JP2008082589A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008082589A
JP2008082589A JP2006261648A JP2006261648A JP2008082589A JP 2008082589 A JP2008082589 A JP 2008082589A JP 2006261648 A JP2006261648 A JP 2006261648A JP 2006261648 A JP2006261648 A JP 2006261648A JP 2008082589 A JP2008082589 A JP 2008082589A
Authority
JP
Japan
Prior art keywords
heat storage
heat exchanger
compressor
heat
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006261648A
Other languages
Japanese (ja)
Inventor
Masayuki Nonaka
正之 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006261648A priority Critical patent/JP2008082589A/en
Publication of JP2008082589A publication Critical patent/JP2008082589A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent shortage of heating capacity in defrosting an air conditioner. <P>SOLUTION: The control device 20 controls at least any of a rotating speed of a compressor 1, pressure reduction of a pressure reducing means 4, a rotating speed of an indoor blower fan 12 and a rotating speed of an outdoor blower fan 13 on the basis of a temperature sensor 10 around a heat storage body 9 in storing heat. A means for determining melting of heat storage material is disposed in the control device, so that a part between an indoor heat exchanger and a four-way valve 2 and a part between an outdoor heat exchanger and the pressure reducing means are shorted when the means for determining melting of heat storage material determines the melting of the heat storage material, and the four-way valve is switched to allow a refrigerant of high temperature to flow into the outdoor heat exchanger when it is determined that the heat storage material is not melted in defrosting under air heating. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は空気調和装置に係り、特に蓄熱手段の蓄熱を用いて室外熱交換器を除霜する空気調和装置に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner that defrosts an outdoor heat exchanger using heat storage of a heat storage means.

空気調和装置において、除霜運転中の暖房能力と除霜能力とのバランスを取るとともに、蓄熱槽をコンパクト化するために、三方弁を切り換え、暖房運転と除霜運転併用を切り換えることが、特許文献1に記載されている。この特許文献1では、共通の冷媒管を与熱および受熱に共用した熱交換器を蓄熱層に設けている。さらに、キャピラリチューブを用いて圧縮機からの高温の冷媒を凝縮器にも導き、暖房能力と除霜能力とのバランスを図っている。なお、この空気調和装置では、酢酸ナトリウムのような蓄熱材が蓄熱槽内部に収納されている。   In an air conditioner, a patent is established that balances the heating capacity and defrosting capacity during the defrosting operation and switches the three-way valve to switch between the heating operation and the defrosting operation in order to make the heat storage tank compact. It is described in Document 1. In Patent Document 1, a heat exchanger that shares a common refrigerant pipe for heating and receiving heat is provided in the heat storage layer. Furthermore, the high-temperature refrigerant | coolant from a compressor is also guide | induced to a condenser using a capillary tube, and the balance of heating capability and defrosting capability is aimed at. In this air conditioner, a heat storage material such as sodium acetate is housed in the heat storage tank.

特開平5−26542号公報JP-A-5-26542

上記特許文献1に記載の空気調和装置では、圧縮機の吐出冷媒で蓄熱槽内部に設けた例えば酢酸ナトリウムのような蓄熱材を加熱し、その熱を利用して室内を暖房しながら蒸発器に付着した霜を除霜している。しかしながら、この空気調和装置では、除霜の際の具体的手順について十分には考慮されていないので、蓄熱材の有効な利用が困難になるおそれがある。なぜなら、酢酸ナトリウムのような潜熱蓄熱材を用いると、蓄熱材の温度を融点以上に加熱しなければ、蓄熱材の有する蓄熱能力を発揮できないからである。つまり、蓄熱材と熱交換する冷媒の温度が低いと蓄熱材が融解されず、除霜の熱源として利用できなくなり、その結果、暖房能力や除霜能力が不足する事態が生じる。   In the air conditioner described in Patent Document 1, a heat storage material such as sodium acetate provided inside the heat storage tank is heated with the refrigerant discharged from the compressor, and the heat is used to heat the room to the evaporator. The attached frost is defrosted. However, in this air conditioner, the specific procedure for defrosting is not fully taken into account, and there is a risk that effective use of the heat storage material may be difficult. This is because if a latent heat storage material such as sodium acetate is used, the heat storage capability of the heat storage material cannot be exhibited unless the temperature of the heat storage material is heated to the melting point or higher. That is, when the temperature of the refrigerant that exchanges heat with the heat storage material is low, the heat storage material is not melted and cannot be used as a heat source for defrosting. As a result, a situation in which the heating capacity and the defrosting capacity are insufficient occurs.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、蓄熱手段が取り付け可能な空気調和装置において、暖房能力や除霜能力の不足を回避することにある。   This invention is made | formed in view of the malfunction of the said prior art, The objective is to avoid the shortage of a heating capability or a defrosting capability in the air conditioning apparatus which can attach a thermal storage means.

上記目的を達成する本発明の特徴は、潜熱蓄熱材を用いて蓄熱する空気調和装置において、蓄熱時は潜熱蓄熱材近傍に設けた温度センサの出力に基づいて、少なくとも圧縮機の回転速度,圧縮機の吐出温度,減圧手段の減圧量,室内送風ファンの回転速度,室外送風ファンの回転速度のいずれかを制御する制御装置を設けたことにある。   A feature of the present invention that achieves the above object is that, in an air conditioner that stores heat using a latent heat storage material, at the time of heat storage, based on the output of a temperature sensor provided near the latent heat storage material, at least the rotational speed of the compressor, compression A control device is provided for controlling any one of the discharge temperature of the machine, the amount of decompression of the decompression means, the rotational speed of the indoor fan, and the rotational speed of the outdoor fan.

そしてこの特徴において、制御装置は、蓄熱時に圧縮機の吐出温度を、蓄熱時以外のときより高くなるように制御するのがよく、制御装置は蓄熱材の融解を判定する融解判定手段を有し、暖房時に除霜するときは、制御装置が、融解判定手段が蓄熱材が融解していると判定したら室内熱交換器と四方弁との間から室外熱交換器と減圧手段の間に設けたバイパス管路を開き、蓄熱材が融解していないと判定したら、四方弁を切り換えて圧縮機から吐出される高温冷媒を室外熱交換器に流入させるようにしてもよい。   And in this feature, the control device may control the discharge temperature of the compressor at the time of heat storage so as to be higher than at the time other than at the time of heat storage. When defrosting at the time of heating, if the control device determines that the heat storage material is melted, it is provided between the indoor heat exchanger and the four-way valve between the outdoor heat exchanger and the pressure reducing device. If the bypass line is opened and it is determined that the heat storage material is not melted, the four-way valve may be switched to allow the high-temperature refrigerant discharged from the compressor to flow into the outdoor heat exchanger.

上記目的を達成する本発明の他の特徴は、圧縮機,四方弁,室内熱交換器,減圧手段,室外熱交換器を順次配管接続した冷凍サイクルと、室内熱交換器の近傍に配置した室内送風ファンと、室外熱交換器の近傍に配置した室外送風ファンと、圧縮機と減圧手段と室内熱交換器と室外熱交換器とを制御する制御装置とを備え、制御装置は、室内熱交換器と圧縮機間に配置可能な潜熱蓄熱手段に冷凍サイクル内を循環する冷媒の熱で蓄熱する蓄熱運転モードと、冷凍サイクル内を循環する冷媒を潜熱蓄熱手段に蓄熱された熱で加熱する放熱運転モードとを有し、蓄熱運転モードを実行中は潜熱蓄熱手段の温度に基づいて圧縮機の回転速度または吐出温度,減圧手段の減圧量,室内送風ファンの回転速度,室外送風ファンの回転速度の少なくともいずれかを制御するものである。   Another feature of the present invention that achieves the above object is that a compressor, a four-way valve, an indoor heat exchanger, a decompression means, and an outdoor heat exchanger are connected by piping in sequence, and an indoor room disposed in the vicinity of the indoor heat exchanger. A blower fan, an outdoor blower fan disposed in the vicinity of the outdoor heat exchanger, and a control device that controls the compressor, the decompression means, the indoor heat exchanger, and the outdoor heat exchanger. Heat storage mode that stores heat with the heat of the refrigerant circulating in the refrigeration cycle in the latent heat storage means that can be placed between the compressor and the compressor, and heat dissipation that heats the refrigerant circulating in the refrigeration cycle with the heat stored in the latent heat storage means During operation of the heat storage operation mode, the compressor rotation speed or discharge temperature, the decompression amount of the decompression means, the rotation speed of the indoor fan, and the rotation speed of the outdoor fan during execution of the heat storage operation mode At least And controls the or Re.

そしてこの特徴において、蓄熱運転モードを実行中に、制御装置が圧縮機の吐出温度を蓄熱運転モード実行中以外のときよりも高く制御するのが好ましく、冷凍サイクルに圧縮機から吐出された高温の冷媒を室外熱交換器に導くホットガスバイパス流路を設けてもよい。また、制御装置は室外熱交換器を除霜する除霜運転モードと潜熱蓄熱手段が有する蓄熱材の融解を判定する判定手段とを有し、除霜運転モードの実行中において、判定手段が蓄熱材が融解されていないと判断したときに、制御装置が四方弁を切り換えて高温冷媒を室外熱交換器に導いた後に室内熱交換器に導くか、ホットガスバイパス流路を開にするかしてもよい。   In this feature, it is preferable that the control device controls the discharge temperature of the compressor to be higher than when the heat storage operation mode is not being executed while the heat storage operation mode is being executed. A hot gas bypass channel that guides the refrigerant to the outdoor heat exchanger may be provided. Further, the control device has a defrosting operation mode for defrosting the outdoor heat exchanger and a determination unit for determining melting of the heat storage material of the latent heat storage unit, and the determination unit stores the heat during the defrosting operation mode. When it is determined that the material is not melted, the controller switches the four-way valve to guide the high-temperature refrigerant to the outdoor heat exchanger and then guides it to the indoor heat exchanger, or opens the hot gas bypass flow path. May be.

本発明によれば、蓄熱手段が取り付け可能な空気調和装置において、暖房運転時に除霜を実行しても、暖房能力や除霜能力の不足を回避できる。また、本発明によれば、ホットガスバイパス除霜に加え冷媒加熱も可能となる。   According to the present invention, in the air conditioner to which the heat storage means can be attached, even if the defrosting is performed during the heating operation, the shortage of the heating capacity and the defrosting capacity can be avoided. Moreover, according to this invention, in addition to hot gas bypass defrosting, refrigerant | coolant heating is also attained.

以下、本発明に係る空気調和装置のいくつかの実施例を、図面を用いて説明する。図1は、本発明に係る空気調和装置100の一実施例のシステム図であり、図2は空気調和装置100の動作を説明するタイムチャートである。本実施例に示した空気調和装置100では、圧縮機1および四方弁2,室内熱交換器3,減圧手段4および室外熱交換器5が、順次冷媒配管90を用いて配管接続されている。減圧手段4には、電動膨張弁が使用されている。   Hereinafter, some embodiments of an air conditioner according to the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of an embodiment of an air conditioner 100 according to the present invention, and FIG. 2 is a time chart for explaining the operation of the air conditioner 100. In the air conditioner 100 shown in the present embodiment, the compressor 1, the four-way valve 2, the indoor heat exchanger 3, the decompression means 4, and the outdoor heat exchanger 5 are sequentially connected by pipes using refrigerant pipes 90. An electric expansion valve is used for the decompression means 4.

四方弁2と室内熱交換器3とを結ぶ配管90aの中間部と、減圧手段4と室外熱交換器5とを結ぶ配管90bの中間部とを、バイパス配管6が接続している。バイパス配管6の途中には、二方弁7が配置されている。四方弁2と室内熱交換器3とを結ぶ配管の途中には、詳細を後述する蓄熱ユニット8が配置されている。室外熱交換器5の近傍には、室外送風ファン13が、室内熱交換器3の近傍には室内送風ファン12がそれぞれ配置されている。   A bypass pipe 6 connects an intermediate part of a pipe 90 a connecting the four-way valve 2 and the indoor heat exchanger 3 and an intermediate part of a pipe 90 b connecting the decompression means 4 and the outdoor heat exchanger 5. A two-way valve 7 is disposed in the middle of the bypass pipe 6. In the middle of the pipe connecting the four-way valve 2 and the indoor heat exchanger 3, a heat storage unit 8 described later in detail is arranged. An outdoor blower fan 13 is disposed in the vicinity of the outdoor heat exchanger 5, and an indoor blower fan 12 is disposed in the vicinity of the indoor heat exchanger 3.

蓄熱ユニット8の内部には、潜熱蓄熱材を含む蓄熱体9が収納されている。蓄熱体9は、室内熱交換器3に流入する冷媒と熱交換する。蓄熱体9の側面には、この蓄熱体9の温度を検出する温度センサ10が取り付けられている。温度センサ10が検出した蓄熱体9の温度は、制御装置11に入力される。制御装置11は、温度センサ10が検出した蓄熱体9の温度が蓄熱材の融点より低いときに、圧縮機1の回転速度を予め定めた回転速度だけ上昇させる。   A heat storage unit 9 including a latent heat storage material is accommodated in the heat storage unit 8. The heat storage body 9 exchanges heat with the refrigerant flowing into the indoor heat exchanger 3. A temperature sensor 10 that detects the temperature of the heat storage body 9 is attached to a side surface of the heat storage body 9. The temperature of the heat storage body 9 detected by the temperature sensor 10 is input to the control device 11. When the temperature of the heat storage body 9 detected by the temperature sensor 10 is lower than the melting point of the heat storage material, the control device 11 increases the rotation speed of the compressor 1 by a predetermined rotation speed.

制御装置11には、室内送風ファン12及び室外送風ファン13の回転速度、減圧手段4の減圧度も入力され、制御装置11はこれらの諸量も制御する。なお、減圧手段4は本実施例では電動膨張弁であり、減圧度はその開度で表される。二方弁7は、電磁弁等の開閉弁である。   The control device 11 also receives the rotational speeds of the indoor fan 12 and the outdoor fan 13 and the degree of pressure reduction of the pressure reducing means 4, and the control device 11 also controls these various amounts. Note that the decompression means 4 is an electric expansion valve in this embodiment, and the degree of decompression is expressed by its opening. The two-way valve 7 is an on-off valve such as an electromagnetic valve.

このように構成した本実施例に係る空気調和装置100の運転動作について、以下に詳細に説明する。なお図1において、実線矢印は暖房時の配管90内の冷媒の流れであり、破線矢印は除霜時の配管90内の冷媒の流れを示す。四方弁2を実線のように切り換えると、暖房運転になり、破線のように切り換えると冷房運転になる。   The operation of the air conditioner 100 according to the present embodiment configured as described above will be described in detail below. In FIG. 1, a solid line arrow indicates the flow of the refrigerant in the pipe 90 during heating, and a broken line arrow indicates the flow of the refrigerant in the pipe 90 during defrosting. When the four-way valve 2 is switched as shown by a solid line, a heating operation is performed, and when the four-way valve 2 is switched as shown by a broken line, a cooling operation is performed.

(1)暖房運転:暖房運転において、蓄熱体9の温度がその融点より低くなっているときは、圧縮機1で圧縮された高温高圧の冷媒ガスが四方弁2を経て、蓄熱ユニット8に流入する。高温の冷媒ガスは蓄熱体9を加熱しその熱の一部を失うが、まだ十分に熱い。この冷媒ガスは、室内熱交換器3に流入する。   (1) Heating operation: In the heating operation, when the temperature of the heat storage body 9 is lower than its melting point, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 flows into the heat storage unit 8 through the four-way valve 2. To do. The high-temperature refrigerant gas heats the regenerator 9 and loses part of the heat, but it is still hot enough. This refrigerant gas flows into the indoor heat exchanger 3.

室内熱交換器3の近傍には室内送風ファン12が配置されているので、室内送風ファン12が送風する空気と冷媒ガスとが熱交換する。冷媒ガスは、放熱して凝縮し温度が低下する。凝縮した冷媒は、電動膨張弁4で低温低圧に減圧される。低温低圧となった冷媒は、室外熱交換器5を流通する際に、室外送風ファン12が送風する空気から吸熱し、蒸発する。室外熱交換器5を出た低温低圧の冷媒ガスは、四方弁2を経て再び圧縮機1へ戻る。なお、この暖房運転では、バイパス配管6に設けた二方弁7を閉の状態に保つ。   Since the indoor blower fan 12 is disposed in the vicinity of the indoor heat exchanger 3, the air blown by the indoor blower fan 12 and the refrigerant gas exchange heat. The refrigerant gas dissipates heat and condenses, and the temperature decreases. The condensed refrigerant is decompressed to a low temperature and a low pressure by the electric expansion valve 4. When the refrigerant having become low temperature and low pressure flows through the outdoor heat exchanger 5, the refrigerant absorbs heat from the air blown by the outdoor fan 12 and evaporates. The low-temperature and low-pressure refrigerant gas exiting the outdoor heat exchanger 5 returns to the compressor 1 again via the four-way valve 2. In this heating operation, the two-way valve 7 provided in the bypass pipe 6 is kept closed.

このとき蓄熱ユニット8に設けた温度センサ10が検出する蓄熱体9の温度は、その融点より低い。そこで、図2に示すように、制御装置11は、圧縮機1の回転速度を予め定めた回転速度(例えば200rpm )だけ大きくなるように制御する。圧縮機1の回転速度が増大したので、冷媒の循環量が増加し、その結果蒸発器での吸熱量が増加して、暖房能力が増加する。蓄熱ユニット8に流入する冷媒の温度が上昇し、蓄熱体9がさらに加熱され融解しやすくなる。   At this time, the temperature of the heat storage body 9 detected by the temperature sensor 10 provided in the heat storage unit 8 is lower than its melting point. Therefore, as shown in FIG. 2, the control device 11 controls the compressor 1 so that the rotational speed of the compressor 1 is increased by a predetermined rotational speed (for example, 200 rpm). Since the rotation speed of the compressor 1 is increased, the circulation amount of the refrigerant is increased. As a result, the heat absorption amount in the evaporator is increased, and the heating capacity is increased. The temperature of the refrigerant flowing into the heat storage unit 8 rises, and the heat storage body 9 is further heated and melts easily.

これにより、蓄熱体9の蓄熱量が増加する。この状態で圧縮機1を運転し続けて、蓄熱体9が十分加熱されると、やがて蓄熱体9の温度が蓄熱材の融点以上になる。このとき制御装置11は、圧縮機1の回転速度を低下させて基準回転速度に戻す。すなわち回転速度の低下量は、先ほど増加させた量、200rpm である。   Thereby, the heat storage amount of the heat storage body 9 increases. If the compressor 1 is continuously operated in this state and the heat storage body 9 is sufficiently heated, the temperature of the heat storage body 9 eventually becomes equal to or higher than the melting point of the heat storage material. At this time, the control device 11 reduces the rotational speed of the compressor 1 to return to the reference rotational speed. That is, the amount of decrease in the rotational speed is 200 rpm, which is the amount increased earlier.

(2)除霜運転:蒸発器として作用している室外熱交換器5の温度が所定温度よりも低下すると、室外熱交換器5の外表面に空気中の水分が霜として結露する。室外熱交換器5に霜がついた状態では、室外熱交換器5の熱交換能力が低下するので、除霜運転が必要となる。除霜運転では、バイパス配管6の二方弁7を開にする。二方弁7を開いたので、圧縮機1で圧縮された高温高圧の冷媒ガスは、四方弁2を通過後、その一部がバイパス配管6を経て室外熱交換器5に流入する。室内熱交換器3をバイパスするバイパス配管6を流通した冷媒(ホットガス)は、高温であるから室外熱交換器5を暖め、室外熱交換器5の外表面に付着した霜を溶かす。いわゆるホットガスバイパス運転で、除霜運転が実行される。   (2) Defrosting operation: When the temperature of the outdoor heat exchanger 5 acting as an evaporator is lower than a predetermined temperature, moisture in the air is condensed as frost on the outer surface of the outdoor heat exchanger 5. In a state where the outdoor heat exchanger 5 is frosted, the heat exchange capability of the outdoor heat exchanger 5 is reduced, so that a defrosting operation is required. In the defrosting operation, the two-way valve 7 of the bypass pipe 6 is opened. Since the two-way valve 7 is opened, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, and a part thereof flows into the outdoor heat exchanger 5 through the bypass pipe 6. Since the refrigerant (hot gas) flowing through the bypass pipe 6 that bypasses the indoor heat exchanger 3 is at a high temperature, the refrigerant heats the outdoor heat exchanger 5 and melts frost attached to the outer surface of the outdoor heat exchanger 5. The defrosting operation is executed by so-called hot gas bypass operation.

この除霜運転では、室外熱交換器5が蒸発器として作用せずに、冷媒の一部が温度の低い液状で圧縮機1に流入する。温度の低い冷媒を含む冷媒が圧縮機1に流入すると、圧縮機1の入口温度が低下する。さらに冷媒が圧縮機1内で十分圧縮されないので、圧縮機1から温度の高くない冷媒が吐出される。   In this defrosting operation, the outdoor heat exchanger 5 does not act as an evaporator, and a part of the refrigerant flows into the compressor 1 in a liquid state having a low temperature. When the refrigerant including the refrigerant having a low temperature flows into the compressor 1, the inlet temperature of the compressor 1 is lowered. Further, since the refrigerant is not sufficiently compressed in the compressor 1, the refrigerant having a low temperature is discharged from the compressor 1.

ところで、圧縮機1から吐出された冷媒の中で、バイパス配管6へ流入しないで、暖房運転時と同様に室内熱交換器3へ流入する冷媒は、室内熱交換器3に流入する前に蓄熱体9から吸熱して昇温する。その結果、室内熱交換器3には高温の冷媒が依然として流入するから、除霜運転時の暖房能力の低下を抑制できる。   By the way, among the refrigerant discharged from the compressor 1, the refrigerant that does not flow into the bypass pipe 6 and flows into the indoor heat exchanger 3 in the same manner as in the heating operation is stored in the refrigerant before flowing into the indoor heat exchanger 3. The body 9 absorbs heat and rises in temperature. As a result, since the high-temperature refrigerant still flows into the indoor heat exchanger 3, it is possible to suppress a decrease in heating capacity during the defrosting operation.

従来の空気調和装置では、除霜時に、圧縮機1が発生した熱量の一部が室外熱交換器5を加熱するのに使用され、暖房能力の低下を引き起こしていた。本実施例では、蓄熱体9に蓄えた熱で暖房能力の低下を補うように冷凍サイクルの回路を構成している。そして、暖房時に予め蓄熱材の融点以上に蓄熱体9の温度を上昇させて、蓄熱体9に蓄熱しておき、蓄熱体9の性能を十分に発揮させることを可能にしている。   In the conventional air conditioner, a part of the heat generated by the compressor 1 is used to heat the outdoor heat exchanger 5 during defrosting, causing a reduction in heating capacity. In the present embodiment, the circuit of the refrigeration cycle is configured so as to compensate for the decrease in heating capacity with the heat stored in the heat storage body 9. And the temperature of the thermal storage body 9 is raised previously more than melting | fusing point of a thermal storage material, and it heat-stores in the thermal storage body 9 at the time of heating, and it is possible to fully exhibit the performance of the thermal storage body 9.

なお本実施例では、蓄熱体9の温度が蓄熱材の融点より低い場合に圧縮機の回転速度を上昇させているが、圧縮機1の回転速度を上昇させる代わりに、減圧手段4の減圧量を増大させるとか、室外送風ファン13や室内送風ファン12の回転速度を増大させてもよい。減圧手段4の減圧量を増大させると蒸発圧力が低下し、圧縮機1の吸込部の過熱度が上昇する。それとともに、圧縮機1の出口過熱度も上昇し、蓄熱体9と熱交換する冷媒の温度が上昇する。このとき、圧縮機1や室内送風ファン12,室外送風ファン13回転速度を上昇させる必要が無く、室内,室外とも騒音が増大するおそれがない。   In the present embodiment, the rotational speed of the compressor is increased when the temperature of the heat storage body 9 is lower than the melting point of the heat storage material, but instead of increasing the rotational speed of the compressor 1, the pressure reduction amount of the decompression means 4 is increased. Or the rotational speed of the outdoor fan 13 or the indoor fan 12 may be increased. When the amount of decompression of the decompression means 4 is increased, the evaporation pressure is lowered and the degree of superheat of the suction portion of the compressor 1 is increased. At the same time, the degree of superheat at the outlet of the compressor 1 also increases, and the temperature of the refrigerant that exchanges heat with the heat storage body 9 increases. At this time, there is no need to increase the rotational speed of the compressor 1, the indoor air blowing fan 12, and the outdoor air blowing fan 13, and there is no possibility that noise will increase both indoors and outdoors.

室外送風ファン13の回転速度を上昇させると、室外熱交換器5における冷媒蒸発が促進される。そして、圧縮機1の吸込部の過熱度が上昇し、それとともに圧縮機1の出口過熱度も上昇する。これにより、蓄熱体9と熱交換する冷媒の温度が上昇する。このとき室内送風ファン12の回転速度を上昇させる必要が無いので、室内の騒音が増大するおそれが無い。   When the rotational speed of the outdoor blower fan 13 is increased, the refrigerant evaporation in the outdoor heat exchanger 5 is promoted. And the superheat degree of the suction part of the compressor 1 rises, and the outlet superheat degree of the compressor 1 also rises with it. Thereby, the temperature of the refrigerant | coolant which heat-exchanges with the thermal storage body 9 rises. At this time, there is no need to increase the rotation speed of the indoor fan 12, so there is no possibility that the noise in the room will increase.

本発明に係る空気調和装置100の他の実施例を、図3および図4を用いて説明する。図3は、空気調和装置100のシステム図であり、図4はその運転を説明するタイムチャートである。本実施例は、図1に示した上記実施例とは、圧縮機1にこの圧縮機1の吐出温度を検出する温度センサを設けた点が相違する。制御装置14は蓄熱体9に取り付けた温度センサ10が検出した蓄熱体9の温度が、蓄熱材の融点より低いときに、圧縮機1の目標吐出温度を予め定めた値だけ上昇させる。   Another embodiment of the air conditioner 100 according to the present invention will be described with reference to FIGS. FIG. 3 is a system diagram of the air conditioner 100, and FIG. 4 is a time chart for explaining its operation. This embodiment is different from the above embodiment shown in FIG. 1 in that a temperature sensor for detecting the discharge temperature of the compressor 1 is provided in the compressor 1. The control device 14 increases the target discharge temperature of the compressor 1 by a predetermined value when the temperature of the heat storage body 9 detected by the temperature sensor 10 attached to the heat storage body 9 is lower than the melting point of the heat storage material.

このように構成した本実施例に記載の空気調和装置の運転動作について、以下に説明する。   The operation of the air conditioner described in the present embodiment configured as described above will be described below.

(3)暖房運転時であって蓄熱体9の温度が蓄熱材の融点より低い場合:温度センサ
10が検出する蓄熱体9の温度が、蓄熱材の融点より低いので、制御装置14は、図4に示すように、圧縮機1の目標吐出温度を予め定めた温度(例えば10℃)だけ上昇させる。このときの圧力−エンタルピー線図(モリエール線図)を、模式的に図5に示す。
(3) During heating operation, when the temperature of the heat storage body 9 is lower than the melting point of the heat storage material: Since the temperature of the heat storage body 9 detected by the temperature sensor 10 is lower than the melting point of the heat storage material, the control device 14 4, the target discharge temperature of the compressor 1 is increased by a predetermined temperature (for example, 10 ° C.). The pressure-enthalpy diagram (Molière diagram) at this time is schematically shown in FIG.

図5のモリエール線図では、横方向が空気調和装置100内を流通する冷媒のエンタルピーで、縦方向が圧力になっている。空気調和装置100を通常運転で制御するときは、この空気調和装置100内を流通する冷媒は、モリエール線図上を破線で示す軌跡をたどる。これに対し、圧縮機1の目標吐出温度を10℃だけ増大させると、冷媒は図6中実線で表示したように変化する。すなわち、元の線図よりも一回り大きな線図となっている。具体的には、圧縮機1の吸い込み状態に対応する点Aは、点αまで変化し、圧縮機の吐出状態に対応する点Bは、点βに変化する。減圧手段4の吸い込み状態に対応する点Cは点γに変化し、膨張弁の吐出状態に対応する点Dは点δに変化する。   In the Mollier chart of FIG. 5, the horizontal direction is the enthalpy of the refrigerant circulating in the air conditioner 100, and the vertical direction is the pressure. When the air conditioner 100 is controlled in a normal operation, the refrigerant flowing through the air conditioner 100 follows a locus indicated by a broken line on the Mollier chart. On the other hand, when the target discharge temperature of the compressor 1 is increased by 10 ° C., the refrigerant changes as indicated by the solid line in FIG. That is, the diagram is slightly larger than the original diagram. Specifically, the point A corresponding to the suction state of the compressor 1 changes to the point α, and the point B corresponding to the discharge state of the compressor changes to the point β. Point C corresponding to the suction state of the decompression means 4 changes to point γ, and point D corresponding to the discharge state of the expansion valve changes to point δ.

圧縮機1の目標吐出温度を変えたので、冷媒の相変化を示す曲線CLと室内熱交換器3
内の冷媒状態変化を示す直線との交点は、点Eから点εに変化する。図5において、点Eや点εよりも右側の領域は過熱ガス領域である。したがって、圧縮機1の目標吐出温度を増大させると、吐出部の過熱ガス域が多くなる。
Since the target discharge temperature of the compressor 1 was changed, the curve CL indicating the phase change of the refrigerant and the indoor heat exchanger 3
The point of intersection with the straight line indicating the change in refrigerant state changes from point E to point ε. In FIG. 5, the region on the right side of the points E and ε is the superheated gas region. Therefore, when the target discharge temperature of the compressor 1 is increased, the superheated gas region of the discharge unit increases.

室内熱交換器3の入口側に配置した蓄熱ユニット8には、過熱域が増加した冷媒が流入する。この結果、蓄熱体9がさらに加熱されて融解しやすくなり、蓄熱体9の蓄熱量が増加する。この運転状態を継続して、蓄熱体9を十分加熱する。蓄熱体9の温度が蓄熱材の融点以上になったら、制御装置11は圧縮機1の目標吐出温度を基準目標温度まで低下させて、通常運転モードに戻す。   The refrigerant whose superheated area has increased flows into the heat storage unit 8 disposed on the inlet side of the indoor heat exchanger 3. As a result, the heat storage body 9 is further heated and easily melted, and the heat storage amount of the heat storage body 9 increases. This operation state is continued and the heat storage body 9 is sufficiently heated. When the temperature of the heat storage body 9 becomes equal to or higher than the melting point of the heat storage material, the control device 11 reduces the target discharge temperature of the compressor 1 to the reference target temperature and returns to the normal operation mode.

(4)除霜運転:図1に示した実施例と同様の回路構成および同様の運転動作とする。   (4) Defrosting operation: A circuit configuration similar to that of the embodiment shown in FIG.

本実施例では、圧縮機1の吐出温度が目標吐出温度となるように暖房時の空気調和装置100の運転を制御している。   In this embodiment, the operation of the air conditioner 100 during heating is controlled so that the discharge temperature of the compressor 1 becomes the target discharge temperature.

本発明に係る空気調和装置のさらに他の実施例を、図6にシステム図で示す。本実施例においても上記各実施例と同様に、暖房運転時に蓄熱ユニット8に蓄熱している。そのため、暖房運転時の回路構成を上記各実施例と同じにしている。一方、除霜運転で蓄熱ユニット8に蓄えた熱を利用するために、圧縮機1から吐出された冷媒が蓄熱ユニット8をバイパスするバイパス配管18を設けている。バイパス配管18には、通常の暖房運転時に冷媒がこの配管18を流通するのを防止するために、二方弁19が設けられている。なお、この図6では、煩雑さを避けるために、制御装置11が減圧手段4や室内外送風ファン12,13、各弁2,16,19等を制御するラインの図示を省略している。   Still another embodiment of the air conditioner according to the present invention is shown in a system diagram of FIG. Also in the present embodiment, heat is stored in the heat storage unit 8 during the heating operation as in the above embodiments. Therefore, the circuit configuration at the time of heating operation is the same as that in each of the above embodiments. On the other hand, in order to use the heat stored in the heat storage unit 8 in the defrosting operation, a bypass pipe 18 through which the refrigerant discharged from the compressor 1 bypasses the heat storage unit 8 is provided. The bypass pipe 18 is provided with a two-way valve 19 in order to prevent refrigerant from flowing through the pipe 18 during normal heating operation. In FIG. 6, in order to avoid complexity, the control device 11 does not show lines for controlling the decompression unit 4, the indoor / outdoor blower fans 12 and 13, the valves 2, 16, and 19.

室外熱交換器5の出口側には、三方弁16が設けられており、通常の暖房運転時には冷媒を四方弁2に導く。三方弁16の一方の開口は蓄熱ユニット8に連通しており、除霜運転時にはこの連通路17aを経て冷媒が蓄熱ユニット8内の蓄熱体9と熱交換して温度上昇する。温度上昇した冷媒は、配管17bを経て四方弁2に導かれる。なお、本実施例では三方弁16を用いて暖房時と除霜時の冷媒の流れを変えているが、三方弁16の代わりに二方弁を用いてもよい。二方弁の場合、暖房時にも蓄熱ユニット8へ冷媒の一部が流れるが、蓄熱ユニット8への流路の方が配管損失が大きいので、大部分の冷媒は蓄熱ユニット8側へ流れずに四方弁2側に流れるので、実質的には影響が無い。   A three-way valve 16 is provided on the outlet side of the outdoor heat exchanger 5 and guides the refrigerant to the four-way valve 2 during normal heating operation. One opening of the three-way valve 16 communicates with the heat storage unit 8, and during the defrosting operation, the refrigerant exchanges heat with the heat storage body 9 in the heat storage unit 8 through this communication path 17 a and the temperature rises. The refrigerant whose temperature has risen is guided to the four-way valve 2 through the pipe 17b. In this embodiment, the three-way valve 16 is used to change the refrigerant flow during heating and defrosting, but a two-way valve may be used instead of the three-way valve 16. In the case of the two-way valve, a part of the refrigerant flows to the heat storage unit 8 even during heating, but since the pipe loss is larger in the flow path to the heat storage unit 8, most of the refrigerant does not flow to the heat storage unit 8 side. Since it flows to the four-way valve 2 side, there is substantially no influence.

除霜時は蓄熱材により、室外熱交換器5を流出した液混合の冷媒が加熱される。すなわち、電動膨張弁4を開くと、蓄熱ユニット8を蒸発器とした冷凍サイクルが成立し、除霜運転時も暖房運転が行える。これにより、室内熱交換器3と室外熱交換5が高圧高温になり、室外熱交換器5では、この熱を利用して除霜する。その後、冷媒は、三方弁16と配管172の抵抗により減圧し、低温低圧となる。そして冷媒は、蓄熱体9から吸熱して蒸発した後、圧縮機1に戻る。   At the time of defrosting, the mixed refrigerant flowing out of the outdoor heat exchanger 5 is heated by the heat storage material. That is, when the electric expansion valve 4 is opened, a refrigeration cycle using the heat storage unit 8 as an evaporator is established, and the heating operation can be performed even during the defrosting operation. Thereby, the indoor heat exchanger 3 and the outdoor heat exchange 5 become high pressure and high temperature, and the outdoor heat exchanger 5 performs defrosting using this heat. Thereafter, the refrigerant is depressurized by the resistance of the three-way valve 16 and the pipe 172 and becomes a low temperature and low pressure. The refrigerant absorbs heat from the heat accumulator 9 and evaporates, and then returns to the compressor 1.

空気調和装置100に係る上記実施例の他の実施例を、図7〜図9を用いて説明する。これら各図において、上記各実施例と同一符号は、同一部品を示す。なお、これらの図では、制御装置11からの制御指令のラインの図示を、一部省略している。図7は、蓄熱ユニット8に蓄熱しながら暖房する通常の暖房運転状態を示す。図7において、制御装置
11は温度センサ10が検出した蓄熱体9の温度を用いて、圧縮機1の回転速度や室内外送風ファン12,13等を制御する。
Another embodiment of the above embodiment according to the air conditioner 100 will be described with reference to FIGS. In these drawings, the same reference numerals as those in the above embodiments denote the same parts. In these drawings, the illustration of the control command line from the control device 11 is partially omitted. FIG. 7 shows a normal heating operation state in which heating is performed while storing heat in the heat storage unit 8. In FIG. 7, the control device 11 controls the rotational speed of the compressor 1, the indoor / outdoor blower fans 12, 13, and the like using the temperature of the heat storage body 9 detected by the temperature sensor 10.

温度センサ10が検出した温度が蓄熱材の融点より低いときには、制御装置11は蓄熱体9にはまだ融解していない部分があるものと判定する。この状態で、室外熱交換器5に取り付けた図示しない除霜センサから除霜運転の信号が検出されると、制御装置11は除霜運転に切り換える(図8参照)。その際、蓄熱体9が完全には融解していないので、蓄熱ユニット8に蓄えられた熱量を使っても、室内熱交換器3の暖房に供するのに必要な熱量が得られないと制御装置11は判断する。この場合、暖房と除霜を両立させることが困難であるから、圧縮機1から吐出された高温冷媒を直接室外熱交換器5に導くように四方弁2を切り換え、いわゆる「逆サイクル除霜」を実行する。つまり、圧縮機1で圧縮された高温高圧の冷媒ガスは室外熱交換器5へ流入させて、短時間だけ冷媒ガスの熱を室外熱交換器5の霜を溶かすことに消費して、除霜を優先する運転をする。   When the temperature detected by the temperature sensor 10 is lower than the melting point of the heat storage material, the control device 11 determines that the heat storage body 9 has a portion that has not yet melted. In this state, when a defrosting operation signal is detected from a defrosting sensor (not shown) attached to the outdoor heat exchanger 5, the control device 11 switches to the defrosting operation (see FIG. 8). At that time, since the heat storage body 9 is not completely melted, the control device can be used if the amount of heat necessary for heating the indoor heat exchanger 3 cannot be obtained even if the amount of heat stored in the heat storage unit 8 is used. 11 is judged. In this case, since it is difficult to achieve both heating and defrosting, the four-way valve 2 is switched to direct the high-temperature refrigerant discharged from the compressor 1 directly to the outdoor heat exchanger 5, so-called “reverse cycle defrosting”. Execute. That is, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 flows into the outdoor heat exchanger 5 and consumes the heat of the refrigerant gas for melting the frost in the outdoor heat exchanger 5 for a short time, thereby removing the defrost. Drive with priority.

温度センサ10が検出した温度が蓄熱材の融点より高い場合には、制御装置11は、蓄熱体9が完全に融解したものと判定する。蓄熱体9が完全に融解した状態では、除霜と暖房を両立させることが可能になるので、図示しない除霜センサから除霜信号が検出されると、制御装置11は、四方弁2を通常の暖房運転の状態にしたまま、バイパス弁7を開いて、除霜運転に切り換える(図9参照)。バイパス弁7が開かれたので、高温冷媒の一部は室外熱交換器5に流れて、いわゆる「ホットガスバイパス除霜」が実行される。   When the temperature detected by the temperature sensor 10 is higher than the melting point of the heat storage material, the control device 11 determines that the heat storage body 9 is completely melted. In the state in which the heat accumulator 9 is completely melted, it is possible to achieve both defrosting and heating. Therefore, when a defrost signal is detected from a defrost sensor (not shown), the control device 11 normally opens the four-way valve 2. In the heating operation state, the bypass valve 7 is opened to switch to the defrosting operation (see FIG. 9). Since the bypass valve 7 is opened, a part of the high-temperature refrigerant flows into the outdoor heat exchanger 5 and so-called “hot gas bypass defrosting” is executed.

この「ホットガスバイパス除霜」においては、圧縮機1で圧縮された高温高圧の冷媒ガスは四方弁2を通過後、その一部がバイパス配管6を経て室外熱交換器5に流入する。そして、室外熱交換器5を暖めて、除霜する。この状態では、室外機熱交換器5が蒸発器として作用しないので、圧縮機1には、温度の低い液状の冷媒を含む冷媒ガスが流入する。   In this “hot gas bypass defrosting”, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, and a part thereof flows into the outdoor heat exchanger 5 through the bypass pipe 6. And the outdoor heat exchanger 5 is warmed and defrosted. In this state, since the outdoor unit heat exchanger 5 does not act as an evaporator, refrigerant gas containing liquid refrigerant having a low temperature flows into the compressor 1.

冷媒が液を含むガス状で圧縮機1に流入するので、圧縮機1の入口温度が低下するとともに、圧縮機1の圧縮効率が低下し、十分に圧縮されず所定温度まで温度上昇していない冷媒が圧縮機1から吐出される。圧縮機1から吐出される冷媒は所定温度よりも低いが、室内熱交換器3より上流側に蓄熱ユニット8を設けており、蓄熱ユニット8は所定の熱量を蓄えた蓄熱体9を有しているので、室内熱交換器3に流入する前に、冷媒は蓄熱体9から吸熱して昇温する。その結果、室内熱交換器3には通常の暖房運転時とそれほど変わらない高温の冷媒が流入し、暖房能力の低下を抑制できる。   Since the refrigerant flows into the compressor 1 in the form of a gas containing liquid, the inlet temperature of the compressor 1 is reduced, the compression efficiency of the compressor 1 is reduced, and the temperature is not sufficiently increased without being compressed sufficiently. The refrigerant is discharged from the compressor 1. Although the refrigerant discharged from the compressor 1 is lower than a predetermined temperature, a heat storage unit 8 is provided upstream of the indoor heat exchanger 3, and the heat storage unit 8 has a heat storage body 9 that stores a predetermined amount of heat. Therefore, before flowing into the indoor heat exchanger 3, the refrigerant absorbs heat from the heat accumulator 9 and rises in temperature. As a result, a high-temperature refrigerant that is not so different from that in the normal heating operation flows into the indoor heat exchanger 3, and a decrease in heating capacity can be suppressed.

本実施例によれば、蓄熱体9の融解が完了しているときだけ、蓄熱体9の熱を使って除霜運転して、除霜運転時の暖房能力不足を補うようにしたので、蓄熱体9の性能を十分に発揮できる。また、蓄熱体の熱を使えないときには逆サイクル除霜を用いて速やかに除霜し、暖房できない時間をできるだけ短くしたので、空気調和装置の使用者の暖房不足による不快感を低減できる。   According to the present embodiment, the defrosting operation is performed using the heat of the heat storage body 9 only when the heat storage body 9 has been melted to compensate for the lack of heating capacity during the defrosting operation. The performance of the body 9 can be fully exhibited. Moreover, when the heat of the heat storage body cannot be used, the reverse cycle defrosting is used to quickly defrost and the time during which heating cannot be performed is shortened as much as possible, so that discomfort due to insufficient heating by the user of the air conditioner can be reduced.

上記各実施例で記載した蓄熱材としては、例えば酢酸ナトリウムを使用することができる。酢酸ナトリウムは常温で過冷却状態で蓄熱可能であり、一昼夜過冷却を維持することができる。また、過冷却は、振動等の物理的手段で解除可能であり、冷媒の加熱に容易に利用できる。このように本発明の各実施例によれば、寒冷地等での冬季の起動時に蓄熱材の熱を有効に利用でき、空気調和装置の暖房不足による不快感を低減できる。   As the heat storage material described in the above embodiments, for example, sodium acetate can be used. Sodium acetate can store heat in a supercooled state at room temperature, and can maintain supercooling all day and night. Further, the supercooling can be released by physical means such as vibration, and can be easily used for heating the refrigerant. Thus, according to each Example of this invention, the heat of a thermal storage material can be utilized effectively at the time of winter start-up in a cold district etc., and the discomfort by insufficient heating of an air conditioning apparatus can be reduced.

本発明に係る空気調和装置の一実施例のシステム図。The system figure of one Example of the air conditioning apparatus which concerns on this invention. 図1に示した空気調和装置が有する制御装置の制御を説明する図。The figure explaining control of the control apparatus which the air conditioning apparatus shown in FIG. 1 has. 本発明に係る空気調和装置の他の実施例のシステム図。The system figure of the other Example of the air conditioning apparatus which concerns on this invention. 図3に示した空気調和装置が有する制御装置の制御を説明する図。The figure explaining control of the control device which the air harmony device shown in Drawing 3 has. 図3に示した空気調和装置の動作を説明する図であり、模式的に示したモリエール線図。It is a figure explaining operation | movement of the air conditioning apparatus shown in FIG. 3, and the Mollier diagram shown typically. 図3に示した空気調和装置の変形例のシステム図。The system diagram of the modification of the air conditioning apparatus shown in FIG. 本発明に係る空気調和装置のさらに他の実施例のシステム図。The system figure of the further another Example of the air conditioning apparatus which concerns on this invention. 図7に示した空気調和装置の動作を説明する図。The figure explaining operation | movement of the air conditioning apparatus shown in FIG. 図7に示した空気調和装置の動作を説明する図。The figure explaining operation | movement of the air conditioning apparatus shown in FIG.

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 室内熱交換器
4 電動膨張弁(減圧手段)
5 室外熱交換器
6,17,18 バイパス配管
7 二方弁(バイパス弁)
8 蓄熱ユニット
9 蓄熱体
10 温度センサ
11 制御装置
12 室内送風ファン
13 室外送風ファン
16 三方弁
19 二方弁
90 配管
100 空気調和装置
1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Electric expansion valve (pressure reduction means)
5 Outdoor heat exchangers 6, 17, 18 Bypass piping 7 Two-way valve (bypass valve)
8 Heat storage unit 9 Heat storage body 10 Temperature sensor 11 Control device 12 Indoor fan 13 Outdoor fan 16 Three-way valve 19 Two-way valve 90 Piping 100 Air conditioner

Claims (8)

潜熱蓄熱材を用いて蓄熱する空気調和装置において、蓄熱時は前記潜熱蓄熱材近傍に設けた温度センサの出力に基づいて、少なくとも圧縮機の回転速度,圧縮機の吐出温度,減圧手段の減圧量,室内送風ファンの回転速度,室外送風ファンの回転速度のいずれかを制御する制御装置を設けたことを特徴とする空気調和装置。   In an air conditioner that stores heat using a latent heat storage material, at the time of heat storage, based on the output of a temperature sensor provided in the vicinity of the latent heat storage material, at least the rotational speed of the compressor, the discharge temperature of the compressor, the amount of pressure reduction of the pressure reducing means An air conditioner provided with a control device for controlling either the rotational speed of the indoor fan or the rotational speed of the outdoor fan. 前記制御装置は、蓄熱時に圧縮機の吐出温度を、蓄熱時以外のときより高くなるように制御することを特徴とする請求項1に記載の空気調和装置。   The air conditioner according to claim 1, wherein the control device controls the discharge temperature of the compressor to be higher at the time of heat storage than at a time other than at the time of heat storage. 前記制御装置は蓄熱材の融解を判定する融解判定手段を有し、暖房時に除霜するときは、前記制御装置が、前記融解判定手段が蓄熱材が融解していると判定したら室内熱交換器と四方弁との間から室外熱交換器と減圧手段の間に設けたバイパス管路を開き、蓄熱材が融解していないと判定したら、四方弁を切り換えて圧縮機から吐出される高温冷媒を室外熱交換器に流入させることを特徴とする請求項1に記載の空気調和装置。   The control device has melting determination means for determining melting of the heat storage material. When defrosting during heating, the control device determines that the heat storage material is melted when the control device determines that the heat storage material is melted. Open the bypass pipe between the outdoor heat exchanger and the decompression means between the two-way valve and the four-way valve, and if it is determined that the heat storage material has not melted, switch the four-way valve to remove the high-temperature refrigerant discharged from the compressor. The air conditioner according to claim 1, wherein the air conditioner is caused to flow into an outdoor heat exchanger. 圧縮機,四方弁,室内熱交換器,減圧手段,室外熱交換器を順次配管接続した冷凍サイクルと、前記室内熱交換器の近傍に配置した室内送風ファンと、前記室外熱交換器の近傍に配置した室外送風ファンと、前記圧縮機と減圧手段と室内熱交換器と室外熱交換器とを制御する制御装置とを備え、前記制御装置は、前記室内熱交換器と前記圧縮機間に配置可能な潜熱蓄熱手段に冷凍サイクル内を循環する冷媒の熱で蓄熱する蓄熱運転モードと、冷凍サイクル内を循環する冷媒を潜熱蓄熱手段に蓄熱された熱で加熱する放熱運転モードとを有し、蓄熱運転モードを実行中は潜熱蓄熱手段の温度に基づいて前記圧縮機の回転速度または吐出温度,減圧手段の減圧量,室内送風ファンの回転速度,室外送風ファンの回転速度の少なくともいずれかを制御することを特徴とする空気調和装置。   A refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a decompression unit, and an outdoor heat exchanger are connected in series, an indoor fan disposed in the vicinity of the indoor heat exchanger, and in the vicinity of the outdoor heat exchanger An outdoor fan that is arranged, and a control device that controls the compressor, the decompression means, the indoor heat exchanger, and the outdoor heat exchanger, and the control device is arranged between the indoor heat exchanger and the compressor. A heat storage operation mode in which the latent heat storage means stores heat with the heat of the refrigerant circulating in the refrigeration cycle, and a heat dissipation operation mode in which the refrigerant circulating in the refrigeration cycle is heated with heat stored in the latent heat storage means, During execution of the heat storage operation mode, at least one of the rotation speed or discharge temperature of the compressor, the amount of pressure reduction of the pressure reduction means, the rotation speed of the indoor fan, and the rotation speed of the outdoor fan is controlled based on the temperature of the latent heat storage means. An air conditioning apparatus characterized by. 前記制御装置が、蓄熱運転モードを実行中に、圧縮機の吐出温度を蓄熱運転モード実行中以外のときよりも高く制御することを特徴とする請求項4に記載の空気調和装置。   5. The air conditioner according to claim 4, wherein the control device controls the discharge temperature of the compressor to be higher during execution of the heat storage operation mode than when the heat storage operation mode is not being executed. 前記冷凍サイクルに前記圧縮機から吐出された高温の冷媒を前記室外熱交換器に導くホットガスバイパス流路を設けたことを特徴とする請求項4または5に記載の空気調和装置。   The air conditioner according to claim 4 or 5, wherein a hot gas bypass passage is provided in the refrigeration cycle to guide the high-temperature refrigerant discharged from the compressor to the outdoor heat exchanger. 前記制御装置は室外熱交換器を除霜する除霜運転モードと潜熱蓄熱手段が有する蓄熱材の融解を判定する判定手段とを有し、除霜運転モードの実行中において、前記判定手段が蓄熱材が融解されていないと判断したときに、前記制御装置が前記四方弁を切り換えて高温冷媒を室外熱交換器に導いた後に室内熱交換器に導くよう制御することを特徴とする請求項4に記載の空気調和装置。   The control device includes a defrosting operation mode for defrosting the outdoor heat exchanger and a determination unit that determines melting of the heat storage material of the latent heat storage unit. During the execution of the defrosting operation mode, the determination unit stores the heat. 5. The control device performs control to switch the four-way valve to guide the high-temperature refrigerant to the outdoor heat exchanger and then to the indoor heat exchanger when it is determined that the material is not melted. The air conditioning apparatus described in 1. 前記制御装置は室外熱交換器を除霜する除霜運転モードと潜熱蓄熱手段が有する蓄熱材の融解を判定する判定手段とを有し、除霜運転モードの実行中において、前記判定手段が蓄熱材が融解されていると判断したときに、前記ホットガスバイパス流路を開にすることを特徴とする請求項6に記載の空気調和装置。
The control device includes a defrosting operation mode for defrosting the outdoor heat exchanger and a determination unit for determining melting of the heat storage material included in the latent heat storage unit, and the determination unit stores the heat during the defrosting operation mode. The air conditioner according to claim 6, wherein when the material is determined to be melted, the hot gas bypass channel is opened.
JP2006261648A 2006-09-27 2006-09-27 Air conditioner Withdrawn JP2008082589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261648A JP2008082589A (en) 2006-09-27 2006-09-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261648A JP2008082589A (en) 2006-09-27 2006-09-27 Air conditioner

Publications (1)

Publication Number Publication Date
JP2008082589A true JP2008082589A (en) 2008-04-10

Family

ID=39353642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261648A Withdrawn JP2008082589A (en) 2006-09-27 2006-09-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP2008082589A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809236A (en) * 2012-09-11 2012-12-05 王德元 Integrated central air conditioner with medium-pressure active freezing protection and oil balance device
WO2015037057A1 (en) * 2013-09-10 2015-03-19 三菱電機株式会社 Refrigerating device
WO2015173940A1 (en) * 2014-05-15 2015-11-19 三菱電機株式会社 Refrigeration cycle device and air-conditioning device with said refrigeration cycle device
JP2016017667A (en) * 2014-07-07 2016-02-01 株式会社コロナ Composite heat source heat pump device
CN105716161A (en) * 2016-02-17 2016-06-29 广东美的制冷设备有限公司 Phase change energy storage tank used in air-conditioner and air-conditioner control system and method
CN106594937A (en) * 2017-01-10 2017-04-26 美的集团武汉制冷设备有限公司 Air conditioner, and defrosting control method and system
WO2018129840A1 (en) * 2017-01-10 2018-07-19 美的集团武汉制冷设备有限公司 Defrosting control method, defrosting control system, and air conditioner
CN108638785A (en) * 2018-04-16 2018-10-12 中国科学院广州能源研究所 Novel electric vehicle heat pump air conditioning system based on phase-change energy storage defrosting and its control method
CN109140632B (en) * 2016-03-28 2020-12-11 深圳市航天楼宇科技有限公司 Working method of low-noise energy-saving air conditioner

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809236B (en) * 2012-09-11 2014-11-26 王德元 Integrated central air conditioner with medium-pressure active freezing protection and oil balance device
CN102809236A (en) * 2012-09-11 2012-12-05 王德元 Integrated central air conditioner with medium-pressure active freezing protection and oil balance device
US10082325B2 (en) 2013-09-10 2018-09-25 Mitsubishi Electric Corporation Refrigerating apparatus
WO2015037057A1 (en) * 2013-09-10 2015-03-19 三菱電機株式会社 Refrigerating device
CN105556221A (en) * 2013-09-10 2016-05-04 三菱电机株式会社 Refrigerating device
JP6072264B2 (en) * 2013-09-10 2017-02-01 三菱電機株式会社 Refrigeration equipment
WO2015173940A1 (en) * 2014-05-15 2015-11-19 三菱電機株式会社 Refrigeration cycle device and air-conditioning device with said refrigeration cycle device
JP2016017667A (en) * 2014-07-07 2016-02-01 株式会社コロナ Composite heat source heat pump device
CN105716161A (en) * 2016-02-17 2016-06-29 广东美的制冷设备有限公司 Phase change energy storage tank used in air-conditioner and air-conditioner control system and method
CN109140632B (en) * 2016-03-28 2020-12-11 深圳市航天楼宇科技有限公司 Working method of low-noise energy-saving air conditioner
WO2018129840A1 (en) * 2017-01-10 2018-07-19 美的集团武汉制冷设备有限公司 Defrosting control method, defrosting control system, and air conditioner
CN106594937A (en) * 2017-01-10 2017-04-26 美的集团武汉制冷设备有限公司 Air conditioner, and defrosting control method and system
CN108638785A (en) * 2018-04-16 2018-10-12 中国科学院广州能源研究所 Novel electric vehicle heat pump air conditioning system based on phase-change energy storage defrosting and its control method

Similar Documents

Publication Publication Date Title
JP5709993B2 (en) Refrigeration air conditioner
JP2008082589A (en) Air conditioner
JPH0799297B2 (en) Air conditioner
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JP2009228979A (en) Air conditioner
JP2007057220A (en) Refrigeration device
JP5310101B2 (en) Air conditioner
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
JP6667719B2 (en) Air conditioner
JP4274886B2 (en) Heat pump air conditioner
JP3936345B2 (en) Air conditioner
JP2011080733A (en) Air conditioner
JP4023387B2 (en) Refrigeration equipment
JP2017194201A (en) Air conditioner
JP2005083616A (en) Air conditioner
JP2006029738A (en) Heat storage type air conditioner
JP5517891B2 (en) Air conditioner
JP4622901B2 (en) Air conditioner
WO2018043454A1 (en) Air conditioning and hot water supplying system
KR101203995B1 (en) Air conditioner and Defrosting Driving Method thereof
JP2000291985A (en) Air conditioner
JP5071100B2 (en) Air conditioner
JP2001263848A (en) Air conditioner
JP2005283058A (en) Reheating dehumidifying type air conditioner
JP6888280B2 (en) Refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201