WO2021014520A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2021014520A1
WO2021014520A1 PCT/JP2019/028595 JP2019028595W WO2021014520A1 WO 2021014520 A1 WO2021014520 A1 WO 2021014520A1 JP 2019028595 W JP2019028595 W JP 2019028595W WO 2021014520 A1 WO2021014520 A1 WO 2021014520A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
source side
heat source
side heat
refrigerant
Prior art date
Application number
PCT/JP2019/028595
Other languages
French (fr)
Japanese (ja)
Inventor
淳平 濱口
裕之 森本
隆直 木村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980098517.XA priority Critical patent/CN114127493B/en
Priority to PCT/JP2019/028595 priority patent/WO2021014520A1/en
Publication of WO2021014520A1 publication Critical patent/WO2021014520A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to an air conditioner having three heat source side heat exchangers and capable of switching the refrigerant flow path of these three heat source side heat exchangers.
  • an air conditioner such as a multi air conditioner for a building
  • a pipe is provided between an outdoor unit (outdoor unit) which is a heat source unit arranged outside the building and an indoor unit (indoor unit) arranged inside the building.
  • outdoor unit outdoor unit
  • indoor unit indoor unit
  • the refrigerant circulates in the refrigerant circuit, and the indoor air is heated or cooled by utilizing the heat radiation or heat absorption of the refrigerant, so that the air-conditioned space is heated or cooled.
  • the plurality of heat exchangers are connected in parallel and the refrigerant flows. As a result, the pressure loss of the evaporator can be reduced, the performance of the evaporator is improved, and the heating performance is improved.
  • the heat exchanger is operated as a condenser when the defrosting operation is performed in order to prevent the evaporator from being frosted and the performance of the evaporator being deteriorated. At that time, since each heat exchanger is connected in series, the heat exchanger on the wake side may have insufficient defrosting ability.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air conditioner having improved defrosting ability when carrying out a defrosting operation.
  • the compressor, the refrigerant flow path switching device, the load side heat exchanger, the load side drawing device, the first heat source side heat exchanger, the second heat source side heat exchanger and the third heat source The main circuit in which the side heat exchangers are connected by pipes to circulate the refrigerant and the refrigerant flow paths of the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger are switched.
  • a heat exchanger flow path switching device for the purpose and a control device for controlling the heat exchanger flow path switching device are provided, and the control device includes the first heat source side heat exchanger and the second heat source side heat exchange.
  • the refrigerant flow of the first heat source side heat exchanger, the second heat source side heat exchanger and the third heat source side heat exchanger The heat exchanger flow path switching device is controlled so as to switch the path to the parallel refrigerant flow path, and the parallel refrigerant flow path is the first heat source side heat exchanger, the second heat source side heat exchanger, and the third.
  • the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger are connected in parallel to each other in a parallel refrigerant flow path. Since it is switched, it is possible to provide an air conditioner with improved defrosting ability.
  • FIG. It is a schematic circuit block diagram which shows an example of the circuit structure of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit diagram which shows the flow of the refrigerant in the cooling operation mode of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit diagram which shows the flow of the refrigerant in the heating operation mode of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit diagram which shows the flow of the refrigerant in the defrost operation mode of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is a flowchart for demonstrating operation of the control device of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. 1 is a schematic circuit configuration diagram showing an example of the circuit configuration of the air conditioner 100 according to the first embodiment.
  • the air conditioner 100 shown in FIG. 1 has a configuration in which an outdoor unit 1 and an indoor unit 2 are connected by a first main pipe 4a and a second main pipe 4b.
  • FIG. 1 shows an example in which one indoor unit 2 is connected to the outdoor unit 1 via the first main pipe 4a and the second main pipe 4b.
  • the number of indoor units 2 connected to the outdoor unit 1 is not limited to one, and a plurality of indoor units may be connected.
  • the outdoor unit 1 includes a compressor 10, a first four-way valve 11, a second four-way valve 12, a first heat source side heat exchanger 13a, and a second heat source side heat exchanger 13b as components of the main circuit. , And a third heat source side heat exchanger 13c.
  • the first four-way valve 11 and the second four-way valve 12 correspond to the refrigerant flow path switching device.
  • the main circuits are the compressor 10, the first four-way valve 11, the second four-way valve 12, the load side heat exchanger 21, the load side throttle device 22, the first heat source side heat exchanger 13a, and the second heat source side heat exchanger 13b.
  • the third heat source side heat exchanger 13c are sequentially connected by the refrigerant pipe 3, and the refrigerant circulates.
  • the refrigerant pipe 3 is a general term for pipes for circulating the refrigerant used in the air conditioner 100.
  • the refrigerant pipe 3 includes, for example, a first main pipe 4a, a second main pipe 4b, a first main pipe 5a, a second main pipe 5b, a series parallel switching pipe 6, a series outlet pipe 7, a parallel inlet / outlet pipe 8, and a first inlet / outlet pipe 9a.
  • heat source side heat exchanger other heat source side heat exchangers may be provided in addition to the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c. ..
  • the first main pipe 4a and the second main pipe 4b connect the outdoor unit 1 and the indoor unit 2.
  • the first main pipe 5a connects the first four-way valve 11 and the first header 14a.
  • the second main pipe 5b connects the second four-way valve 12 and the second header 14b.
  • the series-parallel switching pipe 6 joins the fourth header 14d and the second header 14b and connects to the second four-way valve 12 via the second main pipe 5b. That is, the series-parallel switching pipe 6 connects the second header 14b and the fourth header 14d.
  • the parallel inlet / outlet pipe 8 is connected to the first inlet / outlet pipe 9a, the second inlet / outlet pipe 9b, and the third inlet / outlet pipe 9c, respectively, and connects to the second main pipe 4b leading to the load side throttle device 22.
  • the series outlet pipe 7 connects the connection portion in which the series / parallel switching pipe 6 and the fourth header 14d are connected and the second main pipe 4b leading to the load side throttle device 22.
  • the outdoor unit 1 has a first switchgear 31, a second switchgear 32, a first opening / closing device 33 capable of adjusting a Cv value, and a second opening / closing device 33 as heat exchanger flow path switching devices. It has an adjusting device 34 and.
  • the outdoor unit 1 is equipped with a fan 16 which is a blower.
  • the fan 16 includes a top flow type or first heat source side heat exchanger 13a located above the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c.
  • a side flow method or the like located on the side of the two heat source side heat exchangers 13b and the third heat source side heat exchanger 13c is adopted.
  • the compressor 10 sucks in the refrigerant and compresses it into a high temperature and high pressure state.
  • the compressor 10 is composed of, for example, an inverter compressor whose capacity can be controlled.
  • the compressor 10 uses, for example, a low-pressure shell structure having a compression chamber in a closed container, the inside of the closed container having a low-pressure refrigerant pressure atmosphere, and sucking and compressing the low-pressure refrigerant in the closed container.
  • the first four-way valve 11 and the second four-way valve 12 switch between the refrigerant flow path in the cooling operation mode and the defrosting operation mode and the refrigerant flow path in the heating operation mode.
  • the cooling operation mode is a case where at least one of the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is used as a condenser or a gas cooler.
  • the first embodiment has a cooling operation mode and a heating operation mode.
  • the heating operation mode is a case where the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the evaporator.
  • the first four-way valve 11 supplies or shuts off the refrigerant discharged from the compressor 10 to the first heat source side heat exchanger 13a.
  • the second four-way valve 12 supplies the refrigerant discharged from the compressor 10 to either the second heat source side heat exchanger 13b, the third heat source side heat exchanger 13c, or the load side heat exchanger 21.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c include a plurality of heat transfer tubes which are heat exchanger components and a plurality of heat exchanger components. It has fins and.
  • Multiple heat transfer tubes are flat tubes or circular tubes, respectively.
  • the plurality of heat transfer tubes extend in the horizontal direction.
  • the plurality of heat transfer tubes form a plurality of refrigerant flow paths in the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c.
  • the plurality of fins are plate-shaped and are stacked at predetermined intervals.
  • the plurality of fins extend in the vertical direction which is orthogonal to the extending direction of the heat transfer tube, and the plurality of heat transfer tubes are inserted therethrough.
  • the first heat source side heat exchanger 13a is arranged independently of the second heat source side heat exchanger 13b and the third heat source side heat exchanger 13c.
  • the second heat source side heat exchanger 13b is arranged above the third heat source side heat exchanger 13c on the vertical line.
  • the first heat source side heat exchanger 13a is provided with one first header 14a and one first distributor 15a.
  • the second heat source side heat exchanger 13b is arranged above the vertical line of the third heat source side heat exchanger 13c.
  • a part of the second heat source side heat exchanger 13b is integrally formed with the third heat source side heat exchanger 13c by sharing fins which are heat exchanger components. That is, a part of the second heat source side heat exchanger 13b and a part of the third heat source side heat exchanger 13c have their heat transfer tubes inserted into the same fins.
  • the remaining part other than a part of the second heat source side heat exchanger 13b is configured independently of the third heat source side heat exchanger 13c. That is, the heat transfer tubes are inserted into different fins except for a part of the second heat source side heat exchanger 13b and a part of the third heat source side heat exchanger 13c.
  • the second heat source side heat exchanger 13b is provided with one second header 14b and one second distributor 15b.
  • the third heat source side heat exchanger 13c is provided with one third header 14c and one fourth header 14d.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c function as a condenser in the cooling operation mode and the defrosting operation mode, and an evaporator in the heating operation mode. It functions as.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c exchange heat between the air supplied from the fan 16 and the refrigerant flowing through the plurality of heat transfer tubes. I do.
  • In the cooling operation mode depending on the various modes, only all or a part of the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c function as a condenser.
  • the total heat transfer area of the heat transfer area of the first heat source side heat exchanger 13a and the heat transfer area of the second heat source side heat exchanger 13b is calculated from the heat transfer area of the third heat source side heat exchanger 13c. Is also formed to be large. Therefore, the number of sums of the number of heat transfer tubes of the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b is larger than the number of heat transfer tubes of the third heat source side heat exchanger 13c.
  • the first header 14a is a refrigerant flow path on the inlet side of the first heat source side heat exchanger 13a when the first heat source side heat exchanger 13a is used as a condenser in the cooling operation mode and the defrosting operation mode. It is provided at the position where
  • the first header 14a has a plurality of branch pipes, which are thin pipes connected to the heat transfer pipes of the first heat source side heat exchanger 13a, and a main pipe to which the plurality of branch pipes are connected.
  • the main pipe is connected to the first main pipe 5a which is connected to the first four-way valve 11.
  • the upper part of the main pipe is connected to the first main pipe 5a.
  • the first header 14a contains a plurality of refrigerants that have flowed into the main pipe from the first main pipe 5a when the first heat source side heat exchanger 13a is used as a condenser in the cooling operation mode and the defrosting operation mode. It flows into the first heat source side heat exchanger 13a through the branch pipe.
  • the first header 14a allows the refrigerant flowing out from the first heat source side heat exchanger 13a to a plurality of branch pipes to flow through the main pipe to the first main pipe 5a. To leak to.
  • the second header 14b is a refrigerant flow path on the inlet side of the second heat source side heat exchanger 13b when the second heat source side heat exchanger 13b is used as a condenser in the cooling operation mode and the defrosting operation mode. It is provided at the position where The second header 14b has a plurality of branch pipes, which are thin pipes connected to the heat transfer pipes of the second heat source side heat exchanger 13b, and a main pipe to which the plurality of branch pipes are connected.
  • the main pipe is connected to the second main pipe 5b which is connected to the second four-way valve 12.
  • the lower part of the main pipe is connected to the second main pipe 5b.
  • the second header 14b contains a plurality of refrigerants that have flowed into the main pipe from the second main pipe 5b when the second heat source side heat exchanger 13b is used as a condenser in the cooling operation mode and the defrosting operation mode. It flows into the second heat source side heat exchanger 13b through the branch pipe.
  • the second header 14b allows the refrigerant flowing out from the second heat source side heat exchanger 13b to a plurality of branch pipes to flow through the main pipe to the second main pipe 5b. To leak to.
  • the third header 14c is located at a position that serves as a refrigerant flow path on the inlet side of the third heat source side heat exchanger 13c when the third heat source side heat exchanger 13c is used as a condenser or an evaporator in the cooling operation mode. It is provided.
  • the third header 14c has a plurality of branch pipes, which are thin pipes connected to the heat transfer pipes of the third heat source side heat exchanger 13c, and a main pipe to which the plurality of branch pipes are connected.
  • the main pipe is connected to the parallel entrance / exit pipe 8.
  • the lower part of the main pipe is connected to the parallel inlet / outlet pipe 8.
  • the third header 14c is a third heat source through a plurality of branch pipes, when the third heat source side heat exchanger 13c is used as a condenser or an evaporator in the cooling mode, the refrigerant flowing into the main pipe from the parallel inlet / outlet pipe 8 is used. It flows into the side heat exchanger 13c.
  • the third header 14c allows the refrigerant flowing out from the third heat source side heat exchanger 13c to the plurality of branch pipes through the main pipe when the third heat source side heat exchanger 13c is used as a condenser in the defrosting operation mode. It flows out to the parallel entrance / exit pipe 8.
  • the fourth header 14d is provided at a position that serves as a refrigerant flow path on the inlet side of the third heat source side heat exchanger 13c when the third heat source side heat exchanger 13c is used as a condenser in the defrosting operation mode. ing.
  • the fourth header 14d has a plurality of branch pipes, which are thin pipes connected to the heat transfer pipes of the third heat source side heat exchanger 13c, and a main pipe to which the plurality of branch pipes are connected.
  • the main pipe is connected to the series-parallel switching pipe 6 and the series outlet pipe 7.
  • the lower part of the main pipe is connected to the series-parallel switching pipe 6 and the series outlet pipe 7.
  • the fourth header 14d receives the refrigerant flowing out from the third heat source side heat exchanger 13c into a plurality of branch pipes when the third heat source side heat exchanger 13c is used as a condenser and an evaporator in the cooling operation mode. It flows out to the series-parallel switching pipe 6 through the main pipe.
  • the first distributor 15a is provided at a position that serves as a refrigerant flow path on the inlet side of the first heat source side heat exchanger 13a when the first heat source side heat exchanger 13a is used as an evaporator.
  • the first distributor 15a has a plurality of thin pipes connected to the heat transfer tubes of the first heat source side heat exchanger 13a, and a main body which is a confluence portion in which the plurality of thin pipes are merged into one. ing.
  • the main body is connected to the first entrance / exit pipe 9a connected to the parallel entrance / exit pipe.
  • the first distributor 15a allows the refrigerant flowing out from the first heat source side heat exchanger 13a to a plurality of thin pipes to flow through the main body to the first inlet / outlet pipe 9a. Leak to.
  • the first distributor 15a allows the refrigerant flowing into the main body from the first inlet / outlet pipe 9a to pass through a plurality of thin pipes to the first heat source side heat exchanger 13a. Inflow to.
  • the second distributor 15b is provided at a position that serves as a refrigerant flow path on the inlet side of the second heat source side heat exchanger 13b when the second heat source side heat exchanger 13b is used as an evaporator.
  • the second distributor 15b has a plurality of thin pipes connected to the heat transfer tubes of the second heat source side heat exchanger 13b, and a main body which is a confluence portion in which the plurality of thin pipes are merged into one. ing.
  • the main body is connected to a second entrance / exit pipe 9b connected to a parallel entrance / exit pipe.
  • the second distributor 15b allows the refrigerant flowing out from the second heat source side heat exchanger 13b to a plurality of thin pipes to flow through the main body to the second inlet / outlet pipe 9b. Leak to.
  • the second distributor 15b allows the refrigerant flowing into the main body from the second inlet / outlet pipe 9b to pass through the plurality of thin pipes to the second heat source side heat exchanger 13b. Inflow to.
  • the series-parallel switching pipe 6 connects the fourth header 14d, the second header 14b, and the second main pipe 5b.
  • the series-parallel switching pipe 6 sends the refrigerant flowing out from the fourth header 14d to the outlet of the second header 14b via the first opening degree adjusting device 33. Let the refrigerant flow out.
  • the series-parallel switching pipe 6 is provided with a first opening degree adjusting device 33.
  • the first entrance / exit pipe 9a connects the first distributor 15a and the parallel entrance / exit pipe 8.
  • the first inlet / outlet pipe 9a is in a two-phase state with low dryness when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as evaporators.
  • the liquid low-pressure refrigerant flows into the first heat source side heat exchanger 13a via the first distributor 15a.
  • the second entrance / exit pipe 9b connects the second distributor 15b and the parallel entrance / exit pipe 8.
  • the second inlet / outlet pipe 9b is in a two-phase state with low dryness when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as evaporators.
  • the liquid low-pressure refrigerant flows into the second heat source side heat exchanger 13b via the second opening degree adjusting device 34 and the second distributor 15b.
  • a second opening degree adjusting device 34 is provided in the second entrance / exit pipe 9b.
  • the third entrance / exit pipe 9c connects the third header 14c and the parallel entrance / exit pipe 8.
  • the third inlet / outlet pipe 9c is in a two-phase state with low dryness when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as evaporators.
  • the liquid low-pressure refrigerant flows into the third heat source side heat exchanger 13c via the third header 14c.
  • the parallel inlet / outlet pipe 8 connects the first inlet / outlet pipe 9a, the second inlet / outlet pipe 9b, and the third inlet / outlet pipe 9c to the second main pipe 4b.
  • the parallel inlet / outlet pipe 8 is in a two-phase state or liquid with low dryness when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as evaporators.
  • the low-pressure refrigerant in the state is branched into the first inlet / outlet pipe 9a, the second inlet / outlet pipe 9b, and the third inlet / outlet pipe 9c via the first opening / closing device 31.
  • the parallel entrance / exit pipe 8 is provided with a first switchgear 31.
  • the series outlet pipe 7 connects the fourth header 14d and the second main pipe 4b via the second switchgear 32.
  • the series outlet pipe 7 is a second opening / closing device when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as a condenser in the cooling operation mode.
  • a high-pressure liquid refrigerant flows into the second main pipe 4b via the 32.
  • the series outlet pipe 7 is provided with a second switchgear 32.
  • the first switchgear 31 is arranged in the parallel inlet / outlet pipe 8 and passes or shuts off the refrigerant flowing from the second main pipe 4b into the parallel inlet / outlet pipe 8. That is, the first opening / closing device 31 is closed so that the refrigerant flowing out from the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b does not flow into the second main pipe 4b in the cooling operation mode. Further, in the heating operation mode, the refrigerant flowing out from the second main pipe 4b is opened so as to flow into the parallel inlet / outlet pipe 8.
  • the refrigerant flowing out from the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is opened so as to flow into the second main pipe 4b.
  • the first switchgear 31 is an on-off valve, and is configured to open and close the flow path of the refrigerant such as a two-way valve, a solenoid valve, and an electronic expansion valve.
  • the second switchgear 32 is arranged in the series outlet pipe 7 and passes or shuts off the refrigerant flowing through the series outlet pipe 7. That is, the second switchgear 32 is opened so that the refrigerant flowing out of the fourth header 14d flows into the second main pipe in the cooling operation mode. Further, in the heating operation mode, the refrigerant flowing out from the second main pipe does not pass through the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c to the second main pipe 5b. It is closed so that it does not flow in. Further, in the defrosting operation mode, the refrigerant flowing out from the second main pipe is closed so as not to flow out to the second main pipe without passing through the second heat source side heat exchanger 13b and the third heat source side heat exchanger 13c.
  • the second switchgear 32 is an on-off valve, and is configured to open and close the flow path of the refrigerant such as a two-way valve, a solenoid valve, and an electronic expansion valve.
  • the first opening degree adjusting device 33 is arranged in the series-parallel switching pipe 6 and passes or shuts off the refrigerant flowing through the series-parallel switching pipe 6. That is, the first opening degree adjusting device 33 is closed so that the high temperature and high pressure refrigerant does not flow into the third heat source side heat exchanger 13c in the cooling operation mode. Further, in the heating operation mode, the Cv value is adjusted in order to adjust the amount of the refrigerant flowing into the third heat source side heat exchanger 13c from the parallel inlet / outlet pipe. Further, in the defrosting operation mode, the high-temperature and high-pressure refrigerant is opened so as to flow into the third heat source side heat exchanger 13c.
  • the first opening degree adjusting device 33 is composed of a throttle device capable of adjusting the flow rate of the refrigerant by changing the opening degree of, for example, an electronic expansion valve.
  • the second opening / closing adjusting device 34 is arranged in the second inlet / outlet pipe 9b, and passes or shuts off the refrigerant flowing through the second inlet / outlet pipe 9b. That is, the second opening degree adjusting device 34 is opened so that the refrigerant flowing out from the second heat source side heat exchanger 13b flows into the parallel inlet / outlet pipe 8 in the cooling operation mode. Further, in the heating operation mode, the Cv value is adjusted in order to adjust the amount of the refrigerant flowing into the second heat source side heat exchanger 13b from the parallel inlet / outlet pipe. Further, in the defrosting operation mode, the refrigerant flowing out from the second heat source side heat exchanger 13b is opened so as to flow into the parallel inlet / outlet pipe 8.
  • the second opening degree adjusting device 34 is composed of a throttle device capable of adjusting the flow rate of the refrigerant by changing the opening degree of, for example, an electronic expansion valve.
  • the indoor unit 2 has a load-side heat exchanger 21 and a load-side throttle device 22 as components of the main circuit.
  • the load side heat exchanger 21 is connected to the outdoor unit 1 via the first main pipe 4a and the second main pipe 4b.
  • the load-side heat exchanger 21 exchanges heat between the air leading to the indoor space and the refrigerant flowing through the first main pipe 4a or the second main pipe 4b, and supplies heating air or cooling to the indoor space. Generates air for use. Indoor air is blown to the load side heat exchanger 21 from a blower such as a fan (not shown).
  • the load-side throttle device 22 is composed of, for example, an electronic expansion valve whose opening degree is mutably controlled, has a function as a pressure reducing valve or an expansion valve, and decompresses and expands the refrigerant. ..
  • the load-side throttle device 22 is provided on the upstream side of the load-side heat exchanger 21 in the cooling operation mode and the defrosting operation mode.
  • the control device 60 is composed of a microcomputer or the like and is provided in the outdoor unit 1, and controls various devices of the air conditioner 100 based on the detection information detected by various sensors and the instruction from the remote controller.
  • the objects controlled by the control device 60 are the drive frequency of the compressor 10, the rotation speed including ON or OFF of the fan 16, the switching of the first four-way valve 11, the switching of the second four-way valve 12, and the opening and closing of the first switchgear 31. , Opening / closing of the second opening / closing device 32, opening / closing / opening / closing of the first opening / closing device 33, opening / closing / opening / closing of the second opening / closing device 34, opening / closing of the load side throttle device 22 and the like. By controlling various devices in this way, the control device 60 executes each operation mode described later.
  • the control device 60 is composed of dedicated hardware or a CPU (also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microprocessor, or a processor) that executes a program stored in a memory. ..
  • a CPU also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microprocessor, or a processor
  • the control device 60 corresponds to, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • each function executed by the control device 60 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory.
  • the CPU realizes each function of the control device 60 by reading and executing a program stored in the memory.
  • the memory is a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM. It should be noted that a part of the functions of the control device 60 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • control device 60 is provided in the outdoor unit 1 .
  • control device may be provided for each unit or may be provided in the indoor unit 2.
  • each operation mode executed by the air conditioner 100 performs a cooling operation mode or a heating operation mode based on an instruction from the indoor unit 2, and a defrosting operation mode based on an instruction from the control device 60.
  • the operation modes executed by the air conditioner 100 shown in FIG. 1 include three cooling operation modes in which the driving indoor unit 2 executes the cooling operation, and the driving indoor unit 2 executes the heating operation. There is a heating operation mode and a defrosting operation mode in which the driving air conditioner 100 executes a defrosting operation.
  • FIG. 2 is a refrigerant circuit diagram showing the flow of the refrigerant in the cooling operation mode of the air conditioner 100 according to the first embodiment.
  • FIG. 2 the flow of the refrigerant in the heavy load cooling operation mode will be described by taking the case where a large cooling heat load is generated in the load side heat exchanger 21 as an example.
  • the flow direction of the refrigerant is indicated by a solid arrow.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 branches into the first four-way valve 11 and the second four-way valve 12 and flows in. Then, the refrigerant that has flowed into the first four-way valve 11 flows into the first heat source side heat exchanger 13a through the first main pipe 5a.
  • the refrigerant flowing into the second four-way valve 12 flows into the second heat source side heat exchanger 13b through the second main pipe 5b.
  • the first opening degree adjusting device 33 is switched to the closed state. Therefore, the high-temperature and high-pressure gas refrigerant flowing through the second main pipe 5b does not flow into the third heat source side heat exchanger 13c via the series-parallel switching pipe 6.
  • the gas refrigerant flowing into the first heat source side heat exchanger 13a becomes a high-pressure two-phase or liquid refrigerant while radiating heat to the outdoor air supplied from the fan 16 by the first heat source side heat exchanger 13a. Further, the gas refrigerant flowing into the second heat source side heat exchanger 13b becomes a high-pressure two-phase or liquid refrigerant while radiating heat to the outdoor air supplied from the fan 16 by the second heat source side heat exchanger 13b.
  • the high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a flows into the parallel inlet / outlet pipe 8 through the first inlet / outlet pipe 9a. Further, the high-pressure two-phase or liquid refrigerant flowing out from the second heat source side heat exchanger 13b flows into the parallel inlet / outlet pipe 8 through the second inlet / outlet pipe 9b. As a result, the high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a and the high-pressure two-phase or liquid refrigerant flowing out of the second heat source side heat exchanger 13b merge at the parallel inlet / outlet pipe 8. To do. At this time, the first switchgear 31 is switched to the closed state. Therefore, the high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a or the second heat source side heat exchanger 13b does not flow into the second main pipe 4b via the parallel inlet / outlet pipe 8.
  • the combined high-pressure two-phase or liquid refrigerant flows into the third heat source side heat exchanger 13c. Then, the inflowing high-pressure two-phase or liquid refrigerant becomes a high-pressure liquid refrigerant while radiating heat to the outdoor air supplied from the fan 16 by the third heat source side heat exchanger 13c.
  • This high-pressure liquid refrigerant flows out from the outdoor unit 1 through the series outlet pipe 7 in which the second switchgear 32 switched to the open state is arranged, passes through the second main pipe 4b, and flows into the indoor unit 2.
  • the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b are parallel to each other on the upstream side, and the first heat source side heat is on the downstream side.
  • the third heat source side heat exchanger 13c is connected in series to the exchanger 13a and the second heat source side heat exchanger 13b.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as condensers, and the first four-way valve 11 is used from the compressor 10.
  • the discharged refrigerant is supplied to the first heat source side heat exchanger 13a, the refrigerant discharged from the compressor 10 by the second four-way valve 12 is supplied to the second heat source side heat exchanger 13b, and the first opening / closing device 31 is operated.
  • the second opening / closing device 32 is opened, the first opening / closing adjusting device 33 is closed, and the second opening / closing adjusting device 34 is opened.
  • the high-pressure liquid refrigerant is expanded by the load-side throttle device 22 to become a low-temperature low-pressure gas-liquid two-phase state refrigerant.
  • the gas-liquid two-phase state refrigerant flows into the load side heat exchanger 21 used as an evaporator and absorbs heat from the indoor air to become a low-temperature low-pressure gas refrigerant while cooling the indoor air.
  • the opening degree of the load side throttle device 22 is controlled by the control device 60 so that the degree of superheat becomes constant.
  • the gas refrigerant flowing out of the load side heat exchanger 21 flows into the outdoor unit 1 again through the first main pipe 4a.
  • the gas refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 10 again through the second four-way valve 12.
  • the third heat source side heat exchanger 13c is connected to the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b as a series refrigerant flow path.
  • the flow velocity of the refrigerant increases, and the performance of the condenser can be improved.
  • the flow velocity of the refrigerant is slow, it is possible to prevent the refrigerant from accumulating as a liquid refrigerant in the third heat source side heat exchanger 13c on the downstream side.
  • first heat source side heat exchanger 13a is independently arranged without division, and is provided with one first header 14a and one first distributor 15a.
  • second heat source side heat exchanger 13b and the third heat source side heat exchanger 13c are partially integrally configured.
  • the second heat source side heat exchanger 13b is provided with one second header 14b and one second distributor 15b.
  • the third heat source side heat exchanger 13c is provided with one third header 14c and one fourth header 14d. Therefore, the cost can be suppressed and the installation space can be narrowed as compared with the configuration in which two or more headers and distributors are provided in one heat source side heat exchanger.
  • the volume ratio between the upstream side and the downstream side is such that the inflow refrigerant of the third heat source side heat exchanger 13c on the downstream side becomes a refrigerant with low dryness. This is to adjust.
  • FIG. 3 is a refrigerant circuit diagram showing the flow of the refrigerant in the heating operation mode of the air conditioner 100 according to the first embodiment.
  • FIG. 3 the flow of the refrigerant in the heating operation mode will be described by taking as an example a case where a thermal load is generated in the load side heat exchanger 21.
  • the flow direction of the refrigerant is indicated by a solid arrow.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the second four-way valve 12 and flows out from the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 passes through the first main pipe 4a and is dissipated to the indoor air by the load side heat exchanger 21 to become a liquid refrigerant while heating the indoor space.
  • the opening degree of the load side throttle device 22 is controlled by the control device 60 so that the degree of supercooling becomes constant.
  • the liquid refrigerant flowing out from the load side heat exchanger 21 is expanded by the load side throttle device 22 to become a gas-liquid two-phase state refrigerant at medium temperature and medium pressure, and passes through the second main pipe 4b to the outdoor unit 1 again. Inflow.
  • the medium-temperature, medium-pressure, gas-liquid, two-phase refrigerant that has flowed into the outdoor unit 1 passes through the first switchgear 31 that has been switched to the open state, and flows into the parallel inlet / outlet pipe 8.
  • the refrigerant flowing into the parallel inlet / outlet pipe 8 flows into the first inlet / outlet pipe 9a, the second inlet / outlet pipe 9b, and the third inlet / outlet pipe 9c in parallel, and flows into the first heat source side heat exchanger 13a and the second heat source side heat exchanger, respectively. It flows into 13b and the third heat source side heat exchanger 13c.
  • the second switchgear 32 is switched to the closed state. Therefore, the refrigerant flowing through the second main pipe 4b does not flow into the series-parallel switching pipe 6.
  • the first opening degree adjusting device 33 adjusts the amount of refrigerant flowing into the third heat source side heat exchanger 13c by changing the opening degree so that each heat exchanger has an optimum refrigerant circulation amount in the heating operation mode.
  • the second opening degree adjusting device 34 adjusts the amount of refrigerant flowing into the second heat source side heat exchanger 13b by changing the opening degree so that each heat exchanger has an optimum refrigerant circulation amount in the heating operation mode. ..
  • the refrigerant that has flowed into the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and The heat exchanger 13c on the third heat source side absorbs heat from the outdoor air and becomes a low-temperature low-pressure gas refrigerant.
  • the refrigerant flowing out of the first heat source side heat exchanger 13a flows into the suction side of the compressor 10 through the first four-way valve 11. Further, the refrigerant flowing out from the third heat source side heat exchanger 13c passes through the series-parallel switching pipe 6 in which the second opening degree adjusting device 34 that has been switched to the open state is arranged.
  • the refrigerant that flows out of the third heat source side heat exchanger 13c and passes through the series-parallel switching pipe 6 in which the second opening degree adjusting device 34 is arranged is in the second main pipe 5b in the second heat source side heat exchanger 13b. It merges with the refrigerant flowing out from the compressor, passes through the second four-way valve 12, and flows into the suction side of the compressor 10.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the heating operation mode, the first heat source side heat exchanger 13a and the second heat source
  • the side heat exchanger 13b and the third heat source side heat exchanger 13c are connected in parallel with each other by a parallel refrigerant flow path.
  • the first four-way valve 11 shuts off the refrigerant discharged from the compressor 10
  • the second four-way valve 12 supplies the refrigerant discharged from the compressor 10 to the load side heat exchanger 21. 1
  • the opening / closing device 31 is opened, the second opening / closing device 32 is closed, the first opening / closing device 33 is opened, and the second opening / closing device 34 is open.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are connected in parallel.
  • the pressure loss of the refrigerant flowing through the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is reduced, and the performance of the evaporator can be improved.
  • FIG. 4 is a refrigerant circuit diagram showing the flow of the refrigerant in the defrosting operation mode of the air conditioner 100 according to the first embodiment.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 branches into the first four-way valve 11 and the second four-way valve 12 and flows in. Then, the refrigerant that has flowed into the first four-way valve 11 flows into the first heat source side heat exchanger 13a through the first main pipe 5a.
  • the refrigerant flowing into the second four-way valve 12 flows into the second heat source side heat exchanger 13b through the second main pipe 5b.
  • the first opening degree adjusting device 33 is switched to the open state. Therefore, the high-temperature and high-pressure gas refrigerant flowing through the second main pipe 5b flows into the third heat source side heat exchanger 13c via the series-parallel switching pipe 6.
  • the second switchgear 32 is switched to the closed state. Therefore, the high-temperature and high-pressure gas refrigerant flowing through the series-parallel switching pipe 6 does not flow into the second main pipe 4b via the series outlet pipe 7.
  • the gas refrigerant flowing into the first heat source side heat exchanger 13a becomes a high-pressure two-phase or liquid refrigerant while melting the frost frosted on the heat exchanger at the first heat source side heat exchanger 13a.
  • the gas refrigerant flowing into the second heat source side heat exchanger 13b becomes a high-pressure two-phase or liquid refrigerant while melting the frost frosted on the heat exchanger at the second heat source side heat exchanger 13b.
  • the gas refrigerant flowing into the third heat source side heat exchanger 13c becomes a high-pressure two-phase or liquid refrigerant while melting the frost frosted on the heat exchanger by the third heat source side heat exchanger 13c.
  • the high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a flows into the parallel inlet / outlet pipe 8 through the first inlet / outlet pipe 9a. Further, the high-pressure two-phase or liquid refrigerant flowing out from the second heat source side heat exchanger 13b flows into the parallel inlet / outlet pipe 8 through the second inlet / outlet pipe 9b. Further, the high-pressure two-phase or liquid refrigerant flowing out from the third heat source side heat exchanger 13c flows into the parallel inlet / outlet pipe 8 through the third inlet / outlet pipe 9c.
  • the high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a, the high-pressure two-phase or liquid refrigerant flowing out of the second heat source side heat exchanger 13b, and the third heat source side heat exchanger merges at the parallel inlet / outlet pipe 8.
  • the first opening / closing device 31 is switched to the open state. Therefore, the high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c passes through the parallel inlet / outlet pipe 8. 2 Passes through the main pipe 4b and flows into the indoor unit 2.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are connected in parallel in the defrosting operation mode.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as condensers, and the compressor 10 is used by the first four-way valve 11.
  • the refrigerant discharged from the compressor 10 is supplied to the first heat source side heat exchanger 13a, and the refrigerant discharged from the compressor 10 is supplied to the second heat source side heat exchanger 13b by the second four-way valve 12, and the first switching device 31
  • the second opening / closing device 32 is closed, the first opening / closing adjusting device 33 is opened, and the second opening / closing adjusting device 34 is opened.
  • the high-pressure liquid refrigerant is expanded by the load-side throttle device 22 to become a low-temperature low-pressure gas-liquid two-phase state refrigerant.
  • the gas-liquid two-phase state refrigerant flows into the load side heat exchanger 21 used as an evaporator and absorbs heat from the indoor air to become a low-temperature low-pressure gas refrigerant while cooling the indoor air.
  • the opening degree of the load side throttle device 22 is controlled by the control device 60 so that the opening degree is fully opened.
  • the gas refrigerant flowing out of the load side heat exchanger 21 flows into the outdoor unit 1 again through the first main pipe 4a.
  • the gas refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 10 again through the second four-way valve 12.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c operate as a condenser, but as a parallel refrigerant flow path. Connect.
  • the high-temperature and high-pressure refrigerant flows in parallel to the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c, and the maximum defrosting ability is obtained.
  • FIG. 5 is a flowchart for explaining the operation of the control device 60 of the air conditioner 100 according to the first embodiment.
  • the control device 60 determines whether or not the control device 60 is in the cooling operation mode (S11).
  • the heat exchanger flow path switching device includes the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the second. 3 An instruction is given to switch the refrigerant flow path of the heat source side heat exchanger 13c to the series refrigerant flow path (S12).
  • the control device 60 uses the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c as a condenser, and compresses with the first four-way valve 11.
  • the refrigerant discharged from the machine 10 is supplied to the first heat source side heat exchanger 13a, and the refrigerant discharged from the compressor 10 is supplied to the second heat source side heat exchanger 13b by the second four-way valve 12, and the first opening / closing is performed.
  • Control is performed so that the device 31 is opened, the second opening / closing device 32 is opened, the first opening / closing device 33 is closed, and the second opening / closing device 34 is opened.
  • step S11 when it is determined that the control device 60 is not in the cooling operation mode (NO in S11), and after the processing in step S12, it is determined whether or not the control device 60 is in the heating operation mode (S13).
  • step S13 When it is determined in step S13 that the control device 60 is in the heating operation mode (YES in S13), the control device 60 connects the heat exchanger flow path switching device to the first heat source side heat exchanger 13a and the second heat source side heat exchange. An instruction is given to switch the refrigerant flow path of the device 13b and the third heat source side heat exchanger 13c to the parallel refrigerant flow path (S14).
  • the control device 60 shuts off the refrigerant discharged from the compressor 10 by the first four-way valve 11, and sends the refrigerant discharged from the compressor 10 by the second four-way valve 12 to the load side heat exchanger 21.
  • the first opening / closing device 31 is opened, the second opening / closing device 32 is closed, the first opening / closing device 33 is opened, and the second opening / closing device 34 is opened.
  • step S13 when it is determined that the control device 60 is not in the heating operation mode (NO in S13), and after the processing in step S14, it is determined whether or not the control device 60 is in the defrosting operation mode (S15).
  • step S15 When it is determined in step S15 that the control device 60 is in the defrosting operation mode (YES in S15), the control device 60 is connected to the heat exchanger flow path switching device with the first heat source side heat exchanger 13a and the second heat source side heat. An instruction is given to switch the refrigerant flow paths of the exchanger 13b and the third heat source side heat exchanger 13c to parallel refrigerant flow paths (S16).
  • control device 60 supplies the refrigerant discharged from the compressor 10 by the first four-way valve 11 to the first heat source side heat exchanger 13a, and discharges the refrigerant from the compressor 10 by the second four-way valve 12.
  • the refrigerant is supplied to the second heat source side heat exchanger 13b, the first opening / closing device 31 is opened, the second opening / closing device 32 is closed, the first opening / closing device 33 is opened, and the second opening / closing device 34 is opened. Is controlled so as to open.
  • step S15 If it is determined in step S15 that the control device 60 is not in the defrosting operation mode (NO in S15), and after the processing in step S16, the process returns to step S11.
  • the air conditioner 100 includes the compressor 10, the first four-way valve 11, the second four-way valve 12, the load side heat exchanger 21, the load side throttle device 22, and at least the first heat source.
  • the side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are connected by a refrigerant pipe 3 to include a main circuit in which the refrigerant circulates.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the cooling operation mode
  • the first heat source side heat exchanger 13a and the first heat exchanger 13a are on the upstream side.
  • the two heat source side heat exchangers 13b are in parallel with each other
  • the third heat source side heat exchanger 13c is in series with the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b on the downstream side. It is connected by a series refrigerant flow path.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the heating operation mode, the first heat source side heat exchanger 13a and the second heat source side heat The exchanger 13b and the third heat source side heat exchanger 13c are connected in parallel with each other by a parallel refrigerant flow path.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the defrosting operation mode, the first heat source side heat exchanger 13a and the second heat source side
  • the heat exchanger 13b and the third heat source side heat exchanger 13c are connected in parallel with each other by a parallel refrigerant flow path.
  • the air conditioner 100 switches to the series refrigerant flow path when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the cooling operation mode, and the first When the heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the heating operation mode, they are switched to the parallel refrigerant flow path, and the first heat source side heat exchanger 13a, the first It has a heat exchanger flow path switching device that switches to a parallel refrigerant flow path when the two heat source side heat exchangers 13b and the third heat source side heat exchanger 13c are used as the defrost rainy weather mode.
  • the heat exchanger flow path switching device is a first switchgear 31, a second switchgear 32, a first opening / closing device 33, and a second opening / closing device 34.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the cooling operation mode, they are switched to the series refrigerant flow path and the first It has a heat exchanger flow path switching device that switches to a parallel refrigerant flow path when the heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the heating operation mode. There is.
  • the flow paths of the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c can be switched in series or in parallel between the cooling operation and the heating operation.
  • the series refrigerant flow path is first on the upstream side when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the cooling operation mode.
  • the heat source side heat exchanger 13a and the second heat source side heat exchanger 13b are in parallel with each other, and the third heat source is relative to the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b on the downstream side.
  • Side heat exchangers 13c are connected in series.
  • the third heat source side heat exchanger 13c is arranged on the downstream side of the condenser, the volume on the downstream side of the evaporator is small, and evaporation occurs.
  • the liquid refrigerant accumulates on the downstream side of the vessel.
  • the first heat source side heat exchanger 13a is provided with one first header 14a and one first distributor 15a.
  • the second heat source side heat exchanger 13b is provided with one second header 14b and one second distributor 15b.
  • the third heat source side heat exchanger 13c is provided with a single third header 14c and a single fourth header 14d.
  • each of the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is provided with a total of two headers or distributors.
  • the cost can be suppressed and the installation space can be narrowed as compared with the conventional configuration in which two or more headers and distributors are provided in one heat source side heat exchanger.
  • the first opening degree adjusting device 33 and the second opening degree adjusting device 34 are throttle devices capable of adjusting the flow rate by changing the opening degree.
  • the heat exchanger flow path switching device changes the opening degree of each of the first opening degree adjusting device 33 and the second opening degree adjusting device 34 to the first heat source side. The amount of refrigerant flowing into each of the heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is adjusted.
  • the first heat source side heat exchanger 13a when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the heating operation mode, the first heat source side heat exchanger 13a
  • the amount of refrigerant can be optimally distributed to the second heat source side heat exchanger 13b and the third heat source side heat exchanger 13c.
  • the total heat transfer area of the heat transfer area of the first heat source side heat exchanger 13a and the heat transfer area of the second heat source side heat exchanger 13b is the third heat source side heat exchanger 13c. It is formed so as to be larger than the heat transfer area of.
  • the third heat source side heat exchanger 13c is arranged on the downstream side of the evaporator, and the volume on the downstream side of the evaporator is large. It is small, and the refrigerant that collects liquid refrigerant on the downstream side of the evaporator can be suppressed from falling asleep, and the refrigerant can be circulated well.
  • the first heat source side heat exchanger 13a is arranged independently.
  • a part of the second heat source side heat exchanger 13b is integrally formed with the third heat source side heat exchanger 13c by sharing fins which are heat exchanger components.
  • the remaining part other than a part of the second heat source side heat exchanger 13b is configured independently of the third heat source side heat exchanger 13c.
  • the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger are used as opposed to the case where the independent first heat source side heat exchanger 13a also shares the fins.
  • the connection pipe which is the refrigerant pipe 3 can be simplified, and the air conditioner 100 can be miniaturized.
  • the heat transfer tube which is a component of the heat exchanger is a flat tube. ..
  • the compressor 10 of the first embodiment has been described by taking the case of using a low-pressure shell type compressor as an example. However, for example, the same effect can be obtained by using a high-pressure shell type compressor.
  • the heat source side heat exchanger and the load side heat exchanger are often equipped with a blower such as a fan that promotes the condensation or evaporation of the refrigerant by blowing air, but the present invention is not limited to this. ..
  • a blower such as a fan that promotes the condensation or evaporation of the refrigerant by blowing air
  • the present invention is not limited to this. ..
  • a panel heater using radiation can also be used.
  • a water-cooled type heat exchanger that exchanges heat with a liquid such as water or antifreeze can be used. Any heat exchanger can be used as long as it can dissipate heat or absorb heat from the refrigerant.
  • a water-cooled type heat exchanger for example, a water-refrigerant heat exchanger such as a plate heat exchanger or a double-tube heat exchanger may be installed and used.
  • the embodiment is presented as an example and is not intended to limit the scope of the embodiment.
  • the embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the embodiment. These embodiments and variations thereof are included in the scope and gist of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

An air-conditioning device according to the present invention is provided with: a main circuit in which a compressor, a refrigerant channel switching device, a load-side heat exchanger, a load-side throttle device, a first heat-source-side heat exchanger, a second heat-source-side heat exchanger, and a third heat-source-side heat exchanger are connected by piping and in which a refrigerant circulates; a heat exchanger channel switching device for switching a refrigerant channel of the first, second, and third heat-source-side heat exchangers; and a control device for controlling the heat exchanger channel switching device. The control device controls the heat exchanger channel switching device to switch the refrigerant channel of the first, second, and third heat-source-side heat exchangers to a parallel refrigerant channel when the first, second, and third heat-source-side heat exchangers are used as a defrost operation mode. The parallel refrigerant channel is a refrigerant channel in which the first, second, and third heat-source-side heat exchangers are connected in parallel to each other.

Description

空気調和装置Air conditioner
 本発明は、3つの熱源側熱交換器有し、これら3つの熱源側熱交換器の冷媒流路を切り替えることができる空気調和装置に関する。 The present invention relates to an air conditioner having three heat source side heat exchangers and capable of switching the refrigerant flow path of these three heat source side heat exchangers.
 従来、たとえばビル用マルチエアコンなどの空気調和装置は、建物外に配置した熱源機である室外機(室外ユニット)と、建物内に配置した室内機(室内ユニット)と、の間を、配管を介して接続した冷媒回路を備えるものが知られている。そして、冷媒回路において冷媒が循環し、冷媒の放熱又は吸熱を利用して室内空気が加熱又は冷却されることにより、空調対象空間の暖房又は冷房が行われている。
 並列に接続された複数の熱交換器において、室外熱交換器のように暖房運転時に蒸発器として使用する場合に、複数の熱交換器を並列に接続して冷媒が流れる。これにより、蒸発器の圧力損失が低減でき、蒸発器の性能が向上し、暖房性能が向上する。
Conventionally, in an air conditioner such as a multi air conditioner for a building, a pipe is provided between an outdoor unit (outdoor unit) which is a heat source unit arranged outside the building and an indoor unit (indoor unit) arranged inside the building. Those provided with a refrigerant circuit connected via a pipe are known. Then, the refrigerant circulates in the refrigerant circuit, and the indoor air is heated or cooled by utilizing the heat radiation or heat absorption of the refrigerant, so that the air-conditioned space is heated or cooled.
In a plurality of heat exchangers connected in parallel, when used as an evaporator during a heating operation like an outdoor heat exchanger, the plurality of heat exchangers are connected in parallel and the refrigerant flows. As a result, the pressure loss of the evaporator can be reduced, the performance of the evaporator is improved, and the heating performance is improved.
 しかし、冷房運転時に凝縮器として使用する場合に、複数の熱交換器を並列に接続して冷媒が流れることにより、各伝熱管を流れる冷媒の流速が低下する。これにより、管内熱伝達率が低下し、凝縮器の性能が低下し、冷房性能が低下する。 However, when used as a condenser during cooling operation, the flow velocity of the refrigerant flowing through each heat transfer tube decreases due to the flow of the refrigerant by connecting multiple heat exchangers in parallel. As a result, the heat transfer coefficient in the pipe is lowered, the performance of the condenser is lowered, and the cooling performance is lowered.
 そこで、凝縮器としても蒸発器としても性能が向上するように、複数の流路切替弁を使用して流路を切り替える技術がある。この技術では、凝縮器として使用する場合に、複数の熱交換器を直列に接続して冷媒が流れるように流路が切り替わる。これにより、冷媒の流速が上昇することにより、凝縮器の性能が向上する。また、蒸発器として使用する場合に、複数の熱交換器を並列に接続して冷媒が流れるように流路が切り替わる。これにより、圧力損失が低減することにより、蒸発器の性能が向上する。このような冷房運転時及び暖房運転時の性能向上手法が提案されている。 Therefore, there is a technology to switch the flow path by using a plurality of flow path switching valves so that the performance of both the condenser and the evaporator is improved. In this technique, when used as a condenser, a plurality of heat exchangers are connected in series and the flow path is switched so that the refrigerant flows. As a result, the flow velocity of the refrigerant increases, which improves the performance of the condenser. Further, when used as an evaporator, a plurality of heat exchangers are connected in parallel and the flow path is switched so that the refrigerant flows. This reduces the pressure loss and improves the performance of the evaporator. A method for improving performance during such cooling operation and heating operation has been proposed.
特開2003-121019号公報Japanese Unexamined Patent Publication No. 2003-121019
 従来の空気調和装置では、蒸発器に霜が付き蒸発器の性能が低下することを防ぐために除霜運転を実施する際に熱交換器を凝縮器として運転する。その際に各熱交換器が直列となってしまうため、後流側の熱交換器で除霜能力が不足することがあった。 In the conventional air conditioner, the heat exchanger is operated as a condenser when the defrosting operation is performed in order to prevent the evaporator from being frosted and the performance of the evaporator being deteriorated. At that time, since each heat exchanger is connected in series, the heat exchanger on the wake side may have insufficient defrosting ability.
 本発明は、上記実情に鑑みてなされたものであり、除霜運転を実施する際に除霜能力が向上した空気調和装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air conditioner having improved defrosting ability when carrying out a defrosting operation.
 本発明に係る空気調和装置によれば、圧縮機、冷媒流路切替装置、負荷側熱交換器、負荷側絞り装置、第1熱源側熱交換器、第2熱源側熱交換器及び第3熱源側熱交換器が配管で接続されて冷媒が循環する主回路と、前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器の冷媒流路を切り替えるための熱交換器流路切替装置と、前記熱交換器流路切替装置を制御する制御装置とを具備し、前記制御装置は、前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器を除霜運転モードとして使用する際に、前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器の冷媒流路を並列冷媒流路に切り替えるように前記熱交換器流路切替装置を制御し、前記並列冷媒流路は、前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器が互いに並列に接続される冷媒流路である。 According to the air conditioner according to the present invention, the compressor, the refrigerant flow path switching device, the load side heat exchanger, the load side drawing device, the first heat source side heat exchanger, the second heat source side heat exchanger and the third heat source The main circuit in which the side heat exchangers are connected by pipes to circulate the refrigerant and the refrigerant flow paths of the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger are switched. A heat exchanger flow path switching device for the purpose and a control device for controlling the heat exchanger flow path switching device are provided, and the control device includes the first heat source side heat exchanger and the second heat source side heat exchange. When the device and the third heat source side heat exchanger are used as the defrosting operation mode, the refrigerant flow of the first heat source side heat exchanger, the second heat source side heat exchanger and the third heat source side heat exchanger The heat exchanger flow path switching device is controlled so as to switch the path to the parallel refrigerant flow path, and the parallel refrigerant flow path is the first heat source side heat exchanger, the second heat source side heat exchanger, and the third. A refrigerant flow path in which heat source side heat exchangers are connected in parallel with each other.
 本発明によれば、除霜運転を実施する際に第1熱源側熱交換器と第2熱源側熱交換器と第3熱源側熱交換器とが互いに並列に接続された並列冷媒流路に切り替わるので、除霜能力が向上した空気調和装置を提供できる。 According to the present invention, when the defrosting operation is performed, the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger are connected in parallel to each other in a parallel refrigerant flow path. Since it is switched, it is possible to provide an air conditioner with improved defrosting ability.
実施の形態1に係る空気調和装置100の回路構成の一例を示す概略回路構成図である。It is a schematic circuit block diagram which shows an example of the circuit structure of the air conditioner 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置100の冷房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant in the cooling operation mode of the air conditioner 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant in the heating operation mode of the air conditioner 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置100の除霜運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant in the defrost operation mode of the air conditioner 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置100の制御装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation of the control device of the air conditioner 100 which concerns on Embodiment 1. FIG.
 以下、図面を参照して、実施の形態に係る空気調和装置について説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。さらに、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。 Hereinafter, the air conditioner according to the embodiment will be described with reference to the drawings. In the drawings, the same components will be described with the same reference numerals, and duplicate explanations will be given only when necessary. Furthermore, the forms of the components shown in the full text of the specification are merely examples and are not limited to these descriptions.
実施の形態1.
1-1.構成
 図1は、実施の形態1に係る空気調和装置100の回路構成の一例を示す概略回路構成図である。
 図1に示す空気調和装置100は、室外機1と室内機2とが第1主管4a及び第2主管4bで接続された構成である。
 なお、図1では、1台の室内機2が第1主管4a及び第2主管4bを介して室外機1に接続されている場合を例に示している。しかし、室外機1に接続される室内機2の接続台数を1台に限定するものではなく、複数台接続してもよい。
Embodiment 1.
1-1. Configuration FIG. 1 is a schematic circuit configuration diagram showing an example of the circuit configuration of the air conditioner 100 according to the first embodiment.
The air conditioner 100 shown in FIG. 1 has a configuration in which an outdoor unit 1 and an indoor unit 2 are connected by a first main pipe 4a and a second main pipe 4b.
Note that FIG. 1 shows an example in which one indoor unit 2 is connected to the outdoor unit 1 via the first main pipe 4a and the second main pipe 4b. However, the number of indoor units 2 connected to the outdoor unit 1 is not limited to one, and a plurality of indoor units may be connected.
[室外機1]
 室外機1は、主回路の構成要素として、圧縮機10と、第1四方弁11と、第2四方弁12と、第1熱源側熱交換器13aと、第2熱源側熱交換器13bと、第3熱源側熱交換器13cと、を有している。
[Outdoor unit 1]
The outdoor unit 1 includes a compressor 10, a first four-way valve 11, a second four-way valve 12, a first heat source side heat exchanger 13a, and a second heat source side heat exchanger 13b as components of the main circuit. , And a third heat source side heat exchanger 13c.
 なお、第1四方弁11及び第2四方弁12は、冷媒流路切替装置に相当する。 The first four-way valve 11 and the second four-way valve 12 correspond to the refrigerant flow path switching device.
 主回路は、圧縮機10、第1四方弁11、第2四方弁12、負荷側熱交換器21、負荷側絞り装置22、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cが冷媒配管3で順次接続されて冷媒が循環する。 The main circuits are the compressor 10, the first four-way valve 11, the second four-way valve 12, the load side heat exchanger 21, the load side throttle device 22, the first heat source side heat exchanger 13a, and the second heat source side heat exchanger 13b. And the third heat source side heat exchanger 13c are sequentially connected by the refrigerant pipe 3, and the refrigerant circulates.
 なお、冷媒配管3は、空気調和装置100に用いられる冷媒を流通させる配管の総称である。冷媒配管3は、たとえば、第1主管4a、第2主管4b、第1本管5a、第2本管5b、直列並列切り替え配管6、直列出口配管7、並列出入口配管8、第1出入口配管9a、第2出入口配管9b、第3出入口配管9c、第1ヘッダー14a、第2ヘッダー14b、第3ヘッダー14c、第4ヘッダー14d、第1分配器15a及び第2分配器15bなどを含んで構成される。 The refrigerant pipe 3 is a general term for pipes for circulating the refrigerant used in the air conditioner 100. The refrigerant pipe 3 includes, for example, a first main pipe 4a, a second main pipe 4b, a first main pipe 5a, a second main pipe 5b, a series parallel switching pipe 6, a series outlet pipe 7, a parallel inlet / outlet pipe 8, and a first inlet / outlet pipe 9a. , 2nd entrance / exit pipe 9b, 3rd entrance / exit pipe 9c, 1st header 14a, 2nd header 14b, 3rd header 14c, 4th header 14d, 1st distributor 15a, 2nd distributor 15b and the like. To.
 また、熱源側熱交換器としては、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13c以外に他の熱源側熱交換器も備えてもよい。 Further, as the heat source side heat exchanger, other heat source side heat exchangers may be provided in addition to the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c. ..
 第1主管4a及び第2主管4bは、室外機1と室内機2とを繋ぐ。第1本管5aは、第1四方弁11と第1ヘッダー14aとを繋ぐ。第2本管5bは、第2四方弁12と第2ヘッダー14bとを繋ぐ。 The first main pipe 4a and the second main pipe 4b connect the outdoor unit 1 and the indoor unit 2. The first main pipe 5a connects the first four-way valve 11 and the first header 14a. The second main pipe 5b connects the second four-way valve 12 and the second header 14b.
 直列並列切り替え配管6は第4ヘッダー14dと第2ヘッダー14bとを合流させ第2本管5bを介して第2四方弁12に繋ぐ。すなわち直列並列切り替え配管6は第2ヘッダー14bと、第4ヘッダー14dと、を繋ぐ。 The series-parallel switching pipe 6 joins the fourth header 14d and the second header 14b and connects to the second four-way valve 12 via the second main pipe 5b. That is, the series-parallel switching pipe 6 connects the second header 14b and the fourth header 14d.
 並列出入口配管8は第1出入口配管9aと第2出入口配管9bと第3出入口配管9cとがそれぞれ接続され、負荷側絞り装置22に至る第2主管4bと、を繋ぐ。 The parallel inlet / outlet pipe 8 is connected to the first inlet / outlet pipe 9a, the second inlet / outlet pipe 9b, and the third inlet / outlet pipe 9c, respectively, and connects to the second main pipe 4b leading to the load side throttle device 22.
 直列出口配管7は直列並列切り替え配管6と第4ヘッダー14dとが接続された接続部と、負荷側絞り装置22に至る第2主管4bと、を繋ぐ。 The series outlet pipe 7 connects the connection portion in which the series / parallel switching pipe 6 and the fourth header 14d are connected and the second main pipe 4b leading to the load side throttle device 22.
 室外機1は、熱交換器流路切替装置として、第1開閉装置31と、第2開閉装置32と、Cv値を調整することが可能な第1開度調整装置33と、第2開度調整装置34と、を有している。 The outdoor unit 1 has a first switchgear 31, a second switchgear 32, a first opening / closing device 33 capable of adjusting a Cv value, and a second opening / closing device 33 as heat exchanger flow path switching devices. It has an adjusting device 34 and.
 また、室外機1には、送風機であるファン16が搭載されている。ファン16には、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cの上方に位置するトップフロー方式又は第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cの側方に位置するサイドフロー方式などが採用される。
 圧縮機10は、冷媒を吸入して圧縮して高温高圧の状態にする。圧縮機10は、たとえば容量制御可能なインバータ圧縮機などで構成されている。圧縮機10は、たとえば、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気になり、密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造のものを使用する。
 第1四方弁11及び第2四方弁12は、冷房運転モード及び除霜運転モード時における冷媒流路と、暖房運転モード時における冷媒流路と、を切り替えるものである。
Further, the outdoor unit 1 is equipped with a fan 16 which is a blower. The fan 16 includes a top flow type or first heat source side heat exchanger 13a located above the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c. A side flow method or the like located on the side of the two heat source side heat exchangers 13b and the third heat source side heat exchanger 13c is adopted.
The compressor 10 sucks in the refrigerant and compresses it into a high temperature and high pressure state. The compressor 10 is composed of, for example, an inverter compressor whose capacity can be controlled. The compressor 10 uses, for example, a low-pressure shell structure having a compression chamber in a closed container, the inside of the closed container having a low-pressure refrigerant pressure atmosphere, and sucking and compressing the low-pressure refrigerant in the closed container.
The first four-way valve 11 and the second four-way valve 12 switch between the refrigerant flow path in the cooling operation mode and the defrosting operation mode and the refrigerant flow path in the heating operation mode.
 なお、冷房運転モードとは、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cの少なくとも1つが凝縮器もしくはガスクーラとして使用される場合である。実施の形態1では、冷房運転モードと、暖房運転モードと、を有する。暖房運転モードとは、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cが蒸発器として使用される場合である。 The cooling operation mode is a case where at least one of the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is used as a condenser or a gas cooler. The first embodiment has a cooling operation mode and a heating operation mode. The heating operation mode is a case where the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the evaporator.
 第1四方弁11は、圧縮機10から吐出された冷媒を第1熱源側熱交換器13aに供給又は遮断を行う。 The first four-way valve 11 supplies or shuts off the refrigerant discharged from the compressor 10 to the first heat source side heat exchanger 13a.
 第2四方弁12は、圧縮機10から吐出された冷媒を第2熱源側熱交換器13b、第3熱源側熱交換器13c又は負荷側熱交換器21のどちらかに供給する。 The second four-way valve 12 supplies the refrigerant discharged from the compressor 10 to either the second heat source side heat exchanger 13b, the third heat source side heat exchanger 13c, or the load side heat exchanger 21.
 第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cは、熱交換器構成要素である複数の伝熱管と、熱交換器構成要素である複数のフィンと、を有している。 The first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c include a plurality of heat transfer tubes which are heat exchanger components and a plurality of heat exchanger components. It has fins and.
 複数の伝熱管は、それぞれ扁平管もしくは円管である。複数の伝熱管は、水平方向に延びている。複数の伝熱管は、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13c内に複数の冷媒流路を構成する。 Multiple heat transfer tubes are flat tubes or circular tubes, respectively. The plurality of heat transfer tubes extend in the horizontal direction. The plurality of heat transfer tubes form a plurality of refrigerant flow paths in the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c.
 複数のフィンは、板状であり、所定間隔を空けて重ねられている。複数のフィンは、伝熱管の延伸方向と直交方向である鉛直方向に延びて複数の伝熱管が挿通されている。 The plurality of fins are plate-shaped and are stacked at predetermined intervals. The plurality of fins extend in the vertical direction which is orthogonal to the extending direction of the heat transfer tube, and the plurality of heat transfer tubes are inserted therethrough.
 第1熱源側熱交換器13aは、第2熱源側熱交換器13b及び第3熱源側熱交換器13cとは離れて独立して配置されている。第2熱源側熱交換器13bは、第3熱源側熱交換器13cの鉛直線上の上方に配置されている。 The first heat source side heat exchanger 13a is arranged independently of the second heat source side heat exchanger 13b and the third heat source side heat exchanger 13c. The second heat source side heat exchanger 13b is arranged above the third heat source side heat exchanger 13c on the vertical line.
 第1熱源側熱交換器13aには、1つの第1ヘッダー14a及び1つの第1分配器15aが設けられている。 The first heat source side heat exchanger 13a is provided with one first header 14a and one first distributor 15a.
 第2熱源側熱交換器13bは、第3熱源側熱交換器13cの鉛直線上の上方に配置されている。第2熱源側熱交換器13bの一部分は、第3熱源側熱交換器13cと熱交換器構成要素であるフィンを共有して一体に構成されている。つまり、第2熱源側熱交換器13bの一部分と第3熱源側熱交換器13cの一部分とは、同じフィンに互いの伝熱管を挿通している。 The second heat source side heat exchanger 13b is arranged above the vertical line of the third heat source side heat exchanger 13c. A part of the second heat source side heat exchanger 13b is integrally formed with the third heat source side heat exchanger 13c by sharing fins which are heat exchanger components. That is, a part of the second heat source side heat exchanger 13b and a part of the third heat source side heat exchanger 13c have their heat transfer tubes inserted into the same fins.
 第2熱源側熱交換器13bの一部分以外の残りの部分は、第3熱源側熱交換器13cとは独立して構成されている。つまり、第2熱源側熱交換器13bの一部分以外と第3熱源側熱交換器13cの一部分以外とは、異なるフィンにそれぞれの伝熱管を挿通している。 The remaining part other than a part of the second heat source side heat exchanger 13b is configured independently of the third heat source side heat exchanger 13c. That is, the heat transfer tubes are inserted into different fins except for a part of the second heat source side heat exchanger 13b and a part of the third heat source side heat exchanger 13c.
 第2熱源側熱交換器13bには、1つの第2ヘッダー14b及び1つの第2分配器15bが設けられている。 The second heat source side heat exchanger 13b is provided with one second header 14b and one second distributor 15b.
 第3熱源側熱交換器13cには、1つの第3ヘッダー14c及び1つの第4ヘッダー14dが設けられている。 The third heat source side heat exchanger 13c is provided with one third header 14c and one fourth header 14d.
 第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cは、冷房運転モード時、除霜運転モード時には凝縮器として機能し、暖房運転モード時には蒸発器として機能するものである。第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cは、ファン16から供給される空気と複数の伝熱管を流通する冷媒との間で熱交換を行う。なお、冷房運転モード時には、各種モードによって、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cの全部又は一部のみが凝縮器として機能する。 The first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c function as a condenser in the cooling operation mode and the defrosting operation mode, and an evaporator in the heating operation mode. It functions as. The first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c exchange heat between the air supplied from the fan 16 and the refrigerant flowing through the plurality of heat transfer tubes. I do. In the cooling operation mode, depending on the various modes, only all or a part of the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c function as a condenser.
 ここで、第1熱源側熱交換器13aの伝熱面積と第2熱源側熱交換器13bの伝熱面積との和の伝熱面積は、第3熱源側熱交換器13cの伝熱面積よりも大きくなるように形成されている。このため、第1熱源側熱交換器13a及び第2熱源側熱交換器13bの伝熱管数の和の数は、第3熱源側熱交換器13cの伝熱管数よりも多く設けられている。 Here, the total heat transfer area of the heat transfer area of the first heat source side heat exchanger 13a and the heat transfer area of the second heat source side heat exchanger 13b is calculated from the heat transfer area of the third heat source side heat exchanger 13c. Is also formed to be large. Therefore, the number of sums of the number of heat transfer tubes of the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b is larger than the number of heat transfer tubes of the third heat source side heat exchanger 13c.
 第1ヘッダー14aは、第1熱源側熱交換器13aを冷房運転モード時、及び除霜運転モード時の凝縮器として使用する際に、第1熱源側熱交換器13aの入口側の冷媒流路となる位置に設けられている。 The first header 14a is a refrigerant flow path on the inlet side of the first heat source side heat exchanger 13a when the first heat source side heat exchanger 13a is used as a condenser in the cooling operation mode and the defrosting operation mode. It is provided at the position where
 第1ヘッダー14aは、第1熱源側熱交換器13aの伝熱管にそれぞれ接続される細い配管である複数の枝管と、複数の枝管が接続された主配管と、を有している。主配管は、第1四方弁11と繋がれている第1本管5aに接続されている。主配管の上部が、第1本管5aに接続されている。第1ヘッダー14aは、第1熱源側熱交換器13aを冷房運転モード時、及び除霜運転モード時の凝縮器として使用する際に、第1本管5aから主配管に流入した冷媒を複数の枝管を通じて第1熱源側熱交換器13aに流入させる。第1ヘッダー14aは、第1熱源側熱交換器13aを蒸発器として使用する際に、第1熱源側熱交換器13aから複数の枝管に流出した冷媒を、主配管を通じて第1本管5aに流出させる。 The first header 14a has a plurality of branch pipes, which are thin pipes connected to the heat transfer pipes of the first heat source side heat exchanger 13a, and a main pipe to which the plurality of branch pipes are connected. The main pipe is connected to the first main pipe 5a which is connected to the first four-way valve 11. The upper part of the main pipe is connected to the first main pipe 5a. The first header 14a contains a plurality of refrigerants that have flowed into the main pipe from the first main pipe 5a when the first heat source side heat exchanger 13a is used as a condenser in the cooling operation mode and the defrosting operation mode. It flows into the first heat source side heat exchanger 13a through the branch pipe. When the first heat source side heat exchanger 13a is used as an evaporator, the first header 14a allows the refrigerant flowing out from the first heat source side heat exchanger 13a to a plurality of branch pipes to flow through the main pipe to the first main pipe 5a. To leak to.
 第2ヘッダー14bは、第2熱源側熱交換器13bを冷房運転モード時、及び除霜運転モード時の凝縮器として使用する際に、第2熱源側熱交換器13bの入口側の冷媒流路となる位置に設けられている。
 第2ヘッダー14bは、第2熱源側熱交換器13bの伝熱管にそれぞれ接続される細い配管である複数の枝管と、複数の枝管が接続された主配管と、を有している。主配管は、第2四方弁12と繋がれている第2本管5bに接続されている。主配管の下部が、第2本管5bに接続されている。第2ヘッダー14bは、第2熱源側熱交換器13bを冷房運転モード時、及び除霜運転モード時の凝縮器として使用する際に、第2本管5bから主配管に流入した冷媒を複数の枝管を通じて第2熱源側熱交換器13bに流入させる。第2ヘッダー14bは、第2熱源側熱交換器13bを蒸発器として使用する際に、第2熱源側熱交換器13bから複数の枝管に流出した冷媒を、主配管を通じて第2本管5bに流出させる。
The second header 14b is a refrigerant flow path on the inlet side of the second heat source side heat exchanger 13b when the second heat source side heat exchanger 13b is used as a condenser in the cooling operation mode and the defrosting operation mode. It is provided at the position where
The second header 14b has a plurality of branch pipes, which are thin pipes connected to the heat transfer pipes of the second heat source side heat exchanger 13b, and a main pipe to which the plurality of branch pipes are connected. The main pipe is connected to the second main pipe 5b which is connected to the second four-way valve 12. The lower part of the main pipe is connected to the second main pipe 5b. The second header 14b contains a plurality of refrigerants that have flowed into the main pipe from the second main pipe 5b when the second heat source side heat exchanger 13b is used as a condenser in the cooling operation mode and the defrosting operation mode. It flows into the second heat source side heat exchanger 13b through the branch pipe. When the second heat source side heat exchanger 13b is used as an evaporator, the second header 14b allows the refrigerant flowing out from the second heat source side heat exchanger 13b to a plurality of branch pipes to flow through the main pipe to the second main pipe 5b. To leak to.
 第3ヘッダー14cは、第3熱源側熱交換器13cを冷房運転モード時の凝縮器もしくは蒸発器として使用する際に、第3熱源側熱交換器13cの入口側の冷媒流路となる位置に設けられている。
 第3ヘッダー14cは、第3熱源側熱交換器13cの伝熱管にそれぞれ接続される細い配管である複数の枝管と、複数の枝管が接続された主配管と、を有している。主配管は、並列出入口配管8に接続されている。主配管の下部が、並列出入口配管8に接続されている。第3ヘッダー14cは、第3熱源側熱交換器13cを冷房モード時の凝縮器もしくは蒸発器として使用する際に、並列出入口配管8から主配管に流入した冷媒を複数の枝管を通じて第3熱源側熱交換器13cに流入させる。第3ヘッダー14cは、第3熱源側熱交換器13cを除霜運転モード時の凝縮器として使用する際に、第3熱源側熱交換器13cから複数の枝管に流出した冷媒を主配管を通じて並列出入口配管8に流出させる。
The third header 14c is located at a position that serves as a refrigerant flow path on the inlet side of the third heat source side heat exchanger 13c when the third heat source side heat exchanger 13c is used as a condenser or an evaporator in the cooling operation mode. It is provided.
The third header 14c has a plurality of branch pipes, which are thin pipes connected to the heat transfer pipes of the third heat source side heat exchanger 13c, and a main pipe to which the plurality of branch pipes are connected. The main pipe is connected to the parallel entrance / exit pipe 8. The lower part of the main pipe is connected to the parallel inlet / outlet pipe 8. The third header 14c is a third heat source through a plurality of branch pipes, when the third heat source side heat exchanger 13c is used as a condenser or an evaporator in the cooling mode, the refrigerant flowing into the main pipe from the parallel inlet / outlet pipe 8 is used. It flows into the side heat exchanger 13c. The third header 14c allows the refrigerant flowing out from the third heat source side heat exchanger 13c to the plurality of branch pipes through the main pipe when the third heat source side heat exchanger 13c is used as a condenser in the defrosting operation mode. It flows out to the parallel entrance / exit pipe 8.
 第4ヘッダー14dは、第3熱源側熱交換器13cを除霜運転モード時の凝縮器として使用する際に、第3熱源側熱交換器13cの入口側の冷媒流路となる位置に設けられている。 The fourth header 14d is provided at a position that serves as a refrigerant flow path on the inlet side of the third heat source side heat exchanger 13c when the third heat source side heat exchanger 13c is used as a condenser in the defrosting operation mode. ing.
 第4ヘッダー14dは、第3熱源側熱交換器13cの伝熱管にそれぞれ接続される細い配管である複数の枝管と、複数の枝管が接続された主配管と、を有している。主配管は、直列並列切り替え配管6及び直列出口配管7に接続されている。主配管の下部が、直列並列切り替え配管6及び直列出口配管7に接続されている。第4ヘッダー14dは、第3熱源側熱交換器13cを除霜運転モード凝縮器として使用する際に、直列並列切り替え配管6から主配管に流入した冷媒を複数の枝管を通じて第3熱源側熱交換器13cに流入させる。第4ヘッダー14dは、第3熱源側熱交換器13cを冷房運転モード時の凝縮器及び蒸発器として使用する際に、第3熱源側熱交換器13cから複数の枝管に流出した冷媒を、主配管を通じて直列並列切り替え配管6に流出させる。 The fourth header 14d has a plurality of branch pipes, which are thin pipes connected to the heat transfer pipes of the third heat source side heat exchanger 13c, and a main pipe to which the plurality of branch pipes are connected. The main pipe is connected to the series-parallel switching pipe 6 and the series outlet pipe 7. The lower part of the main pipe is connected to the series-parallel switching pipe 6 and the series outlet pipe 7. When the third heat source side heat exchanger 13c is used as the defrosting operation mode condenser, the fourth header 14d allows the refrigerant flowing into the main pipe from the series-parallel switching pipe 6 to heat the third heat source side through a plurality of branch pipes. It flows into the exchanger 13c. The fourth header 14d receives the refrigerant flowing out from the third heat source side heat exchanger 13c into a plurality of branch pipes when the third heat source side heat exchanger 13c is used as a condenser and an evaporator in the cooling operation mode. It flows out to the series-parallel switching pipe 6 through the main pipe.
 第1分配器15aは、第1熱源側熱交換器13aを蒸発器として使用する際に、第1熱源側熱交換器13aの入口側の冷媒流路となる位置に設けられている。 The first distributor 15a is provided at a position that serves as a refrigerant flow path on the inlet side of the first heat source side heat exchanger 13a when the first heat source side heat exchanger 13a is used as an evaporator.
 第1分配器15aは、第1熱源側熱交換器13aの伝熱管にそれぞれ接続される複数の細い配管と、複数の細い配管を一つに合流させた合流部である本体と、を有している。本体は、並列出入口配管につながれている第1出入口配管9aに接続されている。第1分配器15aは、第1熱源側熱交換器13aを凝縮器として使用する際に、第1熱源側熱交換器13aから複数の細い配管に流出した冷媒を、本体を通じて第1出入口配管9aに流出させる。第1分配器15aは、第1熱源側熱交換器13aを蒸発器として使用する際に、第1出入口配管9aから本体に流入した冷媒を、複数の細い配管を通じて第1熱源側熱交換器13aに流入させる。 The first distributor 15a has a plurality of thin pipes connected to the heat transfer tubes of the first heat source side heat exchanger 13a, and a main body which is a confluence portion in which the plurality of thin pipes are merged into one. ing. The main body is connected to the first entrance / exit pipe 9a connected to the parallel entrance / exit pipe. When the first heat source side heat exchanger 13a is used as a condenser, the first distributor 15a allows the refrigerant flowing out from the first heat source side heat exchanger 13a to a plurality of thin pipes to flow through the main body to the first inlet / outlet pipe 9a. Leak to. When the first heat source side heat exchanger 13a is used as an evaporator, the first distributor 15a allows the refrigerant flowing into the main body from the first inlet / outlet pipe 9a to pass through a plurality of thin pipes to the first heat source side heat exchanger 13a. Inflow to.
 第2分配器15bは、第2熱源側熱交換器13bを蒸発器として使用する際に、第2熱源側熱交換器13bの入口側の冷媒流路となる位置に設けられている。 The second distributor 15b is provided at a position that serves as a refrigerant flow path on the inlet side of the second heat source side heat exchanger 13b when the second heat source side heat exchanger 13b is used as an evaporator.
 第2分配器15bは、第2熱源側熱交換器13bの伝熱管にそれぞれ接続される複数の細い配管と、複数の細い配管を一つに合流させた合流部である本体と、を有している。本体は、並列出入口配管につながれている第2出入口配管9bに接続されている。第2分配器15bは、第2熱源側熱交換器13bを凝縮器として使用する際に、第2熱源側熱交換器13bから複数の細い配管に流出した冷媒を、本体を通じて第2出入口配管9bに流出させる。第2分配器15bは、第2熱源側熱交換器13bを蒸発器として使用する際に、第2出入口配管9bから本体に流入した冷媒を、複数の細い配管を通じて第2熱源側熱交換器13bに流入させる。 The second distributor 15b has a plurality of thin pipes connected to the heat transfer tubes of the second heat source side heat exchanger 13b, and a main body which is a confluence portion in which the plurality of thin pipes are merged into one. ing. The main body is connected to a second entrance / exit pipe 9b connected to a parallel entrance / exit pipe. When the second heat source side heat exchanger 13b is used as a condenser, the second distributor 15b allows the refrigerant flowing out from the second heat source side heat exchanger 13b to a plurality of thin pipes to flow through the main body to the second inlet / outlet pipe 9b. Leak to. When the second heat source side heat exchanger 13b is used as an evaporator, the second distributor 15b allows the refrigerant flowing into the main body from the second inlet / outlet pipe 9b to pass through the plurality of thin pipes to the second heat source side heat exchanger 13b. Inflow to.
 直列並列切り替え配管6は、第4ヘッダー14dと第2ヘッダー14bと、第2本管5bを繋いでいる。直列並列切り替え配管6は第3熱源側熱交換器13cを蒸発器として使用する際に、第4ヘッダー14dから流出した冷媒を第1開度調整装置33を介して、第2ヘッダー14bの出口に冷媒を流出させる。 The series-parallel switching pipe 6 connects the fourth header 14d, the second header 14b, and the second main pipe 5b. When the third heat source side heat exchanger 13c is used as an evaporator, the series-parallel switching pipe 6 sends the refrigerant flowing out from the fourth header 14d to the outlet of the second header 14b via the first opening degree adjusting device 33. Let the refrigerant flow out.
 直列並列切り替え配管6には、第1開度調整装置33が設けられている。 The series-parallel switching pipe 6 is provided with a first opening degree adjusting device 33.
 第1出入口配管9aは、第1分配器15aと並列出入口配管8とを繋いでいる。第1出入口配管9aは、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを蒸発器として使用する際に、低乾き度の二相状態もしくは液状態の低圧冷媒を、第1分配器15aを介して、第1熱源側熱交換器13aに流入させる。 The first entrance / exit pipe 9a connects the first distributor 15a and the parallel entrance / exit pipe 8. The first inlet / outlet pipe 9a is in a two-phase state with low dryness when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as evaporators. The liquid low-pressure refrigerant flows into the first heat source side heat exchanger 13a via the first distributor 15a.
 第2出入口配管9bは、第2分配器15bと並列出入口配管8とを繋いでいる。第2出入口配管9bは、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを蒸発器として使用する際に、低乾き度の二相状態もしくは液状態の低圧冷媒を、第2開度調整装置34及び第2分配器15bを介して、第2熱源側熱交換器13bに流入させる。 The second entrance / exit pipe 9b connects the second distributor 15b and the parallel entrance / exit pipe 8. The second inlet / outlet pipe 9b is in a two-phase state with low dryness when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as evaporators. The liquid low-pressure refrigerant flows into the second heat source side heat exchanger 13b via the second opening degree adjusting device 34 and the second distributor 15b.
 第2出入口配管9bには、第2開度調整装置34が設けられている。 A second opening degree adjusting device 34 is provided in the second entrance / exit pipe 9b.
 第3出入口配管9cは、第3ヘッダー14cと並列出入口配管8とを繋いでいる。第3出入口配管9cは、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを蒸発器として使用する際に、低乾き度の二相状態もしくは液状態の低圧冷媒を、第3ヘッダー14cを介して、第3熱源側熱交換器13cに流入させる。 The third entrance / exit pipe 9c connects the third header 14c and the parallel entrance / exit pipe 8. The third inlet / outlet pipe 9c is in a two-phase state with low dryness when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as evaporators. The liquid low-pressure refrigerant flows into the third heat source side heat exchanger 13c via the third header 14c.
 並列出入口配管8は第1出入口配管9aと、第2出入口配管9bと、第3出入口配管9cが合流して第2主管4bと、を繋いでいる。並列出入口配管8は、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを蒸発器として使用する際に、低乾き度の二相状態もしくは液状態の低圧冷媒を、第1開閉装置31を介して第1出入口配管9a、第2出入口配管9b及び第3出入口配管9cに分岐させて流入させる。並列出入口配管8には、第1開閉装置31が設けられている。 The parallel inlet / outlet pipe 8 connects the first inlet / outlet pipe 9a, the second inlet / outlet pipe 9b, and the third inlet / outlet pipe 9c to the second main pipe 4b. The parallel inlet / outlet pipe 8 is in a two-phase state or liquid with low dryness when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as evaporators. The low-pressure refrigerant in the state is branched into the first inlet / outlet pipe 9a, the second inlet / outlet pipe 9b, and the third inlet / outlet pipe 9c via the first opening / closing device 31. The parallel entrance / exit pipe 8 is provided with a first switchgear 31.
 直列出口配管7は、第4ヘッダー14dと、第2主管4bと、を第2開閉装置32を介して繋いでいる。直列出口配管7は、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを冷房運転モード時の凝縮器として使用する際に、第2開閉装置32を介して高圧の液冷媒を第2主管4bに流入させる。 The series outlet pipe 7 connects the fourth header 14d and the second main pipe 4b via the second switchgear 32. The series outlet pipe 7 is a second opening / closing device when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as a condenser in the cooling operation mode. A high-pressure liquid refrigerant flows into the second main pipe 4b via the 32.
 直列出口配管7には、第2開閉装置32が設けられている。 The series outlet pipe 7 is provided with a second switchgear 32.
 第1開閉装置31は、並列出入口配管8に配置され、第2主管4bから並列出入口配管8へと流入する冷媒の通過又は遮断を行う。すなわち第1開閉装置31は、冷房運転モード時に第1熱源側熱交換器13a及び第2熱源側熱交換器13bから流出した冷媒が第2主管4bに流入させないように閉となる。また暖房運転モード時には第2主管4bから流出した冷媒が並列出入口配管8へと流入させるように開となる。さらに除霜運転モード時には第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cから流出した冷媒が第2主管4bに流入させるように開となる。 The first switchgear 31 is arranged in the parallel inlet / outlet pipe 8 and passes or shuts off the refrigerant flowing from the second main pipe 4b into the parallel inlet / outlet pipe 8. That is, the first opening / closing device 31 is closed so that the refrigerant flowing out from the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b does not flow into the second main pipe 4b in the cooling operation mode. Further, in the heating operation mode, the refrigerant flowing out from the second main pipe 4b is opened so as to flow into the parallel inlet / outlet pipe 8. Further, in the defrosting operation mode, the refrigerant flowing out from the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is opened so as to flow into the second main pipe 4b.
 第1開閉装置31は、開閉弁であり、たとえば二方弁、電磁弁、電子式膨張弁などの冷媒の流路を開閉できるもので構成される。 The first switchgear 31 is an on-off valve, and is configured to open and close the flow path of the refrigerant such as a two-way valve, a solenoid valve, and an electronic expansion valve.
 第2開閉装置32は、直列出口配管7に配置され、直列出口配管7を流通する冷媒の通過又は遮断を行う。すなわち、第2開閉装置32は、冷房運転モード時に第4ヘッダー14dを流出した冷媒を第2主管へと流入させるように開となる。また暖房運転モード時には第2主管から流出した冷媒が第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを通過せずに第2本管5bへと流入させないように閉となる。さらに除霜運転モード時には第2本管から流出した冷媒が第2熱源側熱交換器13b及び第3熱源側熱交換器13cを通過せずに第2主管へと流出させないように閉となる。 The second switchgear 32 is arranged in the series outlet pipe 7 and passes or shuts off the refrigerant flowing through the series outlet pipe 7. That is, the second switchgear 32 is opened so that the refrigerant flowing out of the fourth header 14d flows into the second main pipe in the cooling operation mode. Further, in the heating operation mode, the refrigerant flowing out from the second main pipe does not pass through the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c to the second main pipe 5b. It is closed so that it does not flow in. Further, in the defrosting operation mode, the refrigerant flowing out from the second main pipe is closed so as not to flow out to the second main pipe without passing through the second heat source side heat exchanger 13b and the third heat source side heat exchanger 13c.
 第2開閉装置32は、開閉弁であり、たとえば二方弁、電磁弁、電子式膨張弁などの冷媒の流路を開閉できるもので構成される。 The second switchgear 32 is an on-off valve, and is configured to open and close the flow path of the refrigerant such as a two-way valve, a solenoid valve, and an electronic expansion valve.
 第1開度調整装置33は、直列並列切り替え配管6に配置され、直列並列切り替え配管6を流通する冷媒の通過又は遮断を行う。すなわち第1開度調整装置33は、冷房運転モード時に高温高圧の冷媒を第3熱源側熱交換器13cに流入させないように閉となる。また暖房運転モード時には並列出入口配管から第3熱源側熱交換器13cに流入する冷媒の量を調整するためにそのCv値を調整するように動作させる。さらに除霜運転モード時には高温高圧の冷媒を第3熱源側熱交換器13cに流入させるように開となる。 The first opening degree adjusting device 33 is arranged in the series-parallel switching pipe 6 and passes or shuts off the refrigerant flowing through the series-parallel switching pipe 6. That is, the first opening degree adjusting device 33 is closed so that the high temperature and high pressure refrigerant does not flow into the third heat source side heat exchanger 13c in the cooling operation mode. Further, in the heating operation mode, the Cv value is adjusted in order to adjust the amount of the refrigerant flowing into the third heat source side heat exchanger 13c from the parallel inlet / outlet pipe. Further, in the defrosting operation mode, the high-temperature and high-pressure refrigerant is opened so as to flow into the third heat source side heat exchanger 13c.
 第1開度調整装置33は、たとえば電子式膨張弁などの開度変化により冷媒の流量を調整できる絞り装置で構成される。 The first opening degree adjusting device 33 is composed of a throttle device capable of adjusting the flow rate of the refrigerant by changing the opening degree of, for example, an electronic expansion valve.
 第2開度調整装置34は、第2出入口配管9bに配置され、第2出入口配管9bを流通する冷媒の通過又は遮断を行う。すなわち第2開度調整装置34は冷房運転モード時に第2熱源側熱交換器13bから流出した冷媒を並列出入口配管8に流入させるように開となる。また暖房運転モード時には、並列出入口配管から第2熱源側熱交換器13bに流入する冷媒の量を調整するためにそのCv値を調整するように動作させる。さらに除霜運転モード時には第2熱源側熱交換器13bから流出した冷媒を並列出入口配管8に流入させるように開となる。 The second opening / closing adjusting device 34 is arranged in the second inlet / outlet pipe 9b, and passes or shuts off the refrigerant flowing through the second inlet / outlet pipe 9b. That is, the second opening degree adjusting device 34 is opened so that the refrigerant flowing out from the second heat source side heat exchanger 13b flows into the parallel inlet / outlet pipe 8 in the cooling operation mode. Further, in the heating operation mode, the Cv value is adjusted in order to adjust the amount of the refrigerant flowing into the second heat source side heat exchanger 13b from the parallel inlet / outlet pipe. Further, in the defrosting operation mode, the refrigerant flowing out from the second heat source side heat exchanger 13b is opened so as to flow into the parallel inlet / outlet pipe 8.
 第2開度調整装置34は、たとえば電子式膨張弁などの開度変化により冷媒の流量を調整できる絞り装置で構成される。 The second opening degree adjusting device 34 is composed of a throttle device capable of adjusting the flow rate of the refrigerant by changing the opening degree of, for example, an electronic expansion valve.
[室内機2]
 室内機2は、主回路の構成要素として、負荷側熱交換器21と、負荷側絞り装置22と、を有している。
[Indoor unit 2]
The indoor unit 2 has a load-side heat exchanger 21 and a load-side throttle device 22 as components of the main circuit.
 負荷側熱交換器21は、第1主管4a及び第2主管4bを介して室外機1に接続されている。負荷側熱交換器21は、室内空間に通じる空気と第1主管4a又は第2主管4bを流通して来る冷媒との間で熱交換を行い、室内空間に供給するための暖房用空気あるいは冷房用空気を生成する。なお、負荷側熱交換器21には、図示しないファンなどの送風機から室内空気が送風される。 The load side heat exchanger 21 is connected to the outdoor unit 1 via the first main pipe 4a and the second main pipe 4b. The load-side heat exchanger 21 exchanges heat between the air leading to the indoor space and the refrigerant flowing through the first main pipe 4a or the second main pipe 4b, and supplies heating air or cooling to the indoor space. Generates air for use. Indoor air is blown to the load side heat exchanger 21 from a blower such as a fan (not shown).
 負荷側絞り装置22は、たとえば電子式膨張弁などの開度が変更可能に制御されるもので構成され、減圧弁あるいは膨張弁としての機能を有して冷媒を減圧して膨張させるものである。負荷側絞り装置22は、冷房運転モード時及び除霜運転モード時において負荷側熱交換器21の上流側に設けられている。 The load-side throttle device 22 is composed of, for example, an electronic expansion valve whose opening degree is mutably controlled, has a function as a pressure reducing valve or an expansion valve, and decompresses and expands the refrigerant. .. The load-side throttle device 22 is provided on the upstream side of the load-side heat exchanger 21 in the cooling operation mode and the defrosting operation mode.
 制御装置60は、マイコンなどで構成されて室外機1に設けられており、各種センサーにて検出された検出情報及びリモコンからの指示に基づいて、空気調和装置100の各種機器を制御する。制御装置60が制御する対象は、圧縮機10の駆動周波数、ファン16のON又はOFFを含む回転数、第1四方弁11の切り替え、第2四方弁12の切り替え、第1開閉装置31の開閉、第2開閉装置32の開閉、第1開度調整装置33の開度もしくは開閉、第2開度調整装置34の開度もしくは開閉、負荷側絞り装置22の開度などである。このように制御装置60が各種機器を制御することにより、後述する各運転モードを実行する。 The control device 60 is composed of a microcomputer or the like and is provided in the outdoor unit 1, and controls various devices of the air conditioner 100 based on the detection information detected by various sensors and the instruction from the remote controller. The objects controlled by the control device 60 are the drive frequency of the compressor 10, the rotation speed including ON or OFF of the fan 16, the switching of the first four-way valve 11, the switching of the second four-way valve 12, and the opening and closing of the first switchgear 31. , Opening / closing of the second opening / closing device 32, opening / closing / opening / closing of the first opening / closing device 33, opening / closing / opening / closing of the second opening / closing device 34, opening / closing of the load side throttle device 22 and the like. By controlling various devices in this way, the control device 60 executes each operation mode described later.
 制御装置60は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。
 制御装置60が専用のハードウェアである場合、制御装置60は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。制御装置60が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。
The control device 60 is composed of dedicated hardware or a CPU (also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microprocessor, or a processor) that executes a program stored in a memory. ..
When the control device 60 is dedicated hardware, the control device 60 corresponds to, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. To do. Each of the functional units realized by the control device 60 may be realized by individual hardware, or each functional unit may be realized by one hardware.
 制御装置60がCPUの場合、制御装置60が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置60の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリである。
 なお、制御装置60の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
When the control device 60 is a CPU, each function executed by the control device 60 is realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory. The CPU realizes each function of the control device 60 by reading and executing a program stored in the memory. Here, the memory is a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
It should be noted that a part of the functions of the control device 60 may be realized by dedicated hardware, and a part may be realized by software or firmware.
 なお、制御装置60は、室外機1に設けられている場合について例示している。しかし、制御装置は、ユニット毎に設けてもよいし、室内機2に設けてもよい。 The case where the control device 60 is provided in the outdoor unit 1 is illustrated. However, the control device may be provided for each unit or may be provided in the indoor unit 2.
1-2.動作
 次に、空気調和装置100が実行する各運転モードについて説明する。空気調和装置100は、室内機2からの指示に基づいて、冷房運転モード又は暖房運転モード、また制御装置60からの指示に基づいて除霜運転モードを行う。
 なお、図1に示す空気調和装置100が実行する運転モードには、駆動している室内機2が冷房運転を実行する3つの冷房運転モード、駆動している室内機2が暖房運転を実行する暖房運転モード、駆動している空気調和装置100が除霜運転を実行する除霜運転モードがある。
1-2. Operation Next, each operation mode executed by the air conditioner 100 will be described. The air conditioner 100 performs a cooling operation mode or a heating operation mode based on an instruction from the indoor unit 2, and a defrosting operation mode based on an instruction from the control device 60.
The operation modes executed by the air conditioner 100 shown in FIG. 1 include three cooling operation modes in which the driving indoor unit 2 executes the cooling operation, and the driving indoor unit 2 executes the heating operation. There is a heating operation mode and a defrosting operation mode in which the driving air conditioner 100 executes a defrosting operation.
 以下に、各運転モードについて、冷媒の流れと共に説明する。 Below, each operation mode will be described together with the flow of the refrigerant.
[冷房運転モード]
 図2は、実施の形態1に係る空気調和装置100の冷房運転モード時における冷媒の流れを示す冷媒回路図である。
[Cooling operation mode]
FIG. 2 is a refrigerant circuit diagram showing the flow of the refrigerant in the cooling operation mode of the air conditioner 100 according to the first embodiment.
 図2では、負荷側熱交換器21で冷熱大負荷が発生している場合を例に大負荷冷房運転モードの冷媒の流れについて説明する。なお、図2では、冷媒の流れ方向を実線矢印で示している。 In FIG. 2, the flow of the refrigerant in the heavy load cooling operation mode will be described by taking the case where a large cooling heat load is generated in the load side heat exchanger 21 as an example. In FIG. 2, the flow direction of the refrigerant is indicated by a solid arrow.
 図2に示すように、低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1四方弁11と第2四方弁12とに分岐して流入する。そして、第1四方弁11に流入した冷媒は、第1本管5aを通じて、第1熱源側熱交換器13aに流入する。 As shown in FIG. 2, the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 branches into the first four-way valve 11 and the second four-way valve 12 and flows in. Then, the refrigerant that has flowed into the first four-way valve 11 flows into the first heat source side heat exchanger 13a through the first main pipe 5a.
 また、第2四方弁12に流入した冷媒は、第2本管5bを通じて、第2熱源側熱交換器13bに流入する。このとき、第1開度調整装置33は、閉状態に切り替えられている。よって、第2本管5bを流通する高温高圧のガス冷媒は、直列並列切り替え配管6を介して第3熱源側熱交換器13cに流入しない。 Further, the refrigerant flowing into the second four-way valve 12 flows into the second heat source side heat exchanger 13b through the second main pipe 5b. At this time, the first opening degree adjusting device 33 is switched to the closed state. Therefore, the high-temperature and high-pressure gas refrigerant flowing through the second main pipe 5b does not flow into the third heat source side heat exchanger 13c via the series-parallel switching pipe 6.
 第1熱源側熱交換器13aに流入したガス冷媒は、第1熱源側熱交換器13aにてファン16から供給される室外空気に放熱しながら高圧の二相もしくは液冷媒になる。また、第2熱源側熱交換器13bに流入したガス冷媒は、第2熱源側熱交換器13bにてファン16から供給される室外空気に放熱しながら高圧の二相もしくは液冷媒になる。 The gas refrigerant flowing into the first heat source side heat exchanger 13a becomes a high-pressure two-phase or liquid refrigerant while radiating heat to the outdoor air supplied from the fan 16 by the first heat source side heat exchanger 13a. Further, the gas refrigerant flowing into the second heat source side heat exchanger 13b becomes a high-pressure two-phase or liquid refrigerant while radiating heat to the outdoor air supplied from the fan 16 by the second heat source side heat exchanger 13b.
 第1熱源側熱交換器13aから流出した高圧の二相もしくは液冷媒は、第1出入口配管9aを通って並列出入口配管8に流入する。また、第2熱源側熱交換器13bから流出した高圧の二相もしくは液冷媒は、第2出入口配管9bを通って並列出入口配管8に流入する。これにより、第1熱源側熱交換器13aから流出した高圧の二相もしくは液冷媒と、第2熱源側熱交換器13bから流出した高圧の二相もしくは液冷媒と、が並列出入口配管8で合流する。このとき、第1開閉装置31は、閉状態に切り替えられている。よって、第1熱源側熱交換器13a又は第2熱源側熱交換器13bから流出した高圧の二相もしくは液冷媒は、並列出入口配管8を介して第2主管4bに流入しない。 The high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a flows into the parallel inlet / outlet pipe 8 through the first inlet / outlet pipe 9a. Further, the high-pressure two-phase or liquid refrigerant flowing out from the second heat source side heat exchanger 13b flows into the parallel inlet / outlet pipe 8 through the second inlet / outlet pipe 9b. As a result, the high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a and the high-pressure two-phase or liquid refrigerant flowing out of the second heat source side heat exchanger 13b merge at the parallel inlet / outlet pipe 8. To do. At this time, the first switchgear 31 is switched to the closed state. Therefore, the high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a or the second heat source side heat exchanger 13b does not flow into the second main pipe 4b via the parallel inlet / outlet pipe 8.
 合流した高圧の二相もしくは液冷媒は、第3熱源側熱交換器13cに流入する。そして、流入する高圧の二相もしくは液冷媒は、第3熱源側熱交換器13cにてファン16から供給される室外空気に放熱しながら高圧液冷媒になる。この高圧液冷媒は、開状態に切り替えられている第2開閉装置32が配置された直列出口配管7を通って室外機1から流出し、第2主管4bを通り、室内機2へ流入する。
 すなわち、室外機1では、冷房運転モード時に、上流側にて第1熱源側熱交換器13aと第2熱源側熱交換器13bとが互いに並列に、かつ、下流側にて第1熱源側熱交換器13a及び第2熱源側熱交換器13bに対して第3熱源側熱交換器13cが直列に接続される。
The combined high-pressure two-phase or liquid refrigerant flows into the third heat source side heat exchanger 13c. Then, the inflowing high-pressure two-phase or liquid refrigerant becomes a high-pressure liquid refrigerant while radiating heat to the outdoor air supplied from the fan 16 by the third heat source side heat exchanger 13c. This high-pressure liquid refrigerant flows out from the outdoor unit 1 through the series outlet pipe 7 in which the second switchgear 32 switched to the open state is arranged, passes through the second main pipe 4b, and flows into the indoor unit 2.
That is, in the outdoor unit 1, in the cooling operation mode, the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b are parallel to each other on the upstream side, and the first heat source side heat is on the downstream side. The third heat source side heat exchanger 13c is connected in series to the exchanger 13a and the second heat source side heat exchanger 13b.
 冷房運転モード時においては、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを凝縮器として使用し、第1四方弁11で圧縮機10から吐出された冷媒を第1熱源側熱交換器13aに供給し、第2四方弁12で圧縮機10から吐出された冷媒を第2熱源側熱交換器13bに供給し、第1開閉装置31を開とし、第2開閉装置32を開とし、第1開度調整装置33を閉とし、第2開度調整装置34を開として構成される。 In the cooling operation mode, the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as condensers, and the first four-way valve 11 is used from the compressor 10. The discharged refrigerant is supplied to the first heat source side heat exchanger 13a, the refrigerant discharged from the compressor 10 by the second four-way valve 12 is supplied to the second heat source side heat exchanger 13b, and the first opening / closing device 31 is operated. The second opening / closing device 32 is opened, the first opening / closing adjusting device 33 is closed, and the second opening / closing adjusting device 34 is opened.
 室内機2では、高圧液冷媒は、負荷側絞り装置22で膨張させられて、低温低圧の気液二相状態の冷媒になる。気液二相状態の冷媒は、蒸発器として使用する負荷側熱交換器21に流入し、室内空気から吸熱することにより、室内空気を冷却しながら低温低圧のガス冷媒になる。この際、負荷側絞り装置22の開度は、過熱度が一定になるように制御装置60により制御される。負荷側熱交換器21から流出したガス冷媒は、第1主管4aを通って再び室外機1へ流入する。室外機1に流入したガス冷媒は、第2四方弁12を通って圧縮機10へ再度吸入される。 In the indoor unit 2, the high-pressure liquid refrigerant is expanded by the load-side throttle device 22 to become a low-temperature low-pressure gas-liquid two-phase state refrigerant. The gas-liquid two-phase state refrigerant flows into the load side heat exchanger 21 used as an evaporator and absorbs heat from the indoor air to become a low-temperature low-pressure gas refrigerant while cooling the indoor air. At this time, the opening degree of the load side throttle device 22 is controlled by the control device 60 so that the degree of superheat becomes constant. The gas refrigerant flowing out of the load side heat exchanger 21 flows into the outdoor unit 1 again through the first main pipe 4a. The gas refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 10 again through the second four-way valve 12.
 以上より、冷房運転モードでは、第1熱源側熱交換器13a及び第2熱源側熱交換器13bに対して第3熱源側熱交換器13cが直列冷媒流路として繋がる。これにより、冷媒の流速が上昇し、凝縮器の性能が向上できる。これによると、冷媒の流速が遅い場合の下流側の第3熱源側熱交換器13cにて冷媒が液冷媒として溜まってしまう冷媒の寝込みが、抑制できる。 From the above, in the cooling operation mode, the third heat source side heat exchanger 13c is connected to the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b as a series refrigerant flow path. As a result, the flow velocity of the refrigerant increases, and the performance of the condenser can be improved. According to this, when the flow velocity of the refrigerant is slow, it is possible to prevent the refrigerant from accumulating as a liquid refrigerant in the third heat source side heat exchanger 13c on the downstream side.
 また、第1熱源側熱交換器13aには、分割無しで独立して配置され、1つの第1ヘッダー14a及び1つの第1分配器15aが設けられている。加えて、第2熱源側熱交換器13b及び第3熱源側熱交換器13cは、一部分を一体に構成されている。しかし、第2熱源側熱交換器13bには、1つの第2ヘッダー14b及び1つの第2分配器15bが設けられている。また、第3熱源側熱交換器13cには、1つの第3ヘッダー14c及び1つの第4ヘッダー14dが設けられている。このため、1台の熱源側熱交換器に2個以上のヘッダー及び分配器を設ける構成に比して、コストが抑制できると共に、設置スペースが狭くできる。 Further, the first heat source side heat exchanger 13a is independently arranged without division, and is provided with one first header 14a and one first distributor 15a. In addition, the second heat source side heat exchanger 13b and the third heat source side heat exchanger 13c are partially integrally configured. However, the second heat source side heat exchanger 13b is provided with one second header 14b and one second distributor 15b. Further, the third heat source side heat exchanger 13c is provided with one third header 14c and one fourth header 14d. Therefore, the cost can be suppressed and the installation space can be narrowed as compared with the configuration in which two or more headers and distributors are provided in one heat source side heat exchanger.
 また、冷房運転モードでは、熱源側熱交換器を直列に接続した上流側、つまり並列に繋がれた第1熱源側熱交換器13a及び第2熱源側熱交換器13bの容積と、下流側、つまり第3熱源側熱交換器13cの容積と、は、下流側に対して上流側を大きくするよう調整している。これは、全熱源側熱交換器の効率を最大とするべく、下流側の第3熱源側熱交換器13cの流入冷媒を乾き度の低い冷媒になるように上流側と下流側との容積比を調整するためである。 Further, in the cooling operation mode, the volumes of the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b connected in parallel, that is, the upstream side in which the heat source side heat exchangers are connected in series, and the downstream side, That is, the volume of the third heat source side heat exchanger 13c is adjusted so that the upstream side is larger than the downstream side. In order to maximize the efficiency of the total heat source side heat exchanger, the volume ratio between the upstream side and the downstream side is such that the inflow refrigerant of the third heat source side heat exchanger 13c on the downstream side becomes a refrigerant with low dryness. This is to adjust.
[暖房運転モード]
 図3は、実施の形態1に係る空気調和装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。
[Heating operation mode]
FIG. 3 is a refrigerant circuit diagram showing the flow of the refrigerant in the heating operation mode of the air conditioner 100 according to the first embodiment.
 図3では、負荷側熱交換器21で温熱負荷が発生している場合を例に暖房運転モードの冷媒の流れについて説明する。なお、図3では、冷媒の流れ方向を実線矢印で示している。 In FIG. 3, the flow of the refrigerant in the heating operation mode will be described by taking as an example a case where a thermal load is generated in the load side heat exchanger 21. In FIG. 3, the flow direction of the refrigerant is indicated by a solid arrow.
 図3に示すように、低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第2四方弁12を通り、室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、第1主管4aを通り、負荷側熱交換器21で室内空気に放熱することによって室内空間を暖房しながら液冷媒になる。この際、負荷側絞り装置22の開度が、過冷却度が一定になるように制御装置60により制御される。負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張させられて、中温中圧の気液二相状態の冷媒になり、第2主管4bを通って再び室外機1へ流入する。 As shown in FIG. 3, the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the second four-way valve 12 and flows out from the outdoor unit 1. The high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 passes through the first main pipe 4a and is dissipated to the indoor air by the load side heat exchanger 21 to become a liquid refrigerant while heating the indoor space. At this time, the opening degree of the load side throttle device 22 is controlled by the control device 60 so that the degree of supercooling becomes constant. The liquid refrigerant flowing out from the load side heat exchanger 21 is expanded by the load side throttle device 22 to become a gas-liquid two-phase state refrigerant at medium temperature and medium pressure, and passes through the second main pipe 4b to the outdoor unit 1 again. Inflow.
 室外機1に流入した中温中圧の気液二相状態の冷媒は、開状態に切り替えられた第1開閉装置31を通過し、並列出入口配管8へと流入する。並列出入口配管8に流入した冷媒は第1出入口配管9a、第2出入口配管9b、第3出入口配管9cへと並行に流入し、それぞれ第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cへと流入する。このとき、第2開閉装置32は、閉状態に切り替えられている。よって、第2主管4bを流通する冷媒は、直列並列切り替え配管6へと流入しない。 The medium-temperature, medium-pressure, gas-liquid, two-phase refrigerant that has flowed into the outdoor unit 1 passes through the first switchgear 31 that has been switched to the open state, and flows into the parallel inlet / outlet pipe 8. The refrigerant flowing into the parallel inlet / outlet pipe 8 flows into the first inlet / outlet pipe 9a, the second inlet / outlet pipe 9b, and the third inlet / outlet pipe 9c in parallel, and flows into the first heat source side heat exchanger 13a and the second heat source side heat exchanger, respectively. It flows into 13b and the third heat source side heat exchanger 13c. At this time, the second switchgear 32 is switched to the closed state. Therefore, the refrigerant flowing through the second main pipe 4b does not flow into the series-parallel switching pipe 6.
 ここで、第1開度調整装置33は、暖房運転モード時に、各熱交換器が最適な冷媒循環量となるように第3熱源側熱交換器13cに流入させる冷媒量を開度変化により調整する。また、第2開度調整装置34は、暖房運転モード時に、各熱交換器が最適な冷媒循環量となるように第2熱源側熱交換器13bに流入させる冷媒量を開度変化により調整する。 Here, the first opening degree adjusting device 33 adjusts the amount of refrigerant flowing into the third heat source side heat exchanger 13c by changing the opening degree so that each heat exchanger has an optimum refrigerant circulation amount in the heating operation mode. To do. Further, the second opening degree adjusting device 34 adjusts the amount of refrigerant flowing into the second heat source side heat exchanger 13b by changing the opening degree so that each heat exchanger has an optimum refrigerant circulation amount in the heating operation mode. ..
 第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cに流入した冷媒は、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cにて室外空気から吸熱しながら低温低圧のガス冷媒になる。 The refrigerant that has flowed into the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and The heat exchanger 13c on the third heat source side absorbs heat from the outdoor air and becomes a low-temperature low-pressure gas refrigerant.
 その後、第1熱源側熱交換器13aから流出する冷媒は、第1四方弁11を通って、圧縮機10の吸入側へ流入する。また、第3熱源側熱交換器13cから流出する冷媒は、開状態に切り替えられている第2開度調整装置34が配置された直列並列切り替え配管6を通過する。第3熱源側熱交換器13cから流出して第2開度調整装置34が配置された直列並列切り替え配管6を通過する冷媒は、第2本管5bにて、第2熱源側熱交換器13bから流出する冷媒と合流し、第2四方弁12を通って、圧縮機10の吸入側へ流入する。 After that, the refrigerant flowing out of the first heat source side heat exchanger 13a flows into the suction side of the compressor 10 through the first four-way valve 11. Further, the refrigerant flowing out from the third heat source side heat exchanger 13c passes through the series-parallel switching pipe 6 in which the second opening degree adjusting device 34 that has been switched to the open state is arranged. The refrigerant that flows out of the third heat source side heat exchanger 13c and passes through the series-parallel switching pipe 6 in which the second opening degree adjusting device 34 is arranged is in the second main pipe 5b in the second heat source side heat exchanger 13b. It merges with the refrigerant flowing out from the compressor, passes through the second four-way valve 12, and flows into the suction side of the compressor 10.
 すなわち、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを暖房運転モードとして使用する際に、第1熱源側熱交換器13aと第2熱源側熱交換器13bと第3熱源側熱交換器13cとが互いに並列に並列冷媒流路で接続される。 That is, when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the heating operation mode, the first heat source side heat exchanger 13a and the second heat source The side heat exchanger 13b and the third heat source side heat exchanger 13c are connected in parallel with each other by a parallel refrigerant flow path.
 並列冷媒流路は、第1四方弁11で圧縮機10から吐出された冷媒を遮断し、第2四方弁12で圧縮機10から吐出された冷媒を負荷側熱交換器21に供給し、第1開閉装置31を開とし、第2開閉装置32を閉とし、第1開度調整装置33を開とし、第2開度調整装置34を開として構成される。 In the parallel refrigerant flow path, the first four-way valve 11 shuts off the refrigerant discharged from the compressor 10, and the second four-way valve 12 supplies the refrigerant discharged from the compressor 10 to the load side heat exchanger 21. 1 The opening / closing device 31 is opened, the second opening / closing device 32 is closed, the first opening / closing device 33 is opened, and the second opening / closing device 34 is open.
 以上より、暖房運転モード時では、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cが並列に繋がる。これにより、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを流れる冷媒の圧力損失が低下し、蒸発器の性能が向上できる。 From the above, in the heating operation mode, the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are connected in parallel. As a result, the pressure loss of the refrigerant flowing through the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is reduced, and the performance of the evaporator can be improved.
[除霜運転モード]
 図4は、実施の形態1に係る空気調和装置100の除霜運転モード時における冷媒の流れを示す冷媒回路図である。
[Defrosting operation mode]
FIG. 4 is a refrigerant circuit diagram showing the flow of the refrigerant in the defrosting operation mode of the air conditioner 100 according to the first embodiment.
 図4では、冷媒の流れ方向を実線矢印で示している。 In FIG. 4, the flow direction of the refrigerant is indicated by a solid arrow.
 図4に示すように、低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1四方弁11と第2四方弁12とに分岐して流入する。そして、第1四方弁11に流入した冷媒は、第1本管5aを通じて、第1熱源側熱交換器13aに流入する。 As shown in FIG. 4, the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 branches into the first four-way valve 11 and the second four-way valve 12 and flows in. Then, the refrigerant that has flowed into the first four-way valve 11 flows into the first heat source side heat exchanger 13a through the first main pipe 5a.
 また、第2四方弁12に流入した冷媒は、第2本管5bを通じて、第2熱源側熱交換器13bに流入する。このとき、第1開度調整装置33は、開状態に切り替えられている。よって、第2本管5bを流通する高温高圧のガス冷媒は、直列並列切り替え配管6を介して第3熱源側熱交換器13cに流入する。このとき、第2開閉装置32は、閉状態に切り替えられている。よって直列並列切り替え配管6を流通する高温高圧のガス冷媒は、直列出口配管7を介して第2主管4bへと流入しない。 Further, the refrigerant flowing into the second four-way valve 12 flows into the second heat source side heat exchanger 13b through the second main pipe 5b. At this time, the first opening degree adjusting device 33 is switched to the open state. Therefore, the high-temperature and high-pressure gas refrigerant flowing through the second main pipe 5b flows into the third heat source side heat exchanger 13c via the series-parallel switching pipe 6. At this time, the second switchgear 32 is switched to the closed state. Therefore, the high-temperature and high-pressure gas refrigerant flowing through the series-parallel switching pipe 6 does not flow into the second main pipe 4b via the series outlet pipe 7.
 第1熱源側熱交換器13aに流入したガス冷媒は、第1熱源側熱交換器13aにて熱交換器へと着霜した霜を溶かしながら高圧の二相もしくは液冷媒になる。また、第2熱源側熱交換器13bに流入したガス冷媒は、第2熱源側熱交換器13bにて熱交換器へと着霜した霜を溶かしながら高圧の二相もしくは液冷媒になる。さらに第3熱源側熱交換器13cに流入したガス冷媒は、第3熱源側熱交換器13cにて熱交換器へと着霜した霜を溶かしながら高圧の二相もしくは液冷媒になる。 The gas refrigerant flowing into the first heat source side heat exchanger 13a becomes a high-pressure two-phase or liquid refrigerant while melting the frost frosted on the heat exchanger at the first heat source side heat exchanger 13a. Further, the gas refrigerant flowing into the second heat source side heat exchanger 13b becomes a high-pressure two-phase or liquid refrigerant while melting the frost frosted on the heat exchanger at the second heat source side heat exchanger 13b. Further, the gas refrigerant flowing into the third heat source side heat exchanger 13c becomes a high-pressure two-phase or liquid refrigerant while melting the frost frosted on the heat exchanger by the third heat source side heat exchanger 13c.
 第1熱源側熱交換器13aから流出した高圧の二相もしくは液冷媒は、第1出入口配管9aを通って並列出入口配管8に流入する。また、第2熱源側熱交換器13bから流出した高圧の二相もしくは液冷媒は、第2出入口配管9bを通って並列出入口配管8に流入する。さらに第3熱源側熱交換器13cから流出した高圧の二相もしくは液冷媒は、第3出入口配管9cを通って並列出入口配管8に流入する。これにより、第1熱源側熱交換器13aから流出した高圧の二相もしくは液冷媒と、第2熱源側熱交換器13bから流出した高圧の二相もしくは液冷媒と、第3熱源側熱交換器13cから流出した高圧の二相もしくは液冷媒とが並列出入口配管8で合流する。このとき、第1開閉装置31は、開状態に切り替えられている。よって、第1熱源側熱交換器13a、又は第2熱源側熱交換器13b、さらに第3熱源側熱交換器13cから流出した高圧の二相もしくは液冷媒は、並列出入口配管8を介して第2主管4bを通り、室内機2へ流入する。 The high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a flows into the parallel inlet / outlet pipe 8 through the first inlet / outlet pipe 9a. Further, the high-pressure two-phase or liquid refrigerant flowing out from the second heat source side heat exchanger 13b flows into the parallel inlet / outlet pipe 8 through the second inlet / outlet pipe 9b. Further, the high-pressure two-phase or liquid refrigerant flowing out from the third heat source side heat exchanger 13c flows into the parallel inlet / outlet pipe 8 through the third inlet / outlet pipe 9c. As a result, the high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a, the high-pressure two-phase or liquid refrigerant flowing out of the second heat source side heat exchanger 13b, and the third heat source side heat exchanger The high-pressure two-phase or liquid refrigerant flowing out from 13c merges at the parallel inlet / outlet pipe 8. At this time, the first opening / closing device 31 is switched to the open state. Therefore, the high-pressure two-phase or liquid refrigerant flowing out of the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c passes through the parallel inlet / outlet pipe 8. 2 Passes through the main pipe 4b and flows into the indoor unit 2.
 すなわち、室外機1では、除霜運転モード時に、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cが並列に接続される。 That is, in the outdoor unit 1, the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are connected in parallel in the defrosting operation mode.
 除霜運転モード時においては、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを凝縮器として使用し、第1四方弁11で圧縮機10から吐出された冷媒を第1熱源側熱交換器13aに供給し、第2四方弁12で圧縮機10から吐出された冷媒を第2熱源側熱交換器13bに供給し、第1開閉装置31を開とし、第2開閉装置32を閉とし、第1開度調整装置33を開とし、第2開度調整装置34を開として構成される。 In the defrosting operation mode, the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as condensers, and the compressor 10 is used by the first four-way valve 11. The refrigerant discharged from the compressor 10 is supplied to the first heat source side heat exchanger 13a, and the refrigerant discharged from the compressor 10 is supplied to the second heat source side heat exchanger 13b by the second four-way valve 12, and the first switching device 31 The second opening / closing device 32 is closed, the first opening / closing adjusting device 33 is opened, and the second opening / closing adjusting device 34 is opened.
 室内機2では、高圧液冷媒は、負荷側絞り装置22で膨張させられて、低温低圧の気液二相状態の冷媒になる。気液二相状態の冷媒は、蒸発器として使用する負荷側熱交換器21に流入し、室内空気から吸熱することにより、室内空気を冷却しながら低温低圧のガス冷媒になる。しかしながらこの際、負荷側絞り装置22の開度は、開度が全開となるように制御装置60により制御される。負荷側熱交換器21から流出したガス冷媒は、第1主管4aを通って再び室外機1へ流入する。室外機1に流入したガス冷媒は、第2四方弁12を通って圧縮機10へ再度吸入される。 In the indoor unit 2, the high-pressure liquid refrigerant is expanded by the load-side throttle device 22 to become a low-temperature low-pressure gas-liquid two-phase state refrigerant. The gas-liquid two-phase state refrigerant flows into the load side heat exchanger 21 used as an evaporator and absorbs heat from the indoor air to become a low-temperature low-pressure gas refrigerant while cooling the indoor air. However, at this time, the opening degree of the load side throttle device 22 is controlled by the control device 60 so that the opening degree is fully opened. The gas refrigerant flowing out of the load side heat exchanger 21 flows into the outdoor unit 1 again through the first main pipe 4a. The gas refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 10 again through the second four-way valve 12.
 以上より、除霜運転モードでは、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cが凝縮器として運転するにもかかわらず並列冷媒流路として繋がる。これにより、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cに対して高温高圧の冷媒が並列に流入し、最大の除霜能力を得る。 From the above, in the defrosting operation mode, the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c operate as a condenser, but as a parallel refrigerant flow path. Connect. As a result, the high-temperature and high-pressure refrigerant flows in parallel to the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c, and the maximum defrosting ability is obtained.
 図5は、実施の形態1に係る空気調和装置100の制御装置60の動作を説明するためのフローチャートである。 FIG. 5 is a flowchart for explaining the operation of the control device 60 of the air conditioner 100 according to the first embodiment.
 図5に示すように、制御装置60が冷房運転モードであるか否かを判断する(S11)。ステップS11において、制御装置60が冷房運転モードであると判断した場合(S11のYES)、熱交換器流路切替装置に第1熱源側熱交換器13a、第2熱源側熱交換器13b、第3熱源側熱交換器13cの冷媒流路を直列冷媒流路に切り替える指示を行なう(S12)。 As shown in FIG. 5, it is determined whether or not the control device 60 is in the cooling operation mode (S11). When it is determined in step S11 that the control device 60 is in the cooling operation mode (YES in S11), the heat exchanger flow path switching device includes the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the second. 3 An instruction is given to switch the refrigerant flow path of the heat source side heat exchanger 13c to the series refrigerant flow path (S12).
 具体的には、制御装置60は、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを凝縮器として使用し、第1四方弁11で圧縮機10から吐出された冷媒を第1熱源側熱交換器13aに供給し、第2四方弁12で圧縮機10から吐出された冷媒を第2熱源側熱交換器13bに供給し、第1開閉装置31を開とし、第2開閉装置32を開とし、第1開度調整装置33を閉とし、第2開度調整装置34を開とするように制御を行なう。 Specifically, the control device 60 uses the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c as a condenser, and compresses with the first four-way valve 11. The refrigerant discharged from the machine 10 is supplied to the first heat source side heat exchanger 13a, and the refrigerant discharged from the compressor 10 is supplied to the second heat source side heat exchanger 13b by the second four-way valve 12, and the first opening / closing is performed. Control is performed so that the device 31 is opened, the second opening / closing device 32 is opened, the first opening / closing device 33 is closed, and the second opening / closing device 34 is opened.
 ステップS11において、制御装置60が冷房運転モードでないと判断した場合(S11のNO)及びステップS12における処理の後、制御装置60は暖房運転モードであるか否かを判断する(S13)。 In step S11, when it is determined that the control device 60 is not in the cooling operation mode (NO in S11), and after the processing in step S12, it is determined whether or not the control device 60 is in the heating operation mode (S13).
 ステップS13において、制御装置60が暖房運転モードであると判断した場合(S13のYES)、制御装置60は熱交換器流路切替装置に第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cの冷媒流路を並列冷媒流路に切り替える指示を行なう(S14)。 When it is determined in step S13 that the control device 60 is in the heating operation mode (YES in S13), the control device 60 connects the heat exchanger flow path switching device to the first heat source side heat exchanger 13a and the second heat source side heat exchange. An instruction is given to switch the refrigerant flow path of the device 13b and the third heat source side heat exchanger 13c to the parallel refrigerant flow path (S14).
 具体的には、制御装置60は、第1四方弁11で圧縮機10から吐出された冷媒を遮断し、第2四方弁12で圧縮機10から吐出された冷媒を負荷側熱交換器21に供給し、第1開閉装置31を開とし、第2開閉装置32を閉とし、第1開度調整装置33を開とし、第2開度調整装置34を開とするように制御を行なう。 Specifically, the control device 60 shuts off the refrigerant discharged from the compressor 10 by the first four-way valve 11, and sends the refrigerant discharged from the compressor 10 by the second four-way valve 12 to the load side heat exchanger 21. The first opening / closing device 31 is opened, the second opening / closing device 32 is closed, the first opening / closing device 33 is opened, and the second opening / closing device 34 is opened.
 ステップS13において、制御装置60が暖房運転モードでないと判断した場合(S13のNO)及びステップS14における処理の後、制御装置60は除霜運転モードであるか否かを判断する(S15)。 In step S13, when it is determined that the control device 60 is not in the heating operation mode (NO in S13), and after the processing in step S14, it is determined whether or not the control device 60 is in the defrosting operation mode (S15).
 ステップS15において、制御装置60が除霜運転モードであると判断した場合(S15のYES)、制御装置60は熱交換器流路切替装置に第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cの冷媒流路を並列冷媒流路に切り替える指示を行なう(S16)。 When it is determined in step S15 that the control device 60 is in the defrosting operation mode (YES in S15), the control device 60 is connected to the heat exchanger flow path switching device with the first heat source side heat exchanger 13a and the second heat source side heat. An instruction is given to switch the refrigerant flow paths of the exchanger 13b and the third heat source side heat exchanger 13c to parallel refrigerant flow paths (S16).
 具体的には、制御装置60は、第1四方弁11で圧縮機10から吐出された冷媒を第1熱源側熱交換器13aに供給し、第2四方弁12で圧縮機10から吐出された冷媒を第2熱源側熱交換器13bに供給し、第1開閉装置31を開とし、第2開閉装置32を閉とし、第1開度調整装置33を開とし、第2開度調整装置34を開とするように制御を行なう。 Specifically, the control device 60 supplies the refrigerant discharged from the compressor 10 by the first four-way valve 11 to the first heat source side heat exchanger 13a, and discharges the refrigerant from the compressor 10 by the second four-way valve 12. The refrigerant is supplied to the second heat source side heat exchanger 13b, the first opening / closing device 31 is opened, the second opening / closing device 32 is closed, the first opening / closing device 33 is opened, and the second opening / closing device 34 is opened. Is controlled so as to open.
 ステップS15において、制御装置60が除霜運転モードでないと判断した場合(S15のNO)及びステップS16における処理の後、ステップS11に戻る。 If it is determined in step S15 that the control device 60 is not in the defrosting operation mode (NO in S15), and after the processing in step S16, the process returns to step S11.
1-3.効果
 以上、実施の形態1によれば、空気調和装置100は、圧縮機10、第1四方弁11、第2四方弁12、負荷側熱交換器21、負荷側絞り装置22並びに少なくとも第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cが冷媒配管3で接続されて冷媒が循環する主回路を備えている。
1-3. Effect As described above, according to the first embodiment, the air conditioner 100 includes the compressor 10, the first four-way valve 11, the second four-way valve 12, the load side heat exchanger 21, the load side throttle device 22, and at least the first heat source. The side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are connected by a refrigerant pipe 3 to include a main circuit in which the refrigerant circulates.
 第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを冷房運転モードとして使用する際に、上流側にて第1熱源側熱交換器13aと第2熱源側熱交換器13bとが互いに並列に、かつ、下流側にて第1熱源側熱交換器13a及び第2熱源側熱交換器13bに対して第3熱源側熱交換器13cが直列に直列冷媒流路で接続される。 When the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the cooling operation mode, the first heat source side heat exchanger 13a and the first heat exchanger 13a are on the upstream side. The two heat source side heat exchangers 13b are in parallel with each other, and the third heat source side heat exchanger 13c is in series with the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b on the downstream side. It is connected by a series refrigerant flow path.
 第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを暖房運転モードとして使用する際に、第1熱源側熱交換器13aと第2熱源側熱交換器13bと第3熱源側熱交換器13cとが互いに並列に並列冷媒流路で接続される。 When the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the heating operation mode, the first heat source side heat exchanger 13a and the second heat source side heat The exchanger 13b and the third heat source side heat exchanger 13c are connected in parallel with each other by a parallel refrigerant flow path.
 第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを除霜運転モードとして使用する際に、第1熱源側熱交換器13aと第2熱源側熱交換器13bと第3熱源側熱交換器13cとが互いに並列に並列冷媒流路で接続される。 When the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the defrosting operation mode, the first heat source side heat exchanger 13a and the second heat source side The heat exchanger 13b and the third heat source side heat exchanger 13c are connected in parallel with each other by a parallel refrigerant flow path.
 空気調和装置100は、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを冷房運転モードとして使用する際に直列冷媒流路に切り替わり、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを暖房運転モードとして使用する際に並列冷媒流路に切り替わり、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを除霜雨天モードとして使用する際に並列冷媒流路に切り替わる、熱交換器流路切替装置を有している。熱交換器流路切替装置は、第1開閉装置31、第2開閉装置32、第1開度調整装置33及び第2開度調整装置34である。 The air conditioner 100 switches to the series refrigerant flow path when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the cooling operation mode, and the first When the heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the heating operation mode, they are switched to the parallel refrigerant flow path, and the first heat source side heat exchanger 13a, the first It has a heat exchanger flow path switching device that switches to a parallel refrigerant flow path when the two heat source side heat exchangers 13b and the third heat source side heat exchanger 13c are used as the defrost rainy weather mode. The heat exchanger flow path switching device is a first switchgear 31, a second switchgear 32, a first opening / closing device 33, and a second opening / closing device 34.
 この構成によれば、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを冷房運転モードとして使用する際に直列冷媒流路に切り替わり、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを暖房運転モードとして使用する際に並列冷媒流路に切り替わる熱交換器流路切替装置を有している。 According to this configuration, when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the cooling operation mode, they are switched to the series refrigerant flow path and the first It has a heat exchanger flow path switching device that switches to a parallel refrigerant flow path when the heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the heating operation mode. There is.
 これにより、冷房運転時と暖房運転時とで第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cの流路を直列又は並列に切り替えできる。そして、直列冷媒流路は、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを冷房運転モードとして使用する際に、上流側にて第1熱源側熱交換器13aと第2熱源側熱交換器13bとが互いに並列に、かつ、下流側にて第1熱源側熱交換器13a及び第2熱源側熱交換器13bに対して第3熱源側熱交換器13cが直列に接続される。このため、第1直列冷媒流路は、冷媒の流速が遅くても、凝縮器の下流側には第3熱源側熱交換器13cのみが配置され、蒸発器の下流側の容積が小さく、蒸発器の下流側で液冷媒が溜まる冷媒の寝込みが抑制でき、冷媒が良好に循環できる。 As a result, the flow paths of the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c can be switched in series or in parallel between the cooling operation and the heating operation. The series refrigerant flow path is first on the upstream side when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the cooling operation mode. The heat source side heat exchanger 13a and the second heat source side heat exchanger 13b are in parallel with each other, and the third heat source is relative to the first heat source side heat exchanger 13a and the second heat source side heat exchanger 13b on the downstream side. Side heat exchangers 13c are connected in series. Therefore, in the first series refrigerant flow path, even if the flow velocity of the refrigerant is slow, only the third heat source side heat exchanger 13c is arranged on the downstream side of the condenser, the volume on the downstream side of the evaporator is small, and evaporation occurs. The liquid refrigerant accumulates on the downstream side of the vessel.
 実施の形態1によれば、第1熱源側熱交換器13aには、1つの第1ヘッダー14a及び1つの第1分配器15aが設けられている。第2熱源側熱交換器13bには、1つの第2ヘッダー14b及び1つの第2分配器15bが設けられている。第3熱源側熱交換器13cには、単一の第3ヘッダー14c及び単一の第4ヘッダー14dが設けられている。 According to the first embodiment, the first heat source side heat exchanger 13a is provided with one first header 14a and one first distributor 15a. The second heat source side heat exchanger 13b is provided with one second header 14b and one second distributor 15b. The third heat source side heat exchanger 13c is provided with a single third header 14c and a single fourth header 14d.
 この構成によれば、各第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cには、ヘッダーないし分配器が合計2つずつ設けられている。これにより、従来のように1台の熱源側熱交換器に2個以上のヘッダー及び分配器を設ける構成に比して、コストが抑制できると共に、設置スペースを狭くすることができる。 According to this configuration, each of the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is provided with a total of two headers or distributors. As a result, the cost can be suppressed and the installation space can be narrowed as compared with the conventional configuration in which two or more headers and distributors are provided in one heat source side heat exchanger.
 実施の形態1によれば、第1開度調整装置33及び第2開度調整装置34は、開度変化により流量を調整できる絞り装置である。熱交換器流路切替装置は、暖房運転モードで冷媒流路を構成する場合に、第1開度調整装置33及び第2開度調整装置34のそれぞれの開度を変更し、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cのそれぞれに流入させる冷媒量を調整する。 According to the first embodiment, the first opening degree adjusting device 33 and the second opening degree adjusting device 34 are throttle devices capable of adjusting the flow rate by changing the opening degree. When the refrigerant flow path is configured in the heating operation mode, the heat exchanger flow path switching device changes the opening degree of each of the first opening degree adjusting device 33 and the second opening degree adjusting device 34 to the first heat source side. The amount of refrigerant flowing into each of the heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c is adjusted.
 この構成によれば、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを暖房運転モードとして使用する際に、第1熱源側熱交換器13aと第2熱源側熱交換器13bと第3熱源側熱交換器13cとに冷媒量が最適に分配できる。 According to this configuration, when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are used as the heating operation mode, the first heat source side heat exchanger 13a The amount of refrigerant can be optimally distributed to the second heat source side heat exchanger 13b and the third heat source side heat exchanger 13c.
 実施の形態1によれば、第1熱源側熱交換器13aの伝熱面積と第2熱源側熱交換器13bの伝熱面積との和の伝熱面積は、第3熱源側熱交換器13cの伝熱面積よりも大きくなるように形成されている。 According to the first embodiment, the total heat transfer area of the heat transfer area of the first heat source side heat exchanger 13a and the heat transfer area of the second heat source side heat exchanger 13b is the third heat source side heat exchanger 13c. It is formed so as to be larger than the heat transfer area of.
 この構成によれば、第1直列冷媒流路は、冷媒の流速が遅くても、蒸発器の下流側には第3熱源側熱交換器13cのみが配置され、蒸発器の下流側の容積が小さく、蒸発器の下流側で液冷媒が溜まる冷媒の寝込みが抑制でき、冷媒が良好に循環できる。 According to this configuration, in the first series refrigerant flow path, even if the flow velocity of the refrigerant is slow, only the third heat source side heat exchanger 13c is arranged on the downstream side of the evaporator, and the volume on the downstream side of the evaporator is large. It is small, and the refrigerant that collects liquid refrigerant on the downstream side of the evaporator can be suppressed from falling asleep, and the refrigerant can be circulated well.
 実施の形態1によれば、第1熱源側熱交換器13aは、独立して配置されている。第2熱源側熱交換器13bの一部分は、第3熱源側熱交換器13cと熱交換器構成要素であるフィンを共有して一体に構成される。第2熱源側熱交換器13bの一部分以外の残りの部分は、第3熱源側熱交換器13cとは独立して構成されている。 According to the first embodiment, the first heat source side heat exchanger 13a is arranged independently. A part of the second heat source side heat exchanger 13b is integrally formed with the third heat source side heat exchanger 13c by sharing fins which are heat exchanger components. The remaining part other than a part of the second heat source side heat exchanger 13b is configured independently of the third heat source side heat exchanger 13c.
 この構成によれば、独立した第1熱源側熱交換器13aもフィンを共有する場合に対し、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cに使用するヘッダー総数及び分配器総数を少なくすることにより、冷媒配管3である接続配管の簡略化が図れ、空気調和装置100の小型化が図れる。 According to this configuration, the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger are used as opposed to the case where the independent first heat source side heat exchanger 13a also shares the fins. By reducing the total number of headers and the total number of distributors used in 13c, the connection pipe which is the refrigerant pipe 3 can be simplified, and the air conditioner 100 can be miniaturized.
 実施の形態1によれば、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cは、熱交換器構成要素である伝熱管が扁平管である。 According to the first embodiment, in the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c, the heat transfer tube which is a component of the heat exchanger is a flat tube. ..
 この構成によれば、伝熱管の断面を扁平形状とすることにより、通風抵抗を増大させることなく室外空気と伝熱管との接触面積を増大させることができる。これにより、第1熱源側熱交換器13a、第2熱源側熱交換器13b及び第3熱源側熱交換器13cを小型化した場合でも十分な熱交換性能が得られる。 According to this configuration, by making the cross section of the heat transfer tube flat, it is possible to increase the contact area between the outdoor air and the heat transfer tube without increasing the ventilation resistance. As a result, sufficient heat exchange performance can be obtained even when the first heat source side heat exchanger 13a, the second heat source side heat exchanger 13b, and the third heat source side heat exchanger 13c are miniaturized.
1-4.変形例
 なお、実施の形態1の圧縮機10は、低圧シェル型の圧縮機を使用する場合を例に説明した。しかし、たとえば、高圧シェル型の圧縮機を使用しても同様の効果を奏する。
1-4. Modification Example The compressor 10 of the first embodiment has been described by taking the case of using a low-pressure shell type compressor as an example. However, for example, the same effect can be obtained by using a high-pressure shell type compressor.
 また、圧縮機10の中間圧部に冷媒を流入させる構造を有さない圧縮機を使用した場合を例に説明した。しかし、圧縮機の中間圧部に冷媒を流入させるインジェクションポートを備えた構造の圧縮機にも適用することができる。 Further, the case where a compressor having no structure for flowing the refrigerant into the intermediate pressure portion of the compressor 10 is used has been described as an example. However, it can also be applied to a compressor having a structure provided with an injection port for allowing a refrigerant to flow into the intermediate pressure portion of the compressor.
 また、一般的に、熱源側熱交換器及び負荷側熱交換器には、送風によって冷媒の凝縮又は蒸発を促進させるファンなどの送風機が取り付けられていることが多いが、これに限るものではない。たとえば、負荷側熱交換器の熱交換性能の向上手段として、放射を利用したパネルヒータのようなものも用いることができる。また、熱源側熱交換器としては、水、不凍液などの液体により熱交換する水冷式のタイプの熱交換器を用いることができる。熱交換器には、冷媒の放熱又は吸熱が行えるものであれば、どのようなものでも用いることができる。水冷式のタイプの熱交換器を用いる場合は、たとえば、プレート式熱交換器、二重管式熱交換器などの水冷媒間熱交換器を設置して用いればよい。 Further, in general, the heat source side heat exchanger and the load side heat exchanger are often equipped with a blower such as a fan that promotes the condensation or evaporation of the refrigerant by blowing air, but the present invention is not limited to this. .. For example, as a means for improving the heat exchange performance of the load side heat exchanger, a panel heater using radiation can also be used. Further, as the heat source side heat exchanger, a water-cooled type heat exchanger that exchanges heat with a liquid such as water or antifreeze can be used. Any heat exchanger can be used as long as it can dissipate heat or absorb heat from the refrigerant. When a water-cooled type heat exchanger is used, for example, a water-refrigerant heat exchanger such as a plate heat exchanger or a double-tube heat exchanger may be installed and used.
 実施の形態は、例として提示したものであり、実施の形態の範囲を限定することは意図していない。実施の形態は、その他の様々な形態で実施されることが可能であり、実施の形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施の形態及びその変形は、実施の形態の範囲及び要旨に含まれる。 The embodiment is presented as an example and is not intended to limit the scope of the embodiment. The embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the embodiment. These embodiments and variations thereof are included in the scope and gist of the embodiments.
 1 室外機、2 室内機、3 冷媒配管、4a 第1主管、4b 第2主管、5a 第1本管、5b 第2本管、6 直列並列切り替え配管、7 直列出口配管、8 並列出入口配管、9a 第1出入口配管、9b 第2出入口配管、9c 第3出入口配管、10 圧縮機、11 第1四方弁、12 第2四方弁、13a 第1熱源側熱交換器、13b 第2熱源側熱交換器、13c 第3熱源側熱交換器、14a 第1ヘッダー、14b 第2ヘッダー、14c 第3ヘッダー、14d 第4ヘッダー、15a 第1分配器、15b 第2分配器、16 ファン、21 負荷側熱交換器、22 負荷側絞り装置、31 第1開閉装置、32 第2開閉装置、33 第1開度調整装置、34 第2開度調整装置、60 制御装置、100 空気調和装置。 1 outdoor unit, 2 indoor unit, 3 refrigerant pipe, 4a 1st main pipe, 4b 2nd main pipe, 5a 1st main pipe, 5b 2nd main pipe, 6 series parallel switching pipe, 7 series outlet pipe, 8 parallel inlet / outlet pipe, 9a 1st inlet / outlet pipe, 9b 2nd inlet / outlet pipe, 9c 3rd inlet / outlet pipe, 10 compressor, 11 1st 4-way valve, 12 2nd 4-way valve, 13a 1st heat source side heat exchanger, 13b 2nd heat source side heat exchange Vessel, 13c 3rd heat source side heat exchanger, 14a 1st header, 14b 2nd header, 14c 3rd header, 14d 4th header, 15a 1st distributor, 15b 2nd distributor, 16 fan, 21 load side heat Exchanger, 22 load side throttle device, 31 first opening / closing device, 32 second opening / closing device, 33 first opening adjustment device, 34 second opening adjustment device, 60 control device, 100 air conditioner.

Claims (10)

  1.  圧縮機、冷媒流路切替装置、負荷側熱交換器、負荷側絞り装置、第1熱源側熱交換器、第2熱源側熱交換器及び第3熱源側熱交換器が配管で接続されて冷媒が循環する主回路と、
     前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器の冷媒流路を切り替えるための熱交換器流路切替装置と、
     前記熱交換器流路切替装置を制御する制御装置と
    を具備し、
     前記制御装置は、前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器を除霜運転モードとして使用する際に、前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器の冷媒流路を並列冷媒流路に切り替えるように前記熱交換器流路切替装置を制御し、
     前記並列冷媒流路は、前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器が互いに並列に接続される冷媒流路である、
    空気調和装置。
    A compressor, a refrigerant flow path switching device, a load side heat exchanger, a load side throttle device, a first heat source side heat exchanger, a second heat source side heat exchanger, and a third heat source side heat exchanger are connected by a pipe to provide a refrigerant. The main circuit that circulates and
    A heat exchanger flow path switching device for switching the refrigerant flow paths of the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger.
    A control device for controlling the heat exchanger flow path switching device is provided.
    When the control device uses the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger as the defrosting operation mode, the first heat source side heat exchanger The heat exchanger flow path switching device is controlled so as to switch the refrigerant flow paths of the second heat source side heat exchanger and the third heat source side heat exchanger to parallel refrigerant flow paths.
    The parallel refrigerant flow path is a refrigerant flow path in which the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger are connected in parallel with each other.
    Air conditioner.
  2.  前記制御装置は、
     前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器を冷房運転モードとして使用する際に、前記熱交換器流路切替装置を前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器の冷媒流路を直列冷媒流路に切り替えるように制御し、
     前記直列冷媒流路は、上流側にて前記第1熱源側熱交換器と前記第2熱源側熱交換器とが互いに並列に、かつ、下流側にて前記第1熱源側熱交換器及び前記第2熱源側熱交換器に対して前記第3熱源側熱交換器が直列に接続された冷媒流路である、
    請求項1に記載の空気調和装置。
    The control device is
    When the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger are used as the cooling operation mode, the heat exchanger flow path switching device is used on the first heat source side. Control the refrigerant flow paths of the heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger to switch to the series refrigerant flow path.
    In the series refrigerant flow path, the first heat source side heat exchanger and the second heat source side heat exchanger are arranged in parallel with each other on the upstream side, and the first heat source side heat exchanger and the above on the downstream side. A refrigerant flow path in which the third heat source side heat exchanger is connected in series to the second heat source side heat exchanger.
    The air conditioner according to claim 1.
  3.  前記制御装置は、
     前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器を暖房運転モードとして使用する際に、前記熱交換器流路切替装置を前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器の冷媒流路を前記並列冷媒流路に切り替えるように制御する、
    請求項1又は請求項2に記載の空気調和装置。
    The control device is
    When the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger are used as the heating operation mode, the heat exchanger flow path switching device is used on the first heat source side. Control so that the refrigerant flow paths of the heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger are switched to the parallel refrigerant flow paths.
    The air conditioner according to claim 1 or 2.
  4.  前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器のうちの1つは、1つのヘッダ及び1つの分配器が設けられた熱源側熱交換器である、
    請求項1~請求項3のいずれか1項に記載の空気調和装置。
    One of the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger is a heat source side heat exchanger provided with one header and one distributor. Is,
    The air conditioner according to any one of claims 1 to 3.
  5.  前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器のうちの1つは、冷媒の流入側及び流出側にそれぞれ1つのヘッダが設けられた熱源側熱交換器である、
    請求項1~請求項4のいずれか1項に記載の空気調和装置。
    One of the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger is a heat source provided with one header on each of the inflow side and the outflow side of the refrigerant. Side heat exchanger,
    The air conditioner according to any one of claims 1 to 4.
  6.  前記冷媒流路切替装置は、
     前記圧縮機から吐出された冷媒を前記第1熱源側熱交換器に供給又は遮断を行う第1四方弁と、
     前記圧縮機から吐出された冷媒を前記第2熱源側熱交換器又は前記負荷側熱交換器のどちらかに供給する第2四方弁とを有し、
     前記熱交換器流路切替装置は、
     前記冷媒流路の切り替えに使用される第1開閉装置と、
     前記冷媒流路の切り替えに使用される第2開閉装置と、
     前記冷媒流路の切り替えに使用される第1開度調整装置と、
     前記冷媒流路の切り替えに使用される第2開度調整装置とを有し、
     前記直列冷媒流路においては、前記第1四方弁で前記圧縮機から吐出された冷媒が前記第1熱源側熱交換器に供給され、前記第2四方弁で前記圧縮機から吐出された冷媒が前記第2熱源側熱交換器に供給され、前記第1開閉装置が閉とれ、前記第2開閉装置が開とされ、前記第1開度調整装置が閉とされ、前記第2開度調整装置が開とされ、
     前記並列冷媒流路においては、前記第1四方弁で前記圧縮機から吐出された冷媒が遮断され、前記第2四方弁で前記圧縮機から吐出された冷媒が負荷側熱交換器に供給され、前記第1開閉装置が開とされ、前記第2開閉装置が閉とされ、前記第1開度調整が開とされ、前記第2開度調整装置が開とされる、
    請求項3に記載の空気調和装置。
    The refrigerant flow path switching device is
    A first four-way valve that supplies or shuts off the refrigerant discharged from the compressor to the first heat source side heat exchanger.
    It has a second four-way valve that supplies the refrigerant discharged from the compressor to either the second heat source side heat exchanger or the load side heat exchanger.
    The heat exchanger flow path switching device is
    The first switchgear used to switch the refrigerant flow path and
    A second switchgear used to switch the refrigerant flow path and
    The first opening degree adjusting device used for switching the refrigerant flow path and
    It has a second opening degree adjusting device used for switching the refrigerant flow path, and has.
    In the series refrigerant flow path, the refrigerant discharged from the compressor by the first four-way valve is supplied to the first heat source side heat exchanger, and the refrigerant discharged from the compressor by the second four-way valve is supplied. It is supplied to the second heat source side heat exchanger, the first opening / closing device is closed, the second opening / closing device is opened, the first opening / closing device is closed, and the second opening / closing device is closed. Is opened,
    In the parallel refrigerant flow path, the refrigerant discharged from the compressor is shut off by the first four-way valve, and the refrigerant discharged from the compressor is supplied to the load side heat exchanger by the second four-way valve. The first opening / closing device is opened, the second opening / closing device is closed, the first opening / closing adjustment is opened, and the second opening / closing adjustment device is opened.
    The air conditioner according to claim 3.
  7.  前記第1開度調整装置及び前記第2開度調整装置は、開度変化により流量を調整できる絞り装置であり、
     前記熱交換器流路切替装置は、
     前記並列冷媒流路に切り替える場合に、前記第1開度調整装置及び前記第2開度調整装置のそれぞれの開度を変更し、前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器のそれぞれに流入させる冷媒量を調整する、
    請求項6に記載の空気調和装置。
    The first opening degree adjusting device and the second opening degree adjusting device are throttle devices capable of adjusting the flow rate by changing the opening degree.
    The heat exchanger flow path switching device is
    When switching to the parallel refrigerant flow path, the opening degrees of the first opening degree adjusting device and the second opening degree adjusting device are changed, and the first heat source side heat exchanger and the second heat source side heat exchange are performed. Adjust the amount of refrigerant flowing into each of the device and the third heat source side heat exchanger.
    The air conditioner according to claim 6.
  8.  前記第1熱源側熱交換器の伝熱面積と前記第2熱源側熱交換器の伝熱面積との和の伝熱面積は、前記第3熱源側熱交換器の伝熱面積よりも大きくなるように形成される、
    請求項1~請求項7のいずれか1項に記載の空気調和装置。
    The sum of the heat transfer areas of the first heat source side heat exchanger and the heat transfer area of the second heat source side heat exchanger is larger than the heat transfer area of the third heat source side heat exchanger. Formed as
    The air conditioner according to any one of claims 1 to 7.
  9.  前記第1熱源側熱交換器は、前記第2熱源側熱交換器及び前記第3熱源側熱交換器に対して独立して配置され、
     前記第2熱源側熱交換器の一部分は、前記第3熱源側熱交換器と熱交換器構成要素であるフィンを共有して一体に構成され、
     前記第2熱源側熱交換器の前記一部分以外の残りの部分は、前記第3熱源側熱交換器とは独立して構成される、
    請求項1~請求項8のいずれか1項に記載の空気調和装置。
    The first heat source side heat exchanger is arranged independently of the second heat source side heat exchanger and the third heat source side heat exchanger.
    A part of the second heat source side heat exchanger is integrally formed by sharing the fins which are the heat exchanger components with the third heat source side heat exchanger.
    The rest of the second heat source side heat exchanger other than the first part is configured independently of the third heat source side heat exchanger.
    The air conditioner according to any one of claims 1 to 8.
  10.  前記第1熱源側熱交換器、前記第2熱源側熱交換器及び前記第3熱源側熱交換器のうちの1つは、熱交換器構成要素である伝熱管が扁平管である熱源側熱交換器である、
    請求項1~請求項9のいずれか1項に記載の空気調和装置。
    One of the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger is heat source side heat in which the heat transfer tube which is a component of the heat exchanger is a flat tube. It is an exchanger,
    The air conditioner according to any one of claims 1 to 9.
PCT/JP2019/028595 2019-07-22 2019-07-22 Air-conditioning device WO2021014520A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980098517.XA CN114127493B (en) 2019-07-22 2019-07-22 Air conditioner
PCT/JP2019/028595 WO2021014520A1 (en) 2019-07-22 2019-07-22 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028595 WO2021014520A1 (en) 2019-07-22 2019-07-22 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2021014520A1 true WO2021014520A1 (en) 2021-01-28

Family

ID=74192982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028595 WO2021014520A1 (en) 2019-07-22 2019-07-22 Air-conditioning device

Country Status (2)

Country Link
CN (1) CN114127493B (en)
WO (1) WO2021014520A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117948735A (en) * 2022-10-18 2024-04-30 青岛海尔空调电子有限公司 Heat exchanger, control method of heat exchanger and air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420764A (en) * 1990-05-16 1992-01-24 Hitachi Ltd Air conditioner
WO2018047416A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Air conditioner
WO2018047331A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Air conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
CN101280979A (en) * 2008-05-26 2008-10-08 刘雄 Air conditioner heat pump device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420764A (en) * 1990-05-16 1992-01-24 Hitachi Ltd Air conditioner
WO2018047416A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Air conditioner
WO2018047331A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
CN114127493A (en) 2022-03-01
CN114127493B (en) 2023-09-08

Similar Documents

Publication Publication Date Title
JP6644154B2 (en) Air conditioner
JP6685409B2 (en) Air conditioner
JP4803199B2 (en) Refrigeration cycle equipment
US20230184471A1 (en) Air conditioning system with capacity control and controlled hot water generation
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
WO2013145006A1 (en) Air conditioning device
JPWO2018002983A1 (en) Refrigeration cycle equipment
JP6647406B2 (en) Refrigeration cycle device
KR101737365B1 (en) Air conditioner
JP6479181B2 (en) Air conditioner
JPWO2012085965A1 (en) Air conditioner
US20240167735A1 (en) Heat source unit and air conditioner
WO2020174618A1 (en) Air-conditioning device
WO2021014520A1 (en) Air-conditioning device
US20210063092A1 (en) Heat transfer circuit with flow dependent heat exchanger
US11879677B2 (en) Air-conditioning apparatus
JP7258212B2 (en) air conditioner
KR20110085393A (en) Air conditioner
WO2023170743A1 (en) Refrigeration cycle device
JPH09310931A (en) Air conditioner
KR100188994B1 (en) Refrigerant control device of multi-chamber cooler
KR20180026986A (en) Multi air-conditioning system
JPWO2013145006A1 (en) Air conditioner
KR980010241A (en) Heat exchange capacity correction cooling cycle of tea /
KR20050074119A (en) Air-condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP