flowing through the bypass pipe 48 passes through the indoor heat exchanger 31, the liquid-side refrigerant connecting pipe 6, and the outdoor expansion valve 24. It is possible to keep the degree of cooling by the refrigerant sent to the liquid side of the outdoor heat exchanger 23 small and to increase the melting efficiency of frost on the liquid side of the outdoor heat exchanger 23.
 さらに、室外膨張弁24の弁開度が下げられることにより、ホットガスバイパスデフロスト運転中に、室内熱交換器31に液冷媒を多く溜めることが可能となる。これにより、ホットガスバイパスデフロスト運転が終了し、逆サイクルデフロスト運転を開始する際に、圧縮機21の吸入側に熱源である冷媒を多く保持することが可能になる。これにより、逆サイクルデフロスト運転により室外熱交換器23に付着した霜を効率的に融解させることが可能になる。 Further, by reducing the valve opening degree of the outdoor expansion valve 24, it becomes possible to store a large amount of liquid refrigerant in the indoor heat exchanger 31 during the hot gas bypass defrost operation. As a result, when the hot gas bypass defrost operation is completed and the reverse cycle defrost operation is started, a large amount of refrigerant, which is a heat source, can be retained on the suction side of the compressor 21. This makes it possible to efficiently melt the frost adhering to the outdoor heat exchanger 23 by the reverse cycle defrost operation.
 (4-3)
 本実施形態の空気調和装置1では、四路切換弁22を暖房運転接続状態から冷房運転接続状態に切り換える前に、圧縮機21の回転数を下げている。これにより、四路切換弁22の接続状態を、冷媒回路10における冷媒の圧力差を用いて切り換える場合において、その切り換え時に生じる切り換え音を小さく抑えることが可能になっている。
(4-3)
In the air conditioner 1 of the present embodiment, the rotation speed of the compressor 21 is lowered before the four-way switching valve 22 is switched from the heating operation connection state to the cooling operation connection state. As a result, when the connection state of the four-way switching valve 22 is switched by using the pressure difference of the refrigerant in the refrigerant circuit 10, it is possible to suppress the switching sound generated at the time of switching to be small.
 しかも、本実施形態の空気調和装置1では、上記四路切換弁22の切り換え音を小さく抑えるための圧縮機21の回転数の低下制御に要する時間を利用して、ホットガスバイパスデフロスト運転を行うことで、室外熱交換器23のガス側端部近傍の霜を融解させることが可能になっている。このため、デフロスト開始条件を満たしてから早期に逆サイクルデフロスト運転を開始させることができる。しかも逆サイクルデフロスト運転の開始時には既に室外熱交換器23のガス側端部近傍の霜が融解しているため、逆サイクルデフロスト運転を早期に終了することが可能になる。以上により、デフロスト開始条件を満たしてからデフロスト終了条件を満たすまでに要する時間を短縮化させ、暖房運転の継続性を高めて、室内の温度が低下することを抑制することが可能になっている。 Moreover, in the air conditioner 1 of the present embodiment, the hot gas bypass defrost operation is performed by utilizing the time required for controlling the decrease in the rotation speed of the compressor 21 for suppressing the switching sound of the four-way switching valve 22 to be small. This makes it possible to melt the frost near the gas side end of the outdoor heat exchanger 23. Therefore, the reverse cycle defrost operation can be started early after the defrost start condition is satisfied. Moreover, since the frost near the gas side end of the outdoor heat exchanger 23 has already melted at the start of the reverse cycle defrost operation, the reverse cycle defrost operation can be ended early. As described above, it is possible to shorten the time required from satisfying the defrost start condition to satisfying the defrost end condition, improve the continuity of the heating operation, and suppress the decrease in the indoor temperature. ..
 (4-4)
 本実施形態の空気調和装置1では、逆サイクルデフロスト運転時には、バイパス配管48のバイパス弁49が閉じられている。このため、圧縮機21から吐出された高温高圧の冷媒を、室外熱交換器23のガス側端部に効率良く供給することが可能になっている。
(4-4)
In the air conditioner 1 of the present embodiment, the bypass valve 49 of the bypass pipe 48 is closed during the reverse cycle defrost operation. Therefore, the high-temperature and high-pressure refrigerant discharged from the compressor 21 can be efficiently supplied to the gas side end of the outdoor heat exchanger 23.
 (4-5)
 本実施形態の空気調和装置1では、所定のデフロスト運転終了条件の判断を、ホットガスバイパスデフロスト運転の終了直後ではなく、逆サイクルデフロスト運転が開始されてから所定時間が経過した後に行うこととしている。これにより、ホットガスバイパスデフロスト運転によって室外熱交温度センサ85の検知温度が上昇することがあっても、その後の逆サイクルデフロスト運転によって、再度、室外熱交温度センサ85の検知温度が低下するため、所定のデフロスト運転終了条件が意図せず早期に満たされてしまうことを避けることができている。これにより、室外熱交換器23に付着した霜をより確実に融解させることが可能になっている。
(4-5)
In the air conditioner 1 of the present embodiment, the determination of the predetermined defrost operation end condition is performed not immediately after the end of the hot gas bypass defrost operation but after a predetermined time has elapsed from the start of the reverse cycle defrost operation. .. As a result, even if the detection temperature of the outdoor heat exchange temperature sensor 85 may rise due to the hot gas bypass defrost operation, the detection temperature of the outdoor heat exchange temperature sensor 85 will decrease again due to the subsequent reverse cycle defrost operation. , It is possible to prevent the predetermined defrost operation end condition from being unintentionally and early satisfied. This makes it possible to more reliably melt the frost adhering to the outdoor heat exchanger 23.
 (4-6)
 本実施形態の空気調和装置1では、室外熱交換器23は、アルミニウムまたはアルミニウム合金を含む扁平形状の扁平多穴管58を有している。このため、円筒形状の銅製伝熱管が用いられた従来のクロスフィンチューブ熱交換器と比べて、融解された霜が扁平多穴管58の上面に残りがちであり、下方に流れ落ちにくい。このように、融解された霜が下に流れにくい室外熱交換器23を用いる場合であっても、本実施形態の空気調和装置1では上記デフロスト運転が行われるため、融解された霜が下に流れにくい程度を小さく抑えることが可能になる。これにより、例えば、扁平多穴管58の上面に残る霜による再凍結も抑制できる。
(4-6)
In the air conditioner 1 of the present embodiment, the outdoor heat exchanger 23 has a flat multi-hole tube 58 having a flat shape containing aluminum or an aluminum alloy. Therefore, as compared with the conventional cross-fin tube heat exchanger in which a cylindrical copper heat transfer tube is used, the melted frost tends to remain on the upper surface of the flat multi-hole tube 58, and it is difficult for the frost to flow downward. As described above, even when the outdoor heat exchanger 23 in which the melted frost does not easily flow downward is used, the defrost operation is performed in the air conditioner 1 of the present embodiment, so that the melted frost is lowered. It is possible to keep the degree of difficulty in flowing small. As a result, for example, refreezing due to frost remaining on the upper surface of the flat multi-hole tube 58 can be suppressed.
 また、室外熱交換器23が有する扁平多穴管58は、扁平形状であり、内部に複数の冷媒流路58bが設けられている。このため、室外熱交換器23における熱交換効率を高めることができている。 Further, the flat multi-hole pipe 58 included in the outdoor heat exchanger 23 has a flat shape, and a plurality of refrigerant flow paths 58b are provided inside. Therefore, the heat exchange efficiency in the outdoor heat exchanger 23 can be improved.
 このような熱交換効率の高い室外熱交換器23を用いた場合には、暖房運転時に付着した霜を融解させるために、圧縮機21から吐出された高温高圧冷媒を室外熱交換器23に供給する場合においても、室外熱交換器23の内部を通過するうちに冷媒は急激に熱を失ってしまう。このため、室外熱交換器23のうち高温高圧冷媒の入口側とは反対側では、霜の溶け残りが特に生じやすいことになる。 When such an outdoor heat exchanger 23 having high heat exchange efficiency is used, the high temperature and high pressure refrigerant discharged from the compressor 21 is supplied to the outdoor heat exchanger 23 in order to melt the frost adhering during the heating operation. Even in such a case, the refrigerant rapidly loses heat while passing through the inside of the outdoor heat exchanger 23. Therefore, on the side of the outdoor heat exchanger 23 opposite to the inlet side of the high-temperature and high-pressure refrigerant, undissolved frost is particularly likely to occur.
 さらに、本実施形態の室外熱交換器23は、図4に示すように、逆サイクルデフロスト運転時に圧縮機21から吐出された冷媒は、ガス側ヘッダ54、第1上方熱交換部51a、第1上方折り返しヘッダ53a、第2上方熱交換部52a、第2折り返しヘッダ55、第2下方熱交換部52b、第1下方折り返しヘッダ53b、第1下方熱交換部51b、液側ヘッダ56の順に流れる。このため、特に、第1下方熱交換部51bに到達した冷媒は、既に多くの熱を放出しており、その温度は低いものとなりがちである。このため、第1下方熱交換部51bに付着していた霜を効率的に融解させることが困難になりがちである。 Further, in the outdoor heat exchanger 23 of the present embodiment, as shown in FIG. 4, the refrigerant discharged from the compressor 21 during the reverse cycle defrost operation is the gas side header 54, the first upper heat exchange section 51a, and the first. The upper folded header 53a, the second upper heat exchange section 52a, the second folded header 55, the second lower heat exchange section 52b, the first lower folded header 53b, the first lower heat exchange section 51b, and the liquid side header 56 flow in this order. For this reason, in particular, the refrigerant that has reached the first lower heat exchange section 51b has already released a large amount of heat, and its temperature tends to be low. For this reason, it tends to be difficult to efficiently melt the frost adhering to the first lower heat exchange portion 51b.
 これに対して、本実施形態の空気調和装置1では、逆サイクルデフロスト運転を行う前に、バイパス配管48に高温高圧冷媒を流すことで、ホットガスバイパスデフロスト運転を行っている。これにより、室外熱交換器23の液側端部近傍部分である第1下方熱交換部51bに付着している霜を効率的に融解させることが可能となっている。 On the other hand, in the air conditioner 1 of the present embodiment, the hot gas bypass defrost operation is performed by flowing a high temperature and high pressure refrigerant through the bypass pipe 48 before performing the reverse cycle defrost operation. This makes it possible to efficiently melt the frost adhering to the first lower heat exchange section 51b, which is a portion near the liquid side end portion of the outdoor heat exchanger 23.
 (5)変形例
 (5-1)変形例A
 上記実施形態では、バイパス配管48において、キャピラリーチューブ48aと電磁開閉弁であるバイパス弁49とが設けられている場合について例に挙げて説明した。
(5) Modification example (5-1) Modification example A
In the above embodiment, the case where the capillary tube 48a and the bypass valve 49 which is an electromagnetic on-off valve are provided in the bypass pipe 48 has been described as an example.
 これに対して、例えば、図9に示すように、バイパス配管48において、キャピラリーチューブ48aと電磁開閉弁であるバイパス弁49を設ける代わりに、弁開度を制御可能な電動膨張弁であるバイパス弁49aを設けるようにしてもよい。 On the other hand, for example, as shown in FIG. 9, in the bypass pipe 48, instead of providing the capillary tube 48a and the bypass valve 49 which is an electromagnetic on-off valve, the bypass valve which is an electric expansion valve capable of controlling the valve opening degree. 49a may be provided.
 この場合には、バイパス弁49aの弁開度を制御することにより、バイパス配管48を流れる冷媒の量を制御することが可能になる。 In this case, by controlling the valve opening degree of the bypass valve 49a, it is possible to control the amount of the refrigerant flowing through the bypass pipe 48.
 (5-2)変形例B
 上記実施形態では、逆サイクルデフロスト運転を行う際にバイパス弁49を閉じた状態に制御する場合について例に挙げて説明した。
(5-2) Modification B
In the above embodiment, a case where the bypass valve 49 is controlled to be closed when performing the reverse cycle defrost operation has been described as an example.
 これに対して、例えば、逆サイクルデフロスト運転中に、所定の保護条件を満たした場合に、バイパス弁49を開けるように制御してもよい。これにより、バイパス配管48を介して圧縮機21から吐出された冷媒の一部を、室外熱交換器23の液側に供給することが可能となる。ここで、逆サイクルデフロスト運転中は、室内ファン32が停止しているため、室内熱交換器31において冷媒を十分に蒸発させることができない場合があるが、その場合であっても、室内熱交換器31に送られる冷媒にバイパス配管48を流れた吐出冷媒を混合させることができるため、室内熱交換器31を通過した冷媒を乾き気味にすることが可能になる。これにより、圧縮機21において液圧縮が生じることを抑制することが可能になる。 On the other hand, for example, during the reverse cycle defrost operation, the bypass valve 49 may be controlled to be opened when a predetermined protection condition is satisfied. As a result, a part of the refrigerant discharged from the compressor 21 via the bypass pipe 48 can be supplied to the liquid side of the outdoor heat exchanger 23. Here, during the reverse cycle defrost operation, since the indoor fan 32 is stopped, it may not be possible to sufficiently evaporate the refrigerant in the indoor heat exchanger 31, but even in that case, the indoor heat exchange Since the discharged refrigerant flowing through the bypass pipe 48 can be mixed with the refrigerant sent to the vessel 31, the refrigerant passing through the indoor heat exchanger 31 can be made slightly dry. This makes it possible to suppress the occurrence of liquid compression in the compressor 21.
 なお、上記所定の保護条件としては、特に限定されないが、例えば、圧縮機21から吐出される冷媒の温度や圧縮機21に吸入される冷媒の温度等が所定値以下になることが挙げられる。 The predetermined protection condition is not particularly limited, and examples thereof include the temperature of the refrigerant discharged from the compressor 21 and the temperature of the refrigerant sucked into the compressor 21 being equal to or less than a predetermined value.
 (5-3)変形例C
 上記実施形態では、所定のデフロスト開始条件を満たした場合に、圧縮機21の回転数を下げてホットガスバイパスデフロスト運転を開始させる場合について例に挙げて説明した。
(5-3) Modification C
In the above embodiment, a case where the rotation speed of the compressor 21 is lowered to start the hot gas bypass defrost operation when a predetermined defrost start condition is satisfied has been described as an example.
 これに対して、例えば、所定のデフロスト開始条件を満たした場合に、圧縮機21の回転数を下げる前の段階で、圧縮機21の回転数を下げることなく維持させる制御を行って、ホットガスバイパスデフロスト運転を開始するようにしてもよい。ここで、圧縮機21の回転数を維持する処理は、例えば、所定時間だけ行い、その後に圧縮機21の回転数を下げるようにしてもよい。 On the other hand, for example, when a predetermined defrost start condition is satisfied, the hot gas is controlled to maintain the compressor 21 without lowering the rotation speed before lowering the rotation speed of the compressor 21. The bypass defrost operation may be started. Here, the process of maintaining the rotation speed of the compressor 21 may be performed for a predetermined time, for example, and then the rotation speed of the compressor 21 may be lowered.
 これにより、回転数が高い状態に維持された圧縮機21から吐出される高温高圧冷媒を、バイパス配管48を介して、室外熱交換器23の液側端部に供給することが可能になる。これにより、ホットガスバイパスデフロスト運転の初期において、室外熱交換器23の液側端部近傍の霜の融解効率を高めることが可能となる。 As a result, the high-temperature and high-pressure refrigerant discharged from the compressor 21 maintained at a high rotation speed can be supplied to the liquid side end of the outdoor heat exchanger 23 via the bypass pipe 48. This makes it possible to increase the melting efficiency of frost near the liquid side end of the outdoor heat exchanger 23 at the initial stage of the hot gas bypass defrost operation.
 (5-4)変形例D
 上記実施形態では、圧縮機21の回転数が十分に低下した場合にホットガスバイパスデフロスト運転を終える場合について例に挙げて説明した。
(5-4) Modification D
In the above embodiment, the case where the hot gas bypass defrost operation is terminated when the rotation speed of the compressor 21 is sufficiently lowered has been described as an example.
 これに対して、例えば、ホットガスバイパスデフロスト運転は、予め定めた所定時間だけ実行させた後、終了させるようにしてもよい。 On the other hand, for example, the hot gas bypass defrost operation may be executed for a predetermined time and then terminated.
 また、例えば、室外熱交換器23における冷媒経路の中央近傍に冷媒温度センサを設けておき、当該温度センサの検知値が所定値以上になった場合に、ホットガスバイパスデフロスト運転を終了させるようにしてもよい。そのようなセンサとしては、例えば、上記実施形態の室外熱交換器23の第2折り返しヘッダ55を通過する冷媒の温度を検知するセンサとすることができる。 Further, for example, a refrigerant temperature sensor is provided near the center of the refrigerant path in the outdoor heat exchanger 23, and when the detection value of the temperature sensor exceeds a predetermined value, the hot gas bypass defrost operation is terminated. You may. As such a sensor, for example, it may be a sensor that detects the temperature of the refrigerant passing through the second folded header 55 of the outdoor heat exchanger 23 of the above embodiment.
 (5-5)変形例E
 上記実施形態では、液側の出口を流れる冷媒の温度を検出する室外熱交温度センサ85を用いて、所定のデフロスト終了条件を判断する場合について例に挙げて説明した。
(5-5) Modification E
In the above embodiment, a case where a predetermined defrost end condition is determined by using the outdoor heat exchange temperature sensor 85 that detects the temperature of the refrigerant flowing through the outlet on the liquid side has been described as an example.
 これに対して、例えば、冷媒回路10の第4配管44のうち、バイパス配管48との合流部分と室外膨張弁24との間を流れる冷媒の温度を検知するセンサを設け、当該センサの検知値を用いて所定のデフロスト終了条件を判断するようにしてもよい。この場合には、当該センサは、ホットガスバイパスデフロスト運転時に圧縮機21から吐出された高温冷媒の温度を検知することがないため、上記実施形態のステップS18で説明した所定時間の待機を不要とすることが可能となる。 On the other hand, for example, in the fourth pipe 44 of the refrigerant circuit 10, a sensor for detecting the temperature of the refrigerant flowing between the merging portion with the bypass pipe 48 and the outdoor expansion valve 24 is provided, and the detection value of the sensor is provided. May be used to determine a predetermined defrost termination condition. In this case, since the sensor does not detect the temperature of the high-temperature refrigerant discharged from the compressor 21 during the hot gas bypass defrost operation, it is not necessary to wait for a predetermined time described in step S18 of the above embodiment. It becomes possible to do.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments of the present disclosure have been described above, it will be understood that various modifications of the forms and details are possible without departing from the purpose and scope of the present disclosure described in the claims. ..
  1 空気調和装置(冷凍サイクル装置)
  4 液側冷媒連絡管
  5 ガス側冷媒連絡管
  7 コントローラ(制御部)
 10 冷媒回路
 20 室外ユニット
 21 圧縮機
 22 四路切換弁(切換弁)
 23 室外熱交換器
 24 室外膨張弁(膨張機構、膨張弁)
 30 室内ユニット
 31 室内熱交換器
 41~45 第1~第5配管
 46 吸入配管
 47 吐出配管
 48 バイパス配管
 48a キャピラリーチューブ
 49 バイパス弁(制御弁、開閉弁)
 49a バイパス弁(制御弁、膨張弁)
 58 扁平多穴管(扁平形状の伝熱管)
 83 吐出温度センサ
 84 吸入温度センサ
 85 室外熱交温度センサ(冷媒温度センサ)
 86 外気温度センサ
1 Air conditioner (refrigeration cycle device)
4 Liquid side refrigerant communication pipe 5 Gas side refrigerant communication pipe 7 Controller (control unit)
10 Refrigerant circuit 20 Outdoor unit 21 Compressor 22 Four-way switching valve (switching valve)
23 Outdoor heat exchanger 24 Outdoor expansion valve (expansion mechanism, expansion valve)
30 Indoor unit 31 Indoor heat exchanger 41-45 1st to 5th pipes 46 Suction pipe 47 Discharge pipe 48 Bypass pipe 48a Capillary tube 49 Bypass valve (control valve, on / off valve)
49a Bypass valve (control valve, expansion valve)
58 Flat multi-hole tube (flat heat transfer tube)
83 Discharge temperature sensor 84 Suction temperature sensor 85 Outdoor heat exchange temperature sensor (refrigerant temperature sensor)
86 Outside air temperature sensor
国際公開第2015/162696号International Publication No. 2015/162696

Claims (11)

  1.  圧縮機(21)、室外熱交換器(23)、膨張機構(24)、室内熱交換器(31)が順に接続されており、内部を冷媒が循環する冷媒回路(10)と、
     制御部(7)と、
    を備え、
     前記冷媒回路は、
      前記圧縮機から吐出された冷媒を前記室内熱交換器に流すことで前記室内熱交換器を放熱器として機能させる第1状態と、前記圧縮機から吐出された冷媒を前記室外熱交換器に流すことで前記室外熱交換器を放熱器として機能させる第2状態と、を切り換え可能な切換弁(22)と、
      前記圧縮機の吐出側と前記切換弁の間と、前記室外熱交換器と前記膨張機構の間、または、前記室外熱交換器における前記膨張機構に近い部分と、を接続する、バイパス配管(48)と、
    を有しており、
     前記制御部は、前記室外熱交換器の除霜時に、
      前記第1状態で、前記圧縮機から吐出された冷媒を前記室内熱交換器に送りながら、前記圧縮機から前記バイパス配管を介して前記室外熱交換器に冷媒を送る第1制御を行い、
      前記第1制御の後に、前記切換弁を前記第2状態に切り換えて前記圧縮機から前記室外熱交換器に冷媒を送る第2制御を行う、
    冷凍サイクル装置(1)。
    A compressor (21), an outdoor heat exchanger (23), an expansion mechanism (24), and an indoor heat exchanger (31) are connected in this order, and a refrigerant circuit (10) in which a refrigerant circulates inside is used.
    Control unit (7) and
    With
    The refrigerant circuit
    The first state in which the indoor heat exchanger functions as a radiator by flowing the refrigerant discharged from the compressor through the indoor heat exchanger, and the refrigerant discharged from the compressor is flowed through the outdoor heat exchanger. A switching valve (22) capable of switching between the second state in which the outdoor heat exchanger functions as a radiator and the second state.
    A bypass pipe (48) that connects between the discharge side of the compressor and the switching valve, between the outdoor heat exchanger and the expansion mechanism, or a portion of the outdoor heat exchanger close to the expansion mechanism. )When,
    Have and
    The control unit is used when defrosting the outdoor heat exchanger.
    In the first state, while sending the refrigerant discharged from the compressor to the indoor heat exchanger, the first control of sending the refrigerant from the compressor to the outdoor heat exchanger via the bypass pipe is performed.
    After the first control, the switching valve is switched to the second state to perform the second control of sending the refrigerant from the compressor to the outdoor heat exchanger.
    Refrigeration cycle device (1).
  2.  前記冷媒回路は、前記バイパス配管の途中に設けられた制御弁(49、49a)をさらに有している、
    請求項1に記載の冷凍サイクル装置。
    The refrigerant circuit further includes a control valve (49, 49a) provided in the middle of the bypass pipe.
    The refrigeration cycle apparatus according to claim 1.
  3.  前記制御弁は、弁開度を調節可能な膨張弁(49a)である、
    請求項2に記載の冷凍サイクル装置。
    The control valve is an expansion valve (49a) whose valve opening degree can be adjusted.
    The refrigeration cycle apparatus according to claim 2.
  4.  前記制御部は、前記第2制御を行う間に前記制御弁を閉じる、
    請求項2または3に記載の冷凍サイクル装置。
    The control unit closes the control valve while performing the second control.
    The refrigeration cycle apparatus according to claim 2 or 3.
  5.  前記制御部は、前記第2制御を行う間に所定の保護条件を満たした場合に、閉じられている前記制御弁を開ける、
    請求項4に記載の冷凍サイクル装置。
    The control unit opens the closed control valve when a predetermined protection condition is satisfied during the second control.
    The refrigeration cycle apparatus according to claim 4.
  6.  前記制御部は、前記第1制御を行う間に、前記圧縮機の回転数を下げる第3制御を行う、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置。
    While performing the first control, the control unit performs a third control for lowering the rotation speed of the compressor.
    The refrigeration cycle apparatus according to any one of claims 1 to 5.
  7.  前記制御部は、前記第1制御を行う間に、前記圧縮機の回転数を維持した後に前記圧縮機の回転数を下げる第4制御を行う、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置。
    While performing the first control, the control unit performs a fourth control for lowering the rotation speed of the compressor after maintaining the rotation speed of the compressor.
    The refrigeration cycle apparatus according to any one of claims 1 to 5.
  8.  前記膨張機構は、弁開度を調節可能な膨張弁であり、
     前記制御部は、前記第1制御を行う間に、前記膨張機構の弁開度を、前記第1制御の直前の運転時の弁開度よりも小さくする制御を行う、
    請求項1から7のいずれか1項に記載の冷凍サイクル装置。
    The expansion mechanism is an expansion valve whose valve opening degree can be adjusted.
    While performing the first control, the control unit controls the valve opening of the expansion mechanism to be smaller than the valve opening during operation immediately before the first control.
    The refrigeration cycle apparatus according to any one of claims 1 to 7.
  9.  前記室外熱交換器における前記膨張機構に近い部分を流れる冷媒の温度、または、前記室外熱交換器と前記膨張機構との間を流れる冷媒の温度を検出する冷媒温度センサ(85)をさらに備え、
     前記制御部は、前記第2制御が開始されてから所定の時間が経過した後、前記冷媒温度センサの検出値が所定終了条件を満たした場合に前記第2制御を終了させる、
    請求項1から8のいずれか1項に記載の冷凍サイクル装置。
    A refrigerant temperature sensor (85) for detecting the temperature of the refrigerant flowing in a portion of the outdoor heat exchanger close to the expansion mechanism or the temperature of the refrigerant flowing between the outdoor heat exchanger and the expansion mechanism is further provided.
    The control unit terminates the second control when a predetermined time elapses from the start of the second control and the detection value of the refrigerant temperature sensor satisfies the predetermined termination condition.
    The refrigeration cycle apparatus according to any one of claims 1 to 8.
  10.  前記室外熱交換器は、アルミニウムまたはアルミニウム合金を含む扁平形状の伝熱管(58)を有している、
    請求項1から9のいずれか1項に記載の冷凍サイクル装置。
    The outdoor heat exchanger has a flat heat transfer tube (58) containing aluminum or an aluminum alloy.
    The refrigeration cycle apparatus according to any one of claims 1 to 9.
  11.  前記室外熱交換器は、複数の伝熱管が鉛直方向に並んで配置される第1伝熱管群および第2伝熱管群を有しており、
     前記第1伝熱管群と前記第2伝熱管群は、水平方向に並んで配置される、
    請求項1から10のいずれか1項に記載の冷凍サイクル装置。
    The outdoor heat exchanger has a first heat transfer tube group and a second heat transfer tube group in which a plurality of heat transfer tubes are arranged side by side in the vertical direction.
    The first heat transfer tube group and the second heat transfer tube group are arranged side by side in the horizontal direction.
    The refrigeration cycle apparatus according to any one of claims 1 to 10.
PCT/JP2020/011286 2019-03-20 2020-03-13 Refrigeration cycle device WO2020189586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-053532 2019-03-20
JP2019053532A JP2020153604A (en) 2019-03-20 2019-03-20 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020189586A1 true WO2020189586A1 (en) 2020-09-24

Family

ID=72521074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011286 WO2020189586A1 (en) 2019-03-20 2020-03-13 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2020153604A (en)
WO (1) WO2020189586A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295318B1 (en) 2022-09-20 2023-06-20 日立ジョンソンコントロールズ空調株式会社 air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198857B (en) * 2021-11-17 2023-02-28 青岛海尔空调电子有限公司 Air conditioner control method and air conditioner system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712437A (en) * 1993-06-22 1995-01-17 Mitsubishi Heavy Ind Ltd Defrosting method in heat pump type air conditioner
JPH10253205A (en) * 1997-03-12 1998-09-25 Matsushita Electric Ind Co Ltd Freezing cycle control device
JP2008101819A (en) * 2006-10-18 2008-05-01 Hitachi Appliances Inc Air conditioner
JP2008256264A (en) * 2007-04-05 2008-10-23 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712437A (en) * 1993-06-22 1995-01-17 Mitsubishi Heavy Ind Ltd Defrosting method in heat pump type air conditioner
JPH10253205A (en) * 1997-03-12 1998-09-25 Matsushita Electric Ind Co Ltd Freezing cycle control device
JP2008101819A (en) * 2006-10-18 2008-05-01 Hitachi Appliances Inc Air conditioner
JP2008256264A (en) * 2007-04-05 2008-10-23 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295318B1 (en) 2022-09-20 2023-06-20 日立ジョンソンコントロールズ空調株式会社 air conditioner

Also Published As

Publication number Publication date
JP2020153604A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP4497234B2 (en) Air conditioner
WO2018047416A1 (en) Air conditioner
JP5402027B2 (en) Air conditioner
EP3312528B1 (en) Air conditioner
JP2019074222A (en) Refrigeration device
WO2014061134A1 (en) Air conditioner
JP2008082589A (en) Air conditioner
JP6379769B2 (en) Air conditioner
WO2020189586A1 (en) Refrigeration cycle device
US10480837B2 (en) Refrigeration apparatus
JP2003240391A (en) Air conditioner
JP2006300374A (en) Air conditioner
JP3941817B2 (en) Air conditioner
JP2002372320A (en) Refrigerating device
JP5594030B2 (en) Controller, humidity controller and air conditioning system
JP4622901B2 (en) Air conditioner
WO2021065914A1 (en) Freezing apparatus
JP3835478B1 (en) Air conditioner
JP2002243307A (en) Air conditioning apparatus
JP5999163B2 (en) Air conditioner
JP7448848B2 (en) air conditioner
JP7408942B2 (en) air conditioner
JP2000220891A (en) Air conditioner
JP2016151372A (en) Air conditioner
JP5858022B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773869

Country of ref document: EP

Kind code of ref document: A1