JP4884365B2 - Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device - Google Patents

Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device Download PDF

Info

Publication number
JP4884365B2
JP4884365B2 JP2007339098A JP2007339098A JP4884365B2 JP 4884365 B2 JP4884365 B2 JP 4884365B2 JP 2007339098 A JP2007339098 A JP 2007339098A JP 2007339098 A JP2007339098 A JP 2007339098A JP 4884365 B2 JP4884365 B2 JP 4884365B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
outlet
degree
superheat degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007339098A
Other languages
Japanese (ja)
Other versions
JP2009162388A (en
Inventor
正則 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007339098A priority Critical patent/JP4884365B2/en
Publication of JP2009162388A publication Critical patent/JP2009162388A/en
Application granted granted Critical
Publication of JP4884365B2 publication Critical patent/JP4884365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

この発明は、冷凍空調装置、冷凍空調装置の室外機および冷凍空調装置の制御装置に関するものであり、特に圧縮機吸入冷媒を過熱する再蒸発手段を有する冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner, an outdoor unit of the refrigeration air conditioner, and a control device for the refrigeration air conditioner, and more particularly to a refrigeration air conditioner having a re-evaporating means for overheating a compressor suction refrigerant.

従来の冷凍空調装置として、例えば「…冷凍サイクルと、前記蒸発器と前記圧縮機の間に設けられ、湿り状態である前記蒸発器の出口の冷媒を過熱し目標過熱度に過熱するのに必要な熱交換量を有する再蒸発手段と、前記再蒸発手段にて過熱された後の前記圧縮機の入り口の吸入冷媒の過熱度に相当する過熱特性を検知する過熱検知手段と、前記過熱検知手段により検知された前記過熱度の情報に基づき湿り状態である前記蒸発器出口の冷媒を前記圧縮機の入り口では目標過熱度になるように前記低圧側絞り装置の開口面積を調整し制御する制御手段」を設けたものがある(例えば、特許文献1参照)。   As a conventional refrigeration air conditioner, for example, “... required to superheat the refrigerant at the outlet of the evaporator, which is provided between the refrigeration cycle and the evaporator and the compressor, and superheats to the target superheat degree. A re-evaporating means having a sufficient heat exchange amount, an overheat detecting means for detecting a superheat characteristic corresponding to the degree of superheat of the refrigerant sucked at the inlet of the compressor after being heated by the re-evaporating means, and the overheat detecting means Control means for adjusting and controlling the opening area of the low-pressure-side throttling device so that the refrigerant at the outlet of the evaporator in a wet state becomes the target superheat degree at the inlet of the compressor based on the information on the degree of superheat detected by Is provided (for example, see Patent Document 1).

特開2001−263831号公報(請求項1、図1)JP 2001-263831 A (Claim 1, FIG. 1)

しかし、従来の冷凍空調装置には以下のような問題点があった。
まず、上記の特許文献1記載の従来例のように、再蒸発手段にヒータを用いる場合には入力増加による製品COPの低下、またコストの増加があった。再蒸発手段に、高低圧熱交を用いた場合には、熱交換量が冷媒の状態、すなわち冷媒温度、循環量によって変化するため、負荷条件の変化によるユニットの運転状態変化、圧縮機運転周波数変化等により熱交換量が変化するため、圧縮機入り口の冷媒状態を所定の目標過熱度に制御しても、蒸発器出口の冷媒状態は必ずしも目標の乾き度にならないため、性能の低下や信頼性の低下を招く恐れがあった。
However, the conventional refrigeration air conditioner has the following problems.
First, as in the conventional example described in Patent Document 1 above, when a heater is used as the re-evaporation means, there is a decrease in product COP and an increase in cost due to an increase in input. When high-low pressure heat exchange is used for the re-evaporation means, the heat exchange amount changes depending on the state of the refrigerant, that is, the refrigerant temperature and the circulation amount. Since the amount of heat exchange changes due to changes, etc., even if the refrigerant state at the compressor inlet is controlled to a predetermined target superheat degree, the refrigerant state at the evaporator outlet does not necessarily reach the target dryness. There was a risk of deteriorating sex.

この発明は、以上の課題に鑑み、高低圧熱交換器(内部熱交換器)での熱交換量を検知し、その熱交換量に応じて圧縮機入り口の目標過熱度を変化させることにより蒸発器出口冷媒の乾き度を所定の目標値に保ち、高効率な運転を実現し、また、蒸発器が乾く事に起因する露飛び等の不具合を起こすことの無い信頼性の高い冷凍空調装置を得ることを目的とする。更に、そのような冷凍空調装置に用いられる室外機および制御装置を得ることを目的とする。   In view of the above problems, the present invention detects the amount of heat exchange in the high-low pressure heat exchanger (internal heat exchanger) and changes the target superheat degree at the compressor inlet according to the amount of heat exchange to evaporate. A highly reliable refrigerating and air-conditioning system that maintains the dryness of the refrigerant at the outlet of the evaporator at a predetermined target value, realizes high-efficiency operation, and does not cause problems such as dew escaping due to drying of the evaporator. The purpose is to obtain. Furthermore, it aims at obtaining the outdoor unit and control apparatus which are used for such a refrigeration air conditioner.

この発明に係る冷凍空調装置は、圧縮機、凝縮器、第1の減圧装置、第2の減圧装置及び蒸発器が環状に接続された冷凍空調装置において、前記第1の減圧装置と前記第2の減圧装置の間の冷媒と、前記蒸発器と前記圧縮機との間の冷媒とを熱交換する内部熱交換器と、前記凝縮器出口の冷媒の過冷却度を検出する過冷却度検出手段と、前記過冷却度検出手段により検出された過冷却度が予め定められた値となるように前記第1の減圧装置の流量調整を行う第1の制御手段と、前記内部熱交換器での熱交換量を検出する熱交換量検出手段と、前記内部熱交換器により過熱された後の前記圧縮機入り口の冷媒の過熱度を検出する過熱度検出手段と、前記熱交換量検出手段により検出された前記内部熱交換量より前記蒸発器出口の冷媒が飽和ガス状態となる場合の圧縮機入り口の冷媒の過熱度を算出する目標過熱度算出手段と、前記目標過熱度算出手段により算出された過熱度を目標過熱度とし、前記過熱度検出手段が検出する圧縮機入り口の冷媒の過熱度が前記目標過熱度に近づくように前記第2の減圧装置の流量調整を行う第2の制御装置とを備え、前記熱交換量検出手段は、前記凝縮器出口の冷媒温度情報に基づいて高温側冷媒の前記内部熱交換器入口冷媒の第1のエンタルピを算出し、高温側冷媒の前記内部熱交換器出口の冷媒温度情報に基づいて高温側冷媒の前記内部熱交換器出口冷媒の第2のエンタルピを算出し、前記第1のエンタルピと前記第2のエンタルピとのエンタルピ差(Δh)を算出し、そして、前記エンタルピ差(Δh)に基づいて前記内部熱交換器での熱交換量(Q)を算出し、前記目標過熱度算出手段は、前記蒸発器内の冷媒温度情報に基づいて冷媒の飽和ガス状態での前記定圧比熱(Cp)を求め、前記熱交換量(Q)及び低温側冷媒の内部熱交換器入口での定圧比熱(Cp)に基づいて圧縮機入り口の冷媒の過熱度を算出する。 The refrigeration air conditioner according to the present invention is a refrigeration air conditioner in which a compressor, a condenser, a first pressure reducing device, a second pressure reducing device, and an evaporator are connected in an annular shape, wherein the first pressure reducing device and the second pressure reducing device are An internal heat exchanger for exchanging heat between the refrigerant between the decompressor and the refrigerant between the evaporator and the compressor, and a supercooling degree detecting means for detecting the degree of supercooling of the refrigerant at the condenser outlet The first control means for adjusting the flow rate of the first pressure reducing device so that the degree of supercooling detected by the degree of supercooling detection means becomes a predetermined value, and the internal heat exchanger Detected by a heat exchange amount detecting means for detecting a heat exchange amount, a superheat degree detecting means for detecting the degree of superheat of the refrigerant at the compressor inlet after being heated by the internal heat exchanger, and the heat exchange amount detecting means From the internal heat exchange amount, the refrigerant at the outlet of the evaporator is saturated gas A target superheat degree calculating means for calculating the degree of superheat of the compressor inlet of the refrigerant when the on purpose made, the overheating degree calculated by the target superheat degree calculating unit and the target degree of superheat, compressor where the superheating degree detecting means for detecting A second control device that adjusts the flow rate of the second decompression device so that the superheat degree of the refrigerant at the machine inlet approaches the target superheat degree, and the heat exchange amount detecting means is a refrigerant at the outlet of the condenser A first enthalpy of the internal heat exchanger inlet refrigerant of the high temperature side refrigerant is calculated based on the temperature information, and the internal heat exchange of the high temperature side refrigerant is calculated based on the refrigerant temperature information of the internal heat exchanger outlet of the high temperature side refrigerant Calculating a second enthalpy of the refrigerant at the outlet of the reactor, calculating an enthalpy difference (Δh) between the first enthalpy and the second enthalpy, and then, based on the enthalpy difference (Δh), the internal heat exchanger Heat exchange at (Q) is calculated, and the target superheat degree calculating means obtains the constant pressure specific heat (Cp) in the saturated gas state of the refrigerant based on the refrigerant temperature information in the evaporator, and the heat exchange amount (Q) and The degree of superheat of the refrigerant at the compressor inlet is calculated based on the constant pressure specific heat (Cp) at the inlet of the internal heat exchanger for the low temperature side refrigerant.

この発明においては、内部熱交換器での熱交換量を検出することにより、運転状態の変化や圧縮機周波数の変化等により内部熱交換量が変化した場合であっても、熱交換量に応じて圧縮機吸入冷媒の目標乾き度を変化させることにより、蒸発器出口冷媒の乾き度を所定の目標値に保ち、高効率な運転を実現し、且つ、蒸発器が乾く事に起因する露飛び等の不具合を起こすことの無い信頼性の高い冷凍空調装置の運転を実現することができる。   In this invention, by detecting the amount of heat exchange in the internal heat exchanger, even if the amount of internal heat exchange changes due to changes in operating conditions, changes in compressor frequency, etc. By changing the target dryness of the refrigerant sucked in the compressor, the dryness of the refrigerant at the outlet of the evaporator is maintained at a predetermined target value to achieve high-efficiency operation and the exposure caused by the drying of the evaporator Thus, it is possible to realize the operation of a highly reliable refrigeration air conditioner that does not cause problems such as the above.

実施の形態1.
以下この発明の実施の形態1を図1に示す。図1は、本実施の形態の冷凍空調装置の冷媒回路図であり、圧縮機3、凝縮器用熱交換器15、内部熱交換器14、減圧装置である第1膨張弁10および蒸発器用熱交換器16が環状に接続されている。第1膨張弁10は、開度が可変に制御される電子膨張弁である。また、凝縮器用熱交換器15および蒸発器用熱交換器16はファン(図示せず)等で送風される空気と熱交換する。
Embodiment 1 FIG.
A first embodiment of the present invention is shown in FIG. FIG. 1 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to the present embodiment. The compressor 3, the condenser heat exchanger 15, the internal heat exchanger 14, the decompression device, the first expansion valve 10 and the evaporator heat exchange. The vessel 16 is connected in an annular shape. The first expansion valve 10 is an electronic expansion valve whose opening degree is variably controlled. The condenser heat exchanger 15 and the evaporator heat exchanger 16 exchange heat with air blown by a fan (not shown) or the like.

計測制御装置12には温度センサ13(後述の温度センサ13a、13k…を総称するときにはこのように「温度センサ13」と称するものとする)および膨張弁10が接続されている。温度センサ13aが圧縮機3吐出側、温度センサ13kが凝縮器用熱交換器15の中間部の冷媒流路上、温度センサ13lが凝縮器用熱交換機15と内部熱交換器14の間、温度センサ13dが内部熱交換器14と膨張弁10との間、温度センサ13eが圧縮機3吸入側(入り口側)に設けられ、それぞれ設置場所の冷媒温度を計測する。また、温度センサ13mは凝縮器用熱交換器15の周囲の空気温度を計測する。   A temperature sensor 13 (referred to as “temperature sensor 13” in this manner when temperature sensors 13a, 13k,... Described later are collectively referred to) and an expansion valve 10 are connected to the measurement control device 12. The temperature sensor 13 a is on the discharge side of the compressor 3, the temperature sensor 13 k is on the refrigerant flow path in the middle part of the condenser heat exchanger 15, the temperature sensor 131 is between the condenser heat exchanger 15 and the internal heat exchanger 14, and the temperature sensor 13 d is Between the internal heat exchanger 14 and the expansion valve 10, a temperature sensor 13e is provided on the suction side (inlet side) of the compressor 3, and measures the refrigerant temperature at the installation location. The temperature sensor 13m measures the air temperature around the condenser heat exchanger 15.

蒸発器用熱交換器16およびその周辺には温度センサ13n、13o、13pが設置されており、温度センサ13nは蒸発器用熱交換器16中間部の冷媒流路上、温度センサ13oは蒸発器用熱交換器16と膨張弁10の間に設けられており、それぞれ設置場所での冷媒温度を計測する。温度センサ13pは蒸発器用熱交換器16に吸気される空気温度を計測する。   Temperature sensors 13n, 13o, and 13p are installed in and around the evaporator heat exchanger 16, the temperature sensor 13n is on the refrigerant flow path in the middle of the evaporator heat exchanger 16, and the temperature sensor 13o is an evaporator heat exchanger. 16 is provided between the expansion valve 10 and the refrigerant temperature at each installation location. The temperature sensor 13p measures the temperature of the air taken into the evaporator heat exchanger 16.

温度センサ13k、13nはそれぞれ熱交換器中間で気液二相状態となっている冷媒温度を検知することにより、高低圧の冷媒飽和温度を検知することができる。   The temperature sensors 13k and 13n can detect the refrigerant saturation temperature at high and low pressure by detecting the refrigerant temperature in the gas-liquid two-phase state in the middle of the heat exchanger.

また、室外機1内の計測制御装置12は、温度センサ13の計測情報や、冷凍空調装置使用者から指示される運転内容に基づいて、圧縮機3の運転方法、凝縮器用熱交換器15および蒸発器用熱交換器16のファン送風量、膨張弁10の開度などを制御する。なお、この計測制御装置12は、この発明の制御装置として機能するだけではなく、この発明の熱交換量検出手段12a、過熱度検出手段12bおよび目標過熱度算出手段12cの演算処理部としての機能を果たす(但し、図1においてはこれらの手段12a〜12cが内蔵されているかのように便宜上記載されている。)。この発明の熱交換量検出手段12aは、温度センサ13l、13dおよび計測制御装置12から構成されており、温度センサ13l、13dの出力に基づいて内部熱交換器14での熱交換量(Q)を求める。過熱度検出手段12bは、温度センサ13e、13nおよび計測制御装置12から構成されており、温度センサ13e、13nの出力に基づいて圧縮機吸入冷媒の過熱度を求める。目標過熱度算出手段12cは、温度センサ13nおよび計測制御装置12から構成されており、温度センサ13nの出力に基づいて冷媒の飽和ガスの定圧比熱(Cp)を求め、この定圧比熱(Cp)および上記の熱交換量(Q)に基づいて蒸発器出口状態が飽和ガス状態となる場合の圧縮機吸入冷媒の過熱度を算出する。なお、これらの熱交換量検出手段12a、過熱度検出手段12bおよび目標過熱度算出手段12cの演算処理についての詳細は後述する。   Further, the measurement control device 12 in the outdoor unit 1 is based on the measurement information of the temperature sensor 13 and the operation content instructed by the user of the refrigeration air conditioner, and the operation method of the compressor 3, the heat exchanger 15 for the condenser, The fan air flow rate of the evaporator heat exchanger 16 and the opening degree of the expansion valve 10 are controlled. The measurement control device 12 not only functions as the control device of the present invention, but also functions as an arithmetic processing unit of the heat exchange amount detection means 12a, the superheat degree detection means 12b, and the target superheat degree calculation means 12c of the present invention. (However, in FIG. 1, these means 12a to 12c are described for convenience as if they were built in). The heat exchange amount detection means 12a of the present invention includes temperature sensors 13l and 13d and a measurement control device 12, and the heat exchange amount (Q) in the internal heat exchanger 14 based on the outputs of the temperature sensors 13l and 13d. Ask for. The superheat degree detection means 12b includes temperature sensors 13e and 13n and a measurement control device 12, and obtains the superheat degree of the refrigerant sucked from the compressor based on the outputs of the temperature sensors 13e and 13n. The target superheat degree calculating means 12c is composed of a temperature sensor 13n and a measurement control device 12, and obtains a constant pressure specific heat (Cp) of the saturated gas of the refrigerant based on the output of the temperature sensor 13n, and the constant pressure specific heat (Cp) and Based on the heat exchange amount (Q), the degree of superheat of the refrigerant sucked in the compressor when the evaporator outlet state becomes a saturated gas state is calculated. The details of the arithmetic processing of these heat exchange amount detection means 12a, superheat degree detection means 12b, and target superheat degree calculation means 12c will be described later.

次に、この冷凍空調装置での運転動作について、図2に示すPh線図(モリエル線図)に基づいて説明する。圧縮機3から吐出された高温高圧のガス冷媒(図2点1)は凝縮器用熱交換器15に流入し、ここで放熱しながら凝縮液化し、高圧低温の冷媒となる(図2点2)。凝縮器用熱交換器15を出た冷媒は内部熱交換器14で、圧縮機3に吸入される冷媒と熱交換し冷却される(図2点3)。その後膨張弁10で低圧まで減圧され二相冷媒となった後で(図2点5)、蒸発器用熱交換器16に流入し、そこで吸熱し、蒸発ガス化(図2点6)しながら空気や水などの負荷側媒体に冷熱を供給する。蒸発器用熱交換器16を出た低圧ガス冷媒は、内部熱交換器14で高圧冷媒と熱交換し加熱された後で(図2点7)、圧縮機3に吸入され高圧まで圧縮され吐出される(図2点1)。   Next, the operation | movement operation | movement in this refrigerating air conditioner is demonstrated based on Ph diagram (Mollier diagram) shown in FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 3 (point 1 in FIG. 2) flows into the condenser heat exchanger 15, where it condenses and liquefies while dissipating heat, and becomes a high-pressure and low-temperature refrigerant (point 2 in FIG. 2). . The refrigerant leaving the condenser heat exchanger 15 is cooled by the internal heat exchanger 14 by exchanging heat with the refrigerant sucked into the compressor 3 (point 3 in FIG. 2). Thereafter, the pressure is reduced to a low pressure by the expansion valve 10 to become a two-phase refrigerant (FIG. 2, point 5), and then flows into the evaporator heat exchanger 16, where it absorbs heat and evaporates and gasifies (point 6 in FIG. 2). Supply cold energy to load-side media such as water and water. The low-pressure gas refrigerant exiting the evaporator heat exchanger 16 is heated by exchanging heat with the high-pressure refrigerant in the internal heat exchanger 14 (point 7 in FIG. 2), and then sucked into the compressor 3 and compressed and discharged to a high pressure. (Fig. 2, point 1).

次に、膨張弁の制御方法について説明する。膨張弁10は、温度センサ13eで検知される圧縮機3吸入温度と温度センサ13nで検知される低圧冷媒の飽和温度との差温で検知される圧縮機3吸入の冷媒過熱度SHが予め設定された目標値、例えば10℃になるように制御される。冷媒過熱度SHが目標値より大きい場合には、膨張弁10の開度は大きく、冷媒過熱度SHが目標値より小さい場合には、膨張弁10の開度は小さく制御される。   Next, a method for controlling the expansion valve will be described. The expansion valve 10 is preset with a refrigerant superheat degree SH of the compressor 3 suction detected by the temperature difference between the compressor 3 suction temperature detected by the temperature sensor 13e and the saturation temperature of the low-pressure refrigerant detected by the temperature sensor 13n. The controlled target value is controlled to be 10 ° C., for example. When the refrigerant superheat degree SH is larger than the target value, the opening degree of the expansion valve 10 is large, and when the refrigerant superheat degree SH is smaller than the target value, the opening degree of the expansion valve 10 is controlled to be small.

この冷凍サイクルにおいて、圧縮機3の吸入冷媒過熱度SHは、内部熱交換器14における高温冷媒との熱交換によって生じるものであるため、熱交換量に応じて、膨張弁10の制御目標である冷媒過熱度の目標値を変化させる必要がある。   In this refrigeration cycle, the suction refrigerant superheat degree SH of the compressor 3 is generated by heat exchange with the high-temperature refrigerant in the internal heat exchanger 14, and is therefore a control target of the expansion valve 10 according to the heat exchange amount. It is necessary to change the target value of the refrigerant superheat degree.

すなわち膨張弁10の制御目標である、圧縮機3の吸入冷媒過熱度の目標値が、内部熱交換器14での熱交換量によって生じる圧縮機3の吸入冷媒過熱度よりも大きく設定された場合には、蒸発器用熱交換器16の出口冷媒状態は乾き度1よりも大きい過熱ガス状態となり、性能の低下や蒸発器用熱交換器16内の冷媒の一部が加熱ガス状態となることに起因する、露飛び等の問題が生じる。また、圧縮機3の吸入冷媒過熱度の目標値が小さく設定された場合には、蒸発器用熱交換器16の出口冷媒状態は乾き度1以下の二相状態となり、性能低下等の問題が生じる。   That is, when the target value of the refrigerant 3 superheat degree of the compressor 3, which is the control target of the expansion valve 10, is set larger than the intake refrigerant superheat degree of the compressor 3 generated by the heat exchange amount in the internal heat exchanger 14. This is because the outlet refrigerant state of the evaporator heat exchanger 16 becomes a superheated gas state having a degree of dryness greater than 1, and the performance is reduced, and a part of the refrigerant in the evaporator heat exchanger 16 becomes a heated gas state. This causes problems such as flying out. Further, when the target value of the refrigerant superheat degree of the compressor 3 is set to be small, the outlet refrigerant state of the evaporator heat exchanger 16 becomes a two-phase state with a dryness of 1 or less, causing problems such as performance degradation. .

蒸発器出口乾き度と蒸発器能力の関係を図3に示す。蒸発器出口冷媒状態が乾き度1の飽和ガス状態となる場合が蒸発器能力は最大となる。このため冷凍サイクルの高効率化の観点より、内部熱交換量に応じて、蒸発器出口冷媒状態が乾き度1となる様に圧縮機3の吸入冷媒過熱度を設定することが望ましい。   The relationship between the evaporator outlet dryness and the evaporator capacity is shown in FIG. The evaporator capacity is maximized when the evaporator outlet refrigerant state is a saturated gas state with a dryness of 1. For this reason, from the viewpoint of increasing the efficiency of the refrigeration cycle, it is desirable to set the refrigerant superheat degree of the compressor 3 so that the evaporator outlet refrigerant state has a dryness of 1, according to the internal heat exchange amount.

ここで、膨張弁10の制御目標となる圧縮機3の吸入冷媒過熱度の設定方法について、図2のPh線図を用いて説明する。先の説明のとおり、圧縮機3の吸入冷媒加熱度は内部熱交換器14での高圧状態の冷媒との熱交換により生じるため、負荷の変動等で運転状態が変化すると圧力状態も変わり熱交換量も変化することになる。内部熱交換器14での熱交換量は以下の式により求めることができる。
Q=Gr×Δh=Gr×SHm×Cp
ここで、Q:熱交換量[kJ]、Δh:エンタルピ差[kJ/kg]、Gr:冷媒循環量[kg/h]、SHm:吸入冷媒過熱度[℃]、Cp:定圧比熱[kJ/kg・℃]を示す。高圧冷媒のエンタルピ差については、内部熱交換器14入り口温度(温度センサ13l)と内部熱交換器14出口温度(温度センサ13d)より、各温度における飽和液エンタルピをそれぞれ算出し、その差を求めれば良い。また、定圧比熱[kJ/kg・℃]については蒸発器用熱交換器16の温度センサ13nの検知温度の飽和ガス状態の定圧比熱を算出すれば良い。以上の状態量が判れば、蒸発器用熱交換器16の出口冷媒の乾き度が1.0の飽和ガス状態での圧縮機3の吸入冷媒過熱度を求めることができるため、この値を膨張弁10の制御目標値とすれば良い。
Here, a method for setting the intake refrigerant superheat degree of the compressor 3 as a control target of the expansion valve 10 will be described with reference to the Ph diagram of FIG. As described above, the suction refrigerant heating degree of the compressor 3 is generated by heat exchange with the high-pressure refrigerant in the internal heat exchanger 14, so that the pressure state changes when the operating state changes due to a load change or the like. The amount will also change. The amount of heat exchange in the internal heat exchanger 14 can be obtained by the following equation.
Q = Gr × Δh = Gr × SHm × Cp
Where, Q: heat exchange amount [kJ], Δh: enthalpy difference [kJ / kg], Gr: refrigerant circulation rate [kg / h], SHm: intake refrigerant superheat degree [° C], Cp: constant pressure specific heat [kJ / kg · ° C]. Regarding the enthalpy difference of the high-pressure refrigerant, the saturated liquid enthalpy at each temperature is calculated from the inlet temperature of the internal heat exchanger 14 (temperature sensor 13l) and the outlet temperature of the internal heat exchanger 14 (temperature sensor 13d), and the difference can be obtained. It ’s fine. For the constant pressure specific heat [kJ / kg · ° C.], the constant pressure specific heat in the saturated gas state at the temperature detected by the temperature sensor 13n of the evaporator heat exchanger 16 may be calculated. If the above state quantities are known, the degree of superheat of the refrigerant sucked in the compressor 3 in the saturated gas state where the degree of dryness of the outlet refrigerant of the evaporator heat exchanger 16 is 1.0 can be obtained. The control target value may be 10.

すなわち、計測制御装置12は次のような演算処理および制御をする。
(1)計測制御装置12(熱交換量検出手段12a)は、温度センサ13lおよび温度センサ13dの出力に基づいて飽和液エンタルピ(第1のエンタルピ、第2のエンタルピ)をそれぞれ算出し、そのエンタルピの差(Δh)を求める。そして、そのエンタルピ差(Δh)および冷媒循環量(Gr)に基づいて内部熱交換器14での熱交換量(Q)を求める。
(2)計測制御装置12(過熱度検出手段12b)は、温度センサ13e、13nの出力に基づいて内部熱交換器14により過熱された後の圧縮機3の吸入冷媒過熱度を検出する。
(3)計測制御装置12(目標過熱度算出手段12c)は、温度センサ13nの出力に基づいて飽和ガス状態の定圧比熱(Cp)を算出し、上記の熱交換量(Q)および定圧比熱(Cp)に基づいて蒸発器用熱交換器16の出口状態が飽和ガス状態となる場合の圧縮機3の吸入冷媒過熱度を求め、それを目標過熱度として設定する。
(4)計測制御装置12は、上記に算出された過熱度を目標過熱度とし、上記により検出された圧縮機3吸入冷媒過熱度が目標過熱度になるように膨張弁10の流量調整を行う。
That is, the measurement control device 12 performs the following arithmetic processing and control.
(1) The measurement control device 12 (heat exchange amount detection means 12a) calculates saturated liquid enthalpies (first enthalpy and second enthalpy) based on the outputs of the temperature sensor 13l and the temperature sensor 13d, respectively. Difference (Δh) is obtained. Then, a heat exchange amount (Q) in the internal heat exchanger 14 is obtained based on the enthalpy difference (Δh) and the refrigerant circulation amount (Gr).
(2) The measurement controller 12 (superheat degree detection means 12b) detects the superheat degree of the refrigerant sucked in the compressor 3 after being heated by the internal heat exchanger 14 based on the outputs of the temperature sensors 13e and 13n.
(3) The measurement control device 12 (target superheat degree calculation means 12c) calculates the constant pressure specific heat (Cp) in the saturated gas state based on the output of the temperature sensor 13n, and the heat exchange amount (Q) and the constant pressure specific heat ( Based on Cp), the suction refrigerant superheat degree of the compressor 3 when the outlet state of the evaporator heat exchanger 16 becomes a saturated gas state is obtained and set as the target superheat degree.
(4) The measurement control device 12 sets the superheat degree calculated above as the target superheat degree, and adjusts the flow rate of the expansion valve 10 so that the compressor 3 suction refrigerant superheat degree detected as described above becomes the target superheat degree. .

以上のように本実施の形態1によれば、内部熱交換器14での熱交換量(Q)を検出し、内部熱交換器14により過熱された後の圧縮機3の吸入冷媒過熱度を検出し、内部熱交換量(Q)により蒸発器用熱交換器16出口状態が飽和ガス状態となる場合の圧縮機3吸入冷媒過熱度を目標過熱度として算出し、圧縮機3の吸入冷媒過熱度が前記目標過熱度になるように膨張弁10の流量調整を行うようにしたので、運転状態の変化や圧縮機周波数の変化等により内部熱交換量が変化した場合であっても、熱交換量(Q)に応じて圧縮機吸入冷媒の目標乾き度を変化させることにより、蒸発器出口冷媒の乾き度を所定の目標値に保ち、高効率な運転を実現し、且つ、蒸発器用熱交換器16が乾く事に起因する露飛び等の不具合を起こすことの無い信頼性の高い冷凍空調装置が得られる。   As described above, according to the first embodiment, the heat exchange amount (Q) in the internal heat exchanger 14 is detected, and the suction refrigerant superheat degree of the compressor 3 after being heated by the internal heat exchanger 14 is determined. Detecting and calculating the compressor 3 suction refrigerant superheat degree when the outlet state of the evaporator heat exchanger 16 becomes a saturated gas state based on the internal heat exchange amount (Q) as the target superheat degree, and sucking refrigerant superheat degree of the compressor 3 Since the flow rate of the expansion valve 10 is adjusted so that the target superheat degree becomes the target degree of superheat, even if the internal heat exchange amount changes due to a change in the operating state, a change in the compressor frequency, or the like, the heat exchange amount By changing the target dryness of the refrigerant sucked from the compressor in accordance with (Q), the dryness of the refrigerant at the outlet of the evaporator is maintained at a predetermined target value, realizing high-efficiency operation, and an evaporator heat exchanger No problems such as dew escaping due to drying of 16 Lai highly refrigeration air conditioning system is obtained.

実施の形態2.
次にこの発明の実施の形態2を図4に示す。図4は、本実施の形態の冷凍空調装置の冷媒回路図であり、室外機1内には圧縮機3、四方弁4、室外熱交換器11、減圧装置である第1膨張弁10、内部熱交換器14、減圧装置である第2膨張弁8が搭載されている。圧縮機3はインバータにより回転数が制御され容量制御されるタイプである。また、第1膨張弁10および第2膨張弁8は開度が可変に制御される電子膨張弁である。また、室外熱交換器11はファン(図示せず)などで送風される外気と熱交換する。室内機2内には室内熱交換器6が搭載されている。ガス管5および液管7は室外機1と室内機2を接続する接続配管である。この冷凍空調装置の冷媒としては、HFC系の混合冷媒であるR410Aが用いられる(このことは後述の実施の形態2および3も同様である。)。
Embodiment 2. FIG.
Next, a second embodiment of the present invention is shown in FIG. FIG. 4 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to the present embodiment. In the outdoor unit 1, the compressor 3, the four-way valve 4, the outdoor heat exchanger 11, the first expansion valve 10 that is a decompression device, and the inside A heat exchanger 14 and a second expansion valve 8 which is a pressure reducing device are mounted. The compressor 3 is a type in which the rotation speed is controlled by an inverter and the capacity is controlled. The first expansion valve 10 and the second expansion valve 8 are electronic expansion valves whose opening degrees are variably controlled. The outdoor heat exchanger 11 exchanges heat with the outside air blown by a fan (not shown) or the like. An indoor heat exchanger 6 is mounted in the indoor unit 2. The gas pipe 5 and the liquid pipe 7 are connection pipes that connect the outdoor unit 1 and the indoor unit 2. As the refrigerant of this refrigeration air conditioner, R410A, which is an HFC-based mixed refrigerant, is used (the same applies to Embodiments 2 and 3 described later).

室外機1内には計測制御装置12および温度センサ13が設置されている。温度センサ13aが圧縮機3吐出側、温度センサ13bが室外熱交換器11中間部の冷媒流路上、温度センサ13cが室外熱交換器11と第1膨張弁10の間、温度センサ13dが第2膨張弁8と内部熱交換器14との間、温度センサ13eが圧縮機3吸入側に、温度センサ13jが内部熱交換器14と第2膨張弁10との間に設けられ、それぞれ設置場所の冷媒温度を計測する。また、温度センサ13fは室外機1周囲の外気温度を計測する。   A measurement control device 12 and a temperature sensor 13 are installed in the outdoor unit 1. The temperature sensor 13a is on the discharge side of the compressor 3, the temperature sensor 13b is on the refrigerant flow path in the middle of the outdoor heat exchanger 11, the temperature sensor 13c is between the outdoor heat exchanger 11 and the first expansion valve 10, and the temperature sensor 13d is the second. Between the expansion valve 8 and the internal heat exchanger 14, the temperature sensor 13e is provided on the suction side of the compressor 3, and the temperature sensor 13j is provided between the internal heat exchanger 14 and the second expansion valve 10, respectively. Measure the refrigerant temperature. The temperature sensor 13f measures the outside air temperature around the outdoor unit 1.

室内機2内には温度センサ13g、13h、13iが設置されており、温度センサ13gは室内熱交換器6中間部の冷媒流路上、温度センサ13hは室内熱交換器6と液管7の間に設けられており、それぞれ設置場所での冷媒温度を計測する。温度センサ13iは室内熱交換器6に吸気される空気温度を計測する。なお、負荷となる熱媒体が水など他の媒体である場合には温度センサ13iはその媒体の流入温度を計測する。   Temperature sensors 13g, 13h, and 13i are installed in the indoor unit 2. The temperature sensor 13g is on the refrigerant flow path in the middle of the indoor heat exchanger 6, and the temperature sensor 13h is between the indoor heat exchanger 6 and the liquid pipe 7. The refrigerant temperature at each installation location is measured. The temperature sensor 13 i measures the temperature of the air taken into the indoor heat exchanger 6. When the heat medium serving as a load is another medium such as water, the temperature sensor 13i measures the inflow temperature of the medium.

温度センサ13bおよび13gはそれぞれ熱交換器中間で気液二相状態となっている冷媒温度を検知することにより、高低圧の冷媒飽和温度を検知することができる。   The temperature sensors 13b and 13g can detect the refrigerant saturation temperature at high and low pressure by detecting the refrigerant temperature in a gas-liquid two-phase state in the middle of the heat exchanger.

また、室外機1内の計測制御装置12は温度センサ13の計測情報や、冷凍空調装置使用者から指示される運転内容に基づいて、圧縮機3の運転方法、四方弁4の流路切り換え、室外熱交換器11のファン送風量、各膨張弁の開度などを制御する。なお、計測制御装置12は、上記の実施形態1の場合と同様に、熱交換量検出手段12a、過熱度検出手段12b、および目標過熱度算出手段12cの演算処理部としての機能を果たすが、それに加えて過冷却度検出手段12dの演算処理部としての機能も果たしている。この発明の過冷却度検出手段12dは、温度センサ13bおよび温度センサ13c(又は温度センサ13gおよび温度センサ13h)と計測制御装置12から構成されており、冷房運転時には温度センサ13bおよび温度センサ13cの出力に基づいて過冷却度を求め、暖房運転時には温度センサ13gおよび温度センサ13hの出力に基づいて過冷却度を求める。   In addition, the measurement control device 12 in the outdoor unit 1 is based on the measurement information of the temperature sensor 13 and the operation content instructed by the user of the refrigeration air conditioner, the operation method of the compressor 3, the flow path switching of the four-way valve 4, The fan air flow rate of the outdoor heat exchanger 11, the opening degree of each expansion valve, and the like are controlled. The measurement control device 12 functions as an arithmetic processing unit of the heat exchange amount detection means 12a, the superheat degree detection means 12b, and the target superheat degree calculation means 12c as in the case of the first embodiment. In addition, the supercooling degree detection means 12d also functions as an arithmetic processing unit. The supercooling degree detection means 12d of the present invention is composed of a temperature sensor 13b and a temperature sensor 13c (or a temperature sensor 13g and a temperature sensor 13h) and a measurement control device 12, and during the cooling operation, the temperature sensor 13b and the temperature sensor 13c The degree of supercooling is obtained based on the output, and the degree of supercooling is obtained based on the outputs of the temperature sensor 13g and the temperature sensor 13h during the heating operation.

次に、この冷凍空調装置での運転動作について説明する。
まず、冷房運転時の動作について図4および図5に示すPh線図をもとに説明する。冷房運転時には、四方弁4の流路は図1の実線方向に設定される。圧縮機3から吐出された高温高圧のガス冷媒(図5点1)は四方弁4を経て凝縮器となる室外熱交換器11に流入し、ここで放熱しながら凝縮液化し、高圧低温の冷媒となる(図5点2)。室外熱交換器11を出た冷媒は第1膨張弁10で若干減圧された後で(図5点3)、内部熱交換器14で、圧縮機3に吸入される冷媒と熱交換し冷却される(図5点4)。その後第2膨張弁8で低圧まで減圧され二相冷媒となった後で(図5点5)、室外機1を流出し、液管7を経て室内機2に流入する。そして、蒸発器となる室内熱交換器6に流入し、そこで吸熱し、蒸発ガス化(図5点6)しながら室内機2側の空気や水などの負荷側媒体に冷熱を供給する。室内熱交換器6を出た低圧ガス冷媒は室内機2を出て、ガス管5を経て室外機1に流入し、四方弁4を経た後で、内部熱交換器14で高圧冷媒と熱交換し加熱された後で(図5点7)、圧縮機3に吸入され高圧まで圧縮され吐出される(図5点1)。
Next, the operation of this refrigeration air conditioner will be described.
First, the operation during the cooling operation will be described based on the Ph diagrams shown in FIGS. 4 and 5. During the cooling operation, the flow path of the four-way valve 4 is set in the direction of the solid line in FIG. The high-temperature and high-pressure gas refrigerant (point 1 in FIG. 5) discharged from the compressor 3 flows into the outdoor heat exchanger 11 serving as a condenser through the four-way valve 4, where it condenses and liquefies while dissipating heat, and becomes a high-pressure and low-temperature refrigerant. (Point 2 in FIG. 5). The refrigerant exiting the outdoor heat exchanger 11 is slightly decompressed by the first expansion valve 10 (point 3 in FIG. 5), and then is cooled by the internal heat exchanger 14 by exchanging heat with the refrigerant sucked into the compressor 3. (Fig. 5, point 4). Thereafter, the pressure is reduced to a low pressure by the second expansion valve 8 to become a two-phase refrigerant (point 5 in FIG. 5), then flows out of the outdoor unit 1 and flows into the indoor unit 2 through the liquid pipe 7. And it flows in the indoor heat exchanger 6 used as an evaporator, absorbs heat there, and supplies cold heat to a load side medium such as air or water on the indoor unit 2 side while evaporating gas (6 in FIG. 5). The low-pressure gas refrigerant exiting the indoor heat exchanger 6 exits the indoor unit 2, flows into the outdoor unit 1 through the gas pipe 5, passes through the four-way valve 4, and then exchanges heat with the high-pressure refrigerant in the internal heat exchanger 14. After being heated (point 7 in FIG. 5), it is sucked into the compressor 3, compressed to a high pressure and discharged (point 1 in FIG. 5).

次に、暖房運転時の動作について図4および図5に示すPh線図をもとに説明する。暖房運転時には、四方弁4の流路は図1の点線方向に設定される。圧縮機3から吐出された高温高圧のガス冷媒(図5点1)は四方弁4を経て室外機1を流出しガス管5を経て室内機2に流入する。そして、室内熱交換器6に流入し、凝縮器となる室内熱交換器6で放熱しながら凝縮液化し高圧低温の液冷媒となる(図5点2)。冷媒から放熱された熱を負荷側の空気や水などの負荷側媒体に与えることで暖房を行う。室内熱交換器6を出た高圧低温の冷媒は液管7を経由して、室外機1に流入した後で、第2膨張弁8で若干減圧された後(図5点3)で、内部熱交換器14で圧縮機3吸入の低温の冷媒に熱を与え冷却される(図5点4)。そして第1膨張弁10で低圧まで減圧され二相冷媒となり(図5点5)、その後蒸発器となる室外熱交換器11に流入し、そこで吸熱し蒸発、ガス化される(図5点6)。その後四方弁4を経て内部熱交換器14で高圧の冷媒と熱交換し、さらに加熱され(図5点7)、圧縮機3に吸入され高圧まで圧縮され吐出される(図5点1)。このように、暖房運転時のPh線図は冷房運転時とほぼ同一になり、どちらの運転モードでも同様の運転を実現できる。   Next, the operation during heating operation will be described based on the Ph diagrams shown in FIGS. During the heating operation, the flow path of the four-way valve 4 is set in the direction of the dotted line in FIG. The high-temperature and high-pressure gas refrigerant (point 1 in FIG. 5) discharged from the compressor 3 flows out of the outdoor unit 1 through the four-way valve 4 and flows into the indoor unit 2 through the gas pipe 5. Then, the refrigerant flows into the indoor heat exchanger 6 and is condensed and liquefied while radiating heat in the indoor heat exchanger 6 serving as a condenser to be a high-pressure and low-temperature liquid refrigerant (point 2 in FIG. 5). Heating is performed by applying heat radiated from the refrigerant to a load-side medium such as air or water on the load side. The high-pressure and low-temperature refrigerant that has exited the indoor heat exchanger 6 flows into the outdoor unit 1 via the liquid pipe 7, and after being slightly depressurized by the second expansion valve 8 (point 3 in FIG. 5), The heat exchanger 14 heats and cools the low-temperature refrigerant sucked by the compressor 3 (point 4 in FIG. 5). Then, the pressure is reduced to a low pressure by the first expansion valve 10 to become a two-phase refrigerant (point 5 in FIG. 5), and then flows into the outdoor heat exchanger 11 serving as an evaporator, where heat is absorbed and evaporated and gasified (point 6 in FIG. 5). ). After that, the heat is exchanged with the high-pressure refrigerant in the internal heat exchanger 14 through the four-way valve 4 and further heated (point 7 in FIG. 5), sucked into the compressor 3 and compressed and discharged to the high pressure (point 1 in FIG. 5). Thus, the Ph diagram during heating operation is substantially the same as during cooling operation, and the same operation can be realized in either operation mode.

次に、冷房運転時の制御動作について説明する。冷房運転時にはまず圧縮機3の容量、第1膨張弁10の開度、第2膨張弁8の開度が初期値に設定される。そして以降運転状態に応じた各アクチュエータは以下のように制御される。圧縮機3の容量は、基本的に室内機2の温度センサ13iで計測される空気温度が、冷凍空調装置使用者が設定する温度になるように制御される。従って、空気温度が設定温度より大きく上昇している場合は、圧縮機3の容量は増加され、空気温度が設定温度に近接している場合には、圧縮機3の容量はそのまま維持され、空気温度が設定温度より低くなる場合には圧縮機3の容量は低下される。   Next, the control operation during the cooling operation will be described. During the cooling operation, first, the capacity of the compressor 3, the opening of the first expansion valve 10, and the opening of the second expansion valve 8 are set to initial values. Thereafter, each actuator according to the operating state is controlled as follows. The capacity of the compressor 3 is basically controlled so that the air temperature measured by the temperature sensor 13 i of the indoor unit 2 becomes a temperature set by the user of the refrigeration air conditioner. Therefore, when the air temperature is higher than the set temperature, the capacity of the compressor 3 is increased. When the air temperature is close to the set temperature, the capacity of the compressor 3 is maintained as it is. When the temperature is lower than the set temperature, the capacity of the compressor 3 is reduced.

各膨張弁の制御は以下のように行われる。まず第1膨張弁10は、温度センサ13bで検知される高圧冷媒の飽和温度と温度センサ13cで検知される室外熱交換器11出口温度との差温で得られる室外熱交換器11出口の冷媒過冷却度SCが予め設定された目標値、例えば10℃になるように制御される。なお、この冷媒過冷却度SCは、計測制御装置12(過冷却度検出手段12d)が温度センサ13bおよび温度センサ13cの出力に基づいて求める。冷媒過冷却度SCが目標値より大きい場合には、第1膨張弁10の開度は大きく、冷媒過冷却度SCが目標値より小さい場合には、第1膨張弁10の開度は小さく制御される。   Each expansion valve is controlled as follows. First, the first expansion valve 10 is a refrigerant at the outlet of the outdoor heat exchanger 11 that is obtained by the difference between the saturation temperature of the high-pressure refrigerant detected by the temperature sensor 13b and the outlet temperature of the outdoor heat exchanger 11 detected by the temperature sensor 13c. The supercooling degree SC is controlled to be a preset target value, for example, 10 ° C. The refrigerant supercooling degree SC is obtained by the measurement control device 12 (supercooling degree detection means 12d) based on the outputs of the temperature sensor 13b and the temperature sensor 13c. When the refrigerant supercooling degree SC is larger than the target value, the opening degree of the first expansion valve 10 is large, and when the refrigerant subcooling degree SC is smaller than the target value, the opening degree of the first expansion valve 10 is controlled to be small. Is done.

次に、第2膨張弁8は、温度センサ13eで検知される圧縮機3吸入温度と温度センサ13gで検知される低圧冷媒の飽和温度との差温で検知される圧縮機3吸入冷媒過熱度SHが予め設定された目標値、例えば10℃になるように制御される。冷媒過熱度SHが目標値より大きい場合には、第3膨張弁8の開度は大きく、冷媒過熱度SHが目標値より小さい場合には、第2膨張弁8の開度は小さく制御される。   Next, the second expansion valve 8 uses the temperature difference between the compressor 3 suction temperature detected by the temperature sensor 13e and the saturation temperature of the low-pressure refrigerant detected by the temperature sensor 13g. The SH is controlled to be a preset target value, for example, 10 ° C. When the refrigerant superheat degree SH is larger than the target value, the opening degree of the third expansion valve 8 is large, and when the refrigerant superheat degree SH is smaller than the target value, the opening degree of the second expansion valve 8 is controlled to be small. .

ここで、第2膨張弁8の制御目標となる圧縮機3吸入冷媒過熱度の目標値は、先述のとおり内部熱交換器14での熱交換量により、蒸発器となる室内機2の室内熱交換器6の出口冷媒状態が飽和ガス状態である乾き度1になるように算出されることで、運転状態の変化等により内部熱交換量が変化した場合でも高効率な運転が継続して行うことができる。   Here, the target value of the superheat degree of the refrigerant sucked by the compressor 3 as the control target of the second expansion valve 8 is the indoor heat of the indoor unit 2 serving as an evaporator according to the heat exchange amount in the internal heat exchanger 14 as described above. By calculating so that the outlet refrigerant state of the exchanger 6 becomes a dryness degree 1 that is a saturated gas state, even when the internal heat exchange amount changes due to a change in the operation state or the like, the highly efficient operation is continuously performed. be able to.

なお、この冷房運転時における圧縮機3吸入冷媒過熱度の目標値は、温度センサ13cの出力(室外機熱交換器の出口温度情報)を用いて、内部熱交換器14の高圧冷媒入り口エンタルピ(第1のエンタルピ)を算出し、温度センサ13d(内部熱交換器の出口冷媒温度情報)より高圧冷媒出口エンタルピ(第2のエンタルピ)を算出し、高圧冷媒入り口エンタルピと高圧冷媒出口エンタルピとのエンタルピ差(Δh)を算出する。そして、温度センサ13gの出力(室内機熱交換器の温度情報)により飽和ガス状態での定圧比熱(Cp)を算出し、エンタルピ差(Δh)および定圧比熱(Cp)に基づいて室内熱交換器6の出口冷媒の乾き度が1となる状態での過熱ガス度を算出し、それを目標値として設定する。   The target value of the refrigerant 3 suction refrigerant superheat degree during the cooling operation is determined by using the output of the temperature sensor 13c (outlet temperature information of the outdoor unit heat exchanger) and the high-pressure refrigerant inlet enthalpy of the internal heat exchanger 14 ( The first enthalpy is calculated, the high pressure refrigerant outlet enthalpy (second enthalpy) is calculated from the temperature sensor 13d (external refrigerant temperature information of the internal heat exchanger), and the enthalpy of the high pressure refrigerant inlet enthalpy and the high pressure refrigerant outlet enthalpy. The difference (Δh) is calculated. Then, the constant pressure specific heat (Cp) in the saturated gas state is calculated from the output of the temperature sensor 13g (temperature information of the indoor unit heat exchanger), and the indoor heat exchanger is based on the enthalpy difference (Δh) and the constant pressure specific heat (Cp). The degree of superheated gas in a state where the dryness of the outlet refrigerant of 6 is 1 is calculated and set as a target value.

次に、この冷凍空調装置での暖房運転制御動作について説明する。暖房運転時には、まず圧縮機3の容量、第1膨張弁10の開度および第2膨張弁8の開度が初期値に設定される。そして、以降運転状態に応じた各アクチュエータは以下のように制御される。圧縮機3の容量は、基本的に室内機2の温度センサ13iで計測される空気温度が、冷凍空調装置使用者が設定する温度になるように制御される。従って、空気温度が設定温度より大きく低下している場合は、圧縮機3の容量は増加され、空気温度が設定温度に近接している場合には、圧縮機3の容量はそのまま維持され、空気温度が設定温度より高くなる場合には圧縮機3の容量は低下される。   Next, the heating operation control operation in this refrigeration air conditioner will be described. During the heating operation, first, the capacity of the compressor 3, the opening of the first expansion valve 10, and the opening of the second expansion valve 8 are set to initial values. Thereafter, each actuator corresponding to the operating state is controlled as follows. The capacity of the compressor 3 is basically controlled so that the air temperature measured by the temperature sensor 13 i of the indoor unit 2 becomes a temperature set by the user of the refrigeration air conditioner. Accordingly, when the air temperature is greatly lower than the set temperature, the capacity of the compressor 3 is increased. When the air temperature is close to the set temperature, the capacity of the compressor 3 is maintained as it is, and the air When the temperature is higher than the set temperature, the capacity of the compressor 3 is reduced.

各膨張弁の制御は以下のように行われる。まず第2膨張弁8は、温度センサ13gで検知される高圧冷媒の飽和温度と温度センサ13hで検知される室内熱交換器6出口温度との差温で得られる室内熱交換器6出口の冷媒過冷却度SCが予め設定された目標値、例えば10℃になるように制御される。なお、この冷媒過冷却度SCは、計測制御装置12(過冷却度検出手段12d)が温度センサ13gおよび温度センサ13hの出力に基づいて求める。冷媒過冷却度SCが目標値より大きい場合には、第2膨張弁8の開度は大きく、冷媒過冷却度SCが目標値より小さい場合には、第2膨張弁8の開度は小さく制御される。   Each expansion valve is controlled as follows. First, the second expansion valve 8 is a refrigerant at the outlet of the indoor heat exchanger 6 that is obtained by the temperature difference between the saturation temperature of the high-pressure refrigerant detected by the temperature sensor 13g and the outlet temperature of the indoor heat exchanger 6 detected by the temperature sensor 13h. The supercooling degree SC is controlled to be a preset target value, for example, 10 ° C. The refrigerant supercooling degree SC is obtained by the measurement control device 12 (supercooling degree detection means 12d) based on the outputs of the temperature sensor 13g and the temperature sensor 13h. When the refrigerant supercooling degree SC is larger than the target value, the opening degree of the second expansion valve 8 is large, and when the refrigerant subcooling degree SC is smaller than the target value, the opening degree of the second expansion valve 8 is controlled to be small. Is done.

次に、第1膨張弁10は、温度センサ13eで検知される圧縮機3吸入温度と温度センサ13bで検知される低圧冷媒の飽和温度との差温で検知される圧縮機3吸入の冷媒過熱度SHが予め設定された目標値、例えば10℃になるように制御される。冷媒過熱度SHが目標値より大きい場合には、第1膨張弁10の開度は大きく、冷媒過熱度SHが目標値より小さい場合には、第1膨張弁10の開度は小さくされる。   Next, the first expansion valve 10 has the refrigerant 3 superheated in the compressor 3 detected by the temperature difference between the compressor 3 suction temperature detected by the temperature sensor 13e and the saturation temperature of the low-pressure refrigerant detected by the temperature sensor 13b. The degree SH is controlled to be a preset target value, for example, 10 ° C. When the refrigerant superheat degree SH is larger than the target value, the opening degree of the first expansion valve 10 is large, and when the refrigerant superheat degree SH is smaller than the target value, the opening degree of the first expansion valve 10 is made small.

ここで、第1膨張弁10の制御の目標となる、圧縮機3吸入の冷媒過熱度の目標値は、先述のとおり内部熱交換器14での熱交換量より、蒸発器となる室外機1の室外熱交換器11の出口冷媒状態が飽和ガス状態である乾き度1になるように算出されることで、運転状態の変化等により内部熱交換量が変化した場合でも高効率な運転が継続して行える。   Here, the target value of the refrigerant superheating degree of the suction of the compressor 3 which is a control target of the first expansion valve 10 is the outdoor unit 1 which becomes an evaporator from the heat exchange amount in the internal heat exchanger 14 as described above. By calculating so that the outlet refrigerant state of the outdoor heat exchanger 11 becomes a dryness degree 1 that is a saturated gas state, even when the internal heat exchange amount changes due to a change in the operation state or the like, high-efficiency operation continues. You can do it.

なお、この暖房運転時における圧縮機3吸入冷媒過熱度の目標値は、温度センサ13hの出力(室内機熱交換器の出口冷媒温度情報)を用いて、内部熱交換器14の高圧冷媒入り口エンタルピ(第1のエンタルピ)を算出し、温度センサ13j(内部熱交換器の出口冷媒温度情報)より高圧冷媒出口エンタルピ(第2のエンタルピ)を算出し、高圧冷媒入り口エンタルピと高圧冷媒出口エンタルピとのエンタルピ差(Δh)を算出する。そして、温度センサ13bの出力(室外用熱交換器の温度情報)により飽和ガス状態での定圧比熱(Cp)を算出し、上記のエンタルピ差(Δh)および定圧比熱(Cp)に基づいて室外熱交換器11の出口冷媒の乾き度が1となる状態での過熱ガス度を算出し、それを目標値として設定する。   The target value of the refrigerant 3 suction refrigerant superheat degree during the heating operation is determined by using the output of the temperature sensor 13h (the outlet refrigerant temperature information of the indoor unit heat exchanger), and the high-pressure refrigerant inlet enthalpy of the internal heat exchanger 14. (First enthalpy) is calculated, the high pressure refrigerant outlet enthalpy (second enthalpy) is calculated from the temperature sensor 13j (external refrigerant temperature information of the internal heat exchanger), and the high pressure refrigerant inlet enthalpy and the high pressure refrigerant outlet enthalpy are calculated. The enthalpy difference (Δh) is calculated. Then, the constant pressure specific heat (Cp) in the saturated gas state is calculated from the output of the temperature sensor 13b (temperature information of the outdoor heat exchanger), and the outdoor heat is calculated based on the enthalpy difference (Δh) and the constant pressure specific heat (Cp). The superheated gas degree in a state where the dryness of the outlet refrigerant of the exchanger 11 is 1 is calculated and set as a target value.

次に、本実施の形態の回路構成および制御によって実現される作用効果について説明する。本実施の形態2における冷凍空調装置においては、冷房および暖房いずれの運転においても同様な効果が得られ、高効率な運転の継続が可能となる。また、本実施の形態とする事により、凝縮器出口の冷媒状態を過冷却状態に制御することで、内部熱交換器入り口冷媒のエンタルピを確実に算出することが可能となる効果がある。   Next, functions and effects realized by the circuit configuration and control of the present embodiment will be described. In the refrigerating and air-conditioning apparatus according to the second embodiment, the same effect can be obtained in both cooling and heating operations, and high-efficiency operation can be continued. Moreover, by setting it as this Embodiment, the enthalpy of an internal heat exchanger entrance refrigerant | coolant can be calculated reliably by controlling the refrigerant | coolant state of a condenser exit to a supercooled state.

実施の形態3.
以下この発明の実施の形態3を図6に示す。図6は実施の形態3における冷凍空調装置の冷媒回路図であり、室外機1内に内部熱交換機能付き中圧レシーバ(以下、中圧レシーバという)9が設けられ、その内部に圧縮機3吸入配管が貫通している。この貫通部分の冷媒と中圧レシーバ9内の冷媒が熱交換可能な構成となっており、実施の形態1および2における内部熱交換器14と同じ機能を実現する。
Embodiment 3 FIG.
A third embodiment of the present invention is shown in FIG. FIG. 6 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 3. In the outdoor unit 1, an intermediate pressure receiver with an internal heat exchange function (hereinafter referred to as an intermediate pressure receiver) 9 is provided, and the compressor 3 is provided therein. The suction pipe penetrates. The refrigerant in the penetrating portion and the refrigerant in the intermediate pressure receiver 9 are configured to exchange heat, and realize the same function as the internal heat exchanger 14 in the first and second embodiments.

本形態における動作は中圧レシーバ9を除き、実施の形態2と同じであるので、その部分については説明を省略する。中圧レシーバ9では、冷房運転時には第1膨張弁10出口の気液二相冷媒が流入し、中圧レシーバ9内で冷却されて液となって流出する。暖房運転時には第2膨張弁8を出た気液二相冷媒が流入し、中圧レシーバ9内で冷却され液となって流出する。中圧レシーバ9内での熱交換は、主に気液二相冷媒のうちガス冷媒が吸入配管と触れて凝縮液化して熱交換される。従って、中圧レシーバ9内に滞留する液冷媒量が少ないほど、ガス冷媒と吸入配管が接触する面積が多くなり、熱交換量は増加する。逆に、中圧レシーバ9内に滞留する液冷媒量が多いと、ガス冷媒と吸入配管が接触する面積が少なくなり、熱交換量は減少する。   Since the operation in this embodiment is the same as that in the second embodiment except for the intermediate-pressure receiver 9, the description thereof is omitted. In the intermediate pressure receiver 9, the gas-liquid two-phase refrigerant at the outlet of the first expansion valve 10 flows in during the cooling operation, and is cooled in the intermediate pressure receiver 9 and flows out as liquid. During the heating operation, the gas-liquid two-phase refrigerant that has exited the second expansion valve 8 flows in, cools in the intermediate pressure receiver 9, and flows out as liquid. The heat exchange in the intermediate pressure receiver 9 is mainly performed by exchanging the gas refrigerant out of the gas-liquid two-phase refrigerant into contact with the suction pipe to be condensed and liquefied. Therefore, the smaller the amount of liquid refrigerant staying in the intermediate pressure receiver 9, the more the area where the gas refrigerant and the suction pipe are in contact with each other, and the amount of heat exchange increases. On the contrary, when the amount of liquid refrigerant staying in the intermediate pressure receiver 9 is large, the area where the gas refrigerant and the suction pipe are in contact with each other decreases, and the amount of heat exchange decreases.

このように中圧レシーバ9を備えることで以下の効果を持つ。まず、中圧レシーバ9出口は液となるので、冷房運転時に第2膨張弁8に流入する冷媒は、必ず液冷媒となるので、第2膨張弁8の流量特性が安定し、制御安定性が確保され、安定した装置運転を行うことができる。   By providing the intermediate pressure receiver 9 as described above, the following effects are obtained. First, since the outlet of the intermediate pressure receiver 9 is liquid, the refrigerant flowing into the second expansion valve 8 during the cooling operation is necessarily liquid refrigerant, so that the flow rate characteristic of the second expansion valve 8 is stable and control stability is improved. Secured and stable device operation can be performed.

また、中圧レシーバ9内が液冷媒で満たされない限りは、中圧レシーバ9出口は飽和液状態となるため、レシーバ下部の飽和液温度を検知できる位置に温度センサ13dを設置することで、冷房運転および暖房運転いずれの場合でも、中圧レシーバ9出口冷媒温度を検知できるため、温度センサを1個設置することで兼用することが可能となる。   Since the outlet of the intermediate pressure receiver 9 is in a saturated liquid state unless the inside of the intermediate pressure receiver 9 is filled with the liquid refrigerant, the temperature sensor 13d is installed at a position where the saturated liquid temperature can be detected at the lower part of the receiver. In both cases of operation and heating operation, the refrigerant pressure at the outlet of the intermediate pressure receiver 9 can be detected, so that it is possible to use both by installing one temperature sensor.

なお、中圧レシーバ9で熱交換を行う構造は、中圧レシーバ9内の冷媒と熱交換する構成であればどのような構成をとっても同様の効果を得ることができる。例えば、中圧レシーバ9の容器外周に圧縮機3の吸入配管を接触させて熱交換させる構成を用いてもよい。   In addition, as long as the structure which performs heat exchange with the intermediate pressure receiver 9 is a structure which heat-exchanges with the refrigerant | coolant in the intermediate pressure receiver 9, what kind of structure can take the same effect. For example, you may use the structure which makes the suction | inhalation piping of the compressor 3 contact the outer periphery of the container of the intermediate pressure receiver 9, and heat-exchanges.

なお、実施の形態3においては実施の形態2の内部熱交換器14を中圧レシーバ9に置き換えた例であるが、実施の形態1の内部熱交換器14を中圧レシーバ9に置き換えても同様な効果が得られる。   In the third embodiment, the internal heat exchanger 14 of the second embodiment is replaced with the intermediate pressure receiver 9, but the internal heat exchanger 14 of the first embodiment may be replaced with the intermediate pressure receiver 9. Similar effects can be obtained.

実施の形態4.
一般の冷凍サイクルの蒸発器においては熱交換器内での冷媒圧損を低減するため多パス化されており、パス毎の冷媒流量調整用の毛細管等の減圧調整手段を使用している。しかし、蒸発器出口状態を乾き度1の飽和ガス状態に制御しようとすると、パスによっては循環量不足により冷媒が過熱ガス状態となってしまい伝熱性能が低下する状態となる場合がある。このような状態ではパス毎の冷媒流量のバランス、いわゆるパスバランスがくずれ、最終的には性能低下につながる。またそのような状態が起きた場合には、過熱ガスとなった伝熱管周囲を通過する室内空気は除湿されないため、高湿度の状態で蒸発器用熱交換器を通過してしまい、蒸発器内部や吹き出し口部で結露の原因となり室内空間へ水滴となって滴下、飛散する、いわゆる露飛びの原因となり、信頼性を損ねる可能性がある。そこでこのような不具合を防ぐために、蒸発器出口冷媒状態を乾き度が1よりも若干低め(0.9〜1.0)の湿り状態で制御するのが望ましい場合もある。具体的な方法としては先ほど説明した中圧レシーバ9での熱交換量より算出した目標冷媒過熱度の値に対し、1〜2℃低くした値を制御目標値とすれば良い。
Embodiment 4 FIG.
An evaporator of a general refrigeration cycle has multiple passes in order to reduce refrigerant pressure loss in the heat exchanger, and uses decompression adjusting means such as capillaries for adjusting the refrigerant flow rate for each pass. However, if it is attempted to control the evaporator outlet state to a saturated gas state with a dryness of 1, depending on the path, the refrigerant may be in an overheated gas state due to insufficient circulation amount, resulting in a state where heat transfer performance is degraded. In such a state, the balance of the refrigerant flow rate for each pass, the so-called pass balance, is lost, and eventually the performance is reduced. In addition, when such a situation occurs, the indoor air that passes around the heat transfer tube that has become superheated gas is not dehumidified, and therefore passes through the evaporator heat exchanger in a high humidity state. This may cause condensation at the air outlet and cause water droplets to drop and scatter in the indoor space, which may cause so-called dew, which may impair reliability. Therefore, in order to prevent such problems, it may be desirable to control the evaporator outlet refrigerant state in a wet state in which the dryness is slightly lower than 1 (0.9 to 1.0). As a specific method, a value that is 1 to 2 ° C. lower than the target refrigerant superheat value calculated from the heat exchange amount in the intermediate pressure receiver 9 described above may be used as the control target value.

例えば、実施の形態3の冷房運転を例にすると、室外機熱交換器(凝縮器)11出口温度センサ13c=41.0[℃]、中圧レシーバ温度センサ13d=37.5[℃]、冷媒循環量Gr=220[kg/h]、の場合、内部熱交換器熱交換量Qは、Q=Δh×Gr=6.47[kJ/kg]×220[kg/h]=1423.3[kJ/h]、一方、温度センサ13g=11.5[℃]の場合、Cpa=1.24[kJ/kg・℃]であるため、蒸発器出口冷媒が飽和ガス状態の場合の圧縮機3吸入冷媒過熱度SHmは、SHm=Q/Gr/Cpa=5.2[℃]となる。従って、蒸発器出口冷媒状態を乾き度1の飽和ガス状態に制御する場合には、膨張弁の制御目標となる目標過度を5.2℃に設定すれば良い。ここで膨張弁の目標過熱度を4℃に設定した場合には、蒸発器出口乾き度=0.99、目標過熱度を3℃とした場合には蒸発器出口乾き度=0.98となる。   For example, taking the cooling operation of the third embodiment as an example, the outdoor unit heat exchanger (condenser) 11 outlet temperature sensor 13c = 41.0 [° C.], the intermediate pressure receiver temperature sensor 13d = 37.5 [° C.], In the case of the refrigerant circulation amount Gr = 220 [kg / h], the internal heat exchanger heat exchange amount Q is Q = Δh × Gr = 6.47 [kJ / kg] × 220 [kg / h] = 1423.3 [kJ / h] On the other hand, when the temperature sensor 13g = 11.5 [° C.], Cpa = 1.24 [kJ / kg · ° C.], so the compressor when the evaporator outlet refrigerant is in a saturated gas state 3 The suction refrigerant superheat degree SHm is SHm = Q / Gr / Cpa = 5.2 [° C.]. Therefore, when the evaporator outlet refrigerant state is controlled to a saturated gas state with a dryness of 1, the target excess that is the control target of the expansion valve may be set to 5.2 ° C. Here, when the target superheat degree of the expansion valve is set to 4 ° C., the evaporator outlet dryness = 0.99, and when the target superheat degree is 3 ° C., the evaporator outlet dryness = 0.98. .

このように周囲環境等に応じて目標とする蒸発器乾き度を変化させても良い。すなわち高湿度条件により蒸発器での結露や露飛び等が懸念される場合は蒸発器出口乾き度を1より小さくし、低湿度条件や高効率運転を行いたい場合は蒸発器出口乾き度を1にすれば良い。   In this way, the target evaporator dryness may be changed according to the surrounding environment or the like. That is, when there is a concern about condensation or dew on the evaporator due to high humidity conditions, the evaporator outlet dryness should be less than 1, and when low humidity conditions or high efficiency operation is desired, the evaporator outlet dryness should be set to 1. You can do it.

また、上記の実施の形態2および3の室外機1に着目すると、室外機1は室内機2から必要な温度情報(温度センサ13g、13h、13i)を受け取っており、このため、室内機2の形態によらず同様に高効率な運転を実現することができる。
また、室外機1は、室内機2から必要な温度情報を受け取っているので、室内機2の形態によらず同様に、露飛び等の不具合を回避する信頼性の高い運転を実現することができる。
また、上記の実施の形態1〜3の冷凍空調装置の計測制御装置12に着目すると、例えば機器の故障等により室内機2や室外機1の交換を行った場合等でも、計測制御装置12を流用する事により同様に高効率な運転を実現することができるとともに、露飛び等の不具合を回避する信頼性の高い運転を実現することができる。
Focusing on the outdoor unit 1 of the above-described Embodiments 2 and 3, the outdoor unit 1 receives necessary temperature information (temperature sensors 13g, 13h, 13i) from the indoor unit 2, and therefore, the indoor unit 2 Regardless of the form, a highly efficient operation can be realized similarly.
Moreover, since the outdoor unit 1 has received the necessary temperature information from the indoor unit 2, it is possible to realize a highly reliable operation that avoids problems such as dewdrops, regardless of the form of the indoor unit 2. it can.
Further, when paying attention to the measurement control device 12 of the refrigeration and air-conditioning apparatus according to the first to third embodiments, the measurement control device 12 can be used even when the indoor unit 2 or the outdoor unit 1 is replaced due to equipment failure or the like. By diverting, a highly efficient operation can be realized in the same manner, and a highly reliable operation that avoids problems such as dewdrops can be realized.

なお、上記の実施の形態1〜3においては冷凍空調装置の冷媒としてR410Aの例を説明したが、冷媒はR410Aに限定されるものではなく、他の冷媒にも用いることができる。   In the first to third embodiments, the example of R410A has been described as the refrigerant of the refrigeration air conditioner. However, the refrigerant is not limited to R410A and can be used for other refrigerants.

また、上記の実施の形態1〜3においては冷媒の飽和温度を凝縮器および蒸発器中間の冷媒温度センサ(13k、13n/13b、13g)で検出する例について説明したが、高低圧を検知する圧力センサを設け、計測された圧力値を換算して飽和温度を求めてもよい。   In the first to third embodiments, the example in which the saturation temperature of the refrigerant is detected by the refrigerant temperature sensor (13k, 13n / 13b, 13g) between the condenser and the evaporator has been described. A pressure sensor may be provided, and the saturation pressure may be obtained by converting the measured pressure value.

また、上記の実施の形態1〜3においては冷媒温度に基づいてエンタルピや定圧比熱を算出している例について説明しているが、この算出に際しては、例えば予め使用冷媒に対応した演算式を計測制御装置12に内蔵したマイコンに持たせることにより演算処理するものとする。   In the first to third embodiments, examples of calculating enthalpy and constant pressure specific heat based on the refrigerant temperature have been described. For this calculation, for example, an arithmetic expression corresponding to the refrigerant used is measured in advance. It is assumed that arithmetic processing is performed by providing the microcomputer incorporated in the control device 12.

この発明の第1の実施の形態を示す冷凍空調装置の冷媒回路図である。1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus showing a first embodiment of the present invention. この発明の第1の実施の形態に係わる冷凍空調装置の運転状況を表したPh線図である。It is a Ph diagram showing the operating condition of the refrigerating and air-conditioning apparatus according to the first embodiment of the present invention. 蒸発器出口乾き度と蒸発器能力の関係を示す図である。It is a figure which shows the relationship between an evaporator exit dryness and evaporator capability. この発明の第2の実施の形態を示す冷凍空調装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating and air-conditioning apparatus which shows 2nd Embodiment of this invention. この発明の第2の実施の形態に係わる冷凍空調装置の運転状況を表したPh線図である。It is a Ph diagram showing the operating condition of the refrigerating and air-conditioning apparatus according to the second embodiment of the present invention. この発明の第3の実施の形態を示す冷凍空調装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating and air-conditioning apparatus which shows the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 室外機、2 室内機、3 圧縮機、4 四方弁、5 ガス管、6 室内熱交換器、7 液管、8 第2膨張弁、9 内部熱交換機能付き中圧レシーバ、10 第1膨張弁、11 室外熱交換器、12 計測制御装置、12a 熱量交換検出手段、12b 過熱度検出手段、12c 目標過熱度算出手段、12d 過冷却度検出手段、13a、13b、13c、13d、13e、13f、13g、13h、13i、13j、13k、13l、13m、13n、13o、13p 温度センサ、14 内部熱交換器、15 凝縮器用熱交換器、16 蒸発器用熱交換器。   DESCRIPTION OF SYMBOLS 1 Outdoor unit, 2 Indoor unit, 3 Compressor, 4 Four way valve, 5 Gas pipe, 6 Indoor heat exchanger, 7 Liquid pipe, 8 2nd expansion valve, 9 Medium pressure receiver with internal heat exchange function, 10 1st expansion Valve, 11 Outdoor heat exchanger, 12 Measurement control device, 12a Heat quantity detection means, 12b Superheat degree detection means, 12c Target superheat degree calculation means, 12d Supercooling degree detection means, 13a, 13b, 13c, 13d, 13e, 13f , 13g, 13h, 13i, 13j, 13k, 13l, 13m, 13n, 13o, 13p Temperature sensor, 14 Internal heat exchanger, 15 Heat exchanger for condenser, 16 Heat exchanger for evaporator.

Claims (7)

圧縮機、凝縮器、第1の減圧装置、第2の減圧装置及び蒸発器が環状に接続された冷凍空調装置において、
前記第1の減圧装置と前記第2の減圧装置の間の冷媒と、前記蒸発器と前記圧縮機との間の冷媒とを熱交換する内部熱交換器と、
前記凝縮器出口の冷媒の過冷却度を検出する過冷却度検出手段と、
前記過冷却度検出手段により検出された過冷却度が予め定められた値となるように前記第1の減圧装置の流量調整を行う第1の制御手段と、
前記内部熱交換器での熱交換量を検出する熱交換量検出手段と、
前記内部熱交換器により過熱された後の前記圧縮機入り口の冷媒の過熱度を検出する過熱度検出手段と、
前記熱交換量検出手段により検出された前記内部熱交換量より前記蒸発器出口の冷媒が飽和ガス状態となる場合の圧縮機入り口の冷媒の過熱度を算出する目標過熱度算出手段と、
前記目標過熱度算出手段により算出された過熱度を目標過熱度とし、前記過熱度検出手段が検出する圧縮機入り口の冷媒の過熱度が前記目標過熱度に近づくように前記第2の減圧装置の流量調整を行う第2の制御装置と
を備え
前記熱交換量検出手段は、
前記凝縮器出口の冷媒温度情報に基づいて高温側冷媒の前記内部熱交換器入口冷媒の第1のエンタルピを算出し、高温側冷媒の前記内部熱交換器出口の冷媒温度情報に基づいて高温側冷媒の前記内部熱交換器出口冷媒の第2のエンタルピを算出し、前記第1のエンタルピと前記第2のエンタルピとのエンタルピ差(Δh)を算出し、そして、前記エンタルピ差(Δh)に基づいて前記内部熱交換器での熱交換量(Q)を算出し、
前記目標過熱度算出手段は、
前記蒸発器内の冷媒温度情報に基づいて冷媒の飽和ガス状態での前記定圧比熱(Cp)を求め、前記熱交換量(Q)及び低温側冷媒の内部熱交換器入口での定圧比熱(Cp)に基づいて圧縮機入り口の冷媒の過熱度を算出する
ことを特徴とする冷凍空調装置。
In the refrigeration air conditioner in which the compressor, the condenser, the first decompressor, the second decompressor, and the evaporator are connected in an annular shape,
An internal heat exchanger for exchanging heat between the refrigerant between the first pressure reducing device and the second pressure reducing device, and the refrigerant between the evaporator and the compressor;
Supercooling degree detecting means for detecting the supercooling degree of the refrigerant at the outlet of the condenser;
First control means for adjusting the flow rate of the first pressure reducing device so that the degree of supercooling detected by the degree of supercooling detection means becomes a predetermined value;
A heat exchange amount detecting means for detecting a heat exchange amount in the internal heat exchanger;
Superheat degree detection means for detecting the superheat degree of the refrigerant at the compressor inlet after being heated by the internal heat exchanger;
Target superheat degree calculating means for calculating the superheat degree of the refrigerant at the compressor inlet when the refrigerant at the evaporator outlet is in a saturated gas state from the internal heat exchange amount detected by the heat exchange amount detecting means;
The superheat degree calculated by the target superheat degree calculation means is set as the target superheat degree, and the superheat degree of the refrigerant at the compressor inlet detected by the superheat degree detection means is adjusted so as to approach the target superheat degree. A second control device for adjusting the flow rate ,
The heat exchange amount detection means includes
A first enthalpy of the internal heat exchanger inlet refrigerant of the high temperature side refrigerant is calculated based on the refrigerant temperature information of the condenser outlet, and a high temperature side is calculated based on the refrigerant temperature information of the high temperature side refrigerant of the internal heat exchanger outlet A second enthalpy of the refrigerant at the outlet of the internal heat exchanger of the refrigerant is calculated, an enthalpy difference (Δh) between the first enthalpy and the second enthalpy is calculated, and based on the enthalpy difference (Δh) Calculating the amount of heat exchange (Q) in the internal heat exchanger,
The target superheat degree calculating means includes
The constant pressure specific heat (Cp) in the saturated gas state of the refrigerant is obtained based on the refrigerant temperature information in the evaporator, and the heat exchange amount (Q) and the constant pressure specific heat (Cp at the inlet of the internal heat exchanger of the low temperature side refrigerant). ) To calculate the degree of superheat of the refrigerant at the inlet of the compressor .
前記内部熱交換器は、前記第1の減圧装置と前記第2の減圧装置の間に配置されたレシーバを備え、前記レシーバ内の冷媒と、前記蒸発器と前記圧縮機との間の冷媒とを熱交換することを特徴とする請求項記載の冷凍空調装置。 The internal heat exchanger includes a receiver disposed between the first pressure reducing device and the second pressure reducing device, a refrigerant in the receiver, and a refrigerant between the evaporator and the compressor refrigerating and air-conditioning apparatus according to claim 1, wherein the heat exchange. 前記蒸発器出口の冷媒の乾き度の目標値を1より小さくしたことを特徴とする請求項1又は2記載の冷凍空調装置。 The refrigerating and air-conditioning apparatus according to claim 1 or 2, wherein a target value of the dryness of the refrigerant at the outlet of the evaporator is made smaller than 1 . 圧縮機、四方弁、室外熱交換器、第1の減圧装置及び第2の減圧装置を搭載した冷凍空調装置の室外機において、
前記第1の減圧装置と前記第2の減圧装置の間の冷媒と、前記四方弁と前記圧縮機との間の冷媒とを熱交換する内部熱交換器と、
冷房運転時は、前記室外熱交換器の中間冷媒温度及び出口冷媒温度を使用し、暖房運転時は、室内機より送られてくる室内熱交換器の中間冷媒温度及び出口冷媒温度を使用して、前記圧縮機の出口冷媒の過冷却度を検出する過冷却度検出手段と、
前記過冷却度が予め定められた値となるように前記第1の減圧装置の流量調整を行う第1の制御装置と、
前記内部熱交換器での熱交換量を検出する熱交換量検出手段と、
前記内部熱交換器により過熱された後の前記圧縮機入り口の冷媒の過熱度を検出する過熱度検出手段と、
前記熱交換量検出手段により検出された前記内部熱交換量より前記蒸発器出口の冷媒が飽和ガス状態となる場合の圧縮機入り口の冷媒の過熱度を算出する目標過熱度算出手段と、
前記目標過熱度算出手段により算出された過熱度を目標過熱度とし、前記過熱度検出手段が検出する圧縮機入り口過熱度が前記目標過熱度になるように前記第2の減圧装置の流量調整を行う第2の制御装置と
を備え
前記熱交換量検出手段は、
暖房運転時は前記室内熱交換器の出口温度情報を、冷房運転時は前記室外熱交換器の出口冷媒温度情報をそれぞれ用いて、前記内部熱交換器の高圧冷媒入り口エンタルピを算出し、前記内部熱交換器の出口冷媒温度情報より高圧冷媒出口エンタルピを算出し、前記高圧冷媒入り口エンタルピと前記高圧冷媒出口エンタルピとのエンタルピ差(Δh)を算出し、そして、前記エンタルピ差(Δh)に基づいて前記内部熱交換器での熱交換量(Q)を算出し、
前記目標過熱度算出手段は、
冷房運転時は前記室内熱交換器の温度情報より、暖房運転時は前記室外熱交換器の温度情報より、飽和ガス状態での定圧比熱(Cp)を算出し、
前記熱交換量(Q)及び前記定圧比熱(Cp)に基づいて前記蒸発器の出口冷媒の乾き度が所定値となる状態での過熱ガス度を算出する
ことを特徴とする冷凍空調装置の室外機。
In an outdoor unit of a refrigeration air conditioner equipped with a compressor, a four-way valve, an outdoor heat exchanger, a first pressure reducing device, and a second pressure reducing device,
An internal heat exchanger for exchanging heat between the refrigerant between the first pressure reducing device and the second pressure reducing device and the refrigerant between the four-way valve and the compressor;
During cooling operation, the intermediate refrigerant temperature and outlet refrigerant temperature of the outdoor heat exchanger are used, and during heating operation, the intermediate refrigerant temperature and outlet refrigerant temperature of the indoor heat exchanger sent from the indoor unit are used. , A supercooling degree detecting means for detecting a supercooling degree of the outlet refrigerant of the compressor,
A first controller that adjusts the flow rate of the first pressure reducing device so that the degree of supercooling becomes a predetermined value;
A heat exchange amount detecting means for detecting a heat exchange amount in the internal heat exchanger;
Superheat degree detection means for detecting the superheat degree of the refrigerant at the compressor inlet after being heated by the internal heat exchanger;
Target superheat degree calculating means for calculating the superheat degree of the refrigerant at the compressor inlet when the refrigerant at the evaporator outlet is in a saturated gas state from the internal heat exchange amount detected by the heat exchange amount detecting means;
The superheat degree calculated by the target superheat degree calculation means is set as the target superheat degree, and the flow rate adjustment of the second pressure reducing device is performed so that the compressor inlet superheat degree detected by the superheat degree detection means becomes the target superheat degree. A second control device to perform ,
The heat exchange amount detection means includes
Calculate the high-pressure refrigerant inlet enthalpy of the internal heat exchanger using the outlet temperature information of the indoor heat exchanger during heating operation and the outlet refrigerant temperature information of the outdoor heat exchanger during cooling operation, respectively, The high pressure refrigerant outlet enthalpy is calculated from the outlet refrigerant temperature information of the heat exchanger, the enthalpy difference (Δh) between the high pressure refrigerant inlet enthalpy and the high pressure refrigerant outlet enthalpy is calculated, and based on the enthalpy difference (Δh) Calculate the amount of heat exchange (Q) in the internal heat exchanger,
The target superheat degree calculating means includes
From the temperature information of the indoor heat exchanger during the cooling operation, and from the temperature information of the outdoor heat exchanger during the heating operation, the constant pressure specific heat (Cp) in the saturated gas state is calculated.
The degree of superheated gas in a state where the dryness of the refrigerant at the outlet of the evaporator is a predetermined value is calculated based on the heat exchange amount (Q) and the constant pressure specific heat (Cp). Air conditioner outdoor unit.
冷房運転時は室内熱交換器出口の冷媒の乾き度の目標値を1より小さくし、暖房運転時は前記室外熱交換器出口の冷媒の乾き度の目標値を1より小さくすることを特徴とする請求項記載の冷凍空調装置の室外機。 The target value of the dryness of the refrigerant at the outlet of the indoor heat exchanger is made smaller than 1 during the cooling operation, and the target value of the dryness of the refrigerant at the outlet of the outdoor heat exchanger is made smaller than 1 during the heating operation. The outdoor unit of the refrigerating and air-conditioning apparatus according to claim 4 . 圧縮機、室外熱交換器、第1の減圧装置、内部熱交換器、第2の減圧装置及び室内熱交換器が環状に接続され、前記第1の減圧装置と前記第2の減圧装置の間の冷媒と、前記室内熱交換器と前記圧縮機との間の冷媒とを熱交換する内部熱交換器を備えた冷凍空調装置の制御装置において、
(a)暖房運転時は前記室内熱交換器の中間冷媒温度及び出口冷媒温度情報より、冷房運転時は前記室外熱交換器の中間温度および出口温度情報より、前記凝縮器の出口冷媒の過冷却度を算出し、その値があらかじめ定められた目標値に近づくように、前記第1の減圧装置による流量調整を行い、
(b)暖房運転時は前記室内熱交換器の出口温度情報を、冷房運転時は前記室外熱交換器の出口冷媒温度情報をそれぞれ用いて、前記内部熱交換器の高圧冷媒入り口エンタルピを算出し、前記内部熱交換器の出口冷媒温度情報より高圧冷媒出口エンタルピを算出し、前記高圧冷媒入り口エンタルピと前記高圧冷媒出口エンタルピとのエンタルピ差(Δh)を算出し、
(c)冷房運転時は前記室内熱交換器の温度情報より、暖房運転時は前記室外熱交換器の温度情報より、飽和ガス状態での定圧比熱(Cp)を算出し、
(d)前記エンタルピ差(Δh)及び前記定圧比熱(Cp)に基づいて前記蒸発器の出口冷媒の乾き度が所定値となる状態での過熱ガス度を算出し、
(e)前記過熱ガス度を前記第2減圧装置の制御目標値とし、前記圧縮機の吸入冷媒温度情報と、冷房運転時は前記室内熱交換器の温度情報から、暖房運転時は前記室外熱交換器の温度情報から、それぞれ圧縮機入り口の冷媒の過熱度を算出し、その値が前記目標値となるように、前記第2の減圧装置の流量調整を行う
ことを特徴とする冷凍空調装置の制御装置。
A compressor, an outdoor heat exchanger, a first pressure reducing device, an internal heat exchanger, a second pressure reducing device, and an indoor heat exchanger are connected in a ring shape, and between the first pressure reducing device and the second pressure reducing device. In the control device for a refrigeration air conditioner comprising an internal heat exchanger for exchanging heat between the refrigerant and the refrigerant between the indoor heat exchanger and the compressor,
(A) Supercooling of the outlet refrigerant of the condenser from the intermediate refrigerant temperature and outlet refrigerant temperature information of the indoor heat exchanger during heating operation, and from the intermediate temperature and outlet temperature information of the outdoor heat exchanger during cooling operation The flow rate is adjusted by the first pressure reducing device so that the value approaches a predetermined target value,
(B) Using the outlet temperature information of the indoor heat exchanger during the heating operation and the outlet refrigerant temperature information of the outdoor heat exchanger during the cooling operation, the high pressure refrigerant inlet enthalpy of the internal heat exchanger is calculated. , Calculating the high-pressure refrigerant outlet enthalpy from the outlet refrigerant temperature information of the internal heat exchanger, calculating the enthalpy difference (Δh) between the high-pressure refrigerant inlet enthalpy and the high-pressure refrigerant outlet enthalpy,
(C) The constant pressure specific heat (Cp) in the saturated gas state is calculated from the temperature information of the indoor heat exchanger during the cooling operation and from the temperature information of the outdoor heat exchanger during the heating operation,
(D) Based on the enthalpy difference (Δh) and the constant pressure specific heat (Cp), calculate the superheated gas degree in a state where the dryness of the outlet refrigerant of the evaporator becomes a predetermined value,
(E) The superheated gas degree is set as a control target value of the second decompression device, and from the refrigerant refrigerant temperature information and the temperature information of the indoor heat exchanger during the cooling operation, the outdoor heat during the heating operation. A refrigerating and air-conditioning apparatus that calculates the degree of superheat of refrigerant at the compressor inlet from the temperature information of the exchanger and adjusts the flow rate of the second decompression device so that the value becomes the target value. Control device.
冷房運転時は、前記室内熱交換器の出口冷媒の乾き度の目標値を1より小さくして前記目標過熱度を設定し、
暖房運転時は、前記室外熱交換器の出口冷媒の乾き度の目標値を1より小さくして前記目標過熱度を設定する
ことを特徴とする請求項記載の冷凍空調装置の制御装置。
During the cooling operation, the target superheat degree is set by setting the target value of the dryness of the outlet refrigerant of the indoor heat exchanger to be smaller than 1.
The control device for a refrigerating and air-conditioning apparatus according to claim 6, wherein the target superheat degree is set by setting a target value of a dryness degree of an outlet refrigerant of the outdoor heat exchanger to be smaller than 1 during a heating operation.
JP2007339098A 2007-12-28 2007-12-28 Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device Active JP4884365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007339098A JP4884365B2 (en) 2007-12-28 2007-12-28 Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007339098A JP4884365B2 (en) 2007-12-28 2007-12-28 Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device

Publications (2)

Publication Number Publication Date
JP2009162388A JP2009162388A (en) 2009-07-23
JP4884365B2 true JP4884365B2 (en) 2012-02-29

Family

ID=40965219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339098A Active JP4884365B2 (en) 2007-12-28 2007-12-28 Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device

Country Status (1)

Country Link
JP (1) JP4884365B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283589B2 (en) * 2009-08-31 2013-09-04 三菱電機株式会社 Refrigeration air conditioner
JP5452138B2 (en) * 2009-09-01 2014-03-26 三菱電機株式会社 Refrigeration air conditioner
JP5582808B2 (en) * 2010-02-10 2014-09-03 三菱重工業株式会社 Refrigeration cycle system
JP5571429B2 (en) * 2010-03-30 2014-08-13 東プレ株式会社 Gas-liquid heat exchange type refrigeration equipment
JP5153812B2 (en) * 2010-04-06 2013-02-27 三菱電機株式会社 Refrigeration air conditioner
JP5174084B2 (en) * 2010-04-30 2013-04-03 三菱電機株式会社 Refrigerator and refrigeration cycle apparatus
JP2012127606A (en) * 2010-12-17 2012-07-05 Mitsubishi Electric Corp Refrigeration air conditioner
TWI568984B (en) * 2011-09-09 2017-02-01 Topre Corp Gas - liquid heat exchange type refrigeration device
JP5959327B2 (en) * 2011-09-12 2016-08-02 大阪瓦斯株式会社 heat pump
WO2013093977A1 (en) * 2011-12-22 2013-06-27 三菱電機株式会社 Air conditioning device
JP6012757B2 (en) * 2012-11-21 2016-10-25 三菱電機株式会社 Air conditioner
JP5974960B2 (en) * 2013-04-08 2016-08-23 株式会社デンソー Battery temperature control device
JP5921776B1 (en) * 2014-09-22 2016-05-24 三菱電機株式会社 Refrigeration cycle equipment
CN107143917B (en) * 2017-05-03 2024-01-16 珠海格力电器股份有限公司 Air conditioner and control method thereof
JP6958019B2 (en) * 2017-06-22 2021-11-02 三浦工業株式会社 Low temperature cold water device
JP6540872B1 (en) * 2018-01-15 2019-07-10 ダイキン工業株式会社 Ice making system
WO2020144764A1 (en) * 2019-01-09 2020-07-16 三菱電機株式会社 Refrigeration cycle device
WO2020202553A1 (en) * 2019-04-05 2020-10-08 三菱電機株式会社 Refrigeration cycle apparatus
JP7489817B2 (en) 2020-04-17 2024-05-24 東芝ライフスタイル株式会社 Air conditioners
WO2023139758A1 (en) * 2022-01-21 2023-07-27 三菱電機株式会社 Air conditioner
WO2024121882A1 (en) * 2022-12-05 2024-06-13 三菱電機株式会社 Heat pump system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085185A (en) * 1994-06-16 1996-01-12 Mitsubishi Electric Corp Refrigerating cycle system
JPH10282572A (en) * 1997-04-10 1998-10-23 Nikon Corp Housing case for camera
JP3693562B2 (en) * 2000-10-23 2005-09-07 松下エコシステムズ株式会社 Refrigeration cycle apparatus and refrigeration cycle control method
JP4492017B2 (en) * 2000-11-09 2010-06-30 株式会社デンソー Accumulator module
JP2003004316A (en) * 2001-06-21 2003-01-08 Matsushita Electric Ind Co Ltd Method for controlling refrigeration unit
JP3900976B2 (en) * 2002-03-06 2007-04-04 三菱電機株式会社 Air conditioner and method of operating air conditioner
JP2005351537A (en) * 2004-06-10 2005-12-22 Matsushita Electric Ind Co Ltd Refrigerating cycle system and its control method
JP2006145087A (en) * 2004-11-17 2006-06-08 Denso Corp Supercritical refrigeration cycle

Also Published As

Publication number Publication date
JP2009162388A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP4884365B2 (en) Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device
JP6895901B2 (en) Air conditioner
WO2007110908A1 (en) Refrigeration air conditioning device
US20100043467A1 (en) Refrigeration system
US8205464B2 (en) Refrigeration device
WO2005019742A1 (en) Freezing apparatus
WO2006013938A1 (en) Freezing apparatus
JP4206870B2 (en) Refrigeration cycle equipment
JP5673738B2 (en) Air conditioner
JP2006112708A (en) Refrigerating air conditioner
JP6067178B2 (en) Heat source side unit and air conditioner
WO2014203364A1 (en) Heat pump apparatus
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
US20100037647A1 (en) Refrigeration device
JPWO2019064332A1 (en) Refrigeration cycle equipment
JP2019184207A (en) Air conditioner
JP5320280B2 (en) Air conditioner
JPWO2012085965A1 (en) Air conditioner
JP4462436B2 (en) Refrigeration equipment
JP2007232265A (en) Refrigeration unit
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2012127606A (en) Refrigeration air conditioner
JP6758506B2 (en) Air conditioner
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP4767340B2 (en) Heat pump control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250