JP6886701B2 - Dehumidifying blower - Google Patents

Dehumidifying blower Download PDF

Info

Publication number
JP6886701B2
JP6886701B2 JP2017137804A JP2017137804A JP6886701B2 JP 6886701 B2 JP6886701 B2 JP 6886701B2 JP 2017137804 A JP2017137804 A JP 2017137804A JP 2017137804 A JP2017137804 A JP 2017137804A JP 6886701 B2 JP6886701 B2 JP 6886701B2
Authority
JP
Japan
Prior art keywords
refrigerant
circulation path
housing
evaporator
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017137804A
Other languages
Japanese (ja)
Other versions
JP2019020020A (en
Inventor
安彦 荒井
安彦 荒井
Original Assignee
安彦 荒井
安彦 荒井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安彦 荒井, 安彦 荒井 filed Critical 安彦 荒井
Priority to JP2017137804A priority Critical patent/JP6886701B2/en
Publication of JP2019020020A publication Critical patent/JP2019020020A/en
Application granted granted Critical
Publication of JP6886701B2 publication Critical patent/JP6886701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Gases (AREA)

Description

本発明は、室内の空気を除湿して適温で送風する除湿送風機に関する。 The present invention relates to a dehumidifying blower that dehumidifies indoor air and blows it at an appropriate temperature.

従来の除湿機は、吹出口から冷風だけを吹出させるクール運転と、吹出口から冷風と温風の混合風を吹出させるドライ運転を行うようにし、ドライ運転で室内の除湿や洗濯物等の乾燥を行っているが、乾燥に時間がかかり、また、温風のみを用いた衣類等の乾燥運転はできないという問題があった。
これを改善するものとして、例えば、特許文献1には、少なくとも蒸発器と凝縮器を有する除湿機において、蒸発器を通過した冷風を第1の風路に導く第1の送風機と、凝縮器を通過した温風を第2の風路に導く第2の送風機と、第1の風路に導かれた冷風を前面上方吹出口から吹出させるか又は背面吹出口から吹出させるかを選択できるとともに、第2の風路に導かれた温風を前面上方吹出口から吹出させるか又は背面吹出口から吹出させるかを選択することができ、冷風及び温風のいずれか一方又は両方を前面上方吹出口から選択的に吹出させるダンパー機構を備えた除湿機が記載されている。
また、従来の空調機や除湿機では、冷風を送風する場合や除湿を行う場合に、蒸発器の温度が氷点下になると、空気中の水分が霜となって蒸発器のフィン等の表面に付着(着霜、氷結)して、送風路が塞がれて風路圧損の原因になると共に、冷媒と空気が熱交換を行う際の熱抵抗となって、伝熱性能を低下させるという問題があった。そこで、蒸発器に付着した霜を溶かして除去するための除霜運転が行われている。
例えば、特許文献2には、蒸発器に氷結(着霜)が生じた場合に蒸発器および凝縮器に冷媒を循環させる圧縮機を一時停止させると共に除霜用ヒータを通電させ蒸発器の除霜を行うようにした除湿機が記載されている。
また、特許文献3には、蒸発器の温度を検知する温度センサーを備え、温度センサーが着霜温度を検知した際に、圧縮機によって圧縮されてホットガスとなった冷媒を、バイパス配管を経て蒸発器へと導き、蒸発器に付着した霜を融解除去する除霜運転を行う除湿器が記載されている。
The conventional dehumidifier performs a cool operation in which only cold air is blown out from the air outlet and a dry operation in which a mixed air of cold air and hot air is blown out from the air outlet. However, there is a problem that it takes a long time to dry and that it is not possible to dry clothes or the like using only warm air.
To improve this, for example, in Patent Document 1, in a dehumidifier having at least an evaporator and a condenser, a first blower for guiding cold air passing through the evaporator to a first air passage and a condenser are described. A second blower that guides the passing warm air to the second air passage and a cold air that is guided to the first air passage can be selected from the front upper air outlet or the rear air outlet. It is possible to select whether the hot air guided to the second air passage is blown out from the front upper air outlet or the back air outlet, and either one or both of the cold air and the hot air can be blown out from the front upper air outlet. A dehumidifier equipped with a damper mechanism that selectively blows air from the air is described.
Further, in a conventional air conditioner or dehumidifier, when the temperature of the evaporator is below the freezing point when blowing cold air or dehumidifying, the moisture in the air becomes frost and adheres to the surface of the fins of the evaporator. (Frost formation, freezing) causes the air passage to be blocked, causing pressure loss in the air passage, and also causes heat resistance when the refrigerant and air exchange heat, which reduces heat transfer performance. there were. Therefore, a defrosting operation is performed to melt and remove the frost adhering to the evaporator.
For example, in Patent Document 2, when freezing (frost formation) occurs in the evaporator, the compressor that circulates the refrigerant in the evaporator and the condenser is temporarily stopped, and the dehumidifying heater is energized to dehumidify the evaporator. A dehumidifier that is designed to perform the above is described.
Further, Patent Document 3 includes a temperature sensor that detects the temperature of the evaporator, and when the temperature sensor detects the frosted temperature, the refrigerant compressed by the compressor and turned into hot gas is passed through a bypass pipe. A dehumidifier that guides the evaporator to a defrosting operation that melts and removes the frost adhering to the evaporator is described.

特許第5241935号明細書Japanese Patent No. 524,935 特許第3573822号明細書Patent No. 3573822 特許第4298337号明細書Patent No. 4298337

しかしながら、特許文献1では、第1、第2の風路、及び第1、第2の送風機を必要とし、ダンパー機構により、冷風及び温風のいずれか一方又は両方を前面上方吹出口から選択的に吹出させる構造であるため、可動部が多く、動作不良や故障の発生原因になり易いという問題がある。また、特許文献1では、蒸発器の着霜対策については考慮されていない。
これに対し、特許文献2では、蒸発器に氷結(着霜)が生じた場合に、除霜用ヒータで蒸発器の表面を加熱して除霜を行っている。しかし、除霜運転中は圧縮機を一時停止する必要があり、その間は除湿が行われず、冷風又は温風を選択的に送風することもできないため、結果的に有効な運転時間が短くなり、能力低下が発生するという問題がある。さらに、除霜用ヒータを駆動するための電力も必要となり、省エネルギー性に欠けるという問題もある。
また、特許文献3の除霜運転では、圧縮機によって圧縮されてホットガスとなった冷媒を蒸発器に流すことにより除霜を行うので、特許文献2のように、別途、除霜用ヒータ等の加熱手段を設ける必要はないが、除霜運転中は除湿や送風を行うことができない。従って、特許文献2と同様に、低温時の除湿能力の低下は避けられないという問題があった。さらに、特許文献3では、除湿運転時に、温度センサーが着霜温度を検知した後、蒸発器に付着した霜を除去するための除霜運転に切り替えるまでの時間を、前回の除霜開始から温度センサーが除霜終了温度を検知するまでの所要時間に応じて変化させる制御を行っているが、着霜状態は常に変化するので、除霜運転の開始と終了のタイミングを的確に判断することは困難である。よって、無駄な除霜運転を防ぎ、動作不良や能力低下の発生を防止するためには、さらに複雑な制御やセンサーの工夫が必要であり、部品点数も増え、コストアップにつながるという問題もあった。
本発明は、かかる事情に鑑みてなされたもので、低温環境等においても特別な除霜運転を行うことなく、蒸発器への着霜を防ぎ、安定して継続的に室内の空気を除湿し、適温で送風することが可能であり、複雑な制御も不要で、動作の安定性に優れた除湿送風機を提供することを目的とする。
However, Patent Document 1 requires first and second air passages and first and second blowers, and the damper mechanism selectively selects either or both of cold air and hot air from the front upper air outlet. Since the structure is such that the air is blown out, there are many moving parts, and there is a problem that malfunctions and failures are likely to occur. Further, in Patent Document 1, measures against frost formation in the evaporator are not considered.
On the other hand, in Patent Document 2, when freezing (frost formation) occurs in the evaporator, the surface of the evaporator is heated by a defrosting heater to defrost. However, during the dehumidification operation, it is necessary to suspend the compressor, and during that time, dehumidification is not performed and cold air or hot air cannot be selectively blown, resulting in a shortened effective operation time. There is a problem that capacity decline occurs. Further, electric power for driving the defrosting heater is also required, which causes a problem of lacking energy saving.
Further, in the dehumidification operation of Patent Document 3, dehumidification is performed by flowing the refrigerant compressed by the compressor into a hot gas through the evaporator. Therefore, as in Patent Document 2, a separate dehumidification heater or the like is used. Although it is not necessary to provide the heating means of the above, dehumidification and ventilation cannot be performed during the defrosting operation. Therefore, as in Patent Document 2, there is a problem that a decrease in dehumidifying ability at low temperature is unavoidable. Further, in Patent Document 3, the time from the start of the previous defrosting to the switching to the defrosting operation for removing the frost adhering to the evaporator after the temperature sensor detects the frost formation temperature during the dehumidifying operation is set to the temperature. The sensor controls to change the temperature according to the time required to detect the defrosting end temperature, but since the frost formation state constantly changes, it is not possible to accurately determine the start and end timing of the defrosting operation. Have difficulty. Therefore, in order to prevent unnecessary defrosting operation and prevent malfunctions and performance deterioration, it is necessary to devise more complicated controls and sensors, and there is also a problem that the number of parts increases and the cost increases. It was.
The present invention has been made in view of such circumstances, and prevents frost formation on the evaporator without performing a special dehumidifying operation even in a low temperature environment, etc., and stably and continuously dehumidifies the indoor air. It is an object of the present invention to provide a dehumidifying blower that can blow air at an appropriate temperature, does not require complicated control, and has excellent operational stability.

前記目的に沿う本発明に係る除湿送風機は、吸込口と吹出口とが設けられた筐体と、該筐体内に設けられ前記吸込口から前記筐体内に空気を吸込み、前記吹出口から前記筐体外に吹出す送風手段と、冷媒を圧縮して吐出する圧縮機と、該圧縮機から吐出される冷媒を循環させて前記圧縮機に戻す冷媒循環路とを有し、該冷媒循環路の途中には、前記筐体に内蔵され前記圧縮機から吐出される冷媒を凝縮する凝縮器と、該凝縮器で凝縮された冷媒を減圧する絞り手段と、前記筐体に内蔵され該筐体内を通過する空気の流れに対して前記凝縮器の上流側に配置され、前記絞り手段で減圧された冷媒をガス化させる蒸発器と、前記蒸発器と前記圧縮機との間で前記冷媒循環路に接続され、前記蒸発器から流出する冷媒を循環させて前記冷媒循環路に戻す分岐循環路とが設けられ、該分岐循環路の途中には冷却器が接続され、該冷却器は、前記筐体に内蔵され該筐体内を通過する空気の流れに対して前記凝縮器の下流側に配置されており、前記冷媒循環路と前記分岐循環路との接続位置には、該分岐循環路の開閉を切り替える循環路切り替え手段が設けられている。 The dehumidifying blower according to the present invention according to the above object has a housing provided with a suction port and an air outlet, air is sucked into the housing from the suction port provided in the housing, and the housing is provided from the air outlet. It has a blowing means for blowing out of the body, a compressor that compresses and discharges the refrigerant, and a refrigerant circulation path that circulates the refrigerant discharged from the compressor and returns it to the compressor, and is in the middle of the refrigerant circulation path. A condenser that is built in the housing and condenses the refrigerant discharged from the compressor, a squeezing means that depressurizes the refrigerant condensed by the condenser, and a condensing means that is built in the housing and passes through the housing. An evaporator that is arranged on the upstream side of the condenser with respect to the flow of air to gasify the refrigerant decompressed by the throttle means, and is connected to the refrigerant circulation path between the evaporator and the compressor. A branch circulation path is provided which circulates the refrigerant flowing out of the evaporator and returns it to the refrigerant circulation path. A cooler is connected in the middle of the branch circulation path, and the cooler is attached to the housing. It is built-in and is arranged on the downstream side of the condenser with respect to the flow of air passing through the housing, and the opening and closing of the branch circulation path is switched at the connection position between the refrigerant circulation path and the branch circulation path. A circulation path switching means is provided.

本発明に係る除湿送風機において、前記分岐循環路には、該分岐循環路を循環する冷媒の流量を調整する流量調整手段が設けられていることが好ましい。 In the dehumidifying blower according to the present invention, it is preferable that the branch circulation path is provided with a flow rate adjusting means for adjusting the flow rate of the refrigerant circulating in the branch circulation path.

本発明に係る除湿送風機において、前記蒸発器に付着する霜は、前記凝縮器からの放熱によって溶かし、ドレン水として滴下させることが好ましい。 In the dehumidifying blower according to the present invention, it is preferable that the frost adhering to the evaporator is melted by heat radiation from the condenser and dropped as drain water.

本発明に係る除湿送風機において、前記蒸発器の下方には、該蒸発器から滴下する前記ドレン水を回収するドレン水回収部と、該ドレン水回収部に接続され該ドレン水回収部に溜まった前記ドレン水を前記筐体の外部に排出するドレン水排出部が設けられていることが好ましい。 In the dehumidifying blower according to the present invention, below the evaporator, a drain water recovery section for collecting the drain water dripping from the evaporator and a drain water recovery section connected to the drain water recovery section and collected in the drain water recovery section. It is preferable that a drain water discharge portion for discharging the drain water to the outside of the housing is provided.

本発明に係る除湿送風機は、圧縮機、凝縮器、絞り手段、蒸発器の順に冷媒を循環させる冷媒循環路に加え、冷媒循環路から分岐し、蒸発器を通過した冷媒をさらに冷却器に通して循環させる分岐循環路を有しており、冷媒循環路と分岐循環路との接続位置に分岐循環路の開閉を切り替える循環路切り替え手段が設けられているので、循環路切り替え手段により、簡単に2つの循環路を切り替えることができる。よって、分岐循環路を閉じ、冷媒循環路のみに冷媒を循環させた際には、筐体内を通過する空気は、蒸発器を通過する際に一旦冷却され、空気中に含まれる水蒸気の一部が凝縮し、その後、凝縮器を通過する際に加熱されることにより、除湿された空気を送風することができる。これに対し、分岐循環路を開き、蒸発器から流出した冷媒をさらに冷却器に通して循環させた際には、先に凝縮器で加熱された空気を冷却器で冷却してから送風することができる。
分岐循環路に、分岐循環路を循環する冷媒の流量を調整する流量調整手段が設けられている場合、分岐循環路を循環する冷媒の流量に応じて、冷却器を通過した後の空気の温度を調整することができる。
蒸発器に付着する霜を凝縮器からの放熱によって溶かし、ドレン水として滴下させた場合、圧縮機を停止させることなく、常時、除湿運転を行いながら、除霜することができ、複雑な制御が不要で、動作の安定性に優れる。また、除霜のための加熱手段を別途、設ける必要がなく、省エネルギー性に優れる。さらに、凝縮器からの放熱(排熱)を有効に利用して除霜を行うことにより、凝縮器の排熱で筐体の内部や室内が温度上昇することを防止できる。
蒸発器の下方に、蒸発器から滴下するドレン水を回収するドレン水回収部と、ドレン水回収部に接続されドレン水回収部に溜まったドレン水を筐体の外部に排出するドレン水排出部が設けられている場合、ドレン水を自動的に屋外等に排出することができる。また、屋外への放熱も少なく抑えることができる。
In the dehumidifying blower according to the present invention, in addition to the refrigerant circulation path that circulates the refrigerant in the order of the compressor, the condenser, the squeezing means, and the evaporator, the refrigerant that branches from the refrigerant circulation path and passes through the evaporator is further passed through the cooler. It has a branch circulation path for circulation, and a circulation path switching means for switching the opening and closing of the branch circulation path is provided at the connection position between the refrigerant circulation path and the branch circulation path. You can switch between the two circulation paths. Therefore, when the branch circulation path is closed and the refrigerant is circulated only in the refrigerant circulation path, the air passing through the housing is once cooled when passing through the evaporator, and a part of the water vapor contained in the air. Dehumidified air can be blown by condensing and then heating as it passes through the condenser. On the other hand, when the branch circulation path is opened and the refrigerant flowing out of the evaporator is further passed through the cooler to be circulated, the air heated by the condenser is first cooled by the cooler and then blown. Can be done.
When the branch circulation path is provided with a flow rate adjusting means for adjusting the flow rate of the refrigerant circulating in the branch circulation path, the temperature of the air after passing through the cooler according to the flow rate of the refrigerant circulating in the branch circulation path. Can be adjusted.
When the frost adhering to the evaporator is melted by heat dissipation from the condenser and dropped as drain water, it is possible to dehumidify while constantly performing dehumidification operation without stopping the compressor, and complicated control is possible. It is unnecessary and has excellent operational stability. In addition, it is not necessary to separately provide a heating means for defrosting, which is excellent in energy saving. Further, by effectively utilizing the heat radiation (exhaust heat) from the condenser to perform defrosting, it is possible to prevent the temperature inside the housing or the room from rising due to the exhaust heat of the condenser.
Below the evaporator, there is a drain water recovery unit that collects the drain water dripping from the evaporator, and a drain water discharge unit that is connected to the drain water recovery unit and discharges the drain water collected in the drain water recovery unit to the outside of the housing. If is provided, the drain water can be automatically discharged to the outside or the like. In addition, heat dissipation to the outside can be suppressed to a small extent.

本発明の一実施の形態に係る除湿送風機の構成を示す側面図である。It is a side view which shows the structure of the dehumidifying blower which concerns on one Embodiment of this invention. 同除湿送風機の第1の動作を示す説明図である。It is explanatory drawing which shows the 1st operation of the dehumidifying blower. 同除湿送風機の第2の動作を示す説明図である。It is explanatory drawing which shows the 2nd operation of the dehumidifying blower. 同除湿送風機の変形例の動作を示す説明図である。It is explanatory drawing which shows the operation of the modification of the dehumidifying blower.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の一実施の形態に係る除湿送風機10は、図1〜図3に示すように、室内に設置することにより、室内の空気を除湿し、適温で送風して循環させるものである。
以下、除湿送風機10の詳細について説明する。
まず、図1〜図3に示すように、除湿送風機10の筐体11の正面側の高さ方向中央部及び正面側の上方には、除湿送風機10が設置される室内と筐体11の内部を連通させる空気の吸込口12及び吹出口13がそれぞれ設けられている。そして、筐体11内の上方には送風手段としてファン14が設置されており、ファン14を駆動することにより、室内の空気を吸込口12から筐体11内に吸込み、筐体11内を通過させ、吹出口13から室内に吹出して循環させることができる。なお、図2、図3の二点鎖線で囲まれた範囲が、筐体11内で空気が通過する領域を示している。
また、筐体11内の下部には冷媒を圧縮して吐出する圧縮機15が設けられており、圧縮機15から吐出される冷媒は、筐体11内に設けられた冷媒循環路16を循環する。冷媒循環路16の圧縮機15の下流には、圧縮機15から吐出される冷媒を凝縮(液化)する凝縮器17が設けられ、凝縮器17の下流には凝縮器17を通過した冷媒を一時的に貯えるレシーバータンク18が設けられている。レシーバータンク18では、凝縮器17で液化した液冷媒と、液化しきれなかったガス冷媒が分離され、室内の環境や運転条件に応じて、適量の液冷媒のみが下流側に供給される。レシーバータンク18の下流には、冷媒を減圧する絞り手段として膨張弁19が設けられている。そして、膨張弁19の下流には、膨張弁19を通過して減圧された冷媒をガス化(蒸発)させる蒸発器20が接続されている。この蒸発器20は、筐体11内を通過する空気の流れに対して、凝縮器17の上流側(吸込口12側)に配置される。冷媒循環路16の蒸発器20の下流には蒸発器20を通過した冷媒を一時的に貯えるアキュームレーター21が設けられている。アキュームレーター21では蒸発器20で蒸発したガス冷媒と、蒸発しきれなかった液冷媒が分離され、圧縮可能なガス冷媒のみが下流側の圧縮機15に戻される。
Subsequently, an embodiment embodying the present invention will be described with reference to the attached drawings, and the present invention will be understood.
As shown in FIGS. 1 to 3, the dehumidifying blower 10 according to the embodiment of the present invention dehumidifies the air in the room by installing it indoors, and blows and circulates the air at an appropriate temperature.
The details of the dehumidifying blower 10 will be described below.
First, as shown in FIGS. 1 to 3, the room where the dehumidifying blower 10 is installed and the inside of the housing 11 are located in the central portion in the height direction on the front side of the housing 11 of the dehumidifying blower 10 and above the front side. An air suction port 12 and an air outlet 13 for communicating with each other are provided. A fan 14 is installed above the housing 11 as a means of blowing air, and by driving the fan 14, air in the room is sucked into the housing 11 from the suction port 12 and passes through the housing 11. It can be circulated by blowing out from the air outlet 13 into the room. The range surrounded by the alternate long and short dash line in FIGS. 2 and 3 indicates a region through which air passes in the housing 11.
Further, a compressor 15 for compressing and discharging the refrigerant is provided in the lower part of the housing 11, and the refrigerant discharged from the compressor 15 circulates in the refrigerant circulation path 16 provided in the housing 11. To do. A condenser 17 for condensing (liquefying) the refrigerant discharged from the compressor 15 is provided downstream of the compressor 15 in the refrigerant circulation path 16, and the refrigerant that has passed through the condenser 17 is temporarily discharged downstream of the condenser 17. A receiver tank 18 for storing the target is provided. In the receiver tank 18, the liquid refrigerant liquefied by the condenser 17 and the gas refrigerant that could not be liquefied are separated, and only an appropriate amount of the liquid refrigerant is supplied to the downstream side according to the indoor environment and operating conditions. An expansion valve 19 is provided downstream of the receiver tank 18 as a throttle means for reducing the pressure of the refrigerant. An evaporator 20 that gasifies (evaporates) the decompressed refrigerant that has passed through the expansion valve 19 is connected to the downstream of the expansion valve 19. The evaporator 20 is arranged on the upstream side (suction port 12 side) of the condenser 17 with respect to the flow of air passing through the housing 11. An accumulator 21 for temporarily storing the refrigerant that has passed through the evaporator 20 is provided downstream of the evaporator 20 in the refrigerant circulation path 16. In the accumulator 21, the gas refrigerant evaporated by the evaporator 20 and the liquid refrigerant that cannot be completely evaporated are separated, and only the compressible gas refrigerant is returned to the compressor 15 on the downstream side.

また、筐体11内には、冷媒循環路16に加え、蒸発器20の下流側(かつ、アキュームレーター21、圧縮機15の上流側)で冷媒循環路16に接続され、蒸発器20から流出する冷媒を循環させて冷媒循環路16に戻す分岐循環路22が設けられている。そして、分岐循環路22の途中には冷却器23が接続されている。この冷却器23は、筐体11内を通過する空気の流れに対して、凝縮器17の下流側に配置される。なお、冷媒循環路16と分岐循環路22との接続位置には、分岐循環路22の開閉を切り替える循環路切り替え手段として三方弁24、25が設けられている。この三方弁24、25を切り替えることにより、圧縮機15から吐出される冷媒を冷媒循環路16のみで循環させて圧縮機15に戻すか、冷媒循環路16を循環して蒸発器20から流出した冷媒をさらに分岐循環路22で循環させ、冷却器23に通してから圧縮機15に戻すか、選択することができる。本実施の形態のように、分岐循環路22の入口側及び出口側と冷媒循環路16を接続する位置にそれぞれ三方弁24、25を設けることにより、冷媒循環路16のみで冷媒を循環させる際に、分岐循環路22の入口及び出口を完全に閉止して、分岐循環路22や冷却器23の内部が負圧になることを防止できるが、出口側の三方弁25は省略することも可能である。 Further, in the housing 11, in addition to the refrigerant circulation path 16, the downstream side of the evaporator 20 (and the upstream side of the accumulator 21 and the compressor 15) is connected to the refrigerant circulation path 16 and flows out from the evaporator 20. A branch circulation path 22 is provided which circulates the refrigerant to be used and returns it to the refrigerant circulation path 16. A cooler 23 is connected in the middle of the branch circulation path 22. The cooler 23 is arranged on the downstream side of the condenser 17 with respect to the flow of air passing through the housing 11. At the connection position between the refrigerant circulation path 16 and the branch circulation path 22, three-way valves 24 and 25 are provided as circulation path switching means for switching the opening and closing of the branch circulation path 22. By switching the three-way valves 24 and 25, the refrigerant discharged from the compressor 15 is circulated only in the refrigerant circulation path 16 and returned to the compressor 15, or is circulated in the refrigerant circulation path 16 and flows out from the evaporator 20. It is possible to select whether to further circulate the refrigerant in the branch circulation path 22, pass it through the cooler 23, and then return it to the compressor 15. When the refrigerant is circulated only in the refrigerant circulation path 16 by providing the three-way valves 24 and 25 at the positions connecting the inlet side and the outlet side of the branch circulation path 22 and the refrigerant circulation path 16 as in the present embodiment, respectively. In addition, the inlet and outlet of the branch circulation passage 22 can be completely closed to prevent the inside of the branch circulation passage 22 and the cooler 23 from becoming negative pressure, but the three-way valve 25 on the outlet side can be omitted. Is.

また、筐体11内の蒸発器20の下方には、蒸発器20から滴下するドレン水を回収するドレン水回収部26が設けられ、ドレン水回収部26の底部にはドレン水回収部26に溜まったドレン水を筐体11の外部に排出するパイプ状のドレン水排出部27が接続されている。
なお、図2、図3に示すように、冷媒循環路16の途中(圧縮機15の下流)には、冷媒循環路16を開閉する電磁弁28が設けられている。また、蒸発器20と凝縮器17との間、及び凝縮器17と冷却器23との間は、それぞれダクト状の空気案内流路30、31で接続することが好ましい。これにより、蒸発器20の風路を通過した空気が漏れなく凝縮器17、及び冷却器23に案内され、それぞれの風路を確実に通過することができる。但し、空気案内流路30、31は必ずしも設ける必要はなく、省略してもよい。
また、除湿送風機10は、図2、図3に示すように、ファン14の駆動、三方弁24、25の切り替え、電磁弁28の開閉等を制御する制御部32を有している。この制御部32には操作部33が接続されており、操作部33で目標湿度や送風量等を設定することにより、その設定に応じて制御部32からファン14、三方弁24、25、電磁弁28等の各部に動作命令が送られる。
Further, a drain water recovery unit 26 for collecting drain water dripping from the evaporator 20 is provided below the evaporator 20 in the housing 11, and a drain water recovery unit 26 is provided at the bottom of the drain water recovery unit 26. A pipe-shaped drain water discharge unit 27 for discharging the accumulated drain water to the outside of the housing 11 is connected.
As shown in FIGS. 2 and 3, an electromagnetic valve 28 for opening and closing the refrigerant circulation path 16 is provided in the middle of the refrigerant circulation path 16 (downstream of the compressor 15). Further, it is preferable that the evaporator 20 and the condenser 17 and the condenser 17 and the cooler 23 are connected by duct-shaped air guide channels 30 and 31, respectively. As a result, the air that has passed through the air passages of the evaporator 20 is guided to the condenser 17 and the cooler 23 without leakage, and can surely pass through the respective air passages. However, the air guide channels 30 and 31 do not necessarily have to be provided and may be omitted.
Further, as shown in FIGS. 2 and 3, the dehumidifying blower 10 has a control unit 32 that controls driving of the fan 14, switching of the three-way valves 24 and 25, opening / closing of the solenoid valve 28, and the like. An operation unit 33 is connected to the control unit 32. By setting the target humidity, the amount of air blown, etc. in the operation unit 33, the control unit 32 sets the fan 14, the three-way valves 24, 25, and the solenoid according to the settings. An operation command is sent to each part of the valve 28 and the like.

冷媒としては、例えば、冷凍機等で広く用いられているR404Aが好適であるが、R407CやR410A等のその他の冷媒も使用可能である。
また、凝縮器17、蒸発器20、冷却器23としては、プレートフィンチューブ型の熱交換器が好適に用いられる。凝縮器17、蒸発器20、及び冷却器23の寸法は、除湿送風機10の使用環境、除湿送風機10が設置される部屋の面積、要求される能力等によって、適宜、選択することができるが、凝縮器17の寸法を例えば、横1860mm、高さ660mm、幅(厚さ)174mmとした場合、蒸発器20及び冷却器23の寸法は、例えば、横1860mm、高さ960mm、幅(厚さ)212mmである。このとき、隣り合うフィンとフィンの間隔(フィンピッチ)は、伝熱面積を大きくすることと、風路の圧力損失を考慮して、いずれも例えば2〜10mmとすることが好ましいが、これに限定されるものではない。
As the refrigerant, for example, R404A widely used in refrigerators and the like is suitable, but other refrigerants such as R407C and R410A can also be used.
Further, as the condenser 17, the evaporator 20, and the cooler 23, a plate fin tube type heat exchanger is preferably used. The dimensions of the condenser 17, the evaporator 20, and the cooler 23 can be appropriately selected depending on the usage environment of the dehumidifying blower 10, the area of the room in which the dehumidifying blower 10 is installed, the required capacity, and the like. When the dimensions of the condenser 17 are, for example, 1860 mm in width, 660 mm in height, and 174 mm in width (thickness), the dimensions of the evaporator 20 and the cooler 23 are, for example, 1860 mm in width, 960 mm in height, and (thickness) in width. It is 212 mm. At this time, the distance between adjacent fins (fin pitch) is preferably set to, for example, 2 to 10 mm in consideration of increasing the heat transfer area and the pressure loss of the air passage. It is not limited.

以上のように構成された除湿送風機10の第1の動作について説明する。
まず、冷媒循環路16を循環する冷媒の動きを説明する。
図2において、除湿送風機10の運転を開始すると、電磁弁28が開き、圧縮機15で圧縮された高温高圧のガス冷媒(例えば、80℃程度)が冷媒循環路16に吐出され、凝縮器17に流れ込む。凝縮器17に流れ込んだ高温高圧のガス冷媒は、凝縮器17を通過することにより、筐体11内の周囲の空気に放熱し、液化しながら冷却される。凝縮器17から流れ出た冷媒はレシーバータンク18に流入し、液化しきれなかったガス冷媒が分離され、常温高圧の液状冷媒(例えば、30℃程度)のみが膨張弁19に流れ込む。常温高圧の液状冷媒は膨張弁19で減圧され、流量を制御されながら低温低圧の液状冷媒(例えば、−5〜10℃程度)となって蒸発器20に送り込まれる。蒸発器20に送り込まれた冷媒は、蒸発器20を通過する間に、筐体11内の周囲の空気から熱を吸収してガス化し、周囲の空気を冷却する。蒸発器20から流れ出た冷媒はアキュームレーター21に流入し、ガス化しきれなかった液状冷媒が分離され、低温低圧のガス冷媒(例えば、5℃程度)のみが圧縮機15に戻される。圧縮機15に戻されたガス冷媒は圧縮され、循環を繰り返す。
The first operation of the dehumidifying blower 10 configured as described above will be described.
First, the movement of the refrigerant circulating in the refrigerant circulation path 16 will be described.
In FIG. 2, when the operation of the dehumidifying blower 10 is started, the solenoid valve 28 is opened, and the high-temperature and high-pressure gas refrigerant compressed by the compressor 15 (for example, about 80 ° C.) is discharged to the refrigerant circulation path 16 and the condenser 17 is discharged. Flow into. The high-temperature and high-pressure gas refrigerant that has flowed into the condenser 17 passes through the condenser 17 to dissipate heat to the surrounding air inside the housing 11 and is cooled while being liquefied. The refrigerant flowing out of the condenser 17 flows into the receiver tank 18, the gas refrigerant that could not be liquefied is separated, and only the liquid refrigerant at room temperature and high pressure (for example, about 30 ° C.) flows into the expansion valve 19. The room temperature and high pressure liquid refrigerant is depressurized by the expansion valve 19, becomes a low temperature and low pressure liquid refrigerant (for example, about −5 to 10 ° C.) while controlling the flow rate, and is sent to the evaporator 20. The refrigerant sent to the evaporator 20 absorbs heat from the surrounding air inside the housing 11 and vaporizes it while passing through the evaporator 20 to cool the surrounding air. The refrigerant flowing out of the evaporator 20 flows into the accumulator 21, the liquid refrigerant that cannot be completely vaporized is separated, and only the low-temperature low-pressure gas refrigerant (for example, about 5 ° C.) is returned to the compressor 15. The gas refrigerant returned to the compressor 15 is compressed and circulates repeatedly.

次に、室内と筐体11内部との間の空気の流れを説明する。
図2において、除湿送風機10の運転を開始すると、ファン14が所定の回転数で回転する。これにより、上記の圧縮機15による冷媒の循環と並行して、室内の空気が吸込口12から筐体11内に吸込まれて筐体11内を通過し、吹出口13から室内に吹出して、室内と筐体11内部との間で空気が循環する。
吸込口12から筐体11内に吸込まれた空気は、まず、筐体11内の空気の流れに対して最上流側に配置された蒸発器20の風路を通過することにより冷却される。このとき、空気中に含まれる水分が凝縮し、霜となって蒸発器20の表面に付着する。その後、蒸発器20を通過した空気は下流側に配置された凝縮器17の風路を通過することにより加熱される。このようにして筐体11内を通過する空気は除湿され、吹出口13から室内へ吹出す。なお、凝縮器17からの放熱は、筐体11内を通過する空気を加熱するだけでなく、蒸発器20の表面に付着する霜を溶かすことができる。よって、圧縮機15を停止させることなく、常時、除湿運転を行いながら、蒸発器20を除霜することができる。凝縮器17からの放熱によって溶かされた霜は、蒸発器20の表面からドレン水回収部26に滴下し、ドレン水排出部27からドレン水として筐体11の外部(屋外等)に排出される。
除湿と同時に蒸発器20の除霜も行うことができ、蒸発器20の表面(フィン)に霜が付かないため、膨張弁19での冷媒の蒸発温度を0℃以下の極めて低い温度に設定することが可能となり、常温以下の快適な温度で送風を行うことができる。
Next, the air flow between the room and the inside of the housing 11 will be described.
In FIG. 2, when the operation of the dehumidifying blower 10 is started, the fan 14 rotates at a predetermined rotation speed. As a result, in parallel with the circulation of the refrigerant by the compressor 15, the air in the room is sucked into the housing 11 from the suction port 12, passes through the housing 11, and is blown out into the room from the outlet 13. Air circulates between the room and the inside of the housing 11.
The air sucked into the housing 11 from the suction port 12 is first cooled by passing through the air passage of the evaporator 20 arranged on the most upstream side with respect to the air flow in the housing 11. At this time, the moisture contained in the air condenses and becomes frost, which adheres to the surface of the evaporator 20. After that, the air that has passed through the evaporator 20 is heated by passing through the air passage of the condenser 17 arranged on the downstream side. In this way, the air passing through the housing 11 is dehumidified and blown into the room from the air outlet 13. The heat radiation from the condenser 17 can not only heat the air passing through the housing 11, but also melt the frost adhering to the surface of the evaporator 20. Therefore, the evaporator 20 can be defrosted while constantly performing the dehumidifying operation without stopping the compressor 15. The frost melted by the heat radiation from the condenser 17 is dropped from the surface of the evaporator 20 onto the drain water recovery unit 26, and is discharged from the drain water discharge unit 27 as drain water to the outside (outdoors, etc.) of the housing 11. ..
Since the evaporator 20 can be dehumidified at the same time as the dehumidification and the surface (fins) of the evaporator 20 is not frosted, the evaporation temperature of the refrigerant in the expansion valve 19 is set to an extremely low temperature of 0 ° C. or less. This makes it possible to blow air at a comfortable temperature below room temperature.

次に、除湿送風機10の第2の動作について説明する。
第2の動作を行う場合は、図3に示すように、三方弁24、25を切り替えて分岐循環路22の入口及び出口を開き、冷媒循環路16に連通させる。第2の動作において、除湿送風機10の運転を開始し、圧縮機15から吐出された冷媒が、冷媒循環路16に沿って凝縮器17、レシーバータンク18、膨張弁19、蒸発器20を通過するまでは、第1の動作と同じである。その後、蒸発器20から流れ出た低温低圧(例えば、5℃程度)の冷媒(ガス冷媒の他にガス化しきれなかった液状冷媒を一部含む)は、三方弁24を通って分岐循環路22に流れ込み、冷却器23を通過する。このとき、蒸発器20でガス化しきれなかった液状冷媒が筐体11内の周囲の空気から熱を吸収してガス化し、周囲の空気を冷却する。冷却器23から流れ出た冷媒は三方弁25を通って分岐循環路22から冷媒循環路16に戻り、アキュームレーター21に流入する。このとき、ガス化しきれなかった液状冷媒が残っている場合は、アキュームレーター21で分離され、低温低圧のガス冷媒のみが圧縮機15に戻される。圧縮機15に戻されたガス冷媒は圧縮され、循環を繰り返す。
Next, the second operation of the dehumidifying blower 10 will be described.
When performing the second operation, as shown in FIG. 3, the three-way valves 24 and 25 are switched to open the inlet and outlet of the branch circulation path 22 and communicate with the refrigerant circulation path 16. In the second operation, the operation of the dehumidifying blower 10 is started, and the refrigerant discharged from the compressor 15 passes through the condenser 17, the receiver tank 18, the expansion valve 19, and the evaporator 20 along the refrigerant circulation path 16. Up to, it is the same as the first operation. After that, the low-temperature low-pressure (for example, about 5 ° C.) refrigerant (including a part of the liquid refrigerant that could not be vaporized in addition to the gas refrigerant) flowing out of the evaporator 20 passes through the three-way valve 24 and enters the branch circulation path 22. It flows in and passes through the cooler 23. At this time, the liquid refrigerant that could not be completely gasified by the evaporator 20 absorbs heat from the surrounding air inside the housing 11 and gasifies it to cool the surrounding air. The refrigerant flowing out of the cooler 23 returns from the branch circulation path 22 to the refrigerant circulation path 16 through the three-way valve 25, and flows into the accumulator 21. At this time, if the liquid refrigerant that cannot be completely gasified remains, it is separated by the accumulator 21 and only the low-temperature low-pressure gas refrigerant is returned to the compressor 15. The gas refrigerant returned to the compressor 15 is compressed and circulates repeatedly.

次に、第2の動作における空気の流れについてみると、吸込口12から筐体11内に吸込まれた空気が、蒸発器20で冷却、除湿され、凝縮器17で加熱されるまでは第1の動作と同じである。その後、凝縮器17を通過して加熱された空気は冷却器23の風路を通過する。このとき、冷却器23の風路を通過する空気(凝縮器17で加熱された空気)の温度よりも、冷却器23の内部を流れる低温低圧の冷媒の温度(例えば、5℃程度)が低く、また、蒸発器20でガス化しきれなかった液状冷媒も冷却器23の内部でガス化するので、冷却器23の風路を通過した空気は冷却されて吹出口13から室内へ吹出す。 Next, looking at the air flow in the second operation, the first is until the air sucked into the housing 11 from the suction port 12 is cooled and dehumidified by the evaporator 20 and heated by the condenser 17. It is the same as the operation of. After that, the air heated through the condenser 17 passes through the air passage of the cooler 23. At this time, the temperature of the low-temperature low-pressure refrigerant flowing inside the cooler 23 (for example, about 5 ° C.) is lower than the temperature of the air passing through the air passage of the cooler 23 (air heated by the condenser 17). Further, since the liquid refrigerant that could not be completely gasified by the evaporator 20 is also gasified inside the cooler 23, the air that has passed through the air passage of the cooler 23 is cooled and blown out into the room from the outlet 13.

以上のように、第1の動作と第2の動作で、吹出口13から室内へ吹出す空気の温度を変化させることができるので、例えば、除湿送風機10に温湿度センサーを取り付け、室内の温湿度や設定湿度等に応じて、適宜、第1の動作と第2の動作を切り替えることにより、除湿された空気(例えば、5〜30%程度)を適温(例えば、10〜30℃程度)で送風して室内を快適な環境に保つことができる。 As described above, the temperature of the air blown into the room from the outlet 13 can be changed by the first operation and the second operation. Therefore, for example, a temperature / humidity sensor is attached to the dehumidifying blower 10 to heat the room. Dehumidified air (for example, about 5 to 30%) is brought to an appropriate temperature (for example, about 10 to 30 ° C.) by appropriately switching between the first operation and the second operation according to the humidity, the set humidity, and the like. You can keep the room in a comfortable environment by blowing air.

次に、変形例の除湿送風機35について説明する。
図4に示すように、除湿送風機35が除湿送風機10と異なるのは、分岐循環路22に、分岐循環路22を循環する冷媒の流量を調整する流量調整手段として、三方弁24の下流側(三方弁24と冷却器23との間)に、流量調整弁36が設けられている点である。これにより、三方弁24、25を切り替えて冷媒循環路16と分岐循環路22を連通させ、第2の動作を行う際に、冷却器23を通過する冷媒の量を流量調整弁36で簡単に調整することができる。この結果、冷却器23による冷却量を変化させて、吹出口13から室内へ吹出す空気の温度を調整(例えば、0〜40℃程度)することが可能となる。
なお、除湿送風機35では、三方弁24、25と流量調整弁36を組み合わせて分岐循環路22を循環する冷媒の流量を調整したが、流量調整手段はこれに限定されるものではなく、分岐循環路22を循環する冷媒の流量を調整できるものであればよい。
Next, the dehumidifying blower 35 of the modified example will be described.
As shown in FIG. 4, the dehumidifying blower 35 differs from the dehumidifying blower 10 in that the branch circulation path 22 is located on the downstream side of the three-way valve 24 as a flow rate adjusting means for adjusting the flow rate of the refrigerant circulating in the branch circulation path 22. A flow rate adjusting valve 36 is provided between the three-way valve 24 and the cooler 23). As a result, the three-way valves 24 and 25 are switched to communicate the refrigerant circulation path 16 and the branch circulation path 22, and when the second operation is performed, the amount of the refrigerant passing through the cooler 23 can be easily adjusted by the flow rate adjusting valve 36. Can be adjusted. As a result, it is possible to adjust the temperature of the air blown into the room from the outlet 13 (for example, about 0 to 40 ° C.) by changing the amount of cooling by the cooler 23.
In the dehumidifying blower 35, the three-way valves 24 and 25 and the flow rate adjusting valve 36 are combined to adjust the flow rate of the refrigerant circulating in the branch circulation path 22, but the flow rate adjusting means is not limited to this, and the branch circulation is not limited to this. Anything can be used as long as the flow rate of the refrigerant circulating in the road 22 can be adjusted.

以上、本発明の実施の形態を説明したが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
前記実施の形態においては、圧縮機15、レシーバータンク18、膨張弁19、及びアキュームレーター21を室内に設置される筐体11に内蔵する構造としたが、これらの一部又は全てを別の筐体に収容する等して室外(屋外)に設置することもできる。
また、前記実施の形態では、絞り手段として膨張弁19を用いたが、代わりにキャピラリーチューブを用いてもよい。
さらに、前記実施の形態では、循環路切り替え手段として2つの三方弁24、25を用いたが、循環路切り替え手段はこれに限定されるものではなく、分岐循環路22の開閉(冷媒循環路16と分岐循環路22との連通の有無)を切り替えることができるものであればよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and can be considered within the scope of the matters described in the claims. Other embodiments and modifications are also included.
In the above embodiment, the compressor 15, the receiver tank 18, the expansion valve 19, and the accumulator 21 are built in the housing 11 installed in the room, but some or all of them are contained in another housing. It can also be installed outdoors (outdoors) by accommodating it in the body.
Further, in the above-described embodiment, the expansion valve 19 is used as the throttle means, but a capillary tube may be used instead.
Further, in the above-described embodiment, the two three-way valves 24 and 25 are used as the circulation path switching means, but the circulation path switching means is not limited to this, and the branch circulation path 22 is opened and closed (refrigerant circulation path 16). Anything that can switch between (presence / absence of communication with the branch circulation path 22) and

10:除湿送風機、11:筐体、12:吸込口、13:吹出口、14:ファン(送風手段)、15:圧縮機、16:冷媒循環路、17:凝縮器、18:レシーバータンク、19:膨張弁(絞り手段)、20:蒸発器、21:アキュームレーター、22:分岐循環路、23:冷却器、24、25:三方弁(循環路切り替え手段)、26:ドレン水回収部、27:ドレン水排出部、28:電磁弁、30、31:空気案内流路、32:制御部、33:操作部、35:除湿送風機、36:流量調整弁 10: Dehumidifying blower, 11: Housing, 12: Suction port, 13: Air outlet, 14: Fan (air blowing means), 15: Compressor, 16: Refrigerant circulation path, 17: Condenser, 18: Receiver tank, 19 : Expansion valve (squeezing means), 20: Evaporator, 21: Accumulator, 22: Branch circulation path, 23: Cooler, 24, 25: Three-way valve (circulation path switching means), 26: Drain water recovery unit, 27 : Drain water discharge unit, 28: Electromagnetic valve, 30, 31: Air guide flow path, 32: Control unit, 33: Operation unit, 35: Dehumidifying blower, 36: Flow control valve

Claims (4)

吸込口と吹出口とが設けられた筐体と、該筐体内に設けられ前記吸込口から前記筐体内に空気を吸込み、前記吹出口から前記筐体外に吹出す送風手段と、冷媒を圧縮して吐出する圧縮機と、該圧縮機から吐出される冷媒を循環させて前記圧縮機に戻す冷媒循環路とを有し、該冷媒循環路の途中には、前記筐体に内蔵され前記圧縮機から吐出される冷媒を凝縮する凝縮器と、該凝縮器で凝縮された冷媒を減圧する絞り手段と、前記筐体に内蔵され該筐体内を通過する空気の流れに対して前記凝縮器の上流側に配置され、前記絞り手段で減圧された冷媒をガス化させる蒸発器と、前記蒸発器と前記圧縮機との間で前記冷媒循環路に接続され、前記蒸発器から流出する冷媒を循環させて前記冷媒循環路に戻す分岐循環路とが設けられ、該分岐循環路の途中には冷却器が接続され、該冷却器は、前記筐体に内蔵され該筐体内を通過する空気の流れに対して前記凝縮器の下流側に配置されており、前記冷媒循環路と前記分岐循環路との接続位置には、該分岐循環路の開閉を切り替える循環路切り替え手段が設けられていることを特徴とする除湿送風機。 A housing provided with a suction port and an air outlet, an air blowing means provided in the housing, air is sucked into the housing from the suction port, and blown out from the air outlet to the outside of the housing, and a refrigerant is compressed. It has a compressor that discharges the compressor and a refrigerant circulation path that circulates the refrigerant discharged from the compressor and returns it to the compressor. In the middle of the refrigerant circulation path, the compressor is built in the housing. A compressor that condenses the refrigerant discharged from the condenser, a squeezing means that depressurizes the refrigerant condensed by the condenser, and an upstream of the condenser with respect to the flow of air that is built in the housing and passes through the housing. An evaporator that is arranged on the side and gasifies the refrigerant decompressed by the throttle means, and the refrigerant that is connected to the refrigerant circulation path between the evaporator and the compressor and flows out from the evaporator is circulated. A branch circulation path for returning to the refrigerant circulation path is provided, and a cooler is connected in the middle of the branch circulation path, and the cooler is built in the housing and is used for the flow of air passing through the housing. On the other hand, it is arranged on the downstream side of the compressor, and is characterized in that a circulation path switching means for switching the opening and closing of the branch circulation path is provided at the connection position between the refrigerant circulation path and the branch circulation path. Dehumidifying blower. 請求項1記載の除湿送風機において、前記分岐循環路には、該分岐循環路を循環する冷媒の流量を調整する流量調整手段が設けられていることを特徴とする除湿送風機。 The dehumidifying blower according to claim 1, wherein the branch circulation path is provided with a flow rate adjusting means for adjusting the flow rate of the refrigerant circulating in the branch circulation path. 請求項1又は2記載の除湿送風機において、前記蒸発器に付着する霜は、前記凝縮器からの放熱によって溶かし、ドレン水として滴下させることを特徴とする除湿送風機。 The dehumidifying blower according to claim 1 or 2, wherein the frost adhering to the evaporator is melted by heat radiation from the condenser and dropped as drain water. 請求項3記載の除湿送風機において、前記蒸発器の下方には、該蒸発器から滴下する前記ドレン水を回収するドレン水回収部と、該ドレン水回収部に接続され該ドレン水回収部に溜まった前記ドレン水を前記筐体の外部に排出するドレン水排出部が設けられていることを特徴とする除湿送風機。 In the dehumidifying blower according to claim 3, below the evaporator, there is a drain water recovery section that collects the drain water dripping from the evaporator, and a drain water recovery section that is connected to the drain water recovery section and collects in the drain water recovery section. A dehumidifying blower provided with a drain water discharge unit for discharging the drain water to the outside of the housing.
JP2017137804A 2017-07-14 2017-07-14 Dehumidifying blower Active JP6886701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017137804A JP6886701B2 (en) 2017-07-14 2017-07-14 Dehumidifying blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017137804A JP6886701B2 (en) 2017-07-14 2017-07-14 Dehumidifying blower

Publications (2)

Publication Number Publication Date
JP2019020020A JP2019020020A (en) 2019-02-07
JP6886701B2 true JP6886701B2 (en) 2021-06-16

Family

ID=65355489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017137804A Active JP6886701B2 (en) 2017-07-14 2017-07-14 Dehumidifying blower

Country Status (1)

Country Link
JP (1) JP6886701B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080040B (en) * 2019-04-01 2024-04-26 广州百立可科技有限公司 Method and equipment for repairing damp files

Also Published As

Publication number Publication date
JP2019020020A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
CN211739592U (en) Air conditioning system capable of continuously heating
JP5427428B2 (en) Heat pump type hot water supply / air conditioner
US8656729B2 (en) Air conditioning system with defrosting operation
KR101387541B1 (en) Air conditioner and Defrosting driving method of the same
US20110259025A1 (en) Heat pump type speed heating apparatus
JP2008082589A (en) Air conditioner
JP6883186B2 (en) Heat pump system
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2011127792A (en) Air heat source heat pump hot water supply and air conditioning device
KR101737365B1 (en) Air conditioner
JP5404761B2 (en) Refrigeration equipment
JP6949130B2 (en) Refrigeration cycle equipment
US20070157660A1 (en) Air conditioner capable of selectively dehumidifying separate areas
KR20120083139A (en) Heat pump type speed heating apparatus
CA2530567C (en) Multi-range cross defrosting heat pump system
JP6886701B2 (en) Dehumidifying blower
JP4622901B2 (en) Air conditioner
KR101122725B1 (en) Heat pump type cooling and heating apparatus
KR101381372B1 (en) Air conditioner
JP2005283058A (en) Reheating dehumidifying type air conditioner
CN113266965A (en) Air conditioner
WO2021014520A1 (en) Air-conditioning device
KR20100137050A (en) Refrigeration and air conditioning system
KR101592197B1 (en) Air conditioner capable of adjusting quantity of reheat by single three way valve and single stop valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6886701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250