JPWO2012085965A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JPWO2012085965A1
JPWO2012085965A1 JP2012549476A JP2012549476A JPWO2012085965A1 JP WO2012085965 A1 JPWO2012085965 A1 JP WO2012085965A1 JP 2012549476 A JP2012549476 A JP 2012549476A JP 2012549476 A JP2012549476 A JP 2012549476A JP WO2012085965 A1 JPWO2012085965 A1 JP WO2012085965A1
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor heat
refrigerant
compressor
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012549476A
Other languages
Japanese (ja)
Inventor
遠藤 和広
和広 遠藤
禎夫 関谷
禎夫 関谷
透 二階堂
透 二階堂
高久 昭二
昭二 高久
洋 山崎
洋 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Publication of JPWO2012085965A1 publication Critical patent/JPWO2012085965A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02343Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02731Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one three-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷房気味から暖房気味まで連続的に広範囲の除湿運転が可能な空気調和機を提供することを課題とする。上記課題を解決するために本発明の空気調和機は、圧縮機と、室外熱交換器と、第1室内熱交換器と、第2室内熱交換器と、を備え、暖房運転時、室外熱交換器が蒸発器、第1室内熱交換器及び第2室内熱交換器が凝縮器として機能し、冷房運転時、室外熱交換器が凝縮器、第1室内熱交換器及び第2室内熱交換器が蒸発器として機能し、除湿運転時、室外熱交換器及び第1室内熱交換器が凝縮器、第2室内熱交換器が蒸発器として機能するとともに、圧縮機から吐出した冷媒は、室外熱交換器及び第1室内熱交換器にそれぞれ分岐して流入し、その後合流して、第2室内熱交換器を経由して圧縮機に流入する。It is an object of the present invention to provide an air conditioner that can perform a dehumidifying operation over a wide range from a cooling to a heating. In order to solve the above problems, an air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, a first indoor heat exchanger, and a second indoor heat exchanger, and the outdoor heat during heating operation. The exchanger functions as an evaporator, the first indoor heat exchanger, and the second indoor heat exchanger function as a condenser. During cooling operation, the outdoor heat exchanger functions as a condenser, a first indoor heat exchanger, and a second indoor heat exchange. When the dehumidifying operation is performed, the outdoor heat exchanger and the first indoor heat exchanger function as a condenser, and the second indoor heat exchanger functions as an evaporator, and the refrigerant discharged from the compressor It branches and flows into the heat exchanger and the first indoor heat exchanger, and then merges and flows into the compressor via the second indoor heat exchanger.

Description

本発明は、除湿運転機能を有する空気調和機に関する。   The present invention relates to an air conditioner having a dehumidifying operation function.

特許文献1は、外気温が比較的高い条件下で室温を下げた除湿運転(冷気味除湿運転)と、外気温が適温で室内変化を好まない条件下での除湿運転(等温除湿運転)と、外気温が比較的低い条件下で室温を上げた除湿運転(暖気味除湿運転)とを行う空気調和機を開示する。   Patent Document 1 describes a dehumidifying operation (cool-flavored dehumidifying operation) in which the room temperature is lowered under conditions where the outside air temperature is relatively high, and a dehumidifying operation (isothermal dehumidifying operation) under a condition in which the outside air temperature is appropriate and the room change is not preferred. An air conditioner that performs a dehumidifying operation (warm air dehumidifying operation) in which the room temperature is raised under conditions where the outside air temperature is relatively low is disclosed.

特許文献1に記載の空気調和機では、冷気味除湿運転及び等温除湿運転時に、冷媒は室外熱交換器を流れ、暖気味運転時に冷媒は室外熱交換器をバイパスする。冷媒が室外熱交換器を流れる場合、たとえ室外送風機を停止していても、必ず放熱を伴うが、室外熱交換器をバイパスする場合、室外熱交換器は放熱しない。すなわち、冷気味除湿及び等温除湿運転と暖気味除湿運転との間で、室外熱交換器での放熱量が不連続となり、冷気味除湿から暖気味除湿まで連続的に広範囲に除湿運転することは難しい。   In the air conditioner described in Patent Document 1, the refrigerant flows through the outdoor heat exchanger during the cold-flavor dehumidification operation and the isothermal dehumidification operation, and the refrigerant bypasses the outdoor heat exchanger during the warm-flavor operation. When the refrigerant flows through the outdoor heat exchanger, heat is always radiated even if the outdoor fan is stopped, but when the outdoor heat exchanger is bypassed, the outdoor heat exchanger does not radiate heat. That is, between the cold dehumidification and the isothermal dehumidification operation and the warm dehumidification operation, the amount of heat dissipated in the outdoor heat exchanger becomes discontinuous, and the dehumidification operation in a wide range continuously from the cold dehumidification to the warm dehumidification difficult.

特開平5−340643号公報Japanese Patent Laid-Open No. 5-340643

本発明は、冷房気味から暖房気味まで連続的で広範囲の除湿運転が可能な空気調和機を提供することを課題とする。   An object of the present invention is to provide an air conditioner capable of continuous and wide range dehumidifying operation from cooling to heating.

上記課題を解決するために本発明の空気調和機は、圧縮機と、室外熱交換器と、第1室内熱交換器と、第2室内熱交換器と、を備え、暖房運転時、室外熱交換器が蒸発器、第1室内熱交換器及び第2室内熱交換器が凝縮器として機能し、冷房運転時、室外熱交換器が凝縮器、第1室内熱交換器及び第2室内熱交換器が蒸発器として機能し、除湿運転時、室外熱交換器及び第1室内熱交換器が凝縮器、第2室内熱交換器が蒸発器として機能するとともに、圧縮機から吐出した冷媒は、室外熱交換器及び第1室内熱交換器にそれぞれ分岐して流入し、その後合流して、第2室内熱交換器を経由して圧縮機に流入する。   In order to solve the above problems, an air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, a first indoor heat exchanger, and a second indoor heat exchanger, and the outdoor heat during heating operation. The exchanger functions as an evaporator, the first indoor heat exchanger, and the second indoor heat exchanger function as a condenser. During cooling operation, the outdoor heat exchanger functions as a condenser, a first indoor heat exchanger, and a second indoor heat exchange. When the dehumidifying operation is performed, the outdoor heat exchanger and the first indoor heat exchanger function as a condenser, and the second indoor heat exchanger functions as an evaporator, and the refrigerant discharged from the compressor It branches and flows into the heat exchanger and the first indoor heat exchanger, and then merges and flows into the compressor via the second indoor heat exchanger.

本発明によれば、冷房気味から暖房気味まで連続的に広範囲の除湿運転が可能な空気調和機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which can perform the dehumidification operation | movement of a wide range continuously from a cooling feeling to a heating feeling can be provided.

冷房運転時の空気調和機の動作を示す系統図。The system diagram which shows operation | movement of the air conditioner at the time of air_conditionaing | cooling operation. 除湿運転時の空気調和機の動作を示す系統図。The system diagram which shows operation | movement of the air conditioner at the time of dehumidification driving | operation. 空気調和機の「目標値−室内温度」と第1減圧弁との関係を示す図。The figure which shows the relationship between "target value-room temperature" of an air conditioner, and a 1st pressure-reduction valve. 暖房運転時の空気調和機の動作を示す系統図。The system diagram which shows operation | movement of the air conditioner at the time of heating operation. 室内熱交換器の伝熱管流路数を示す図。The figure which shows the number of heat exchanger tube flow paths of an indoor heat exchanger. 冷房運転時の空気調和機の動作を示す系統図。The system diagram which shows operation | movement of the air conditioner at the time of air_conditionaing | cooling operation. 除湿運転時の空気調和機の動作を示す系統図。The system diagram which shows operation | movement of the air conditioner at the time of dehumidification driving | operation. 暖房運転時の空気調和機の動作を示す系統図。The system diagram which shows operation | movement of the air conditioner at the time of heating operation.

以下、本発明に係る第1の実施例を、図1から図5を用いて説明する。図1は、空気調和機100の系統図である。まず、図1に基づいて、本実施例の空気調和機100の構成について説明する。空気調和機100は、熱源側で室外に設置される室外ユニット30と、利用側で室内に設置される室内ユニット31と、2本のガス側接続配管(第1ガス側接続配管12,第2ガス側接続配管13)と、1本の液側接続配管7とを備える。   Hereinafter, a first embodiment according to the present invention will be described with reference to FIGS. FIG. 1 is a system diagram of the air conditioner 100. First, based on FIG. 1, the structure of the air conditioner 100 of a present Example is demonstrated. The air conditioner 100 includes an outdoor unit 30 installed outside on the heat source side, an indoor unit 31 installed indoors on the usage side, and two gas side connection pipes (first gas side connection pipe 12, second gas pipe). Gas side connection pipe 13) and one liquid side connection pipe 7 are provided.

冷媒は、一例として、低圧の冷媒であるHFO1234yfを用いる。HFO1234yfは地球温暖化係数が極めて低いため、冷媒の大気排出による地球温暖化への影響を抑制できる。なお、冷媒は、他のハイドロフルオロオレフィン系冷媒でもよいし、これらを含む混合冷媒でもよい。   For example, HFO1234yf, which is a low-pressure refrigerant, is used as the refrigerant. Since HFO1234yf has a very low global warming potential, it is possible to suppress the influence on global warming due to the atmospheric discharge of the refrigerant. The refrigerant may be other hydrofluoroolefin-based refrigerants or a mixed refrigerant containing these.

HFO1234yfの圧力損失を低減し、ガス側接続配管の径拡大による施工性の低下を抑制するため、2本のガス側接続配管(第1ガス側接続配管12,第2ガス側接続配管13)を備える。   In order to reduce the pressure loss of HFO1234yf and suppress the deterioration of workability due to the expansion of the diameter of the gas side connection pipe, two gas side connection pipes (first gas side connection pipe 12 and second gas side connection pipe 13) are connected. Prepare.

冷媒を圧縮する圧縮機1の吐出通路1bは、冷房運転及び除湿運転と暖房運転とにより、冷媒の流れ方向を切替える四方弁3に接続される。室外ファン20により送られる室外空気と冷媒とを熱交換する室外熱交換器5は、一方は四方弁3に接続され、他方は冷媒を減圧する開度が調整可能な第1減圧弁6を介して室外液側接続口7aに接続される。液側接続配管7は、室外液側接続配管7aと室内液側接続口7bに接続される。   The discharge passage 1b of the compressor 1 that compresses the refrigerant is connected to the four-way valve 3 that switches the flow direction of the refrigerant by the cooling operation, the dehumidifying operation, and the heating operation. One of the outdoor heat exchangers 5 for exchanging heat between the outdoor air sent by the outdoor fan 20 and the refrigerant is connected to the four-way valve 3, and the other is connected via the first pressure reducing valve 6 whose degree of opening for reducing the pressure of the refrigerant can be adjusted. Are connected to the outdoor liquid side connection port 7a. The liquid side connection pipe 7 is connected to the outdoor liquid side connection pipe 7a and the indoor liquid side connection port 7b.

室内液側配管8の一方は室内液側接続口7bに接続される。室内液側配管8の他方は二つに分岐し、分岐した一方は第1室内熱交換器9に接続され、分岐した他方は第2減圧弁11を介して第2室内熱交換器に接続される。第1室内熱交換器9,第2室内熱交換器10は室内ファン21により送られる室内空気と冷媒とを熱交換する。   One of the indoor liquid side pipes 8 is connected to the indoor liquid side connection port 7b. The other of the indoor liquid side pipe 8 is branched into two, one branched is connected to the first indoor heat exchanger 9, and the other branched is connected to the second indoor heat exchanger via the second pressure reducing valve 11. The The first indoor heat exchanger 9 and the second indoor heat exchanger 10 exchange heat between indoor air sent by the indoor fan 21 and the refrigerant.

第1室内熱交換器9は、第1室内ガス側接続口12b及び第1ガス側接続配管12を介して、第1室外ガス側接続口12aに接続される。室外ガス側接続口12aは、冷房運転と除湿運転及び暖房運転とにより冷媒の流れ方向を切替える三方弁4を介して、圧縮機1の吸入通路1aに接続される。   The first indoor heat exchanger 9 is connected to the first outdoor gas side connection port 12 a via the first indoor gas side connection port 12 b and the first gas side connection pipe 12. The outdoor gas side connection port 12a is connected to the suction passage 1a of the compressor 1 via the three-way valve 4 that switches the flow direction of the refrigerant by the cooling operation, the dehumidifying operation, and the heating operation.

また、第2室内熱交換器10は、第2室内ガス側接続口13b及び第2ガス側接続配管13を介して、第2室外ガス側接続口13aに接続される。室外ガス側接続口13aは四方弁3を介して圧縮機1の吸入通路1aに接続される。   The second indoor heat exchanger 10 is connected to the second outdoor gas side connection port 13a via the second indoor gas side connection port 13b and the second gas side connection pipe 13. The outdoor gas side connection port 13 a is connected to the suction passage 1 a of the compressor 1 through the four-way valve 3.

圧縮機1の吐出通路1bは三方弁4と接続される。   The discharge passage 1 b of the compressor 1 is connected to the three-way valve 4.

空気調和機100は、圧縮機1の吐出通路1bに設けられた圧縮機吐出温度センサ41、及び、室内ユニット31の空気入口側に設けられた室内温湿度センサ43を備える。これらの圧縮機吐出温度センサ41及び室内温湿度センサ43により検知された温湿度の信号は、制御装置50に入力される。制御装置50は、これら入力された信号やリモコン(図示せず)からの信号等に基づいて、圧縮機1,四方弁3,三方弁4,第1減圧弁6,第2減圧弁11等を制御する。   The air conditioner 100 includes a compressor discharge temperature sensor 41 provided in the discharge passage 1 b of the compressor 1 and an indoor temperature / humidity sensor 43 provided on the air inlet side of the indoor unit 31. The temperature and humidity signals detected by the compressor discharge temperature sensor 41 and the indoor temperature and humidity sensor 43 are input to the control device 50. The control device 50 controls the compressor 1, the four-way valve 3, the three-way valve 4, the first pressure reducing valve 6, the second pressure reducing valve 11 and the like based on these input signals and signals from a remote controller (not shown). Control.

次に、空気調和機100における冷房運転,除湿運転及び暖房運転の動作について説明する。   Next, operations of the cooling operation, the dehumidifying operation, and the heating operation in the air conditioner 100 will be described.

まず、冷房運転時における空気調和機100の動作を、図1を用いて説明する。図において、太い実線は冷媒の経路、矢印は冷媒が流れる方向を示す。冷房運転時には、制御装置50は、四方弁3において、圧縮機1の吐出通路1bと室外熱交換器5とを連通させ、圧縮機1の吸入通路1aと第2室外ガス側接続口13aとを連通させる。三方弁4において、圧縮機1の吸入通路1aと第1室外ガス側接続口12aとを連通させる。また、第1減圧弁6において、弁の開度を制御して、冷媒を減圧させる。第2減圧弁11において、弁の開度を全開として、冷媒を減圧させないようにする。   First, the operation of the air conditioner 100 during the cooling operation will be described with reference to FIG. In the figure, a thick solid line indicates a refrigerant path, and an arrow indicates a direction in which the refrigerant flows. During the cooling operation, the control device 50 causes the discharge passage 1b of the compressor 1 and the outdoor heat exchanger 5 to communicate with each other in the four-way valve 3, and connects the suction passage 1a of the compressor 1 and the second outdoor gas side connection port 13a. Communicate. In the three-way valve 4, the suction passage 1 a of the compressor 1 and the first outdoor gas side connection port 12 a are communicated. Moreover, in the 1st pressure-reduction valve 6, the opening degree of a valve is controlled and a refrigerant | coolant is pressure-reduced. In the second pressure reducing valve 11, the opening of the valve is fully opened so that the refrigerant is not depressurized.

圧縮機1で圧縮され高温高圧となったガス冷媒は、四方弁3を通って室外熱交換器5に流入する。高温高圧のガス冷媒は、室外熱交換器5において、室外ファン20により送られる室外空気により冷却されて、凝縮する。この高圧の凝縮した冷媒は、第1減圧弁6で減圧され、低温低圧の気液二相冷媒となり、液側接続配管7,室内液側配管8を通って、第1室内熱交換器9と第2室内熱交換器10とに並列に流入する。第1室内熱交換器9と第2室内熱交換器10を流れる気液二相冷媒は、室内ファン21により送られる室内空気により加熱されて蒸発し、低圧のガス冷媒となる。第1室内熱交換器9及び第2室内熱交換器10により室内空気を冷却することにより、室内を冷房する。   The gas refrigerant that has been compressed by the compressor 1 to become high temperature and pressure flows into the outdoor heat exchanger 5 through the four-way valve 3. The high-temperature and high-pressure gas refrigerant is cooled and condensed by the outdoor air sent by the outdoor fan 20 in the outdoor heat exchanger 5. The high-pressure condensed refrigerant is depressurized by the first pressure reducing valve 6 to become a low-temperature low-pressure gas-liquid two-phase refrigerant, passes through the liquid side connection pipe 7 and the indoor liquid side pipe 8, and the first indoor heat exchanger 9. It flows in parallel with the second indoor heat exchanger 10. The gas-liquid two-phase refrigerant flowing through the first indoor heat exchanger 9 and the second indoor heat exchanger 10 is heated and evaporated by the indoor air sent by the indoor fan 21 to become a low-pressure gas refrigerant. The indoor air is cooled by the first indoor heat exchanger 9 and the second indoor heat exchanger 10 to cool the room.

第1室内熱交換器9から流出した低圧のガス冷媒は、第1ガス側接続配管12,三方弁4を通って圧縮機1に戻る。また、第2室内熱交換器10から流出した低圧のガス冷媒は、第2ガス側接続配管13,四方弁3を通って圧縮機1に戻る。   The low-pressure gas refrigerant flowing out of the first indoor heat exchanger 9 returns to the compressor 1 through the first gas side connection pipe 12 and the three-way valve 4. The low-pressure gas refrigerant that has flowed out of the second indoor heat exchanger 10 returns to the compressor 1 through the second gas side connection pipe 13 and the four-way valve 3.

このとき、圧縮機1と第1減圧弁6は以下のように制御される。制御装置50は、室内温湿度センサ46で検知した室内温度がリモコン(図示せず)の設定温度となるように、圧縮機1の回転速度を制御する。設定温度と室内温度との差が大きいほど圧縮機1の回転速度を増加させる。温度差が小さいときは回転速度を減少又は停止する。また、制御装置50は、圧縮機吐出温度センサ41で検知した吐出温度が所定の目標値となるように、第1減圧弁6の開度を制御する。   At this time, the compressor 1 and the first pressure reducing valve 6 are controlled as follows. The control device 50 controls the rotational speed of the compressor 1 so that the room temperature detected by the room temperature / humidity sensor 46 becomes a set temperature of a remote controller (not shown). The rotational speed of the compressor 1 is increased as the difference between the set temperature and the room temperature increases. When the temperature difference is small, the rotational speed is reduced or stopped. In addition, the control device 50 controls the opening of the first pressure reducing valve 6 so that the discharge temperature detected by the compressor discharge temperature sensor 41 becomes a predetermined target value.

次に、除湿運転時における空気調和機100の動作を、図2を用いて説明する。除湿運転時には、制御装置50は、冷房運転時と同様に、四方弁3において、圧縮機1の吐出通路1bと室外熱交換器5とを連通させ、圧縮機1の吸入通路1aと第2室外ガス側接続口13aとを連通させる。三方弁において、圧縮機1の吐出通路1bと第1室外ガス側接続口12aとを連通させる。また、第1減圧弁6において、弁の開度を制御して、室外熱交換器5を流れる冷媒流量と第1室内熱交換器9を流れる冷媒流量の割合を調整する。第2減圧弁11においては、弁の開度を制御して、冷媒を減圧する。   Next, the operation of the air conditioner 100 during the dehumidifying operation will be described with reference to FIG. During the dehumidifying operation, the control device 50 causes the discharge passage 1b of the compressor 1 and the outdoor heat exchanger 5 to communicate with each other in the four-way valve 3 in the same way as during the cooling operation, and the suction passage 1a of the compressor 1 and the second outdoor side The gas side connection port 13a is communicated. In the three-way valve, the discharge passage 1b of the compressor 1 and the first outdoor gas side connection port 12a are communicated. In the first pressure reducing valve 6, the opening degree of the valve is controlled to adjust the ratio between the refrigerant flow rate flowing through the outdoor heat exchanger 5 and the refrigerant flow rate flowing through the first indoor heat exchanger 9. In the second pressure reducing valve 11, the opening of the valve is controlled to decompress the refrigerant.

圧縮機1で圧縮され高温高圧となったガス冷媒は、吐出通路1bで分岐する。分岐した一方の高温高圧となったガス冷媒は、三方弁4,第1ガス側接続配管12を介して第1室内熱交換器9に流入し、室内ファン21により送られる室内空気により冷却されて、凝縮する。分岐した他方の高温高圧となったガス冷媒は、四方弁3を介して室外熱交換器5に流入し、室外ファン21により送られる室外空気により冷却されて、凝縮する。この高圧の凝縮した冷媒は、第1減圧弁6,液側接続配管7,室内液側配管8を通り、前述の第1室内熱交換器9で凝縮し流出した冷媒と合流する。合流した冷媒は、第2減圧弁11において減圧され、低温低圧の気液二相冷媒となり、第2室内熱交換器10に流入する。第2室内熱交換器10を流れる気液二相冷媒は、室内ファン21により送られる室内空気により加熱されて蒸発し、低温のガス冷媒となる。   The gas refrigerant compressed by the compressor 1 and having a high temperature and a high pressure branches in the discharge passage 1b. One of the branched high-temperature and high-pressure gas refrigerant flows into the first indoor heat exchanger 9 through the three-way valve 4 and the first gas side connection pipe 12 and is cooled by the indoor air sent by the indoor fan 21. Condenses. The other branched high-temperature and high-pressure gas refrigerant flows into the outdoor heat exchanger 5 through the four-way valve 3 and is cooled and condensed by the outdoor air sent by the outdoor fan 21. The high-pressure condensed refrigerant passes through the first pressure reducing valve 6, the liquid side connection pipe 7, and the indoor liquid side pipe 8, and merges with the refrigerant that has condensed and flowed out in the first indoor heat exchanger 9 described above. The merged refrigerant is depressurized by the second pressure reducing valve 11, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the second indoor heat exchanger 10. The gas-liquid two-phase refrigerant flowing through the second indoor heat exchanger 10 is heated and evaporated by the indoor air sent by the indoor fan 21 to become a low-temperature gas refrigerant.

この時、第2室内熱交換器10では、室内空気を露点温度以下に冷却することにより、室内空気を冷却除湿するとともに、第1室内熱交換器9では、室内空気を加熱する。室内ユニット31からは、冷却除湿された空気と加熱された空気とが混合して送風される。この冷却量と加熱量との大小により、室温を下げる冷房気味除湿から室温を上げる暖房気味除湿まで広範囲の除湿運転が可能となる。   At this time, the second indoor heat exchanger 10 cools and dehumidifies the room air by cooling the room air below the dew point temperature, and the first indoor heat exchanger 9 heats the room air. From the indoor unit 31, the cooled and dehumidified air and the heated air are mixed and blown. Depending on the size of the cooling amount and the heating amount, a wide range of dehumidifying operations can be performed from the air-conditioning dehumidification that lowers the room temperature to the air-conditioning dehumidification that increases the room temperature.

冷却量と加熱量との大小の調整は、第1減圧弁6の弁開度を制御して、室外熱交換器5を流れる冷媒流量と第1室内熱交換器9を流れる冷媒流量の割合を調整することにより、室外熱交換器5と第1室内熱交換器9での凝縮熱量の割合を調整し、その結果、第1室内熱交換器9での加熱量と第2室内熱交換器10での冷却量との大小を調整する。   The adjustment of the amount of cooling and the amount of heating is performed by controlling the valve opening degree of the first pressure reducing valve 6 and adjusting the ratio of the refrigerant flow rate flowing through the outdoor heat exchanger 5 and the refrigerant flow rate flowing through the first indoor heat exchanger 9. By adjusting, the ratio of the amount of condensation heat in the outdoor heat exchanger 5 and the first indoor heat exchanger 9 is adjusted. As a result, the amount of heat in the first indoor heat exchanger 9 and the second indoor heat exchanger 10 are adjusted. Adjust the amount of cooling with.

具体的には、室外熱交換器5を流れる冷媒流量を増加させて、室外熱交換器5の凝縮熱量を増加させるほど、第1室内熱交換器9での加熱量に対する第2室内熱交換器10での冷却量が増加する。一方、第1室内熱交換器9を流れる冷媒流量を増加させて、第1室内熱交換器9での凝縮熱量を増加させるほど、第2室内熱交換器10での冷却量に対する第1室内熱交換器9での加熱量が増加する。   Specifically, the second indoor heat exchanger with respect to the heating amount in the first indoor heat exchanger 9 increases as the flow rate of the refrigerant flowing through the outdoor heat exchanger 5 is increased and the amount of heat of condensation in the outdoor heat exchanger 5 is increased. The amount of cooling at 10 increases. On the other hand, the first indoor heat with respect to the cooling amount in the second indoor heat exchanger 10 increases as the flow rate of the refrigerant flowing through the first indoor heat exchanger 9 increases to increase the amount of condensation heat in the first indoor heat exchanger 9. The amount of heating in the exchanger 9 increases.

本実施例においては、第1室内熱交換器9を流れる冷媒流量を広範囲に調整できるので、つまり、第1室内熱交換器9の加熱量を広範囲に調整できるので、冷房気味から暖房気味まで広範囲の除湿運転が可能となる。また、このとき、減圧弁6の弁開度を制御して、第1室内熱交換器9に流れる冷媒流量を調整するのみで(つまり、室外熱交換器5に流れる冷媒流量を調整するのみで)、第1室内熱交換器9の加熱量を制御できるので、冷房気味から暖房気味まで除湿運転の制御が容易となり、且つ、冷房気味から暖房気味まで連続的にスムーズな除湿運転が可能となる。   In the present embodiment, the flow rate of the refrigerant flowing through the first indoor heat exchanger 9 can be adjusted in a wide range, that is, the heating amount of the first indoor heat exchanger 9 can be adjusted in a wide range, so that the wide range from the cooling flavor to the heating flavor. The dehumidifying operation can be performed. At this time, the valve opening degree of the pressure reducing valve 6 is controlled to adjust only the refrigerant flow rate flowing through the first indoor heat exchanger 9 (that is, only adjusting the refrigerant flow rate flowing through the outdoor heat exchanger 5). ) Since the heating amount of the first indoor heat exchanger 9 can be controlled, it is easy to control the dehumidifying operation from the cooling flavor to the heating flavor, and the continuous dehumidifying operation from the cooling flavor to the heating flavor becomes possible. .

尚、除湿運転時、凝縮器として機能する室外熱交換器5と加熱用凝縮器と機能する第1室内熱交換器9は並列に接続される。   During the dehumidifying operation, the outdoor heat exchanger 5 that functions as a condenser and the first indoor heat exchanger 9 that functions as a heating condenser are connected in parallel.

また、冷房運転時では、第1ガス側接続配管12と第2ガス側接続配管13を流れる冷媒の向きが同じであるが、除湿運転時では、第1ガス側接続配管12と第2ガス側接続配管13を流れる冷媒の向きが反対となる。   In the cooling operation, the direction of the refrigerant flowing through the first gas side connection pipe 12 and the second gas side connection pipe 13 is the same. In the dehumidifying operation, the first gas side connection pipe 12 and the second gas side The direction of the refrigerant flowing through the connection pipe 13 is opposite.

圧縮機1,第1減圧弁6、及び第2減圧弁11は以下のように制御される。制御装置50は、室内温湿度センサ46で検知した室内湿度が所定の目標値となるように圧縮機1の回転速度を制御する。目標値と室内湿度との差が大きいほど圧縮1の回転速度を増加させる。湿度差が小さいときは回転速度を減少又は停止する。   The compressor 1, the first pressure reducing valve 6, and the second pressure reducing valve 11 are controlled as follows. The control device 50 controls the rotational speed of the compressor 1 so that the indoor humidity detected by the indoor temperature / humidity sensor 46 becomes a predetermined target value. As the difference between the target value and the room humidity is larger, the rotation speed of the compression 1 is increased. When the humidity difference is small, the rotational speed is reduced or stopped.

また、制御装置50は室内温湿度センサ46で検知した室内温度とその目標値との差に応じて第1減圧弁6の開度を制御する。すなわち、図3に示すように、室内温度の目標値が実温度より高い場合は(暖房気味除湿)、第1減圧弁6の開度を小さくして、室外熱交換器5を流れる冷媒流量を少なくし、冷媒凝縮量を少なくする。つまり、第1室内熱交換器9を流れる冷媒流量を多くし、冷媒凝縮量を多くし、室内空気の加熱量を増加させる。一方、室内温度の目標値が実温度より低い場合は(冷房気味除湿)、第1減圧弁6の開度を大きくして、室外熱交換器5を流れる冷媒流量を多くし、冷媒凝縮量を多くする。つまり、第1室内熱交換器9を流れる冷媒流量を少なくし、冷媒凝縮量を少なくし、室内空気の加熱量を減少させる。   The control device 50 controls the opening of the first pressure reducing valve 6 according to the difference between the room temperature detected by the room temperature / humidity sensor 46 and the target value. That is, as shown in FIG. 3, when the target value of the room temperature is higher than the actual temperature (heating-like dehumidification), the opening of the first pressure reducing valve 6 is reduced and the refrigerant flow rate flowing through the outdoor heat exchanger 5 is reduced. Reduce the amount of refrigerant condensation. That is, the flow rate of the refrigerant flowing through the first indoor heat exchanger 9 is increased, the refrigerant condensation amount is increased, and the heating amount of the indoor air is increased. On the other hand, when the target value of the indoor temperature is lower than the actual temperature (cooling dehumidification), the opening of the first pressure reducing valve 6 is increased to increase the flow rate of the refrigerant flowing through the outdoor heat exchanger 5 and to reduce the refrigerant condensation amount. Do more. That is, the flow rate of the refrigerant flowing through the first indoor heat exchanger 9 is reduced, the refrigerant condensation amount is reduced, and the heating amount of the indoor air is reduced.

なお、室外熱交換器5の冷媒凝縮量を調整するため、さらに室外ファン20の回転速度を制御して、空気の送風量を調整してもよい。   In addition, in order to adjust the refrigerant | coolant condensation amount of the outdoor heat exchanger 5, you may control the rotational speed of the outdoor fan 20, and may adjust the ventilation volume of air.

制御装置50は圧縮機吐出温度センサ41で検知した吐出温度が所定の目標値となるように第2減圧弁11の開度を制御する。   The control device 50 controls the opening degree of the second pressure reducing valve 11 so that the discharge temperature detected by the compressor discharge temperature sensor 41 becomes a predetermined target value.

次に、暖房運転時における空気調和機100の動作を、図4を用いて説明する。暖房運転時には、制御装置50は、四方弁3において、圧縮機1の吐出通路1bと第2室外ガス側接続口13aとを連通させ、圧縮機1の吸入通路1aと室外熱交換器5とを連通させる。三方弁4において、圧縮機1の吐出通路1bと第1室外ガス側接続口12aとを連通させる。また、第1減圧弁6において、弁の開度を制御して冷媒を減圧する。第2減圧弁11において、弁の開度を全開として、冷媒を減圧させないようにする。   Next, operation | movement of the air conditioner 100 at the time of heating operation is demonstrated using FIG. During the heating operation, the controller 50 causes the discharge passage 1b of the compressor 1 and the second outdoor gas side connection port 13a to communicate with each other in the four-way valve 3 so that the suction passage 1a of the compressor 1 and the outdoor heat exchanger 5 are connected. Communicate. In the three-way valve 4, the discharge passage 1 b of the compressor 1 and the first outdoor gas side connection port 12 a are communicated. Further, in the first pressure reducing valve 6, the opening of the valve is controlled to decompress the refrigerant. In the second pressure reducing valve 11, the opening of the valve is fully opened so that the refrigerant is not depressurized.

圧縮機1で圧縮され高温高圧となったガス冷媒は、吐出通路1bで分岐する。分岐した一方の高温高圧となったガス冷媒は、三方弁4,第1ガス側接続配管12を介して第1室内熱交換器9に流入し、室内ファン21により送られる室内空気により冷却されて、凝縮する。分岐した他方の高温高圧となったガス冷媒は、四方弁3,第2ガス側接続配管13を介して第2室内熱交換器10に流入し、第1室内熱交換器9と同様に、室内ファン21により送られる室内空気により冷却されて、凝縮する。第1室内熱交換器9及び第2室内熱交換器10により室内空気を加熱することにより、室内を暖房する。   The gas refrigerant compressed by the compressor 1 and having a high temperature and a high pressure branches in the discharge passage 1b. One of the branched high-temperature and high-pressure gas refrigerant flows into the first indoor heat exchanger 9 through the three-way valve 4 and the first gas side connection pipe 12 and is cooled by the indoor air sent by the indoor fan 21. Condenses. The other branched high-temperature and high-pressure gas refrigerant flows into the second indoor heat exchanger 10 via the four-way valve 3 and the second gas side connection pipe 13, and, like the first indoor heat exchanger 9, It is cooled by room air sent by the fan 21 and condensed. The indoor air is heated by heating the indoor air with the first indoor heat exchanger 9 and the second indoor heat exchanger 10.

第1室内熱交換器9及び第2室内熱交換器10からそれぞれ流出した高圧の凝縮冷媒はその後合流し、室内液側配管8を通って、第1減圧弁6で減圧される。第1減圧弁6で減圧された冷媒は、低温低圧の気液二相冷媒となり、室外熱交換器5に流入する。室外熱交換器5を流れる気液二相流は、室外ファン20により送られる室外空気により加熱されて蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁3を通って圧縮機1に戻る。   The high-pressure condensed refrigerants that have flowed out of the first indoor heat exchanger 9 and the second indoor heat exchanger 10 respectively join together and are depressurized by the first pressure reducing valve 6 through the indoor liquid side pipe 8. The refrigerant depressurized by the first pressure reducing valve 6 becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 5. The gas-liquid two-phase flow flowing through the outdoor heat exchanger 5 is heated and evaporated by the outdoor air sent by the outdoor fan 20, and becomes a low-pressure gas refrigerant. This low-pressure gas refrigerant returns to the compressor 1 through the four-way valve 3.

圧縮機1と第1減圧弁6は、冷房運転時と同様に、以下のように制御される。すなわち、制御装置50は、室内温湿度センサ46で検知した室内温度がリモコン(図示せず)の設定温度となるように、圧縮機1の回転速度を制御する。また、制御装置50は、圧縮機吐出温度センサ41で検知した吐出温度が所定の目標値となるように、第1減圧弁6の開度を制御する。   The compressor 1 and the first pressure reducing valve 6 are controlled as follows, similarly to the cooling operation. That is, the control device 50 controls the rotational speed of the compressor 1 so that the room temperature detected by the room temperature / humidity sensor 46 becomes the set temperature of the remote controller (not shown). In addition, the control device 50 controls the opening of the first pressure reducing valve 6 so that the discharge temperature detected by the compressor discharge temperature sensor 41 becomes a predetermined target value.

図5は、室内ユニット31の第1室内熱交換器9と第2室内熱交換器10における伝熱管流路数を示す図である。第1室内熱交換器9の伝熱管60aは1流路の伝熱管、伝熱管60bは2流路の伝熱管を表わす。また、第2室内熱交換器10の伝熱管61aは1流路の伝熱管、伝熱管61bは2流路の伝熱管を表わす。1流路と2流路の配置関係は、第1ガス側接続配管12及び第2ガス側接続配管13側が2流路、室内液側配管8及び液側接続配管7側が1流路である。   FIG. 5 is a diagram showing the number of heat transfer tube channels in the first indoor heat exchanger 9 and the second indoor heat exchanger 10 of the indoor unit 31. The heat transfer tube 60a of the first indoor heat exchanger 9 represents a heat transfer tube with one flow path, and the heat transfer tube 60b represents a heat transfer tube with two flow paths. Further, the heat transfer tube 61a of the second indoor heat exchanger 10 represents a heat transfer tube of one flow path, and the heat transfer tube 61b represents a heat transfer tube of two flow paths. With respect to the arrangement relationship between the first flow path and the second flow path, the first gas side connection pipe 12 and the second gas side connection pipe 13 side have two flow paths, and the indoor liquid side pipe 8 and the liquid side connection pipe 7 side have one flow path.

1流路及び2流路をこのように配置することにより、冷房運転,除湿運転、及び暖房運転の何れの運転においても、第1室内熱交換器9及び第2室内熱交換器がそれぞれ蒸発器として機能する場合は、1流路から2流路へ流路が増加するように流れ、第1室内熱交換器9及び第2室内熱交換器がそれぞれ凝縮器として機能する場合は、2流路から1流路へ流路が減少するように流れる。   By arranging the 1 flow path and the 2 flow paths in this way, the first indoor heat exchanger 9 and the second indoor heat exchanger are respectively evaporators in any of the cooling operation, the dehumidifying operation, and the heating operation. When the first indoor heat exchanger 9 and the second indoor heat exchanger function as a condenser, respectively, the two flow paths are used. From 1 to the flow path, the flow path decreases.

従って、第1室内熱交換器9及び第2室内熱交換器がそれぞれ蒸発器として機能する場合は、冷媒の流れ方向に蒸発し、体積流量が増加するため、流れ方向に沿って流路数(流路断面積)を増加させ、圧力損失の低減を図ることができる。また、第1室内熱交換器9及び第2室内熱交換器がそれぞれ凝縮器として機能する場合は、冷媒の流れ方向に凝縮し、体積流量が減少するため、圧力損失の影響が小さくなり、流れ方向に沿って流路数(流路断面積)を減少させる、増速による伝熱性能の向上を図ることができる。   Therefore, when each of the first indoor heat exchanger 9 and the second indoor heat exchanger functions as an evaporator, it evaporates in the flow direction of the refrigerant and the volume flow rate increases, so the number of flow paths ( The flow path cross-sectional area) can be increased, and the pressure loss can be reduced. Further, when the first indoor heat exchanger 9 and the second indoor heat exchanger each function as a condenser, it condenses in the flow direction of the refrigerant and the volume flow rate decreases, so that the influence of the pressure loss is reduced, and the flow It is possible to improve the heat transfer performance by increasing the speed, which reduces the number of flow paths (flow path cross-sectional area) along the direction.

つまり、本実施例に開示の空気調和機の構成において、さらに、冷房運転時の冷媒の流れ方向に沿って、第1室内熱交換器9及び第2室内熱交換器10における冷媒の流路数を増加させる(又は、暖房運転時の冷媒の流れ方向に沿って、第1室内熱交換器9及び第2室内熱交換器10における冷媒の流路数を減少させる、又は、除湿運転時の冷媒の流れ方向に沿って、第1室内熱交換器9における冷媒の流路数を減少させ且つ第2室内熱交換器10における冷媒の流路数を増大させる)ことにより、冷房運転,除湿運転、及び暖房運転の何れの運転において、第1室内熱交換器9及び第2室内熱交換器10が蒸発器及び凝縮器の何れで機能しても、第1室内熱交換器9及び第2室内熱交換器10において、蒸発器として機能する場合は圧力損失の低減を図ることができ、凝縮器として機能する場合は伝熱性能の向上を図ることができる。   That is, in the configuration of the air conditioner disclosed in the present embodiment, the number of refrigerant flow paths in the first indoor heat exchanger 9 and the second indoor heat exchanger 10 is further along the refrigerant flow direction during the cooling operation. (Or decrease the number of refrigerant flow paths in the first indoor heat exchanger 9 and the second indoor heat exchanger 10 along the flow direction of the refrigerant during the heating operation, or the refrigerant during the dehumidifying operation) The number of refrigerant flow paths in the first indoor heat exchanger 9 is decreased and the number of refrigerant flow paths in the second indoor heat exchanger 10 is increased). In any of the heating operation and the heating operation, even if the first indoor heat exchanger 9 and the second indoor heat exchanger 10 function as either an evaporator or a condenser, the first indoor heat exchanger 9 and the second indoor heat When the exchanger 10 functions as an evaporator, the pressure loss It can be reduced, when functioning as a condenser can be improved heat transfer performance.

なお、流れ方向に沿って流路断面積が増加又は減少する例として、伝熱管の流路数の増減を例としたが、伝熱管自体の管径が流れ方向に増加又は減少してもよい。また、伝熱管の管径の変化と流路数の変化の組み合わせでもよい。   In addition, as an example in which the cross-sectional area of the flow path increases or decreases along the flow direction, the increase / decrease in the number of flow paths of the heat transfer tubes is taken as an example, but the tube diameter of the heat transfer tubes themselves may increase or decrease in the flow direction. . Moreover, the combination of the change of the pipe diameter of a heat exchanger tube and the change of the number of flow paths may be sufficient.

以上説明したように、本実施例の空気調和機は、圧縮機1と、室外熱交換器5と、第1室内熱交換器9と、第2室内熱交換器10と、を備え、暖房運転時、室外熱交換器5が蒸発器、第1室内熱交換器9及び第2室内熱交換器10が凝縮器として機能し、冷房運転時、室外熱交換器5が凝縮器、第1室内熱交換器9及び第2室内熱交換器10が蒸発器として機能し、除湿運転時、室外熱交換器5及び第1室内熱交換器9が凝縮器、第2室内熱交換器10が蒸発器として機能するとともに、圧縮機1から吐出した冷媒は、室外熱交換器5及び第1室内熱交換器9にそれぞれ分岐して流入し、その後合流して、第2室内熱交換器10を経由して圧縮機1に流入する。除湿運転時、凝縮器として機能する第1室内熱交換器9の加熱量を広範囲に調整できるため、冷房気味から暖房気味まで広範囲の除湿運転が可能となる。   As described above, the air conditioner of the present embodiment includes the compressor 1, the outdoor heat exchanger 5, the first indoor heat exchanger 9, and the second indoor heat exchanger 10, and performs heating operation. The outdoor heat exchanger 5 functions as an evaporator, the first indoor heat exchanger 9 and the second indoor heat exchanger 10 function as a condenser, and during the cooling operation, the outdoor heat exchanger 5 functions as a condenser and the first indoor heat. The exchanger 9 and the second indoor heat exchanger 10 function as an evaporator. During the dehumidifying operation, the outdoor heat exchanger 5 and the first indoor heat exchanger 9 are a condenser, and the second indoor heat exchanger 10 is an evaporator. While functioning, the refrigerant discharged from the compressor 1 branches into the outdoor heat exchanger 5 and the first indoor heat exchanger 9, and then merges and passes through the second indoor heat exchanger 10. It flows into the compressor 1. During the dehumidifying operation, the heating amount of the first indoor heat exchanger 9 functioning as a condenser can be adjusted over a wide range, so that a wide range of dehumidifying operations from a cooling flavor to a heating flavor is possible.

さらに、暖房運転時、圧縮機1から吐出した冷媒は、第1室内熱交換器9及び第2室内熱交換器10にそれぞれ分岐して流入し、その後、室外熱交換器5を経由して圧縮機1に流入し、冷房運転時、圧縮機1から吐出した冷媒は、室外熱交換器5を経由した後分岐してそれぞれ第1室内熱交換器9及び第2室内熱交換器10に流入し、その後、圧縮機1に流入するようにしてもよい。   Further, during the heating operation, the refrigerant discharged from the compressor 1 branches into the first indoor heat exchanger 9 and the second indoor heat exchanger 10, and then compresses via the outdoor heat exchanger 5. During the cooling operation, the refrigerant discharged from the compressor 1 branches after passing through the outdoor heat exchanger 5 and flows into the first indoor heat exchanger 9 and the second indoor heat exchanger 10, respectively. Thereafter, it may flow into the compressor 1.

また、除湿運転時に室外熱交換器5を経由した冷媒と第1室内熱交換器9を経由した冷媒が合流する点70と、室外熱交換器5との間に、第1減圧弁6を備え、第1減圧弁の開度を制御して、圧縮機1から吐出した冷媒が室外熱交換器5及び第1室内熱交換器9にそれぞれ分岐して流入する割合を変更するようにしてもよい。   In addition, a first pressure reducing valve 6 is provided between the outdoor heat exchanger 5 and the point 70 where the refrigerant that has passed through the outdoor heat exchanger 5 and the refrigerant that has passed through the first indoor heat exchanger 9 merge during the dehumidifying operation. The ratio of the refrigerant discharged from the compressor 1 branching and flowing into the outdoor heat exchanger 5 and the first indoor heat exchanger 9 may be changed by controlling the opening of the first pressure reducing valve. .

また、冷房運転時の冷媒の流れ方向に沿って、第1室内熱交換器9及び第2室内熱交換器10における冷媒の流路数又は流路断面積を増加させるようにしてもよい。冷房運転,除湿運転、及び暖房運転の何れの運転においても、第1室内熱交換器9及び第2室内熱交換器10において、蒸発器として機能する場合は圧力損失の低減を図ることができ、凝縮器として機能する場合は伝熱性能の向上を図ることができる。   Further, the number of refrigerant channels or the sectional area of the refrigerant in the first indoor heat exchanger 9 and the second indoor heat exchanger 10 may be increased along the refrigerant flow direction during the cooling operation. In any of the cooling operation, the dehumidifying operation, and the heating operation, when the first indoor heat exchanger 9 and the second indoor heat exchanger 10 function as an evaporator, the pressure loss can be reduced, When functioning as a condenser, the heat transfer performance can be improved.

また、冷媒はハイドロフルオロオレフィン系冷媒又はハイドロフルオロオレフィン系冷媒を含む混合冷媒を用いることができる。ハイドロフルオロオレフィン系冷媒としてはHFO1234yfを用いることができる。これらの冷媒は地球温暖化係数が極めて低いため、冷媒の大気排出による地球温暖化への影響を抑制できる。   The refrigerant may be a hydrofluoroolefin refrigerant or a mixed refrigerant containing a hydrofluoroolefin refrigerant. HFO1234yf can be used as the hydrofluoroolefin refrigerant. Since these refrigerants have a very low global warming potential, it is possible to suppress the influence on the global warming due to the atmospheric discharge of the refrigerant.

一方、ハイドロフルオロオレフィン系冷媒は低圧冷媒であるため、圧力損失の影響を大きく受ける。圧力損失を抑制するためにはガス側接続配管の管径を拡大することが考えられるが、ガス側接続配管の管径を拡大すると施工性が低下する。本実施例においては、2本のガス側接続配管(第1ガス側接続配管12,第2ガス側接続配管13)を備えるので、低圧冷媒であるハイドロフルオロオレフィン系冷媒を用いた場合でも、圧力損失を低減しつつ施工性の低下を抑制することができる。   On the other hand, since the hydrofluoroolefin refrigerant is a low-pressure refrigerant, it is greatly affected by pressure loss. In order to suppress the pressure loss, it is conceivable to increase the diameter of the gas side connection pipe. However, when the diameter of the gas side connection pipe is increased, the workability is lowered. In the present embodiment, since two gas side connection pipes (the first gas side connection pipe 12 and the second gas side connection pipe 13) are provided, even when a hydrofluoroolefin refrigerant, which is a low pressure refrigerant, is used, the pressure is increased. A decrease in workability can be suppressed while reducing loss.

本発明に係る第2の実施例を、図6から図8を用いて説明する。本実施例の空気調和機101は、2つの圧縮機(圧縮機1,圧縮機2)を備える。また、冷房運転時、第1室内熱交換器9の蒸発温度が室内空気の露点温度より高く、第2室内熱交換器10の蒸発温度が室内空気の露点温度より低く設定される。空気調和機の基本構成等は第1の実施例と同様であるため、詳細な説明は省略する。   A second embodiment according to the present invention will be described with reference to FIGS. The air conditioner 101 according to the present embodiment includes two compressors (the compressor 1 and the compressor 2). Further, during the cooling operation, the evaporation temperature of the first indoor heat exchanger 9 is set higher than the dew point temperature of the room air, and the evaporation temperature of the second indoor heat exchanger 10 is set lower than the dew point temperature of the room air. Since the basic configuration of the air conditioner is the same as that of the first embodiment, detailed description thereof is omitted.

図6は、空気調和機101の系統図である。まず、図6に基づいて、本実施例の空気調和機101の構成について説明する。冷媒を圧縮する第1の圧縮機1と第2の圧縮機2が並列に配置される。圧縮機1,2のそれぞれの吐出通路1b,2bは合流し、四方弁3及び三方弁4と接続される。また、第1の圧縮機1の吸入通路1aは三方弁4に接続され、第2の圧縮機2の吸入通路2aは四方弁3に接続される。さらに圧縮機1の吸入通路1aと圧縮機2の吸入通路2aは、開閉弁16を介して接続される。   FIG. 6 is a system diagram of the air conditioner 101. First, based on FIG. 6, the structure of the air conditioner 101 of a present Example is demonstrated. A first compressor 1 and a second compressor 2 that compress the refrigerant are arranged in parallel. The discharge passages 1 b and 2 b of the compressors 1 and 2 are joined together and connected to the four-way valve 3 and the three-way valve 4. The suction passage 1 a of the first compressor 1 is connected to the three-way valve 4, and the suction passage 2 a of the second compressor 2 is connected to the four-way valve 3. Further, the suction passage 1 a of the compressor 1 and the suction passage 2 a of the compressor 2 are connected via an on-off valve 16.

空気調和機101は、第1の圧縮機1の吐出通路1bに設けられた第1の圧縮機吐出温度センサ41、第2の圧縮機1の吐出通路2bに設けられた第2の圧縮機吐出温度センサ42、室内ユニット31の空気入口側に設けられた室内温湿度センサ43、第1室内熱交換器9に設けられた第1室内熱交換器温度センサ44、第2室内熱交換器10に設けられた第2室内熱交換器温度センサ45を備える。これらのセンサにより検知された温湿度の信号は、制御装置50に入力される。制御装置50は、これらの入力された信号やリモコン(図示せず)からの信号等に基づいて、圧縮機1,2,四方弁3,三方弁4,第1減圧弁6,第2減圧弁11等を制御する。   The air conditioner 101 includes a first compressor discharge temperature sensor 41 provided in the discharge passage 1b of the first compressor 1 and a second compressor discharge provided in the discharge passage 2b of the second compressor 1. The temperature sensor 42, the indoor temperature / humidity sensor 43 provided on the air inlet side of the indoor unit 31, the first indoor heat exchanger temperature sensor 44 provided in the first indoor heat exchanger 9, and the second indoor heat exchanger 10 A second indoor heat exchanger temperature sensor 45 is provided. Temperature and humidity signals detected by these sensors are input to the control device 50. Based on these input signals, signals from a remote controller (not shown), etc., the control device 50 is equipped with a compressor 1, 2, a four-way valve 3, a three-way valve 4, a first pressure reducing valve 6, and a second pressure reducing valve. 11 etc. are controlled.

次に、空気調和機101における冷房運転,除湿運転及び暖房運転の動作について説明する。   Next, operations of the cooling operation, the dehumidifying operation, and the heating operation in the air conditioner 101 will be described.

まず、冷媒運転時における空気調和機101の動作を、図6を用いて説明する。図において、太い実線は冷媒の経路、矢印は冷媒が流れる方向を示す。冷房運転時には、制御装置50は、四方弁3において、圧縮機1,2の吐出通路1b,2bと室外熱交換器5とを連通させ、圧縮機2の吸入通路2aと第2室外ガス側接続口13aとを連通させる。また、三方弁4において、圧縮機1の吸入通路1aと第1室外ガス側接続口12aとを連通させる。また、開閉弁16を閉じる。また、第1減圧弁6及び第2減圧弁11において、弁開度を制御して、冷媒を減圧させる。   First, the operation of the air conditioner 101 during the refrigerant operation will be described with reference to FIG. In the figure, a thick solid line indicates a refrigerant path, and an arrow indicates a direction in which the refrigerant flows. During the cooling operation, the control device 50 causes the discharge passages 1b and 2b of the compressors 1 and 2 and the outdoor heat exchanger 5 to communicate with each other in the four-way valve 3 to connect the suction passage 2a of the compressor 2 and the second outdoor gas side. The mouth 13a is communicated. Further, in the three-way valve 4, the suction passage 1a of the compressor 1 and the first outdoor gas side connection port 12a are communicated. Further, the on-off valve 16 is closed. Moreover, in the 1st pressure reducing valve 6 and the 2nd pressure reducing valve 11, a valve opening degree is controlled and a refrigerant | coolant is pressure-reduced.

圧縮機1及び圧縮機2で圧縮され高温高圧となったガス冷媒は、四方弁3を通って室外熱交換器5に流入する。高温高圧のガス冷媒は、室外熱交換器5において、室外ファン20により送られる室外空気により冷却されて、凝縮する。この高圧の凝縮した冷媒は、第1減圧弁6で減圧され、低温低圧の気液二相冷媒となり、液側接続配管7,室内液側配管8を通って分岐する。分岐した一方の冷媒は、第1室内熱交換器9に流入し、室内ファン21により送られる室内空気により加熱されて蒸発し、低圧のガス冷媒となる。このとき、第1室内熱交換器9の蒸発温度は室内空気の露点温度より高く、室内空気が冷却される際、顕熱変化だけとなる。分岐した他方の例冷媒は、第2減圧弁11でさらに減圧され、第2室内熱交換器10に流入し、室内ファン21により送られる室内空気により加熱されて蒸発し、低圧のガス冷媒となる。このとき、第2室内熱交換器10の蒸発温度は室内空気の露点温度より低く、室内空気が冷却される際、除湿を伴い、潜熱及び顕熱変化する。室内ユニット31からは、第1室内熱交換器9において顕熱変化した空気と第2室内熱交換器10除湿及び顕熱変化した空気とが混合して送風される。   The gas refrigerant compressed by the compressor 1 and the compressor 2 and having a high temperature and high pressure flows into the outdoor heat exchanger 5 through the four-way valve 3. The high-temperature and high-pressure gas refrigerant is cooled and condensed by the outdoor air sent by the outdoor fan 20 in the outdoor heat exchanger 5. The high-pressure condensed refrigerant is depressurized by the first pressure reducing valve 6, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and branches through the liquid side connection pipe 7 and the indoor liquid side pipe 8. One of the branched refrigerant flows into the first indoor heat exchanger 9 and is heated and evaporated by the indoor air sent by the indoor fan 21 to become a low-pressure gas refrigerant. At this time, the evaporation temperature of the first indoor heat exchanger 9 is higher than the dew point temperature of the room air, and only the sensible heat change occurs when the room air is cooled. The other branched refrigerant is further depressurized by the second pressure reducing valve 11, flows into the second indoor heat exchanger 10, is heated and evaporated by the indoor air sent by the indoor fan 21, and becomes a low-pressure gas refrigerant. . At this time, the evaporation temperature of the second indoor heat exchanger 10 is lower than the dew point temperature of the room air, and when the room air is cooled, the latent heat and sensible heat change with dehumidification. From the indoor unit 31, air that has undergone sensible heat change in the first indoor heat exchanger 9 and air that has undergone dehumidification and sensible heat change have been mixed and blown.

第1室内熱交換器9から流出した低圧(室内空気の露点温度より高い温度に相当する飽和圧力)のガス冷媒は、第1ガス側接続配管12,三方弁4を通って圧縮機1に戻る。また、第2室内熱交換器10から流出した低圧(室内空気の露点温度より低い温度に相当する飽和圧力)のガス冷媒は、第2ガス側接続配管13,四方弁3を通って圧縮機2に戻る。   The low-pressure (saturated pressure corresponding to a temperature higher than the dew point temperature of the indoor air) gas refrigerant flowing out of the first indoor heat exchanger 9 returns to the compressor 1 through the first gas side connection pipe 12 and the three-way valve 4. . Further, the low-pressure (saturated pressure corresponding to a temperature lower than the dew point temperature of the indoor air) gas refrigerant flowing out of the second indoor heat exchanger 10 passes through the second gas-side connecting pipe 13 and the four-way valve 3 to cause the compressor 2. Return to.

このとき、圧縮機1,2と第1減圧弁6,第2減圧弁11は以下のように制御される。制御装置50は、室内温湿度センサ46で検知した室内温度がリモコン(図示せず)で与えられた設定値となるように圧縮機1の回転速度を制御し、室内温湿度センサ46で検知した室内湿度がリモコンで与えられた設定値となるように圧縮機2の回転速度を制御する。また、制御装置50は圧縮機吐出温度センサ41で検知した吐出温度が所定の目標値となるように第1減圧弁6の開度を制御し、第2室内熱交換器温度センサ45が室内空気の露点温度以下の所定の目標値となるように第2減圧弁11の開度を制御する。   At this time, the compressors 1 and 2, the first pressure reducing valve 6, and the second pressure reducing valve 11 are controlled as follows. The control device 50 controls the rotational speed of the compressor 1 so that the room temperature detected by the room temperature / humidity sensor 46 becomes a set value given by a remote controller (not shown), and the room temperature / humidity sensor 46 detects the room temperature. The rotational speed of the compressor 2 is controlled so that the room humidity becomes a set value given by the remote controller. In addition, the control device 50 controls the opening of the first pressure reducing valve 6 so that the discharge temperature detected by the compressor discharge temperature sensor 41 becomes a predetermined target value, and the second indoor heat exchanger temperature sensor 45 controls the indoor air. The opening degree of the second pressure reducing valve 11 is controlled so as to be a predetermined target value equal to or lower than the dew point temperature.

以上説明したように、本実施例においては、冷房運転時に、第1室内熱交換器9及び圧縮機1を含む第1冷凍回路と、第2室内熱交換器10及び圧縮機を含む第2冷凍回路とを構成するとともに、第1室内熱交換器の蒸発温度が室内空気の露点温度より高く、第2室内熱交換器10の蒸発温度が室内空気の露点温度より低くする。これにより、第2室内熱交換器10での除湿能力を確保しながら、第1室内熱交換器9での蒸発温度を高くして空気調和機全体のエネルギ効率向上を図ることができる。   As described above, in the present embodiment, during the cooling operation, the first refrigeration circuit including the first indoor heat exchanger 9 and the compressor 1 and the second refrigeration including the second indoor heat exchanger 10 and the compressor. And the evaporation temperature of the first indoor heat exchanger is higher than the dew point temperature of the room air, and the evaporation temperature of the second indoor heat exchanger 10 is lower than the dew point temperature of the room air. Thereby, while ensuring the dehumidification capability in the 2nd indoor heat exchanger 10, the evaporation temperature in the 1st indoor heat exchanger 9 can be made high, and the energy efficiency of the whole air conditioner can be aimed at.

次に、除湿運転時における空気調和機100の動作を、図7を用いて説明する。除湿運転時には、制御装置50は、冷房運転時と同様に、四方弁3において、圧縮機1,2の吐出通路1b,2bと室外熱交換器5とを連通させ、圧縮機2の吸入通路2aと第2室外ガス側接続口13aとを連通させる。また、三方弁において、圧縮機1,2の吐出通路1b,2bと第1室外ガス側接続口12aとを連通させる。また、開閉弁16を開く。また、第1減圧弁6において、弁の開度を制御して、室外熱交換器5を流れる冷媒流量と第1室内熱交換器9を流れる冷媒流量の割合を調整する。第2減圧弁11において、弁の開度を制御して、冷媒を減圧する。除湿運転時の冷媒の圧縮,凝縮及び蒸発作用と、圧縮機及び減圧弁の制御方法は実施例1と同様のため説明を省略する。   Next, the operation of the air conditioner 100 during the dehumidifying operation will be described with reference to FIG. During the dehumidifying operation, the control device 50 causes the discharge passages 1b and 2b of the compressors 1 and 2 and the outdoor heat exchanger 5 to communicate with each other in the four-way valve 3 in the same way as during the cooling operation, and the suction passage 2a of the compressor 2. And the second outdoor gas side connection port 13a. In the three-way valve, the discharge passages 1b and 2b of the compressors 1 and 2 are communicated with the first outdoor gas side connection port 12a. Moreover, the on-off valve 16 is opened. In the first pressure reducing valve 6, the opening degree of the valve is controlled to adjust the ratio between the refrigerant flow rate flowing through the outdoor heat exchanger 5 and the refrigerant flow rate flowing through the first indoor heat exchanger 9. In the second pressure reducing valve 11, the opening of the valve is controlled to decompress the refrigerant. The refrigerant compression, condensation, and evaporation during the dehumidifying operation and the method for controlling the compressor and the pressure reducing valve are the same as those in the first embodiment, and thus the description thereof is omitted.

次に、暖房運転時における空気調和機101の動作を、図8を用いて説明する。暖房運転時には、制御装置50は、四方弁3において、圧縮機1,2の吐出通路1b,2bと第2室外ガス側接続口13aとを連通させ、圧縮機2の吸入通路2aと室外熱交換器5とを連通させる。また、三方弁において、圧縮機1,2の吐出通路1b,2bと第1室外ガス側接続口12aとを連通させる。また、開閉弁16を開く。第1減圧弁6において、弁の開度を制御して、冷媒を減圧する。第2減圧弁11において、弁の開度を全開として、冷媒を減圧させないようにする。暖房運転時の冷媒の圧縮,凝縮及び蒸発作用と、圧縮機及び減圧弁の制御方法は実施例1と同様のため説明を省略する。   Next, operation | movement of the air conditioner 101 at the time of heating operation is demonstrated using FIG. During the heating operation, the control device 50 causes the discharge passages 1b and 2b of the compressors 1 and 2 and the second outdoor gas side connection port 13a to communicate with each other in the four-way valve 3, and exchanges heat between the suction passage 2a of the compressor 2 and the outdoor heat. Communicate with vessel 5. In the three-way valve, the discharge passages 1b and 2b of the compressors 1 and 2 are communicated with the first outdoor gas side connection port 12a. Moreover, the on-off valve 16 is opened. In the first pressure reducing valve 6, the opening of the valve is controlled to decompress the refrigerant. In the second pressure reducing valve 11, the opening of the valve is fully opened so that the refrigerant is not depressurized. The refrigerant compression, condensation, and evaporation during the heating operation and the control method for the compressor and the pressure reducing valve are the same as those in the first embodiment, and the description thereof is omitted.

第1室内熱交換器9は、冷房運転時には蒸発器として作用するが、蒸発温度は室内空気の露点温度より高いため、除湿水は発生せず、除湿運転時には凝縮器として作用する。一方、第2室内熱交換器10は、冷房運転時及び除湿運転時ともに蒸発器として作用し、蒸発温度は室内空気の露点温度より低くなるため、除湿水を発生する。従って、本実施例の構成では、冷房から除湿運転に切替わった場合でも、除湿水が付着した熱交換器を加熱することがないので、湿気戻りがなく快適な空調を提供できる。   The first indoor heat exchanger 9 acts as an evaporator during the cooling operation, but since the evaporation temperature is higher than the dew point temperature of the room air, no dehumidified water is generated, and acts as a condenser during the dehumidifying operation. On the other hand, the second indoor heat exchanger 10 acts as an evaporator during both the cooling operation and the dehumidifying operation, and the evaporation temperature is lower than the dew point temperature of the indoor air, so that dehumidified water is generated. Therefore, in the configuration of the present embodiment, even when switching from cooling to dehumidifying operation, the heat exchanger to which dehumidified water is attached is not heated, so that comfortable air conditioning without moisture return can be provided.

なお、本実施例では、2個の圧縮機を用いたが、2つのシリンダを持つ1個の圧縮機を用いてもよい。   In the present embodiment, two compressors are used, but one compressor having two cylinders may be used.

以上説明したように、本実施例の空気調和機は、冷房運転時、第1室内熱交換器9及び第2室内熱交換器10のうち何れか一方の室内熱交換器(本実施例では第1室内熱交換器9)の蒸発温度を露点温度より高くし、他方の室内熱交換器(本実施例では第2室内熱交換器10)の温度を露点温度より低くする。第2室内熱交換器10での除湿能力を確保しながら、第1室内熱交換器9での蒸発温度を高くして空気調和機全体のエネルギ効率向上を図ることができる。   As described above, the air conditioner according to the present embodiment has one of the first indoor heat exchanger 9 and the second indoor heat exchanger 10 (in the present embodiment, the first indoor heat exchanger) during the cooling operation. The evaporation temperature of one indoor heat exchanger 9) is made higher than the dew point temperature, and the temperature of the other indoor heat exchanger (second indoor heat exchanger 10 in this embodiment) is made lower than the dew point temperature. While ensuring the dehumidifying capacity in the second indoor heat exchanger 10, the evaporation temperature in the first indoor heat exchanger 9 can be increased to improve the energy efficiency of the entire air conditioner.

さらに、冷房運転時に室外熱交換器5を経由した冷媒が分岐する点70と、冷房運転時に露点温度より低くなる室内熱交換器(本実施例では第2室内熱交換器10)との間に、第2減圧弁11を備え、第2減圧弁11の開度を制御することにより、室内熱交換器(本実施例では第2室内熱交換器10)を露点温度より低くしてもよい。   Further, between the point 70 where the refrigerant passes through the outdoor heat exchanger 5 during the cooling operation and the indoor heat exchanger (second indoor heat exchanger 10 in this embodiment) that becomes lower than the dew point temperature during the cooling operation. The indoor heat exchanger (second indoor heat exchanger 10 in this embodiment) may be made lower than the dew point temperature by providing the second pressure reducing valve 11 and controlling the opening degree of the second pressure reducing valve 11.

また、圧縮機として、圧縮機1及び圧縮機2を有し、冷房運転時、圧縮機1及び圧縮機2から吐出して合流した冷媒は、室外熱交換器を経由した後分岐してそれぞれ第1室内熱交換器9及び第2室内熱交換器10に流入し、その後、第1室内熱交換器9に流入した冷媒は圧縮機1に流入し、第2室内熱交換器10に流入した冷媒は圧縮機2に流入するようにしてもよい。   Moreover, the compressor 1 and the compressor 2 are provided as compressors, and the refrigerant discharged and joined from the compressor 1 and the compressor 2 during the cooling operation is branched after passing through the outdoor heat exchanger. The refrigerant that flows into the first indoor heat exchanger 9 and the second indoor heat exchanger 10 and then flows into the first indoor heat exchanger 9 flows into the compressor 1 and flows into the second indoor heat exchanger 10. May flow into the compressor 2.

1,2 圧縮機
3 四方弁
4 三方弁
5 室外熱交換器
6 第1減圧弁
7 液側接続配管
9 第1室内熱交換器
10 第2室内熱交換器
11 第2減圧弁
12 第1ガス側接続配管
13 第2ガス側接続配管
30 室外ユニット
31 室内ユニット
100,101 空気調和機
1, 2 Compressor 3 Four-way valve 4 Three-way valve 5 Outdoor heat exchanger 6 First pressure reducing valve 7 Liquid side connection pipe 9 First indoor heat exchanger 10 Second indoor heat exchanger 11 Second pressure reducing valve 12 First gas side Connection pipe 13 Second gas side connection pipe 30 Outdoor unit 31 Indoor units 100, 101 Air conditioner

Claims (9)

圧縮機と、室外熱交換器と、第1室内熱交換器と、第2室内熱交換器と、を備え、
暖房運転時、前記室外熱交換器が蒸発器、前記第1室内熱交換器及び前記第2室内熱交換器が凝縮器として機能し、
冷房運転時、前記室外熱交換器が凝縮器、前記第1室内熱交換器及び前記第2室内熱交換器が蒸発器として機能し、
除湿運転時、前記室外熱交換器及び前記第1室内熱交換器が凝縮器、前記第2室内熱交換器が蒸発器として機能するとともに、前記圧縮機から吐出した冷媒は、前記室外熱交換器及び前記第1室内熱交換器にそれぞれ分岐して流入し、その後合流して、前記第2室内熱交換器を経由して前記圧縮機に流入する空気調和機。
A compressor, an outdoor heat exchanger, a first indoor heat exchanger, and a second indoor heat exchanger,
During the heating operation, the outdoor heat exchanger functions as an evaporator, the first indoor heat exchanger and the second indoor heat exchanger function as a condenser,
During cooling operation, the outdoor heat exchanger functions as a condenser, the first indoor heat exchanger and the second indoor heat exchanger function as an evaporator,
During the dehumidifying operation, the outdoor heat exchanger and the first indoor heat exchanger function as a condenser, and the second indoor heat exchanger functions as an evaporator, and the refrigerant discharged from the compressor is used as the outdoor heat exchanger. And an air conditioner that branches and flows into the first indoor heat exchanger and then merges and flows into the compressor via the second indoor heat exchanger.
請求項1において、前記除湿運転時に前記室外熱交換器を経由した冷媒と前記第1室内熱交換器を経由した冷媒が合流する点と、前記室外熱交換器と、の間に、第1減圧弁を備え、
前記第1減圧弁の開度を制御して、前記圧縮機から吐出した冷媒が前記室外熱交換器及び前記第1室内熱交換器にそれぞれ分岐して流入する割合を変更する空気調和機。
2. The first depressurization according to claim 1, between the point where the refrigerant that has passed through the outdoor heat exchanger and the refrigerant that has passed through the first indoor heat exchanger merge during the dehumidifying operation, and the outdoor heat exchanger. With a valve,
An air conditioner that controls a degree of opening of the first pressure reducing valve to change a rate at which the refrigerant discharged from the compressor branches and flows into the outdoor heat exchanger and the first indoor heat exchanger.
請求項1又は2において、前記暖房運転時、前記圧縮機から吐出した冷媒は、前記第1室内熱交換器及び前記第2室内熱交換器にそれぞれ分岐して流入し、その後、前記室外熱交換器を経由して前記圧縮機に流入し、
前記冷房運転時、前記圧縮機から吐出した冷媒は、前記室外熱交換器を経由した後分岐してそれぞれ前記第1室内熱交換器及び前記第2室内熱交換器に流入し、その後、前記圧縮機に流入する空気調和機。
3. The refrigerant discharged from the compressor during the heating operation according to claim 1 or 2, branches into the first indoor heat exchanger and the second indoor heat exchanger, and then flows into the outdoor heat exchanger. Flows into the compressor via a vessel,
During the cooling operation, the refrigerant discharged from the compressor branches after passing through the outdoor heat exchanger and flows into the first indoor heat exchanger and the second indoor heat exchanger, respectively, and then the compression Air conditioner flowing into the machine.
請求項3において、冷房運転時の冷媒の流れ方向に沿って、前記第1室内熱交換器及び前記第2室内熱交換器における冷媒の流路数又は流路断面積を増加させる空気調和機。   4. The air conditioner according to claim 3, wherein the number of flow paths or flow path cross-sectional areas of the refrigerant in the first indoor heat exchanger and the second indoor heat exchanger is increased along the flow direction of the refrigerant during the cooling operation. 請求項3又は4において、前記冷房運転時、前記第1室内熱交換器及び前記第2室内熱交換器のうち何れか一方の室内熱交換器の蒸発温度は露点温度より高くし、他方の室内熱交換器の温度は露点温度より低くする空気調和機。   5. The evaporation temperature of one of the first indoor heat exchanger and the second indoor heat exchanger is higher than the dew point temperature during the cooling operation, and the other indoor heat exchanger is An air conditioner in which the temperature of the heat exchanger is lower than the dew point temperature. 請求項5において、前記冷房運転時に前記室外熱交換器を経由した冷媒が分岐する点と、前記他方の室内熱交換器と、の間に、第2減圧弁を備え、
前記第2減圧弁の開度を制御して、前記他方の室内熱交換器を露点温度より低くする空気調和機。
In Claim 5, it has a 2nd pressure-reduction valve between the point where the refrigerant which passed through the outdoor heat exchanger at the time of the cooling operation branches, and the other indoor heat exchanger,
An air conditioner that controls the opening of the second pressure reducing valve to lower the other indoor heat exchanger below a dew point temperature.
請求項5又は6において、前記圧縮機は、第1圧縮機及び第2圧縮機を備え、
前記冷房運転時、前記第1圧縮機及び前記第2圧縮機から吐出して合流した冷媒は、前記室外熱交換器を経由した後分岐してそれぞれ前記第1室内熱交換器及び前記第2室内熱交換器に流入し、その後、前記第1室内熱交換器に流入した冷媒は前記第1圧縮機に流入し、前記第2室内熱交換器に流入した冷媒は前記第2圧縮機に流入する空気調和機。
The compressor according to claim 5 or 6, wherein the compressor includes a first compressor and a second compressor,
During the cooling operation, the refrigerant discharged and merged from the first compressor and the second compressor is branched after passing through the outdoor heat exchanger, and is branched into the first indoor heat exchanger and the second indoor respectively. The refrigerant that flows into the heat exchanger and then flows into the first indoor heat exchanger flows into the first compressor, and the refrigerant that flows into the second indoor heat exchanger flows into the second compressor. Air conditioner.
請求項1乃至7の何れかにおいて、前記冷媒はハイドロフルオロオレフィン系冷媒又はハイドロフルオロオレフィン系冷媒を含む混合冷媒である空気調和機。   The air conditioner according to any one of claims 1 to 7, wherein the refrigerant is a hydrofluoroolefin refrigerant or a mixed refrigerant containing a hydrofluoroolefin refrigerant. 請求項8において、前記ハイドロフルオロオレフィン系冷媒はHFO1234yfである空気調和機。   The air conditioner according to claim 8, wherein the hydrofluoroolefin-based refrigerant is HFO1234yf.
JP2012549476A 2010-12-22 2010-12-22 Air conditioner Pending JPWO2012085965A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/007410 WO2012085965A1 (en) 2010-12-22 2010-12-22 Air conditioner

Publications (1)

Publication Number Publication Date
JPWO2012085965A1 true JPWO2012085965A1 (en) 2014-05-22

Family

ID=46313272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012549476A Pending JPWO2012085965A1 (en) 2010-12-22 2010-12-22 Air conditioner

Country Status (2)

Country Link
JP (1) JPWO2012085965A1 (en)
WO (1) WO2012085965A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927715B (en) * 2012-10-31 2015-07-01 青岛海信日立空调系统有限公司 Multiple-on-line heat pump air-conditioning system and method for controlling multiple-on-line heat pump air-conditioning system
CN105987536B (en) * 2015-02-04 2019-01-15 广州市华德工业有限公司 A kind of trigeneration heat pump system
CN106152263B (en) * 2015-04-07 2020-03-17 大金工业株式会社 Air conditioning system and control method thereof
CN106152332B (en) * 2015-04-07 2020-07-07 大金工业株式会社 Air conditioning system and control method thereof
CN104792064A (en) * 2015-04-08 2015-07-22 陈丽红 Instant-heating type hot water air conditioner
CN107894111B (en) * 2016-09-30 2020-10-02 大金工业株式会社 Air conditioning system and control method thereof
CN110345566B (en) * 2019-07-17 2023-09-08 珠海格力电器股份有限公司 Air conditioning system with temperature adjusting and dehumidifying functions and control method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041347A (en) * 1973-08-10 1975-04-15
JPS5760068U (en) * 1980-09-22 1982-04-09
JPH01160275U (en) * 1987-12-24 1989-11-07
JPH06213531A (en) * 1993-01-12 1994-08-02 Hitachi Ltd Heat pump air conditioner for car
JPH07218035A (en) * 1994-02-02 1995-08-18 Hitachi Ltd Air-conditioner
JPH07294179A (en) * 1994-04-20 1995-11-10 Nippondenso Co Ltd Heat exchanging device
KR100696718B1 (en) * 2006-04-24 2007-03-20 주식회사 대우일렉트로닉스 Air Conditioner System for Heating and Dehumidificaton
JP2009300001A (en) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
JP2010255965A (en) * 2009-04-28 2010-11-11 Hitachi Appliances Inc Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041347A (en) * 1973-08-10 1975-04-15
JPS5760068U (en) * 1980-09-22 1982-04-09
JPH01160275U (en) * 1987-12-24 1989-11-07
JPH06213531A (en) * 1993-01-12 1994-08-02 Hitachi Ltd Heat pump air conditioner for car
JPH07218035A (en) * 1994-02-02 1995-08-18 Hitachi Ltd Air-conditioner
JPH07294179A (en) * 1994-04-20 1995-11-10 Nippondenso Co Ltd Heat exchanging device
KR100696718B1 (en) * 2006-04-24 2007-03-20 주식회사 대우일렉트로닉스 Air Conditioner System for Heating and Dehumidificaton
JP2009300001A (en) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
JP2010255965A (en) * 2009-04-28 2010-11-11 Hitachi Appliances Inc Air conditioner

Also Published As

Publication number Publication date
WO2012085965A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JP6723354B2 (en) Refrigeration cycle equipment
CN103062851B (en) Air-conditioning system and dehumanization method thereof
JP4884365B2 (en) Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device
JP6494765B2 (en) Air conditioning system
JP6895901B2 (en) Air conditioner
CN111102770A (en) Air conditioning system capable of continuously heating
WO2006013834A1 (en) Freezing apparatus
JPWO2012085965A1 (en) Air conditioner
JPH04295568A (en) Air-conditioning machine, indoor unit for said air-conditioning machine and operating method of air-conditioning machine
WO2006013938A1 (en) Freezing apparatus
JP6285172B2 (en) Air conditioner outdoor unit
CN108775725B (en) Indoor unit of three-pipe multi-split air conditioner and three-pipe multi-split air conditioner
JP2008157557A (en) Air-conditioning system
CN104364591A (en) Air conditioning device
WO2013061377A1 (en) Refrigeration and air-conditioning device, and humidity adjustment device
CN112161324B (en) Air conditioner
JP4785508B2 (en) Air conditioner
WO2007102345A1 (en) Refrigeration device
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
JP4966742B2 (en) Air conditioner
JP6576603B1 (en) Air conditioner
JP4647399B2 (en) Ventilation air conditioner
CN112577101B (en) Air conditioner and control method thereof
JP2004108715A (en) Air conditioner for many rooms

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303