WO2015173940A1 - Refrigeration cycle device and air-conditioning device with said refrigeration cycle device - Google Patents

Refrigeration cycle device and air-conditioning device with said refrigeration cycle device Download PDF

Info

Publication number
WO2015173940A1
WO2015173940A1 PCT/JP2014/063006 JP2014063006W WO2015173940A1 WO 2015173940 A1 WO2015173940 A1 WO 2015173940A1 JP 2014063006 W JP2014063006 W JP 2014063006W WO 2015173940 A1 WO2015173940 A1 WO 2015173940A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
refrigerant
refrigeration cycle
circuit
Prior art date
Application number
PCT/JP2014/063006
Other languages
French (fr)
Japanese (ja)
Inventor
要平 馬場
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/063006 priority Critical patent/WO2015173940A1/en
Priority to JP2016519061A priority patent/JP6188932B2/en
Publication of WO2015173940A1 publication Critical patent/WO2015173940A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present invention relates to a refrigeration cycle apparatus that includes a heat storage device in a refrigerant circuit and cools a control device, and an air conditioner that includes the refrigeration cycle apparatus.
  • a refrigeration cycle apparatus in which a cooling jacket is disposed in a refrigerant circuit and a control device is attached to the cooling jacket to process heat generated by the control device.
  • a refrigeration cycle device for example, during cooling operation, an intermediate pressure is provided between two high pressure sides and a low pressure side by using two pressure reducing devices, and a cooling jacket is thermally connected to the intermediate pressure portion to provide an intermediate temperature region.
  • the control device is cooled (see, for example, cited document 1).
  • the present invention has been made to solve such problems, and can reliably cool the control device and maintain the cooling capacity of the evaporator even when the heat generated from the control device is large.
  • An object is to provide a refrigeration cycle apparatus.
  • the refrigeration cycle apparatus includes a refrigeration cycle apparatus in which a refrigerant circuit circulates in the order of a compressor, a flow path switching valve, a heat source side heat exchanger, a throttling device, and a use side heat exchanger during cooling operation.
  • the heat storage device has a heat storage operation for storing the cold heat of the refrigerant passing therethrough, and a heat radiation operation for discharging the cold heat stored in the heat storage device to the refrigerant passing through the heat storage device.
  • a control device that generates heat during operation is thermally connected to the refrigerant circuit between the exchanger and the exchanger.
  • the heat generated by the control device is processed, and the supercooling degree is reduced or the refrigerant that has entered a two-phase state is circulated to the heat storage device that stores the cold energy to increase the supercooling degree. Since the refrigerant is supplied to the evaporator after that, it is possible to provide a refrigeration cycle apparatus capable of reliably cooling the controller even when the controller generates a large amount of heat and maintaining the cooling capacity of the evaporator. .
  • FIG. 3 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 2 is a block diagram of a control device in the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow during a heat storage operation of the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow during a cooling / radiating operation of the refrigeration cycle apparatus according to Embodiment 1.
  • 3 is a control flowchart during a heat storage operation of the refrigeration cycle apparatus according to Embodiment 1.
  • 3 is a control flowchart of the refrigeration cycle apparatus according to Embodiment 1 during cooling operation.
  • FIG. 6 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow during a cooling heat storage operation of the refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow during a cooling / radiating operation of the refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 1 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to the first embodiment.
  • FIG. 1 illustrates an air conditioner as an example, and is mainly composed of an outdoor unit 51, a heat storage tank unit 52, and an indoor unit 53.
  • the outdoor unit 51 and the heat storage tank unit 52 are connected by the liquid pipe 14 and the gas pipe 15, the heat storage tank unit 52 and the indoor unit 53 are connected by the liquid pipe 16, and the outdoor unit 51 and the indoor unit 53 are gas pipes. 17 is connected.
  • ⁇ Outdoor unit 51> In the outdoor unit 51, the compressor 1, the four-way valve 2 that is a flow path switching unit, the outdoor heat exchanger 3, the refrigerant heat exchanger 4, and the accumulator 18 are connected in series by a refrigerant pipe. .
  • the outdoor side control device 6 is disposed so as to be thermally connected to the liquid pipe 14. Further, the refrigerant pipe between the refrigerant heat exchanger 4 and the outdoor side control device 6 branches, the expansion device 5 having the function of decompressing and expanding the refrigerant, and the inflow of the accumulator 18 through the refrigerant heat exchanger 4.
  • a supercooling circuit 30 connected to the piping is provided.
  • the outdoor units 51 are connected to each other by communication wiring so that data can be exchanged by communication between the heat storage tank unit 52 and the indoor unit 53.
  • the outdoor unit 51 includes a high-pressure sensor 21 that detects a high-pressure side pressure and a low-pressure sensor 22 that detects a low-pressure side pressure.
  • the heat storage tank unit 52 branches from the liquid pipe 14 at the flow dividing portion 31 a and is connected to the gas pipe 15 via the expansion device 7, the heat storage tank 8 and the electromagnetic valve 11, and the heat storage tank 8 of the heat storage circuit 31.
  • Radiating circuit 32 which branches from between the electromagnetic valve 11 and the electromagnetic valve 10 and merges with the liquid pipe 16 at the merging portion 32a through the electromagnetic valve 10, and a direct connection circuit connected from the liquid pipe 14 to the liquid pipe 16 via the electromagnetic valve 9 33. Water is enclosed in the heat storage tank 8.
  • the heat storage tank unit 52 includes a temperature sensor 19 that detects the water temperature of the heat storage tank 8 and a temperature sensor 20 that detects the temperature of the refrigerant outlet of the heat storage tank 8.
  • the indoor unit 53 is configured by connecting the indoor expansion device 12 and the indoor heat exchanger 13.
  • the indoor heat exchanger 13 functions as a condenser or an evaporator, performs heat exchange between indoor air supplied from a blower means (not shown) and the refrigerant, and condenses or liquefies the refrigerant. is there.
  • the indoor unit 53 includes an inlet temperature sensor 23 that detects an inlet refrigerant temperature of the indoor heat exchanger 13 and an outlet temperature sensor 24 that detects an outlet refrigerant temperature of the indoor heat exchanger 13.
  • FIG. 2 is a block diagram of a control device in the refrigeration cycle apparatus according to the first embodiment.
  • the outdoor unit 51 has an outdoor side control device 6.
  • the heat storage tank unit 52 has a heat storage tank unit control device 101.
  • the indoor unit 53 has an indoor control device 102. In this embodiment, these control devices are connected by a communication line, and signal communication can be performed.
  • the outdoor side control apparatus 6 has a timer (not shown) for measuring time.
  • the outdoor control device 6 receives a signal of the pressure Pd from the high pressure sensor 21 and a signal of the pressure Ps from the low pressure sensor 22.
  • Detected temperatures T19 and T20 of the temperature sensors 19 and 20 are input to the heat storage tank unit control device 101 and transmitted to the outdoor control device 6.
  • the indoor side control device 102 receives signals of temperatures T23 and T24 from the temperature sensors 23 and 24, respectively.
  • the outdoor side control device 6 calculates the operating frequency of the compressor 1, the heat exchange capacity of the outdoor heat exchanger 3, and the opening degree of the expansion device 5 based on these input data. Based on the calculation result, the operating frequency of the compressor 1 of the outdoor unit 51 and the heat exchange capacity of the outdoor heat exchanger 3 are controlled by the rotational speed of an outdoor fan (not shown).
  • the heat storage tank unit control device 101 controls the opening degree LEV7 of the expansion device 7.
  • the indoor side control device 102 calculates the opening degree of the indoor expansion device 12 based on the temperatures T23 and T24, and controls the opening degree LEV12 of the indoor expansion device 12.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow during the heat storage operation of the refrigeration cycle apparatus according to Embodiment 1.
  • a part of the refrigerant flowing out of the outdoor heat exchanger 3 is diverted from the liquid pipe 14 to the supercooling circuit 30 and decompressed by the expansion device 5, and heat is exchanged between the refrigerant in the liquid pipe 14 and the refrigerant heat exchanger 4.
  • the liquid refrigerant in the pipe 14 is supercooled and sucked into the compressor 1.
  • the liquid refrigerant whose degree of supercooling has increased absorbs heat generated by the outdoor control device 6 attached to the liquid pipe 14 and flows into the heat storage tank unit 52.
  • the refrigerant flowing into the heat storage tank unit 52 is decompressed and expanded by the expansion device 7 of the heat storage circuit 31 and flows into the heat storage tank 8.
  • the decompressed low-pressure refrigerant exchanges heat with water in the heat storage tank 8 to evaporate and vaporize, and is sucked into the compressor 1 via the electromagnetic valve 11 and the accumulator 18.
  • the water in the heat storage tank 8 exchanges heat with the low-pressure refrigerant, and changes its state to ice.
  • the solenoid valve 9 and the solenoid valve 10 are closed, and the solenoid valve 11 is open.
  • FIG. 4 is a refrigerant circuit diagram illustrating the refrigerant flow during the cooling / radiating operation of the refrigeration cycle apparatus according to Embodiment 1.
  • the liquid refrigerant flowing into the heat storage tank unit 52 from the outdoor unit 51 becomes an intermediate pressure in the expansion device 7 and is cooled by exchanging heat with ice in the heat storage tank 8 to increase the degree of supercooling.
  • the refrigerant that has flowed out of the heat storage tank 8 flows into the indoor unit 53 through the electromagnetic valve 10 of the heat dissipation circuit 32.
  • the solenoid valve 9 and the solenoid valve 11 are closed, and the solenoid valve 10 is open.
  • the apparatus 7 and the electromagnetic valve 10 are closed, the electromagnetic valve 9 of the direct connection circuit 33 is opened, and the refrigerant flows from the outdoor unit 51 into the indoor unit 53 through the electromagnetic valve 9.
  • the refrigerant that has flowed into the indoor unit 53 is throttled to a low pressure by the indoor throttling device 12, exchanges heat with indoor air by the indoor heat exchanger 13, evaporates and vaporizes, and performs cooling.
  • the gas refrigerant flowing out of the indoor heat exchanger 13 is conducted through the gas pipe 17 and is sucked into the compressor 1 through the four-way valve 2 and the accumulator 18.
  • FIG. 5 is a control flowchart of the refrigeration cycle apparatus according to Embodiment 1 during a heat storage operation.
  • the heat storage operation is basically performed in a time zone without air conditioning load such as at night.
  • the temperature sensor 19 confirms whether the water temperature of the heat storage tank 8 is equal to or higher than a predetermined temperature T1. If it is below predetermined temperature T1, it will judge that the heat storage tank 8 is heat-accumulating, and a heat storage driving
  • STEP 5 it is determined whether or not the operation time from the start of operation of the compressor 1 by the heat storage operation has passed a predetermined time t1. If predetermined time t1 has passed, it will transfer to STEP6, thermal storage operation will be ended, and compressor 1 will be stopped. If predetermined time t1 has not passed, it will return to STEP4 and heat storage operation will be continued. In STEP 5, the end of the heat storage operation was determined based on the elapsed time from the start of the heat storage operation, but the temperature in the heat storage tank 8 was measured by the temperature sensor 19, and the heat storage operation was terminated when the temperature fell below a predetermined temperature. Also good.
  • FIG. 6 is a control flowchart of the refrigeration cycle apparatus according to Embodiment 1 during cooling operation.
  • the cooling operation is started, and the compressor 1 is operated at the set rotation frequency F2.
  • the temperature of the water in the heat storage tank 8 is detected by the temperature sensor 19, and if the temperature is equal to or higher than the predetermined temperature T 2, it is determined that the amount of heat storage is insufficient, the process proceeds to STEP 6, the electromagnetic valve 9 is opened, and the electromagnetic valve 10 is opened. Is closed, the opening of the expansion device 7 is closed, and the cooling operation is performed without circulating the refrigerant in the heat storage tank 8. If it is lower than the predetermined temperature T2, the process proceeds to STEP3.
  • the amount of heat generated by the outdoor control device 6 is calculated.
  • the calorific value is calculated by the pressure Pd detected by the high-pressure sensor 21 and the rotation frequency F2 of the compressor 1, and the value is obtained in advance by a test or the like.
  • the process proceeds to STEP 6, the electromagnetic valve 9 is opened, the electromagnetic valves 10 and 11 and the expansion device 7 are closed, and the cooling operation is performed without circulating the refrigerant through the heat storage tank 8. .
  • the heat generation amount is equal to or greater than the predetermined heat generation amount Q, the process proceeds to STEP4.
  • the solenoid valves 9 and 11 are closed, the solenoid valve 10 is opened, the opening degree of the expansion device 7 is set to a predetermined opening degree LEV7, the refrigerant is circulated through the heat storage tank 8, and the cooling and heat radiation operation is performed.
  • the heat storage tank 8 radiates heat to cool the refrigerant passing therethrough and increase the degree of supercooling.
  • STEP5 it is detected whether or not a predetermined time t2 has elapsed since the start of the cooling operation. If it has elapsed, the process returns to STEP2 to detect the amount of heat stored in the heat storage tank 8. If the predetermined time t2 has not elapsed, the operation time is detected until the predetermined time t2 elapses.
  • the refrigeration cycle apparatus generates the outdoor control device 6 during cooling operation by using the cold energy stored in the heat storage tank unit 52 at night by performing the above configuration and operation. Since heat is processed, a reduction in cooling capacity can be prevented. Moreover, since the heat storage is not used when the calorific value of the outdoor control device 6 is small, it is possible to prevent the heat storage amount from being reduced unnecessarily.
  • the heat storage medium with a freezing point higher than water can be employ
  • a heat storage medium for example, a paraffin or polyethylene glycol having a melting point higher than 0 ° C. is suitable.
  • the refrigerant can be flowed into the heat storage tank 8 during the air conditioning operation, and heat can be stored at a relatively high temperature.
  • the heat storage operation can be performed simultaneously with the air conditioning operation. Therefore, the compressor is not driven only for the heat storage operation, and the power consumption can be reduced by suppressing the driving time and the number of start / stop times of the compressor.
  • FIG. FIG. 7 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 7 shows an air conditioner as an example, and is largely composed of an outdoor unit 51 and an indoor unit 53.
  • the outdoor unit 51 and the indoor unit 53 are connected by liquid pipes 14 and 16 and a gas pipe 17.
  • the heat radiating circuit 32 is branched from the liquid pipe 14 at the flow dividing section 32b and connected to the liquid pipe 14 again at the merging section 32a via the expansion device 7, the heat storage tank 8, and the electromagnetic valve 10, and the electromagnetic valve 9 from the liquid pipe 14 is connected.
  • a direct connection circuit 33 connected to the liquid pipe 16 via
  • a heat storage tank 8 filled with a heat storage material 26 is installed so as to surround the accumulator 18.
  • the heat storage tank 8 and the accumulator 18 are in close contact and thermally connected so that heat exchange is possible. Since other refrigerant circuit configurations are the same as those in the first embodiment, description thereof is omitted.
  • FIG. 8 is a refrigerant circuit diagram illustrating the refrigerant flow during the cooling heat storage operation of the refrigeration cycle apparatus according to Embodiment 2.
  • a part of the refrigerant flowing out of the outdoor heat exchanger 3 is diverted from the liquid pipe 14 to the supercooling circuit 30 and decompressed by the expansion device 5, and heat is exchanged between the refrigerant in the liquid pipe 14 and the refrigerant heat exchanger 4.
  • the liquid refrigerant in the pipe 14 is supercooled and sucked into the compressor 1.
  • the liquid refrigerant whose degree of supercooling has increased absorbs heat generated by the outdoor control device 6 attached to the liquid pipe 14 and flows into the indoor unit 53 through the electromagnetic valve 9 of the direct connection circuit 33.
  • the refrigerant that has flowed into the indoor unit 53 is throttled to a low pressure by the indoor throttling device 12 and is evaporated and vaporized by exchanging heat with the indoor air by the indoor heat exchanger 13 to cool.
  • the gas refrigerant flowing out of the indoor heat exchanger 13 is conducted through the gas pipe 17 and is sucked into the compressor 1 through the four-way valve 2 and the accumulator 18.
  • FIG. 9 is a refrigerant circuit diagram illustrating the refrigerant flow during the cooling / radiating operation of the refrigeration cycle apparatus according to Embodiment 2.
  • a part of the refrigerant flowing out of the outdoor heat exchanger 3 is diverted from the liquid pipe 14 to the supercooling circuit 30 and decompressed by the expansion device 5, and heat is exchanged between the refrigerant in the liquid pipe 14 and the refrigerant heat exchanger 4.
  • the liquid refrigerant in the pipe 14 is supercooled and sucked into the compressor 1.
  • the liquid refrigerant whose degree of supercooling has increased absorbs heat generated by the outdoor control device 6 attached to the liquid pipe 14. Since the solenoid valve 9 is closed, this refrigerant flows into the heat dissipation circuit 32 and reaches the heat storage tank 8 through the expansion device 7. When passing through the heat storage tank 8, heat is exchanged with the heat storage material 26 inside the heat storage tank 8 to be cooled.
  • the cooled refrigerant flows into the indoor unit 53 through the electromagnetic valve 10.
  • the refrigerant that has flowed into the indoor unit 53 is throttled to a low pressure by the indoor throttling device 12, exchanges heat with indoor air by the indoor heat exchanger 13, evaporates and vaporizes, and performs cooling.
  • the gas refrigerant flowing out of the indoor heat exchanger 13 is conducted through the gas pipe 17 and is sucked into the compressor 1 through the four-way valve 2 and the accumulator 18.
  • the electromagnetic valve 9 is closed, and the expansion device 7 and the electromagnetic valve 10 are open.
  • the refrigeration cycle apparatus uses the cold energy stored in the heat storage tank 8 by the above configuration and operation to process the heat generated by the outdoor control device 6 during the cooling operation. Can be prevented.
  • the cooling heat is supplied to the heat storage tank 8 during the cooling heat radiation operation, the cooling heat radiation operation can be performed while supplementing the heat storage amount, and a decrease in the heat storage amount can be suppressed.
  • the compressor is not driven only for the heat storage operation, and the power consumption can be reduced by suppressing the drive time and the number of start / stop times of the compressor.
  • refrigerant employed in the refrigerant circuit is not particularly limited.
  • refrigerants such as R410A, R32, R407C, R404A, and HFO1234yf can be used from natural refrigerants such as carbon dioxide, hydrocarbons, and helium. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A refrigeration cycle device which constitutes a refrigerant circuit in which a refrigerant is circulated successively through a compressor, a flow path switching valve, a heat-source-side heat exchanger, a throttle device, and a use-side heat exchanger during cooling operation, the refrigeration cycle device comprising a heat radiation circuit in which a throttle device for a heat storage device and the heat storage device are provided successively from a branch section, which branches off from a high-pressure-side refrigerant pipe of the refrigerant circuit, to a merging section, which merges with the high-pressure-side refrigerant pipe. The heat storage device has: a heat storage operation for storing the coldness of the passing refrigerant; and a heat radiation operation for releasing the coldness stored in the heat storage device into the passing refrigerant. A control device accompanied by heat generation during operation is thermally connected to the refrigerant circuit between the branch section of the heat radiation circuit and the heat-source-side heat exchanger.

Description

冷凍サイクル装置、及びその冷凍サイクル装置を備えた空気調和装置Refrigeration cycle apparatus and air conditioner equipped with the refrigeration cycle apparatus
 本発明は、蓄熱装置を冷媒回路内に備え、制御装置を冷却する冷凍サイクル装置及びその冷凍サイクル装置を備えた空気調和装置に関するものである。 The present invention relates to a refrigeration cycle apparatus that includes a heat storage device in a refrigerant circuit and cools a control device, and an air conditioner that includes the refrigeration cycle apparatus.
 従来の技術として、冷媒回路内に冷却ジャケットを配置し、制御装置を当該冷却ジャケットに取り付けて制御装置の発熱を処理する冷凍サイクル装置が知られている。
 このような冷凍サイクル装置では、例えば冷房運転中に高圧側と低圧側との間に2つの減圧装置を用いて中間圧を設け、この中間圧部分に冷却ジャケットを熱的に接続して中温領域で制御装置の冷却を行っている(例えば引用文献1を参照)。
As a conventional technique, there is known a refrigeration cycle apparatus in which a cooling jacket is disposed in a refrigerant circuit and a control device is attached to the cooling jacket to process heat generated by the control device.
In such a refrigeration cycle device, for example, during cooling operation, an intermediate pressure is provided between two high pressure sides and a low pressure side by using two pressure reducing devices, and a cooling jacket is thermally connected to the intermediate pressure portion to provide an intermediate temperature region. The control device is cooled (see, for example, cited document 1).
特開2008-121985号公報Japanese Patent Laid-Open No. 2008-121985
 しかしながら、このような冷凍サイクル装置では、冷房運転に使用するための冷熱の一部を制御装置の冷却に使用してしまうため、特に夏場の圧縮機の高負荷時などで、制御装置のインバータやパワー素子などの発熱量が大きい時期に蒸発器での冷却能力が減少してしまうという問題があった。 However, in such a refrigeration cycle device, a part of the cold heat used for cooling operation is used for cooling the control device, so that the inverter of the control device or the There has been a problem that the cooling capacity of the evaporator is reduced when the amount of heat generated by the power element is large.
 本発明は、このような問題点を解決するためになされたもので、制御装置からの発熱が大きい場合でも確実に制御装置の冷却を行うとともに、蒸発器の冷却能力を維持することが可能な冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve such problems, and can reliably cool the control device and maintain the cooling capacity of the evaporator even when the heat generated from the control device is large. An object is to provide a refrigeration cycle apparatus.
 本発明に係る冷凍サイクル装置は、冷房運転の時に圧縮機、流路切替弁、熱源側熱交換器、絞り装置、利用側熱交換器、の順に冷媒が循環する冷媒回路を構成した冷凍サイクル装置であって、前記冷媒回路の高圧側冷媒配管から分岐する分流部から、蓄熱装置用絞り装置、蓄熱装置、を順に設けて前記高圧側冷媒配管に合流する合流部までの放熱回路を有し、前記蓄熱装置は、通過する冷媒の冷熱を蓄熱する蓄熱運転と、前記蓄熱装置に蓄熱した冷熱を通過する冷媒に放出する放熱運転とを有し、前記放熱回路の前記分流部と前記熱源側熱交換器との間の前記冷媒回路には、稼働時に発熱を伴う制御装置が熱的に接続されるものである。 The refrigeration cycle apparatus according to the present invention includes a refrigeration cycle apparatus in which a refrigerant circuit circulates in the order of a compressor, a flow path switching valve, a heat source side heat exchanger, a throttling device, and a use side heat exchanger during cooling operation. A heat dissipation circuit from a diversion part branched from the high-pressure side refrigerant pipe of the refrigerant circuit to a converging part that is sequentially provided with a heat storage device expansion device and a heat storage device, and merges with the high-pressure side refrigerant pipe; The heat storage device has a heat storage operation for storing the cold heat of the refrigerant passing therethrough, and a heat radiation operation for discharging the cold heat stored in the heat storage device to the refrigerant passing through the heat storage device. A control device that generates heat during operation is thermally connected to the refrigerant circuit between the exchanger and the exchanger.
 本発明に係る冷凍サイクル装置によれば、制御装置の発熱を処理し、過冷却度が減少した、もしくは2相状態となった冷媒を、冷熱を蓄熱した蓄熱装置に流通させ過冷却度を大きくとってから蒸発器に供給するため、制御装置からの発熱が大きい場合でも確実に制御装置の冷却を行うとともに、蒸発器の冷却能力を維持することが可能な冷凍サイクル装置を提供することができる。 According to the refrigeration cycle apparatus according to the present invention, the heat generated by the control device is processed, and the supercooling degree is reduced or the refrigerant that has entered a two-phase state is circulated to the heat storage device that stores the cold energy to increase the supercooling degree. Since the refrigerant is supplied to the evaporator after that, it is possible to provide a refrigeration cycle apparatus capable of reliably cooling the controller even when the controller generates a large amount of heat and maintaining the cooling capacity of the evaporator. .
実施の形態1に係る冷凍サイクル装置の冷媒回路図である。3 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置における制御装置のブロック図である。2 is a block diagram of a control device in the refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の蓄熱運転時における冷媒の流れを示した冷媒回路図である。3 is a refrigerant circuit diagram illustrating a refrigerant flow during a heat storage operation of the refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の冷房放熱運転時における冷媒の流れを示した冷媒回路図である。FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow during a cooling / radiating operation of the refrigeration cycle apparatus according to Embodiment 1. 実施の形態1に係る冷凍サイクル装置の蓄熱運転時の制御フローチャートである。3 is a control flowchart during a heat storage operation of the refrigeration cycle apparatus according to Embodiment 1. 実施の形態1に係る冷凍サイクル装置の冷房運転時の制御フローチャートである。3 is a control flowchart of the refrigeration cycle apparatus according to Embodiment 1 during cooling operation. 実施の形態2に係る冷凍サイクル装置の冷媒回路図である。6 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 2. FIG. 実施の形態2に係る冷凍サイクル装置の冷房蓄熱運転時における冷媒の流れを示した冷媒回路図である。6 is a refrigerant circuit diagram illustrating a refrigerant flow during a cooling heat storage operation of the refrigeration cycle apparatus according to Embodiment 2. FIG. 実施の形態2に係る冷凍サイクル装置の冷房放熱運転時における冷媒の流れを示した冷媒回路図である。FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow during a cooling / radiating operation of the refrigeration cycle apparatus according to Embodiment 2.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below.
 実施の形態1.
 図1は、本実施の形態1に係る冷凍サイクル装置の冷媒回路図である。
図1は、空気調和装置を例としたものであり、大きく室外ユニット51と、蓄熱槽ユニット52と、室内ユニット53とで構成されている。室外ユニット51と蓄熱槽ユニット52は、液配管14及びガス配管15で接続され、蓄熱槽ユニット52と室内ユニット53は、液配管16で接続され、さらに、室外ユニット51と室内ユニット53はガス配管17で接続されている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to the first embodiment.
FIG. 1 illustrates an air conditioner as an example, and is mainly composed of an outdoor unit 51, a heat storage tank unit 52, and an indoor unit 53. The outdoor unit 51 and the heat storage tank unit 52 are connected by the liquid pipe 14 and the gas pipe 15, the heat storage tank unit 52 and the indoor unit 53 are connected by the liquid pipe 16, and the outdoor unit 51 and the indoor unit 53 are gas pipes. 17 is connected.
 <室外ユニット51>
 室外ユニット51は、圧縮機1と、流路切り替え手段である四方弁2と、室外熱交換器3と、冷媒熱交換器4と、アキュムレータ18と、が冷媒配管にて直列に接続されている。
 室外側制御装置6は、液配管14と熱的に接続するよう配置されている。また、冷媒熱交換器4と、室外側制御装置6との間の冷媒配管から分岐し、冷媒を減圧して膨張させる機能を持つ絞り装置5、冷媒熱交換器4を介してアキュムレータ18の流入配管に接続する過冷却回路30を備えている。
 室外ユニット51は、蓄熱槽ユニット52と、室内ユニット53との通信によりデータのやりとりが行えるよう通信配線で互いに接続されている。また、室外ユニット51は、高圧側の圧力を検知する高圧圧力センサ21、低圧側の圧力を検知する低圧圧力センサ22を有している。
<Outdoor unit 51>
In the outdoor unit 51, the compressor 1, the four-way valve 2 that is a flow path switching unit, the outdoor heat exchanger 3, the refrigerant heat exchanger 4, and the accumulator 18 are connected in series by a refrigerant pipe. .
The outdoor side control device 6 is disposed so as to be thermally connected to the liquid pipe 14. Further, the refrigerant pipe between the refrigerant heat exchanger 4 and the outdoor side control device 6 branches, the expansion device 5 having the function of decompressing and expanding the refrigerant, and the inflow of the accumulator 18 through the refrigerant heat exchanger 4. A supercooling circuit 30 connected to the piping is provided.
The outdoor units 51 are connected to each other by communication wiring so that data can be exchanged by communication between the heat storage tank unit 52 and the indoor unit 53. The outdoor unit 51 includes a high-pressure sensor 21 that detects a high-pressure side pressure and a low-pressure sensor 22 that detects a low-pressure side pressure.
 <蓄熱槽ユニット52>
 蓄熱槽ユニット52は、液配管14から分流部31aで分岐し、絞り装置7、蓄熱槽8、電磁弁11を介してガス配管15に接続される蓄熱回路31と、蓄熱回路31の蓄熱槽8と電磁弁11との間から分岐して電磁弁10を通り合流部32aで液配管16へ合流する放熱回路32と、液配管14から電磁弁9を介して液配管16へ接続される直結回路33とを有している。
 蓄熱槽8には水が封入されている。また、蓄熱槽ユニット52には、蓄熱槽8の水温を検知する温度センサ19と、蓄熱槽8の冷媒出口部の温度を検知する温度センサ20とを有している。
<Heat storage tank unit 52>
The heat storage tank unit 52 branches from the liquid pipe 14 at the flow dividing portion 31 a and is connected to the gas pipe 15 via the expansion device 7, the heat storage tank 8 and the electromagnetic valve 11, and the heat storage tank 8 of the heat storage circuit 31. Radiating circuit 32 which branches from between the electromagnetic valve 11 and the electromagnetic valve 10 and merges with the liquid pipe 16 at the merging portion 32a through the electromagnetic valve 10, and a direct connection circuit connected from the liquid pipe 14 to the liquid pipe 16 via the electromagnetic valve 9 33.
Water is enclosed in the heat storage tank 8. In addition, the heat storage tank unit 52 includes a temperature sensor 19 that detects the water temperature of the heat storage tank 8 and a temperature sensor 20 that detects the temperature of the refrigerant outlet of the heat storage tank 8.
<室内ユニット53>
 室内ユニット53は、室内絞り装置12、室内熱交換器13が接続されて構成されている。室内熱交換器13は、凝縮器や蒸発器として機能し、図示省略の送風手段から供給される室内の空気と冷媒との間で熱交換を行い、冷媒を凝縮液化又は蒸発ガス化するものである。室内ユニット53は、室内熱交換器13の入口冷媒温度を検知する入口温度センサ23と室内熱交換器13の出口冷媒温度を検知する出口温度センサ24とを備えている。
<Indoor unit 53>
The indoor unit 53 is configured by connecting the indoor expansion device 12 and the indoor heat exchanger 13. The indoor heat exchanger 13 functions as a condenser or an evaporator, performs heat exchange between indoor air supplied from a blower means (not shown) and the refrigerant, and condenses or liquefies the refrigerant. is there. The indoor unit 53 includes an inlet temperature sensor 23 that detects an inlet refrigerant temperature of the indoor heat exchanger 13 and an outlet temperature sensor 24 that detects an outlet refrigerant temperature of the indoor heat exchanger 13.
 次に、実施の形態1に係る冷凍サイクル装置の制御装置の構成について説明する。
 図2は、実施の形態1に係る冷凍サイクル装置における制御装置のブロック図である。
 室外ユニット51は、室外側制御装置6を有している。蓄熱槽ユニット52は、蓄熱槽ユニット制御装置101を有している。そして、室内ユニット53は、室内側制御装置102を有している。
 本実施の形態では、これら各制御装置を通信線で接続しており、信号通信を行うことができる。そして、室外側制御装置6は、計時を行うためのタイマ(図示せず)を有している。
Next, the configuration of the control device for the refrigeration cycle apparatus according to Embodiment 1 will be described.
FIG. 2 is a block diagram of a control device in the refrigeration cycle apparatus according to the first embodiment.
The outdoor unit 51 has an outdoor side control device 6. The heat storage tank unit 52 has a heat storage tank unit control device 101. The indoor unit 53 has an indoor control device 102.
In this embodiment, these control devices are connected by a communication line, and signal communication can be performed. And the outdoor side control apparatus 6 has a timer (not shown) for measuring time.
 室外側制御装置6には、高圧圧力センサ21から圧力Pdの信号及び低圧圧力センサ22から圧力Psの信号が入力される。
 蓄熱槽ユニット制御装置101には、温度センサ19、20の検知温度T19,T20が入力され、室外側制御装置6に送信される。
 また、室内側制御装置102には、温度センサ23、24からそれぞれ温度T23、T24の信号が入力される。
The outdoor control device 6 receives a signal of the pressure Pd from the high pressure sensor 21 and a signal of the pressure Ps from the low pressure sensor 22.
Detected temperatures T19 and T20 of the temperature sensors 19 and 20 are input to the heat storage tank unit control device 101 and transmitted to the outdoor control device 6.
Further, the indoor side control device 102 receives signals of temperatures T23 and T24 from the temperature sensors 23 and 24, respectively.
 室外側制御装置6は、入力したこれらのデータに基づいて、圧縮機1の運転周波数、室外熱交換器3の熱交換容量、並びに絞り装置5の開度を演算する。そして、演算結果に基づいて、室外ユニット51の圧縮機1の運転周波数と室外熱交換器3の熱交換容量を図示しない室外ファンの回転数により制御する。 The outdoor side control device 6 calculates the operating frequency of the compressor 1, the heat exchange capacity of the outdoor heat exchanger 3, and the opening degree of the expansion device 5 based on these input data. Based on the calculation result, the operating frequency of the compressor 1 of the outdoor unit 51 and the heat exchange capacity of the outdoor heat exchanger 3 are controlled by the rotational speed of an outdoor fan (not shown).
 また、室外側制御装置6からの信号に基づいて、蓄熱槽ユニット制御装置101は絞り装置7の開度LEV7を制御する。 Further, based on the signal from the outdoor control device 6, the heat storage tank unit control device 101 controls the opening degree LEV7 of the expansion device 7.
 室内側制御装置102は、温度T23、T24に基づいて、室内絞り装置12の開度を演算し、室内絞り装置12の開度LEV12を制御する。 The indoor side control device 102 calculates the opening degree of the indoor expansion device 12 based on the temperatures T23 and T24, and controls the opening degree LEV12 of the indoor expansion device 12.
 次に、冷凍サイクル装置の運転モードについて説明する。
 まず、蓄熱運転の場合の冷媒の動作について説明する。
 <蓄熱運転>
 図3は、実施の形態1に係る冷凍サイクル装置の蓄熱運転時における冷媒の流れを示した冷媒回路図である。
 圧縮機1を駆動すると、高温、高圧のガス冷媒が圧縮機1から吐出され、四方弁2を介し室外熱交換器3へ流入し、室外熱交換器3で室外空気と熱交換し、凝縮、液化する。
 室外熱交換器3から流出した冷媒の一部は、液配管14から過冷却回路30に分流されて絞り装置5で減圧され、液配管14の冷媒と冷媒熱交換器4で熱交換し、液配管14内の液冷媒を過冷却して圧縮機1に吸引される。一方、過冷却度が増加した液冷媒は、液配管14に取り付けられた室外側制御装置6の発熱を吸収し、蓄熱槽ユニット52へ流入する。
Next, the operation mode of the refrigeration cycle apparatus will be described.
First, the operation of the refrigerant in the case of the heat storage operation will be described.
<Heat storage operation>
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow during the heat storage operation of the refrigeration cycle apparatus according to Embodiment 1.
When the compressor 1 is driven, high-temperature and high-pressure gas refrigerant is discharged from the compressor 1 and flows into the outdoor heat exchanger 3 through the four-way valve 2, exchanges heat with outdoor air in the outdoor heat exchanger 3, condenses, Liquefaction.
A part of the refrigerant flowing out of the outdoor heat exchanger 3 is diverted from the liquid pipe 14 to the supercooling circuit 30 and decompressed by the expansion device 5, and heat is exchanged between the refrigerant in the liquid pipe 14 and the refrigerant heat exchanger 4. The liquid refrigerant in the pipe 14 is supercooled and sucked into the compressor 1. On the other hand, the liquid refrigerant whose degree of supercooling has increased absorbs heat generated by the outdoor control device 6 attached to the liquid pipe 14 and flows into the heat storage tank unit 52.
 蓄熱槽ユニット52へ流入した冷媒は、蓄熱回路31の絞り装置7で減圧、膨張され蓄熱槽8へ流入する。減圧された低圧の冷媒は、蓄熱槽8内の水と熱交換して蒸発、気化し、電磁弁11、アキュムレータ18を介して圧縮機1に吸引される。
 蓄熱槽8内の水は、低圧の冷媒と熱交換し、氷に状態変化する。このとき、蓄熱槽ユニット52では、電磁弁9、電磁弁10は閉であり、電磁弁11は開の状態となっている。
The refrigerant flowing into the heat storage tank unit 52 is decompressed and expanded by the expansion device 7 of the heat storage circuit 31 and flows into the heat storage tank 8. The decompressed low-pressure refrigerant exchanges heat with water in the heat storage tank 8 to evaporate and vaporize, and is sucked into the compressor 1 via the electromagnetic valve 11 and the accumulator 18.
The water in the heat storage tank 8 exchanges heat with the low-pressure refrigerant, and changes its state to ice. At this time, in the heat storage tank unit 52, the solenoid valve 9 and the solenoid valve 10 are closed, and the solenoid valve 11 is open.
 次に冷房放熱運転の冷媒の動作について説明する。
 <冷房放熱運転>
 図4は、実施の形態1に係る冷凍サイクル装置の冷房放熱運転時における冷媒の流れを示した冷媒回路図である。
 室外ユニット51から蓄熱槽ユニット52へ流入した液冷媒は、絞り装置7で中間圧となり、蓄熱槽8で氷と熱交換して冷却され過冷却度が増加する。蓄熱槽8を流出した冷媒は、放熱回路32の電磁弁10を介し、室内ユニット53へと流入する。蓄熱槽ユニット52では、電磁弁9、電磁弁11は閉となり、電磁弁10は開の状態となっている。
Next, the operation of the refrigerant in the cooling / radiating operation will be described.
<Cooling heat dissipation operation>
FIG. 4 is a refrigerant circuit diagram illustrating the refrigerant flow during the cooling / radiating operation of the refrigeration cycle apparatus according to Embodiment 1.
The liquid refrigerant flowing into the heat storage tank unit 52 from the outdoor unit 51 becomes an intermediate pressure in the expansion device 7 and is cooled by exchanging heat with ice in the heat storage tank 8 to increase the degree of supercooling. The refrigerant that has flowed out of the heat storage tank 8 flows into the indoor unit 53 through the electromagnetic valve 10 of the heat dissipation circuit 32. In the heat storage tank unit 52, the solenoid valve 9 and the solenoid valve 11 are closed, and the solenoid valve 10 is open.
 なお、蓄熱槽8の氷が融解し水温が上昇して冷媒を冷却できない場合や、室外側制御装置6の発熱量が小さく、室内熱交換器13での冷却能力の低下が小さい場合は、絞り装置7、電磁弁10を閉とし、直結回路33の電磁弁9を開として、冷媒を室外ユニット51から電磁弁9を介して室内ユニット53へ流入させる。 If the ice in the heat storage tank 8 melts and the water temperature rises and the refrigerant cannot be cooled, or if the heat generation amount of the outdoor control device 6 is small and the decrease in the cooling capacity in the indoor heat exchanger 13 is small, The apparatus 7 and the electromagnetic valve 10 are closed, the electromagnetic valve 9 of the direct connection circuit 33 is opened, and the refrigerant flows from the outdoor unit 51 into the indoor unit 53 through the electromagnetic valve 9.
 室内ユニット53に流入した冷媒は、室内絞り装置12で低圧に絞られ、室内熱交換器13で室内空気と熱交換し、蒸発、気化して冷房を行う。室内熱交換器13を流出したガス冷媒は、ガス配管17を導通し、四方弁2、アキュムレータ18を介して圧縮機1に吸引される。 The refrigerant that has flowed into the indoor unit 53 is throttled to a low pressure by the indoor throttling device 12, exchanges heat with indoor air by the indoor heat exchanger 13, evaporates and vaporizes, and performs cooling. The gas refrigerant flowing out of the indoor heat exchanger 13 is conducted through the gas pipe 17 and is sucked into the compressor 1 through the four-way valve 2 and the accumulator 18.
 次に、本実施の形態の各運転モードの制御フローについて説明する。
 図5は、実施の形態1に係る冷凍サイクル装置の蓄熱運転時の制御フローチャートである。
 蓄熱運転は、基本的に夜間等の空調負荷の無い時間帯に実施されるものである。
Next, the control flow in each operation mode of the present embodiment will be described.
FIG. 5 is a control flowchart of the refrigeration cycle apparatus according to Embodiment 1 during a heat storage operation.
The heat storage operation is basically performed in a time zone without air conditioning load such as at night.
 はじめに、STEP1では、室内での空調負荷がなく圧縮機1が停止している。
 STEP2では、温度センサ19にて蓄熱槽8の水温が所定の温度T1以上か否かを確認する。
 所定の温度T1以下であれば、蓄熱槽8が蓄熱されていると判断し、蓄熱運転は行わない。
 所定の温度T1以上であればSTEP3へ移行し、蓄熱運転を開始し経過時間のカウントを開始する。STEP4に進んで蓄熱運転時の圧縮機1を設定された回転周波数F1となるように運転する。
 また、絞り装置7を蓄熱槽8の冷媒出口側の温度センサ20が所定の検出値となるよう開度LEV7を設定し、電磁弁9、10を閉、電磁弁11を開とする。
First, in STEP1, there is no air conditioning load in the room and the compressor 1 is stopped.
In STEP2, the temperature sensor 19 confirms whether the water temperature of the heat storage tank 8 is equal to or higher than a predetermined temperature T1.
If it is below predetermined temperature T1, it will judge that the heat storage tank 8 is heat-accumulating, and a heat storage driving | operation will not be performed.
If it is more than predetermined temperature T1, it will transfer to STEP3, thermal storage operation will be started, and counting of elapsed time will be started. Proceeding to STEP 4, the compressor 1 during the heat storage operation is operated so as to have the set rotation frequency F1.
Further, the opening degree LEV7 of the expansion device 7 is set so that the temperature sensor 20 on the refrigerant outlet side of the heat storage tank 8 has a predetermined detection value, the electromagnetic valves 9 and 10 are closed, and the electromagnetic valve 11 is opened.
 次に、STEP5では、蓄熱運転による圧縮機1の運転開始からの運転時間が所定の時間t1を経過したか否かを判断する。所定の時間t1が経過していれば、STEP6へ移行し、蓄熱運転を終了し圧縮機1を停止する。所定の時間t1が経過していなければ、STEP4に戻り、蓄熱運転を継続する。
 なお、STEP5にて蓄熱運転開始からの経過時間により蓄熱運転の終了を判断したが、蓄熱槽8内の温度を温度センサ19で計測し、所定温度以下に低下した時点で蓄熱運転を終了させてもよい。
Next, in STEP 5, it is determined whether or not the operation time from the start of operation of the compressor 1 by the heat storage operation has passed a predetermined time t1. If predetermined time t1 has passed, it will transfer to STEP6, thermal storage operation will be ended, and compressor 1 will be stopped. If predetermined time t1 has not passed, it will return to STEP4 and heat storage operation will be continued.
In STEP 5, the end of the heat storage operation was determined based on the elapsed time from the start of the heat storage operation, but the temperature in the heat storage tank 8 was measured by the temperature sensor 19, and the heat storage operation was terminated when the temperature fell below a predetermined temperature. Also good.
 次に、冷房運転時の制御フローについて説明する。
 図6は、実施の形態1に係る冷凍サイクル装置の冷房運転時の制御フローチャートである。STEP1では、冷房運転が開始され、圧縮機1は設定された回転周波数F2で運転される。
Next, a control flow during cooling operation will be described.
FIG. 6 is a control flowchart of the refrigeration cycle apparatus according to Embodiment 1 during cooling operation. In STEP1, the cooling operation is started, and the compressor 1 is operated at the set rotation frequency F2.
 STEP2では、温度センサ19で蓄熱槽8内の水温を検知し、所定の温度T2以上であれば蓄熱量が不足していると判断し、STEP6へ移行して電磁弁9を開、電磁弁10を閉、絞り装置7の開度を閉とし、蓄熱槽8に冷媒を流通させずに冷房運転を行う。所定の温度T2未満であれば、STEP3へと移行する。 In STEP 2, the temperature of the water in the heat storage tank 8 is detected by the temperature sensor 19, and if the temperature is equal to or higher than the predetermined temperature T 2, it is determined that the amount of heat storage is insufficient, the process proceeds to STEP 6, the electromagnetic valve 9 is opened, and the electromagnetic valve 10 is opened. Is closed, the opening of the expansion device 7 is closed, and the cooling operation is performed without circulating the refrigerant in the heat storage tank 8. If it is lower than the predetermined temperature T2, the process proceeds to STEP3.
 STEP3では、室外側制御装置6の発熱量を演算する。発熱量は、高圧圧力センサ21で検知される圧力Pd、圧縮機1の回転周波数F2によって演算され、その数値は試験などであらかじめ求めておく。発熱量が所定の発熱量Q未満の場合は、STEP6へ移行し、電磁弁9を開、電磁弁10、11、絞り装置7を閉として蓄熱槽8に冷媒を流通させずに冷房運転を行う。発熱量が所定の発熱量Q以上の場合は、STEP4へ移行する。 In STEP 3, the amount of heat generated by the outdoor control device 6 is calculated. The calorific value is calculated by the pressure Pd detected by the high-pressure sensor 21 and the rotation frequency F2 of the compressor 1, and the value is obtained in advance by a test or the like. When the calorific value is less than the predetermined calorific value Q, the process proceeds to STEP 6, the electromagnetic valve 9 is opened, the electromagnetic valves 10 and 11 and the expansion device 7 are closed, and the cooling operation is performed without circulating the refrigerant through the heat storage tank 8. . When the heat generation amount is equal to or greater than the predetermined heat generation amount Q, the process proceeds to STEP4.
 STEP4では電磁弁9、11を閉、電磁弁10を開、絞り装置7の開度を所定の開度LEV7に設定し、蓄熱槽8に冷媒を流通させ、冷房放熱運転を実施する。蓄熱槽8が放熱することで通過する冷媒を冷却し、過冷却度を増加させる。 In STEP 4, the solenoid valves 9 and 11 are closed, the solenoid valve 10 is opened, the opening degree of the expansion device 7 is set to a predetermined opening degree LEV7, the refrigerant is circulated through the heat storage tank 8, and the cooling and heat radiation operation is performed. The heat storage tank 8 radiates heat to cool the refrigerant passing therethrough and increase the degree of supercooling.
 STEP5では、冷房運転を開始してから所定の時間t2が経過しているか否かを検知し、経過していれば、STEP2へ戻り、蓄熱槽8の蓄熱量を検知する。所定の時間t2が経過していなければ、所定の時間t2が経過するまで、当該運転時間を検知する。 In STEP5, it is detected whether or not a predetermined time t2 has elapsed since the start of the cooling operation. If it has elapsed, the process returns to STEP2 to detect the amount of heat stored in the heat storage tank 8. If the predetermined time t2 has not elapsed, the operation time is detected until the predetermined time t2 elapses.
 実施の形態1に係る冷凍サイクル装置は、以上の構成、動作をすることにより、夜間に蓄熱槽ユニット52に蓄熱した冷熱を昼間に利用することで、冷房運転時に室外側制御装置6が発生した熱を処理するため、冷房能力の低下を防止することができる。また、室外側制御装置6の発熱量が小さい場合は、蓄熱を使用しないため、蓄熱量が無駄に減少することを抑制することができる。 The refrigeration cycle apparatus according to Embodiment 1 generates the outdoor control device 6 during cooling operation by using the cold energy stored in the heat storage tank unit 52 at night by performing the above configuration and operation. Since heat is processed, a reduction in cooling capacity can be prevented. Moreover, since the heat storage is not used when the calorific value of the outdoor control device 6 is small, it is possible to prevent the heat storage amount from being reduced unnecessarily.
 なお、実施の形態1では、蓄熱槽8に封入される蓄熱媒体として水を採用した例を示したが、水よりも凝固点の高い蓄熱媒体を採用することができる。このような蓄熱媒体としては、例えばパラフィンやポリエチレングリコールなどで融点が0℃よりも大きいものが好適である。融点が0℃以上の潜熱蓄熱材を用いることで、空調運転中に蓄熱槽8内へも冷媒を流し、比較的高い温度で蓄熱をすることができるため、低圧側の圧力の低下を抑えて空調運転と同時に蓄熱運転を実施することができる。
 そのため、蓄熱運転のためだけに圧縮機を駆動することがなく、圧縮機の駆動時間や発停回数を抑えることで消費電力の削減をすることができる。
In addition, in Embodiment 1, although the example which employ | adopted water as a heat storage medium enclosed with the heat storage tank 8 was shown, the heat storage medium with a freezing point higher than water can be employ | adopted. As such a heat storage medium, for example, a paraffin or polyethylene glycol having a melting point higher than 0 ° C. is suitable. By using a latent heat storage material having a melting point of 0 ° C. or higher, the refrigerant can be flowed into the heat storage tank 8 during the air conditioning operation, and heat can be stored at a relatively high temperature. The heat storage operation can be performed simultaneously with the air conditioning operation.
Therefore, the compressor is not driven only for the heat storage operation, and the power consumption can be reduced by suppressing the driving time and the number of start / stop times of the compressor.
 実施の形態2.
 図7は、実施の形態2に係る冷凍サイクル装置の冷媒回路図である。
図7は、空気調和装置を例としたものであり、大きく室外ユニット51と、室内ユニット53とで構成されている。室外ユニット51と室内ユニット53とは、液配管14、16とガス配管17とで接続されている。液配管14から分流部32bで分岐し、絞り装置7、蓄熱槽8、電磁弁10を介して再び合流部32aにて液配管14に接続される放熱回路32と、液配管14から電磁弁9を介して液配管16へ接続される直結回路33とを有している。
Embodiment 2. FIG.
FIG. 7 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 2.
FIG. 7 shows an air conditioner as an example, and is largely composed of an outdoor unit 51 and an indoor unit 53. The outdoor unit 51 and the indoor unit 53 are connected by liquid pipes 14 and 16 and a gas pipe 17. The heat radiating circuit 32 is branched from the liquid pipe 14 at the flow dividing section 32b and connected to the liquid pipe 14 again at the merging section 32a via the expansion device 7, the heat storage tank 8, and the electromagnetic valve 10, and the electromagnetic valve 9 from the liquid pipe 14 is connected. And a direct connection circuit 33 connected to the liquid pipe 16 via
 実施の形態1との主な相違点は、アキュムレータ18を囲うように蓄熱材26が充填された蓄熱槽8が設置されている点である。
 蓄熱槽8とアキュムレータ18は密着して熱的に接続されており、熱交換が可能な構成となっている。
 その他の冷媒回路の構成は実施の形態1と共通のため説明を省略する。
The main difference from the first embodiment is that a heat storage tank 8 filled with a heat storage material 26 is installed so as to surround the accumulator 18.
The heat storage tank 8 and the accumulator 18 are in close contact and thermally connected so that heat exchange is possible.
Since other refrigerant circuit configurations are the same as those in the first embodiment, description thereof is omitted.
 次に、本実施の形態の冷房蓄熱運転時の冷媒の流れについて説明する。
 <冷房蓄熱運転>
 図8は、実施の形態2に係る冷凍サイクル装置の冷房蓄熱運転時における冷媒の流れを示した冷媒回路図である。
 圧縮機1を駆動すると、高温、高圧のガス冷媒が圧縮機1から吐出され、四方弁2を介し室外熱交換器3へ流入し、室外熱交換器3で室外空気と熱交換し、凝縮、液化する。
 室外熱交換器3から流出した冷媒の一部は、液配管14から過冷却回路30に分流されて絞り装置5で減圧され、液配管14の冷媒と冷媒熱交換器4で熱交換し、液配管14内の液冷媒を過冷却して圧縮機1に吸引される。一方、過冷却度が増加した液冷媒は、液配管14に取り付けられた室外側制御装置6の発熱を吸収し、直結回路33の電磁弁9を通って室内ユニット53へ流入する。
Next, the flow of the refrigerant during the cooling heat storage operation of the present embodiment will be described.
<Cooling heat storage operation>
FIG. 8 is a refrigerant circuit diagram illustrating the refrigerant flow during the cooling heat storage operation of the refrigeration cycle apparatus according to Embodiment 2.
When the compressor 1 is driven, high-temperature and high-pressure gas refrigerant is discharged from the compressor 1 and flows into the outdoor heat exchanger 3 through the four-way valve 2, exchanges heat with outdoor air in the outdoor heat exchanger 3, condenses, Liquefaction.
A part of the refrigerant flowing out of the outdoor heat exchanger 3 is diverted from the liquid pipe 14 to the supercooling circuit 30 and decompressed by the expansion device 5, and heat is exchanged between the refrigerant in the liquid pipe 14 and the refrigerant heat exchanger 4. The liquid refrigerant in the pipe 14 is supercooled and sucked into the compressor 1. On the other hand, the liquid refrigerant whose degree of supercooling has increased absorbs heat generated by the outdoor control device 6 attached to the liquid pipe 14 and flows into the indoor unit 53 through the electromagnetic valve 9 of the direct connection circuit 33.
 室内ユニット53へ流入した冷媒は、室内絞り装置12で低圧に絞られ、室内熱交換器13で室内空気と熱交換して蒸発、気化し、冷房を行う。室内熱交換器13を流出したガス冷媒はガス配管17を導通し、四方弁2、アキュムレータ18を介して圧縮機1に吸引される。 The refrigerant that has flowed into the indoor unit 53 is throttled to a low pressure by the indoor throttling device 12 and is evaporated and vaporized by exchanging heat with the indoor air by the indoor heat exchanger 13 to cool. The gas refrigerant flowing out of the indoor heat exchanger 13 is conducted through the gas pipe 17 and is sucked into the compressor 1 through the four-way valve 2 and the accumulator 18.
 アキュムレータ18には低圧、低温の冷媒が流通しており、アキュムレータ18の表面の温度は冷房運転中でも低い状態になっている。蓄熱槽8はアキュムレータ18と熱的に接続されているため、低温の冷媒の冷熱により蓄熱材26が蓄熱される。
 冷房蓄熱運転では、電磁弁9は開であり、絞り装置7及び電磁弁10は閉の状態となっている。
A low-pressure, low-temperature refrigerant flows through the accumulator 18, and the surface temperature of the accumulator 18 is low even during the cooling operation. Since the heat storage tank 8 is thermally connected to the accumulator 18, the heat storage material 26 is stored by the cold heat of the low-temperature refrigerant.
In the cooling heat storage operation, the electromagnetic valve 9 is open, and the expansion device 7 and the electromagnetic valve 10 are closed.
 次に、冷房放熱運転時の冷媒の流れについて説明する。
 <冷房放熱運転>
 図9は、実施の形態2に係る冷凍サイクル装置の冷房放熱運転時における冷媒の流れを示した冷媒回路図である。
 圧縮機1を駆動すると、高温、高圧のガス冷媒が圧縮機1から吐出され、四方弁2を介し室外熱交換器3へ流入し、室外熱交換器3で室外空気と熱交換し、凝縮、液化する。
 室外熱交換器3から流出した冷媒の一部は、液配管14から過冷却回路30に分流されて絞り装置5で減圧され、液配管14の冷媒と冷媒熱交換器4で熱交換し、液配管14内の液冷媒を過冷却して圧縮機1に吸引される。一方、過冷却度が増加した液冷媒は、液配管14に取り付けられた室外側制御装置6の発熱を吸収する。この冷媒は、電磁弁9は閉止されているため、放熱回路32に流入し、絞り装置7を介して蓄熱槽8に至る。蓄熱槽8を通過する際、蓄熱槽8内部の蓄熱材26と熱交換を行い冷却される。冷却された冷媒は電磁弁10を介して、室内ユニット53に流入する。
Next, the flow of the refrigerant during the cooling / radiating operation will be described.
<Cooling heat dissipation operation>
FIG. 9 is a refrigerant circuit diagram illustrating the refrigerant flow during the cooling / radiating operation of the refrigeration cycle apparatus according to Embodiment 2.
When the compressor 1 is driven, high-temperature and high-pressure gas refrigerant is discharged from the compressor 1 and flows into the outdoor heat exchanger 3 through the four-way valve 2, exchanges heat with outdoor air in the outdoor heat exchanger 3, condenses, Liquefaction.
A part of the refrigerant flowing out of the outdoor heat exchanger 3 is diverted from the liquid pipe 14 to the supercooling circuit 30 and decompressed by the expansion device 5, and heat is exchanged between the refrigerant in the liquid pipe 14 and the refrigerant heat exchanger 4. The liquid refrigerant in the pipe 14 is supercooled and sucked into the compressor 1. On the other hand, the liquid refrigerant whose degree of supercooling has increased absorbs heat generated by the outdoor control device 6 attached to the liquid pipe 14. Since the solenoid valve 9 is closed, this refrigerant flows into the heat dissipation circuit 32 and reaches the heat storage tank 8 through the expansion device 7. When passing through the heat storage tank 8, heat is exchanged with the heat storage material 26 inside the heat storage tank 8 to be cooled. The cooled refrigerant flows into the indoor unit 53 through the electromagnetic valve 10.
 室内ユニット53に流入した冷媒は、室内絞り装置12で低圧に絞られ、室内熱交換器13で室内空気と熱交換し、蒸発、気化して冷房を行う。室内熱交換器13を流出したガス冷媒は、ガス配管17を導通し、四方弁2、アキュムレータ18を介して圧縮機1に吸引される。冷房放熱運転では、電磁弁9は閉となり、絞り装置7及び電磁弁10は開の状態となっている。 The refrigerant that has flowed into the indoor unit 53 is throttled to a low pressure by the indoor throttling device 12, exchanges heat with indoor air by the indoor heat exchanger 13, evaporates and vaporizes, and performs cooling. The gas refrigerant flowing out of the indoor heat exchanger 13 is conducted through the gas pipe 17 and is sucked into the compressor 1 through the four-way valve 2 and the accumulator 18. In the cooling heat radiation operation, the electromagnetic valve 9 is closed, and the expansion device 7 and the electromagnetic valve 10 are open.
 アキュムレータ18には、低温、低圧の冷媒が流入するため、冷房放熱運転時も蓄熱材26には冷熱が供給され、放熱と蓄熱とを同時に行うことができる。 Since low-temperature and low-pressure refrigerant flows into the accumulator 18, cold heat is supplied to the heat storage material 26 even during the cooling heat radiation operation, and heat radiation and heat storage can be performed simultaneously.
 実施の形態2に係る冷凍サイクル装置は、以上の構成、動作により、蓄熱槽8に蓄熱した冷熱を利用することで、冷房運転時に室外側制御装置6が発生した熱を処理するため、冷房能力の低下を防止することができる。また、冷房放熱運転中も冷熱が蓄熱槽8に供給されるため、蓄熱量を補いながら冷房放熱運転ができるようになり、蓄熱量の減少を抑制することができる。また、蓄熱運転のためだけに圧縮機を駆動することがなく、圧縮機の駆動時間や発停回数を抑えることで消費電力の削減をすることができる。
 なお、本実施の形態2でも、実施の形態1に係る蓄熱運転の制御フロー及び冷房運転の制御フローを採用することが可能である。
The refrigeration cycle apparatus according to Embodiment 2 uses the cold energy stored in the heat storage tank 8 by the above configuration and operation to process the heat generated by the outdoor control device 6 during the cooling operation. Can be prevented. In addition, since the cooling heat is supplied to the heat storage tank 8 during the cooling heat radiation operation, the cooling heat radiation operation can be performed while supplementing the heat storage amount, and a decrease in the heat storage amount can be suppressed. In addition, the compressor is not driven only for the heat storage operation, and the power consumption can be reduced by suppressing the drive time and the number of start / stop times of the compressor.
In the second embodiment, it is also possible to employ the control flow for the heat storage operation and the control flow for the cooling operation according to the first embodiment.
 また、冷媒回路に採用する冷媒は特に限定されることはなく、例えば二酸化炭素や炭化水素、ヘリウムのような自然冷媒から、R410A、R32、R407C、R404A、HFO1234yfなどの冷媒を使用することが可能である。 The refrigerant employed in the refrigerant circuit is not particularly limited. For example, refrigerants such as R410A, R32, R407C, R404A, and HFO1234yf can be used from natural refrigerants such as carbon dioxide, hydrocarbons, and helium. It is.
 1 圧縮機、2 四方弁、3 室外熱交換器、4 冷媒熱交換器、5 絞り装置、6 室外側制御装置、7 絞り装置、8 蓄熱槽、9 電磁弁、10 電磁弁、11 電磁弁、12 室内絞り装置、13 室内熱交換器、14 液配管、15 ガス配管、16 液配管、17 ガス配管、18 アキュムレータ、19 温度センサ、20 温度センサ、21 高圧圧力センサ、22 低圧圧力センサ、23 入口温度センサ、24 出口温度センサ、26 蓄熱材、30 過冷却回路、31 蓄熱回路、31a 分流部、32 放熱回路、32a 合流部、32b 分流部、33 直結回路、51 室外ユニット、52 蓄熱槽ユニット、53 室内ユニット、101 蓄熱槽ユニット制御装置、102 室内側制御装置。
 
1 compressor, 2 four-way valve, 3 outdoor heat exchanger, 4 refrigerant heat exchanger, 5 throttle device, 6 outdoor control device, 7 throttle device, 8 thermal storage tank, 9 solenoid valve, 10 solenoid valve, 11 solenoid valve, 12 indoor expansion device, 13 indoor heat exchanger, 14 liquid piping, 15 gas piping, 16 liquid piping, 17 gas piping, 18 accumulator, 19 temperature sensor, 20 temperature sensor, 21 high pressure sensor, 22 low pressure sensor, 23 inlet Temperature sensor, 24 outlet temperature sensor, 26 heat storage material, 30 supercooling circuit, 31 heat storage circuit, 31a branching section, 32 heat dissipation circuit, 32a junction section, 32b branching section, 33 direct connection circuit, 51 outdoor unit, 52 heat storage tank unit, 53 indoor unit, 101 heat storage tank unit control apparatus, 102 indoor side control apparatus.

Claims (9)

  1.  冷房運転の時に圧縮機、流路切替弁、熱源側熱交換器、絞り装置、利用側熱交換器、の順に冷媒が循環する冷媒回路を構成した冷凍サイクル装置であって、
     前記冷媒回路の高圧側冷媒配管から分岐する分流部から、蓄熱装置用絞り装置、蓄熱装置、を順に設けて前記高圧側冷媒配管に合流する合流部までの放熱回路を有し、
     前記蓄熱装置は、通過する冷媒の冷熱を蓄熱する蓄熱運転と、前記蓄熱装置に蓄熱した冷熱を通過する冷媒に放出する放熱運転とのいずれかの運転に供され、
     前記放熱回路の前記分流部と前記熱源側熱交換器との間の前記冷媒回路には、稼働時に発熱を伴う制御装置が熱的に接続される冷凍サイクル装置。
    A refrigeration cycle apparatus configured with a refrigerant circuit in which refrigerant circulates in the order of a compressor, a flow path switching valve, a heat source side heat exchanger, a throttling device, and a use side heat exchanger during cooling operation,
    A heat dissipation circuit from a diversion part branched from the high-pressure side refrigerant pipe of the refrigerant circuit to a merging part that is provided in order with a condensing device for a heat storage device and a heat storage device, and merges with the high-pressure side refrigerant pipe;
    The heat storage device is provided for any one of a heat storage operation for storing cold heat of a refrigerant passing therethrough and a heat radiation operation for discharging the refrigerant passing through the cold heat stored in the heat storage device,
    A refrigerating cycle device in which a control device that generates heat during operation is thermally connected to the refrigerant circuit between the flow dividing section of the heat dissipation circuit and the heat source side heat exchanger.
  2.  前記制御装置と前記熱源側熱交換器との間の前記冷媒回路から分岐し、過冷却用絞り装置、冷媒熱交換器を順に設け、前記圧縮機の吸入側に接続される過冷却回路を有し、
     前記制御装置と前記熱源側熱交換器との間の前記冷媒回路には、前記冷媒熱交換器が配置されて、前記高圧側冷媒配管内の冷媒を冷却する請求項1に記載の冷凍サイクル装置。
    A subcooling circuit branched from the refrigerant circuit between the control device and the heat source side heat exchanger, provided with a supercooling expansion device and a refrigerant heat exchanger in this order, and connected to the suction side of the compressor is provided. And
    2. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant heat exchanger is arranged in the refrigerant circuit between the control device and the heat source side heat exchanger to cool the refrigerant in the high pressure side refrigerant pipe. .
  3.  前記蓄熱装置から前記冷媒回路における前記圧縮機の吸入側に接続される蓄熱回路を有し、
     前記蓄熱装置の蓄熱運転では、前記蓄熱回路に冷媒が流れ、前記蓄熱装置の放熱運転では、前記放熱回路に冷媒が流れる流路切り替え手段を備えた請求項1または2に記載の冷凍サイクル装置。
    A heat storage circuit connected to the suction side of the compressor in the refrigerant circuit from the heat storage device;
    3. The refrigeration cycle apparatus according to claim 1, further comprising a flow path switching unit in which the refrigerant flows in the heat storage circuit in the heat storage operation of the heat storage device, and the refrigerant flows in the heat dissipation circuit in the heat dissipation operation of the heat storage device.
  4.  前記冷媒回路における前記圧縮機の吸入側にはアキュームレータが設けられ、前記蓄熱装置は前記アキュームレータに熱的に接続される請求項1または2に記載の冷凍サイクル装置。 The refrigerating cycle device according to claim 1 or 2, wherein an accumulator is provided on the suction side of the compressor in the refrigerant circuit, and the heat storage device is thermally connected to the accumulator.
  5.  前記制御装置は、前記蓄熱装置の蓄熱材の温度が第1規定値以下で、かつ、前記制御装置の発熱量が第2既定値以上のときに前記放熱運転を行う請求項1~4のいずれか1項に記載の冷凍サイクル装置。 The control device performs the heat radiation operation when the temperature of the heat storage material of the heat storage device is equal to or lower than a first specified value and the amount of heat generated by the control device is equal to or higher than a second predetermined value. The refrigeration cycle apparatus according to claim 1.
  6.  前記制御装置は、前記蓄熱装置の蓄熱材の温度が第1規定値以上で、かつ、前記制御装置の発熱量が第2既定値未満のときに前記冷媒回路のみに冷媒が循環する冷房運転を行う請求項1~5のいずれか1項に記載の冷凍サイクル装置。 The control device performs a cooling operation in which the refrigerant circulates only in the refrigerant circuit when the temperature of the heat storage material of the heat storage device is equal to or higher than a first specified value and the amount of heat generated by the control device is less than a second predetermined value. The refrigeration cycle apparatus according to any one of claims 1 to 5, which is performed.
  7.  前記蓄熱装置に封入された蓄熱材は水である請求項1~6のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the heat storage material enclosed in the heat storage apparatus is water.
  8.  前記蓄熱装置に封入された蓄熱材は0℃より高い融点を有する潜熱蓄熱材である請求項1~6のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the heat storage material enclosed in the heat storage device is a latent heat storage material having a melting point higher than 0 ° C.
  9.  請求項1~8のいずれか1項に記載の冷凍サイクル装置を備えた空気調和装置。 An air conditioner comprising the refrigeration cycle apparatus according to any one of claims 1 to 8.
PCT/JP2014/063006 2014-05-15 2014-05-15 Refrigeration cycle device and air-conditioning device with said refrigeration cycle device WO2015173940A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/063006 WO2015173940A1 (en) 2014-05-15 2014-05-15 Refrigeration cycle device and air-conditioning device with said refrigeration cycle device
JP2016519061A JP6188932B2 (en) 2014-05-15 2014-05-15 Refrigeration cycle apparatus and air conditioner equipped with the refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063006 WO2015173940A1 (en) 2014-05-15 2014-05-15 Refrigeration cycle device and air-conditioning device with said refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2015173940A1 true WO2015173940A1 (en) 2015-11-19

Family

ID=54479509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063006 WO2015173940A1 (en) 2014-05-15 2014-05-15 Refrigeration cycle device and air-conditioning device with said refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6188932B2 (en)
WO (1) WO2015173940A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111059761A (en) * 2018-10-17 2020-04-24 株式会社日本伊藤美珂 Heat pump water heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156981A (en) * 1986-12-19 1988-06-30 松下電器産業株式会社 Heat pump type air conditioner
JPH10122605A (en) * 1996-10-22 1998-05-15 Mitsubishi Heavy Ind Ltd Heat storage type air conditioning apparatus
JP2000146317A (en) * 1998-11-02 2000-05-26 Mitsubishi Electric Corp Heat storage type refrigerating cycle device and control method of same
JP2005241039A (en) * 2004-02-24 2005-09-08 Toshiba Kyaria Kk Heat storage type air conditioner
JP2008082589A (en) * 2006-09-27 2008-04-10 Hitachi Appliances Inc Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705734B2 (en) * 1991-02-08 1998-01-28 シャープ株式会社 Compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156981A (en) * 1986-12-19 1988-06-30 松下電器産業株式会社 Heat pump type air conditioner
JPH10122605A (en) * 1996-10-22 1998-05-15 Mitsubishi Heavy Ind Ltd Heat storage type air conditioning apparatus
JP2000146317A (en) * 1998-11-02 2000-05-26 Mitsubishi Electric Corp Heat storage type refrigerating cycle device and control method of same
JP2005241039A (en) * 2004-02-24 2005-09-08 Toshiba Kyaria Kk Heat storage type air conditioner
JP2008082589A (en) * 2006-09-27 2008-04-10 Hitachi Appliances Inc Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111059761A (en) * 2018-10-17 2020-04-24 株式会社日本伊藤美珂 Heat pump water heater
CN111059761B (en) * 2018-10-17 2021-10-29 株式会社日本伊藤美珂 Heat pump water heater

Also Published As

Publication number Publication date
JP6188932B2 (en) 2017-08-30
JPWO2015173940A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5992089B2 (en) Air conditioner
JP6022058B2 (en) Heat source side unit and refrigeration cycle apparatus
US9513036B2 (en) Air-conditioning apparatus
JP5992112B2 (en) Air conditioner
WO2017006596A1 (en) Refrigeration cycle device
JP5992088B2 (en) Air conditioner
US9638430B2 (en) Air-conditioning apparatus
JP5714128B2 (en) Air conditioner
WO2012077166A1 (en) Air conditioner
JPWO2014091548A1 (en) Air conditioning and hot water supply complex system
JP2009228979A (en) Air conditioner
JP5893151B2 (en) Air conditioning and hot water supply complex system
JP5908183B1 (en) Air conditioner
AU2011358039A1 (en) Air-conditioning apparatus
JP2019184207A (en) Air conditioner
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
JPWO2020194435A1 (en) Air conditioner
JP2019066086A (en) Refrigeration device
JPWO2014038059A1 (en) Air conditioner
JP6188932B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the refrigeration cycle apparatus
KR101658021B1 (en) A Heatpump System Using Duality Cold Cycle
JP5826722B2 (en) Dual refrigeration equipment
WO2015177852A1 (en) Refrigeration cycle device
JP2009115336A (en) Refrigeration system
JP5854873B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519061

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892166

Country of ref document: EP

Kind code of ref document: A1