JP4647399B2 - Ventilation air conditioner - Google Patents

Ventilation air conditioner Download PDF

Info

Publication number
JP4647399B2
JP4647399B2 JP2005163987A JP2005163987A JP4647399B2 JP 4647399 B2 JP4647399 B2 JP 4647399B2 JP 2005163987 A JP2005163987 A JP 2005163987A JP 2005163987 A JP2005163987 A JP 2005163987A JP 4647399 B2 JP4647399 B2 JP 4647399B2
Authority
JP
Japan
Prior art keywords
air
heat exchanger
compressor
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005163987A
Other languages
Japanese (ja)
Other versions
JP2006336971A (en
Inventor
利雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2005163987A priority Critical patent/JP4647399B2/en
Publication of JP2006336971A publication Critical patent/JP2006336971A/en
Application granted granted Critical
Publication of JP4647399B2 publication Critical patent/JP4647399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、室内に供給される空気の給気温度が比較的高く設定され、室内に取り入れられる外気単独又は室内空気を含む外気(取入空気)を除湿することが可能な換気空調装置に関する。   The present invention relates to a ventilation air conditioner in which the supply temperature of air supplied to a room is set to be relatively high, and the outside air alone or the outside air (intake air) including the room air can be dehumidified.

高温高湿時に冷房除湿運転を行い、寒冷時に暖房運転を行う空調装置は、従来から数多くの提案がなされている。例えば特許文献1には、圧縮機、四方弁、室外熱交換器、冷暖房用絞り弁、2つの室内熱交換器、四方弁及び圧縮機が順次接続され、2つの室内熱交換器間に除湿用絞り弁及び電磁弁が並列接続された冷媒回路と、2つの逆止弁が逆向きに接続され冷暖房用絞り弁をバイパスする分岐回路と、圧縮機の吐出側から電磁弁を介して2つの逆止弁の間に接続する除湿兼除霜用バイパス回路とからなるヒートポンプ式空気調和機が開示されている。この空気調和機は、上記並列接続された電磁弁を開成して通常の冷暖房運転時を行う他に、上記バイパス回路の電磁弁を開成して、冷房時に下流側室内熱交換器を除湿器及び上流側室内熱交換器を再熱器として作動させ、暖房時に室外熱交換器を除霜するものである。
また、換気機能を備えた空調装置も従来から数多く提案されており、例えば特許文献2にオールフレッシュ型空気調和機が開示されている。この空気調和機は、一定速の圧縮機を有する高温側冷凍サイクルと、可変速の圧縮機を有する低温側冷凍サイクルとを備え、高温側及び低温側冷凍サイクルにおける室内ユニットの各蒸発器をそれぞれ上流側及び下流側に配置して、幅広い温度領域にわたって外気の変動に対処させようとするものである。即ち、高温時には両方の冷凍サイクルを運転し、低温時には低温側冷凍サイクルのみを運転して、上記蒸発器で熱交換される外気の吹出温度を一定に制御するものである。
Conventionally, many proposals have been made on air conditioners that perform cooling and dehumidifying operation at high temperature and high humidity and heating operation at cold time. For example, in Patent Document 1, a compressor, a four-way valve, an outdoor heat exchanger, a cooling / heating throttle valve, two indoor heat exchangers, a four-way valve, and a compressor are sequentially connected, and dehumidification is performed between the two indoor heat exchangers. A refrigerant circuit in which a throttle valve and a solenoid valve are connected in parallel, a branch circuit in which two check valves are connected in opposite directions and bypass the throttle valve for cooling and heating, and two reverse valves via a solenoid valve from the discharge side of the compressor A heat pump type air conditioner comprising a dehumidifying and defrosting bypass circuit connected between stop valves is disclosed. This air conditioner opens the solenoid valve connected in parallel to perform normal cooling and heating operation, and also opens the solenoid valve of the bypass circuit so that the downstream indoor heat exchanger is dehumidified and air-cooled during cooling. The upstream indoor heat exchanger is operated as a reheater, and the outdoor heat exchanger is defrosted during heating.
A number of air conditioners having a ventilation function have been proposed. For example, Patent Document 2 discloses an all fresh air conditioner. This air conditioner includes a high temperature side refrigeration cycle having a constant speed compressor and a low temperature side refrigeration cycle having a variable speed compressor, and each of the evaporators of the indoor units in the high temperature side and low temperature side refrigeration cycles, respectively. It arrange | positions in an upstream and downstream, and is trying to cope with the fluctuation | variation of external air over a wide temperature range. That is, both refrigeration cycles are operated at a high temperature, and only the low temperature side refrigeration cycle is operated at a low temperature, and the temperature of the outside air exchanged by the evaporator is controlled to be constant.

更に、1つの冷媒回路に複数の圧縮機を有する空調装置も知られている。例えば特許文献3には、熱源側熱交換器及び第一の圧縮機を備えた室外ユニットと、利用側熱交換器及び送風機を備えた室内ユニットとを配管接続し、第一の圧縮機と利用側熱交換器とを接続する冷媒配管に第二の圧縮機を設けた多段圧縮型空気調和機が開示されている。この空気調和機は、室外ユニットと室内ユニットとを接続する冷媒配管が長くなっても、あるいは室外ユニットと室内ユニットの高低差が大きくなっても、冷媒循環量の低下を防止して冷暖房能力を確保しようとするものである。
しかしながら、特許文献1〜3の空気調和機は、いずれも処理対象空気を冷やしすぎ、空調装置の省エネルギーの観点からみて満足すべきものとはいえない。
特開平6−159839号公報 特開2001−27453号公報 特開平7−83520号公報
Furthermore, an air conditioner having a plurality of compressors in one refrigerant circuit is also known. For example, in Patent Document 3, an outdoor unit provided with a heat source side heat exchanger and a first compressor and an indoor unit provided with a use side heat exchanger and a blower are connected by piping to be used with the first compressor. A multistage compression type air conditioner is disclosed in which a second compressor is provided in a refrigerant pipe connecting the side heat exchanger. Even if the refrigerant pipe connecting the outdoor unit and the indoor unit becomes long or the difference in height between the outdoor unit and the indoor unit becomes large, this air conditioner prevents the refrigerant circulation rate from decreasing and improves the air conditioning capacity. It is to secure.
However, all of the air conditioners disclosed in Patent Documents 1 to 3 are not satisfactory from the viewpoint of energy saving of the air conditioner because the air to be treated is excessively cooled.
JP-A-6-159839 JP 2001-27453 A JP-A-7-83520

一方、除湿機能を備え、置換換気空調システム等の給気温度を比較的高く設定した従来の換気空調装置としては、(1)1台の空調機で外気と室内空気を処理する方法や、(2)外調機を用いる方法などがある。
方法(1)は、外気と混合した室内空気を露点温度以下まで冷却し、再熱した空気を室内に供給するものであり、低温冷水又は冷媒で全熱負荷を処理する。この方法は、比較的高温の冷水が使用できないかあるいは冷媒の蒸発温度を比較的高くすることができず、空調装置の高いCOP運転を不能とさせるので、室温に近い比較的高温の空調空気を供給するという、例えば置換換気空調等の高温給気型空調システム本来の利点を活かすことができない。更に、梅雨期などの高湿度で顕熱負荷が少ないときには、再熱が必要となり熱損失が生じる。
方法(2)は、外気処理機を別途設置し、低温冷水によって外気を露点温度以下まで冷却し、室内空気が循環する空調装置に外気処理空気を供給するものである。この方法は、外調機の熱負荷の割合が増大するため、空調システムの個別性が低下するだけでなく、外気処理機を設置する必要があり、コスト高となる。更に、方法(1)と同様に、低温冷水又は冷媒の熱負荷が増大し、熱源装置の高いCOP運転を不能とさせる。
On the other hand, as a conventional ventilation air conditioner with a dehumidifying function and a relatively high supply air temperature such as a replacement ventilation air conditioning system, (1) a method of processing outside air and indoor air with one air conditioner, 2) There is a method using an external air conditioner.
In the method (1), the indoor air mixed with the outside air is cooled to a dew point temperature or lower, and the reheated air is supplied into the room, and the total heat load is treated with low-temperature cold water or a refrigerant. In this method, relatively high temperature cold water cannot be used or the evaporation temperature of the refrigerant cannot be relatively high, and the high COP operation of the air conditioner is disabled. For example, it is impossible to take advantage of the original advantages of a high-temperature air supply type air conditioning system such as replacement ventilation air conditioning. Furthermore, when the sensible heat load is low at high humidity such as during the rainy season, reheating is required and heat loss occurs.
In the method (2), an outside air processing machine is separately installed, the outside air is cooled to a dew point temperature or lower with low-temperature cold water, and the outside air processing air is supplied to an air conditioner in which room air circulates. In this method, since the ratio of the heat load of the external air conditioner increases, not only does the individuality of the air conditioning system decrease, but an external air processing device needs to be installed, resulting in high costs. Further, similarly to the method (1), the heat load of the low-temperature cold water or the refrigerant is increased, and the high COP operation of the heat source device is disabled.

このように、従来の除湿機能を備えた換気空調装置においては、外気と室内空気を予め混合する上記方法(1)では、低温冷水又は冷媒で全熱負荷を処理するもので、比較的高温の冷水を使用することができないなど、梅雨期などに除湿空気の再熱が必要であった。また、外気処理空気を空調装置に供給する上記方法(2)では、外気処理機を設置する必要があるだけでなく、低温冷水又は冷媒の熱負荷が大きいという問題があった。
そこで、本発明の目的は、上述の従来技術の問題点を解消することにあり、低温熱源、除湿空気の再熱処理及び外気処理機を不要として、省エネルギーかつ低コストの換気空調装置を提供することにある。
As described above, in the conventional ventilation air conditioner having the dehumidifying function, the total heat load is treated with the low-temperature cold water or the refrigerant in the method (1) in which the outside air and the room air are mixed in advance. It was necessary to reheat the dehumidified air during the rainy season, such as the inability to use cold water. Further, in the above method (2) of supplying the outside air treated air to the air conditioner, it is not only necessary to install an outside air treating machine, but also there is a problem that the thermal load of the low-temperature cold water or the refrigerant is large.
Accordingly, an object of the present invention is to eliminate the above-mentioned problems of the prior art, and provide an energy-saving and low-cost ventilation air conditioner that eliminates the need for a low-temperature heat source, reheat treatment of dehumidified air, and an outside air treatment machine. It is in.

上述の目的を達成すべく、本発明の換気空調装置は、主圧縮機、四方弁、第一熱交換器、主減圧装置、第二熱交換器、更に四方弁及び主圧縮機を順次接続した冷媒回路と、副減圧装置、蒸発器及び副圧縮機を順次接続した副冷媒回路とを備え、副冷媒回路の上流側は、開閉弁を介して、冷媒回路の主減圧装置及び第二熱交換器の間に接続され、副冷媒回路の下流側となる副圧縮機の吐出側は、冷媒回路の主圧縮機の吸込み側に接続され、第二熱交換器で室内空気が熱交換され、蒸発器で取入空気が熱交換されることを特徴とする。 In order to achieve the above-mentioned object, the ventilation air conditioner of the present invention has a main compressor, a four-way valve, a first heat exchanger, a main pressure reducing device, a second heat exchanger, and further a four-way valve and a main compressor connected in order. A refrigerant circuit, and a sub refrigerant circuit in which a sub pressure reducing device, an evaporator, and a sub compressor are sequentially connected. The upstream side of the sub refrigerant circuit is connected to the main pressure reducing device and the second heat exchange of the refrigerant circuit via an on-off valve. The discharge side of the sub-compressor, which is connected between the compressors and downstream of the sub-refrigerant circuit, is connected to the suction side of the main compressor of the refrigerant circuit, and the indoor air is heat-exchanged and evaporated by the second heat exchanger The intake air is heat-exchanged in a vessel.

本発明の換気空調装置は、冷媒回路中の第二熱交換器をバイパスする冷媒管に、副減圧装置、蒸発器及び副圧縮機が接続されているので、蒸発器の使用又は不使用を選択できる。不使用の際は、副圧縮機等の副冷凍サイクルを休止できて省エネに貢献する。一方、使用時には、第二熱交換器より蒸発器の蒸発温度が低温となるため、蒸発器において熱交換される換気用取入空気が室内空調空気より低温となって、露点温度が低下し、第二熱交換器において熱交換される室内空気を比較的高い温度(例えば、25±1℃)で給気することが可能である。そして、請求項2に記載のように、上記第二熱交換器及び蒸発器をそれぞれ顕熱用熱交換器及び潜熱用熱交換器として使用することができる。
従って、第一熱交換器を除湿のための低温熱源とする必要がなく容量を低減でき、しかも、除湿空気を再熱処理したり外気処理機を設置する必要もないので、空調装置のイニシャルコストが安価なものとなる。また、1台の圧縮機で冷房と除湿を行う場合、除湿冷却器を作動させるための容量が必要であり、その容量分が除湿冷却器の不稼働時に無駄となるが、第二熱交換器を室内空気の顕熱専用に用いるため、主圧縮機の小型化が図れる。同時に、換気・除湿に要するエネルギーの増加分は殆ど副圧縮機が消費するエネルギーのみとなり、ランニングコストが低廉である。これに止まらず、室内空気の給気温度を比較的高温とすることが可能である(主圧縮機の低容量化)ので、高いCOP運転が可能で、かつ省エネルギータイプの換気空調装置を提供することができる。
請求項3に係る発明は、第二熱交換器で熱交換された室内空気の給気経路と蒸発器で熱交換された取入空気の給気経路とを別系統としたものであるから、例えば、快適な空調を享受できる置換換気空調装置として本発明の換気空調装置を利用することが可能である。
In the ventilation air conditioner of the present invention, the sub-reducing device, the evaporator, and the sub-compressor are connected to the refrigerant pipe that bypasses the second heat exchanger in the refrigerant circuit, so the use or non-use of the evaporator is selected. it can. When not in use, the auxiliary refrigeration cycle such as the auxiliary compressor can be stopped to contribute to energy saving. On the other hand, since the evaporation temperature of the evaporator is lower than that of the second heat exchanger at the time of use, the intake air for ventilation exchanged in the evaporator is lower than the indoor conditioned air, and the dew point temperature is lowered. It is possible to supply indoor air that is heat-exchanged in the second heat exchanger at a relatively high temperature (for example, 25 ± 1 ° C.). As described in claim 2, the second heat exchanger and the evaporator can be used as a sensible heat exchanger and a latent heat exchanger, respectively.
Therefore, it is not necessary to use the first heat exchanger as a low-temperature heat source for dehumidification, and the capacity can be reduced. In addition, it is not necessary to reheat the dehumidified air or to install an outside air treatment machine, so the initial cost of the air conditioner is reduced. It will be cheap. In addition, when cooling and dehumidifying with one compressor, a capacity for operating the dehumidifying cooler is necessary, and that capacity is wasted when the dehumidifying cooler is not in operation, but the second heat exchanger Is used exclusively for sensible heat of room air, so the main compressor can be downsized. At the same time, the increase in energy required for ventilation and dehumidification is almost only the energy consumed by the sub-compressor, and the running cost is low. Not only this, but the supply air temperature of the indoor air can be made relatively high (lower capacity of the main compressor), so that a high COP operation is possible and an energy saving type ventilation air conditioner is provided. be able to.
The invention according to claim 3 is a system in which the supply path of indoor air heat-exchanged by the second heat exchanger and the supply path of intake air heat-exchanged by the evaporator are separated. For example, the ventilation air conditioner of the present invention can be used as a replacement ventilation air conditioner that can enjoy comfortable air conditioning.

以下、本発明について詳細に説明する。
本発明の換気空調装置の基本的な冷媒回路を図1に示す。図1において、換気空調装置Aは、冷媒配管1に、主圧縮機2、四方弁3、第一熱交換器4、主膨張弁(主減圧装置)5、第二熱交換器6、更に四方弁3及び主圧縮機2が順次直列に接続された冷媒回路を有する。また、主膨張弁5及び第二熱交換器6の間と主圧縮機2の吸込み側との冷媒配管1に冷媒管7が接続されている。冷媒管7には、電磁開閉弁8、膨張弁やキャピラリチューブが用いられる副減圧装置(以下、専ら副膨張弁で代表する)9、蒸発器10及び副圧縮機11が冷媒の流れ方向に順次介設されている。換言すれば、主膨張弁5から延びる冷媒配管1は分岐して、一方は第二熱交換器6及びその下流側の冷媒回路へ連なり、他方は副膨張弁9、蒸発器10及び副圧縮機11を含む副冷媒回路に連なる。
Hereinafter, the present invention will be described in detail.
A basic refrigerant circuit of the ventilation air conditioner of the present invention is shown in FIG. In FIG. 1, a ventilation air conditioner A includes a refrigerant pipe 1, a main compressor 2, a four-way valve 3, a first heat exchanger 4, a main expansion valve (main decompression device) 5, a second heat exchanger 6, and further four-way. The valve 3 and the main compressor 2 have a refrigerant circuit that is sequentially connected in series. A refrigerant pipe 7 is connected to the refrigerant pipe 1 between the main expansion valve 5 and the second heat exchanger 6 and the suction side of the main compressor 2. In the refrigerant pipe 7, an electromagnetic open / close valve 8, an auxiliary pressure reducing device (hereinafter, exclusively represented by an auxiliary expansion valve) 9 using an expansion valve and a capillary tube, an evaporator 10 and an auxiliary compressor 11 are sequentially arranged in the refrigerant flow direction. It is installed. In other words, the refrigerant pipe 1 extending from the main expansion valve 5 is branched, one is connected to the second heat exchanger 6 and the refrigerant circuit downstream thereof, and the other is the sub expansion valve 9, the evaporator 10 and the sub compressor. 11 is connected to the sub refrigerant circuit including 11.

主圧縮機2は一定速の定速型圧縮機でも可変速の容量制御型圧縮機のいずれでもよい。また、第一熱交換器4は対空気熱交換器でも対水熱交換器であってもよい。対空気熱交換器の場合、第一熱交換器4は室外に排気される室内空気や屋外空気と熱交換する。対水熱交換器の場合は、例えば冷房時にクーリングタワーとの間を、また暖房時に温水ボイラとの間を水が循環する。
第二熱交換器6には循環ファン12が付設されており、室内空気がその給気経路(還気経路)を介して第二熱交換器6と室内の間を循環する。また、蒸発器10には除湿用ファン13が付設されており、蒸発器10で熱交換された取入空気、例えば屋外空気が室内に取り入れられる。そして、室内に導入される新鮮な室外空気と略同量の室内空気が室外に排気され、換気空調が行われる。なお、第二熱交換器6が配置される給気経路と蒸発器10が配置される給気経路とを別系統とすれば、除湿しない場合に室内空気の圧損を低減できる。また、第二熱交換器6で熱交換される被処理空気は、常に還気100%とは限らず、例えば春・秋等の中間期や冬季等の暖房時に外気を混合した還気であってもよい。
The main compressor 2 may be either a constant speed constant speed type compressor or a variable speed capacity control type compressor. The first heat exchanger 4 may be an air heat exchanger or a water heat exchanger. In the case of an air heat exchanger, the first heat exchanger 4 exchanges heat with indoor air or outdoor air exhausted to the outside. In the case of an anti-water heat exchanger, for example, water circulates between the cooling tower during cooling and between the hot water boiler during heating.
A circulation fan 12 is attached to the second heat exchanger 6, and the indoor air circulates between the second heat exchanger 6 and the room through the air supply path (return air path). In addition, a dehumidifying fan 13 is attached to the evaporator 10, and intake air heat-exchanged by the evaporator 10, for example, outdoor air, is taken into the room. Then, substantially the same amount of indoor air as fresh outdoor air introduced into the room is exhausted outside the room, and ventilation air conditioning is performed. In addition, if the air supply path | route in which the 2nd heat exchanger 6 is arrange | positioned, and the air supply path | route in which the evaporator 10 is arrange | positioned are made into another system, the pressure loss of room air can be reduced when not dehumidifying. In addition, the air to be treated that is heat-exchanged by the second heat exchanger 6 is not always 100% return air, and is, for example, return air mixed with outside air during heating in the intermediate period such as spring and autumn or in winter. May be.

ここで、冷媒管7に介設された電磁開閉弁8を開弁すると、冷媒は冷媒配管1の第二熱交換器6と冷媒管7の蒸発器10の両方に流れる。この時、蒸発器10の入口側の冷媒管7の口径を冷媒配管1の口径より細くしたり(キャピラリチューブ)、あるいは同じ口径として副膨張弁9の開度を絞ると、蒸発器10に流入する気液二相流は副膨張弁9を通過する際に更に減圧されるので、蒸発器10内の蒸発温度が第二熱交換器6内の蒸発温度より低くなる。そのため、蒸発器10において熱交換された取入空気は、第二熱交換器6において熱交換された室内空気より低温である。従って、熱交換された取入空気の露点温度が室内空調空気より低いので、第二熱交換器6を還気空気の顕熱処理に必要な温度レベルに維持することが可能な顕熱用熱交換器として機能させ、蒸発器10を除湿(潜熱)用熱交換器として機能させることができる。
また、室温の制御は、還気と取入空気が合流する給気経路、循環ファン12の吸入経路又は空調対象室等に配設された温度センサの検出温度に基づいて、定速型圧縮機の発停又は容量制御型圧縮機の周波数制御により行われる。
Here, when the electromagnetic opening / closing valve 8 interposed in the refrigerant pipe 7 is opened, the refrigerant flows through both the second heat exchanger 6 in the refrigerant pipe 1 and the evaporator 10 in the refrigerant pipe 7. At this time, if the diameter of the refrigerant pipe 7 on the inlet side of the evaporator 10 is made smaller than the diameter of the refrigerant pipe 1 (capillary tube) or the opening of the sub-expansion valve 9 is reduced with the same diameter, it flows into the evaporator 10. Since the gas-liquid two-phase flow is further depressurized when passing through the sub-expansion valve 9, the evaporation temperature in the evaporator 10 becomes lower than the evaporation temperature in the second heat exchanger 6. Therefore, the intake air that has undergone heat exchange in the evaporator 10 has a lower temperature than the indoor air that has undergone heat exchange in the second heat exchanger 6. Therefore, since the dew point temperature of the heat-exchanged intake air is lower than the indoor conditioned air, the sensible heat heat exchange that can maintain the second heat exchanger 6 at a temperature level necessary for the sensible heat treatment of the return air. The evaporator 10 can function as a heat exchanger for dehumidification (latent heat).
The room temperature is controlled by a constant speed compressor based on the supply air path where the return air and the intake air merge, the suction path of the circulation fan 12 or the temperature detected by the temperature sensor disposed in the air conditioning target chamber. Is performed by frequency control of the capacity control type compressor.

次に、換気空調装置Aの作用を説明する。
換気空調装置Aを冷房運転する場合、四方弁3は実線で示すように冷媒配管1に導通しており、主圧縮機2で圧縮された高温の冷媒ガスは、四方弁3を通って第一熱交換器4で空気又は水により冷却されて凝縮する。凝縮した液冷媒は、主膨張弁5で減圧されて気液二相流の状態となり、第二熱交換器6で循環ファン12の駆動により循環する室内空気と熱交換して蒸発した後、四方弁3を通って主圧縮機2に戻り、以上のようにして冷媒は冷媒配管1を循環する。冷房中の室内温度は、上述のように、例えば第二熱交換器6で熱交換された還気と蒸発器10で熱交換された別系統の取入空気とを混合した後の給気温度を温度センサで検出し、比較的高温に設定された設定温度(例えば25℃)と比較して、主圧縮機2を発停又は容量制御することにより一定に維持される。
このように、冷房時に室内空気の給気温度が比較的高温であるので、比較的低容量の主圧縮機2を使用することができ、省エネルギーの換気空調が行えると共に、高いCOP運転が可能である。
Next, the operation of the ventilation air conditioner A will be described.
When the ventilation air conditioner A is in a cooling operation, the four-way valve 3 is connected to the refrigerant pipe 1 as shown by a solid line, and the high-temperature refrigerant gas compressed by the main compressor 2 passes through the four-way valve 3 to the first. The heat exchanger 4 cools with air or water and condenses. The condensed liquid refrigerant is depressurized by the main expansion valve 5 to be in a gas-liquid two-phase state, and is evaporated by exchanging heat with indoor air circulating by driving the circulation fan 12 in the second heat exchanger 6. The refrigerant returns to the main compressor 2 through the valve 3, and the refrigerant circulates through the refrigerant pipe 1 as described above. As described above, the room temperature during cooling is, for example, the supply air temperature after mixing the return air exchanged by the second heat exchanger 6 and the intake air of another system exchanged by the evaporator 10. Is detected by a temperature sensor, and compared to a set temperature (for example, 25 ° C.) set to a relatively high temperature, the main compressor 2 is maintained constant by starting / stopping or capacity-controlling.
Thus, since the supply temperature of indoor air is relatively high during cooling, the main compressor 2 having a relatively low capacity can be used, energy-saving ventilation air conditioning can be performed, and high COP operation is possible. is there.

換気空調装置Aを冷房・除湿運転する場合は、例えば外気の相対湿度を検出する温湿度センサを設けて外気の露点温度を求め、この露点温度が蒸発器10の蒸発温度(例えば15℃)より低いときに、前記電磁開閉弁8が開弁される。尤も、外気の絶対湿度の例えば10%増しの湿度における露点温度を求めて、同露点温度が蒸発器10の蒸発温度より低いときに、電磁開閉弁8を開弁させることが実用上好ましい。電磁開閉弁8が開弁されると、主膨張弁5で減圧された気液二相流の一部は、第二熱交換器6をバイパスして、冷媒管7の副膨張弁9で更に減圧され、蒸発器10で除湿用ファン13により送風される取入空気と熱交換して蒸発し、冷媒ガスが副圧縮機11で圧縮された後、主圧縮機2の吸込み側の冷媒配管1内の冷媒ガスと合流する。冷房・除湿運転時には、蒸発器10で熱交換される際に除湿された外気又は外気と還気の一部との混合空気が、室内に取り入れられ換気に供される。
本実施の形態においては、第二熱交換器6が室内空気の顕熱専用の熱交換器であるため、冷房と除湿を1台の圧縮機で行う空調装置と比較して、主圧縮機2の容量を小さくすることができる。同時に、副圧縮機11として、主圧縮機2の容量の10〜30%のものを使用することができる。このような低容量の副圧縮機11を使用しても、外気の除湿処理に特に支障をきたすことがないので、省エネルギーの換気及び冷房・除湿運転が可能であり、ランニングコストも低廉である。因みに、第二熱交換器6と蒸発器10との処理風量比は、7〜8:3〜2の範囲にある。また、除湿のために第一熱交換器4を低温熱源とする必要がない。換言すれば、第二熱交換器6に除湿機能をもたせなくてもよいので、主圧縮機2の容量が低減できる。しかも、上述のように、小型の副圧縮機11を相対的に少量の外気に対して稼働すればよいので、梅雨期や中間期などに除湿空気の再熱処理する必要がなく、外気処理機の設置も不要であるので、換気空調装置の設備費が安価である。
In the case of cooling / dehumidifying operation of the ventilation air conditioner A, for example, a temperature / humidity sensor for detecting the relative humidity of the outside air is provided to obtain the dew point temperature of the outside air, and this dew point temperature is determined from the evaporation temperature (for example, 15 ° C.) of the evaporator 10. When low, the electromagnetic on-off valve 8 is opened. However, it is practically preferable to obtain the dew point temperature at a humidity that is, for example, 10% higher than the absolute humidity of the outside air, and to open the electromagnetic on-off valve 8 when the dew point temperature is lower than the evaporation temperature of the evaporator 10. When the electromagnetic on-off valve 8 is opened, a part of the gas-liquid two-phase flow depressurized by the main expansion valve 5 further bypasses the second heat exchanger 6 and further passes through the auxiliary expansion valve 9 of the refrigerant pipe 7. After the pressure is reduced and heat is exchanged with the intake air blown by the dehumidifying fan 13 in the evaporator 10 to evaporate and the refrigerant gas is compressed by the sub-compressor 11, the refrigerant pipe 1 on the suction side of the main compressor 2 It merges with the refrigerant gas inside. During the cooling / dehumidifying operation, the outside air dehumidified when the heat is exchanged in the evaporator 10 or a mixed air of the outside air and a part of the return air is taken into the room and used for ventilation.
In the present embodiment, since the second heat exchanger 6 is a heat exchanger dedicated to sensible heat of room air, the main compressor 2 is compared with an air conditioner that performs cooling and dehumidification with a single compressor. The capacity of can be reduced. At the same time, 10 to 30% of the capacity of the main compressor 2 can be used as the sub compressor 11. Even when such a low-capacity sub-compressor 11 is used, there is no particular hindrance to the dehumidification treatment of the outside air, so that energy-saving ventilation and cooling / dehumidification operations are possible, and the running cost is low. Incidentally, the process air volume ratio of the 2nd heat exchanger 6 and the evaporator 10 exists in the range of 7-8: 3-2. Further, it is not necessary to use the first heat exchanger 4 as a low-temperature heat source for dehumidification. In other words, the capacity of the main compressor 2 can be reduced because the second heat exchanger 6 need not have a dehumidifying function. In addition, as described above, since the small sub-compressor 11 only needs to be operated with respect to a relatively small amount of outside air, there is no need to reheat the dehumidified air during the rainy season or intermediate period, and the outside air processing machine Since installation is unnecessary, the equipment cost of the ventilation air conditioner is low.

図2は冷房・除湿運転時の冷凍サイクルのモリエル線図である。
冷媒配管1を循環する冷媒は、主圧縮機2で高温高圧のガスに圧縮され(点a)、四方弁3を通って第一熱交換器4で凝縮されて液冷媒となり(点b)、主膨張弁5で減圧される(点c)。減圧された気液二相流の冷媒は、第二熱交換器6で室内空気の顕熱と熱交換して蒸発し(点d)、下記の冷媒管7内を流れる高温の冷媒ガスと合流して、四方弁3を通って主圧縮機2に戻り(点e)、再び点aまで圧縮される。
一方、主膨張弁5と第二熱交換器6の間の冷媒配管1から冷媒管7に分流した気液二相流の冷媒は、電磁開閉弁8を通って副膨張弁9で更に減圧され(点f)、蒸発器10で取入空気の潜熱と熱交換して、上記第二熱交換器6内の蒸発温度より低い温度で蒸発し(点g)、副圧縮機11で圧縮されて昇温する(点h)。副圧縮機11から流出した冷媒ガスは、主圧縮機2の吸込み側の冷媒配管1内を流れる低温の冷媒ガスと合流する時に冷却されて、主圧縮機2に吸入される(点e)。
図2に示すモリエル線図から明らかなように、第二熱交換器6が室内空気の顕熱用熱交換器であるため、主圧縮機2として低容量のものを使用することが可能である。従って、高いCOP運転が可能であり、換気空調装置Aの省エネルギー化を図ることができる。
FIG. 2 is a Mollier diagram of the refrigeration cycle during the cooling / dehumidifying operation.
The refrigerant circulating through the refrigerant pipe 1 is compressed into a high-temperature and high-pressure gas by the main compressor 2 (point a), is condensed by the first heat exchanger 4 through the four-way valve 3, and becomes a liquid refrigerant (point b). The pressure is reduced by the main expansion valve 5 (point c). The decompressed gas-liquid two-phase flow refrigerant evaporates by exchanging heat with the sensible heat of the indoor air in the second heat exchanger 6 (point d), and merges with the high-temperature refrigerant gas flowing in the refrigerant pipe 7 described below. Then, it returns to the main compressor 2 through the four-way valve 3 (point e) and is compressed to the point a again.
On the other hand, the gas-liquid two-phase flow refrigerant that is divided into the refrigerant pipe 7 from the refrigerant pipe 1 between the main expansion valve 5 and the second heat exchanger 6 is further decompressed by the sub-expansion valve 9 through the electromagnetic on-off valve 8. (Point f), heat is exchanged with the latent heat of the intake air in the evaporator 10, evaporates at a temperature lower than the evaporation temperature in the second heat exchanger 6 (point g), and is compressed by the sub compressor 11. The temperature is raised (point h). The refrigerant gas flowing out from the sub-compressor 11 is cooled when it joins the low-temperature refrigerant gas flowing in the refrigerant pipe 1 on the suction side of the main compressor 2, and is sucked into the main compressor 2 (point e).
As apparent from the Mollier diagram shown in FIG. 2, since the second heat exchanger 6 is a heat exchanger for sensible heat of room air, a main compressor 2 having a low capacity can be used. . Therefore, high COP operation is possible, and energy saving of the ventilation air conditioner A can be achieved.

換気空調装置Aを暖房運転する場合、四方弁3は、図3に示すように、図1に示す実線から破線で示す位置に切り替えられた状態で冷媒配管1に導通している。
主圧縮機2で圧縮された高温高圧の冷媒ガスは、四方弁3を通って第二熱交換器6で循環ファン12により送風される室内空気と熱交換して凝縮する。この時、室内空気は加温される。凝縮した液冷媒は、主膨張弁5で減圧され、第一熱交換器4で空気又は水により加熱されて蒸発した後、四方弁3を通って主圧縮機2に戻る。以上のようにして冷媒は冷媒配管1を循環し、冷媒管7に冷媒は流れない。
暖房中の室内温度は、例えば、室内空気又は換気のために導入される外気との混合空気を第二熱交換器6で熱交換した後の給気温度を温度センサで検出し、設定温度(例えば25℃)と比較して、主圧縮機2を発停又は容量制御することにより一定に維持される。
When heating and operating the ventilation air conditioner A, the four-way valve 3 is electrically connected to the refrigerant pipe 1 in a state of being switched from the solid line shown in FIG. 1 to the position shown by the broken line as shown in FIG.
The high-temperature and high-pressure refrigerant gas compressed by the main compressor 2 passes through the four-way valve 3 and is condensed by exchanging heat with the indoor air blown by the circulation fan 12 in the second heat exchanger 6. At this time, the room air is heated. The condensed liquid refrigerant is decompressed by the main expansion valve 5, heated by air or water by the first heat exchanger 4 and evaporated, and then returns to the main compressor 2 through the four-way valve 3. As described above, the refrigerant circulates through the refrigerant pipe 1, and no refrigerant flows into the refrigerant pipe 7.
The indoor temperature during heating is, for example, detected by a temperature sensor after the heat exchange of indoor air or mixed air with outside air introduced for ventilation by the second heat exchanger 6, and a set temperature ( Compared to, for example, 25 ° C.), the main compressor 2 is maintained constant by starting / stopping or capacity control.

図4は、換気空調装置Aを置換換気空調に適用した場合の説明図である。
図4において、符号20は空調対象室であり、床下空間等の空調対象室20の下方に給気プレナムチャンバ21が形成され、天井裏空間等の空調対象室20の上方に排気プレナムチャンバ22が形成されている。給気プレナムチャンバ21の上面には空気抵抗が大きく強度の高い多孔板23が張り渡され、排気プレナムチャンバ22の下面には多孔板24が張り渡されている。排気プレナムチャンバ22の一側部には排気ダクト25が接続され、その他端部に室内空気を室外に排出する排気口26が形成されている。給気プレナムチャンバ21の一側部には給気ダクト27が接続されている。給気ダクト27には一端部に外気を室内に導入する外気導入口28が形成された外気導入ダクト29が接続されると共に、上記排気ダクト25と給気ダクト27の間にダンパ30を介設した還気ダクト31が接続されている。
外気導入ダクト29及び還気ダクト31の内部には、それぞれ前記換気空調装置Aを構成する除湿用ファン13を付設した蒸発器10及び循環ファン12を付設した第二熱交換器6が配置されている。蒸発器10の下方には除湿時に結露したドレンを受けるドレンパン32が配置されていて、ドレンはドレンパイプ(図示せず)を介して外気導入ダクト29の外部に排出される。なお、本実施例の第一熱交換器4は対水熱交換器であり、ポンプ33の作動により冷房時に対水熱交換器とクーリングタワー34の間を冷却水が循環する。必要に応じて、クーリングタワー34と並列に温水ボイラを接続して、暖房時に循環水を加温してもよい。
FIG. 4 is an explanatory diagram when the ventilation air conditioner A is applied to replacement ventilation air conditioning.
In FIG. 4, reference numeral 20 denotes an air conditioning target room, an air supply plenum chamber 21 is formed below the air conditioning target room 20 such as an underfloor space, and an exhaust plenum chamber 22 is positioned above the air conditioning target room 20 such as a ceiling space. Is formed. A porous plate 23 having high air resistance and high strength is stretched over the upper surface of the air supply plenum chamber 21, and a porous plate 24 is stretched over the lower surface of the exhaust plenum chamber 22. An exhaust duct 25 is connected to one side of the exhaust plenum chamber 22, and an exhaust port 26 for discharging room air to the outside is formed at the other end. An air supply duct 27 is connected to one side of the air supply plenum chamber 21. The air supply duct 27 is connected to an outside air introduction duct 29 having an outside air introduction port 28 for introducing outside air into the room at one end, and a damper 30 is interposed between the exhaust duct 25 and the air supply duct 27. The return air duct 31 is connected.
Inside the outside air introduction duct 29 and the return air duct 31, there are disposed an evaporator 10 provided with a dehumidifying fan 13 and a second heat exchanger 6 provided with a circulation fan 12 constituting the ventilation air conditioner A, respectively. Yes. A drain pan 32 that receives drain condensed during dehumidification is disposed below the evaporator 10. The drain is discharged to the outside of the outside air introduction duct 29 through a drain pipe (not shown). In addition, the 1st heat exchanger 4 of a present Example is an anti-water heat exchanger, and a cooling water circulates between an anti-water heat exchanger and the cooling tower 34 at the time of air_conditioning | cooling by the action | operation of the pump 33. If necessary, a hot water boiler may be connected in parallel with the cooling tower 34 to heat the circulating water during heating.

図4に示す置換換気空調では、給気プレナムチャンバ21から室内に上向きに一様に吹き出される空気の風速は0.2m/sec以下とする。従って、空調対象室20内の空気は通常かき乱されることがないので、冷房・除湿運転時には、下層に低温の空気層が形成され、上層に高温の空気層が分布する。空調対象室20内の空気温度は、所定の高さ位置に設置された温度センサの検出温度に基づいて、室内設定温度と一致するように制御される。上層の空気の一部は排気ダクト25を通って排気口26から室外に排出され、残りの空気は、還気ダクト31内を通過する際に第二熱交換器6で冷却され、給気ダクト27及び給気プレナムチャンバ21を通って空調対象室20に給気される。室外に排出される空気量と室内に還流される空気量の割合はダンパ30の開度を調整することによって制御され、室外に排出される空気量に見合った量の室外空気が外気導入ダクト29を介して空調対象室20内に導入される。
前記温湿度センサにより検出される外気の相対湿度に基づいて求められる外気の露点温度又はそれより幾分低い設定温度と蒸発器10の蒸発温度とを比較し、前者の温度が後者より低いときには、外気導入口28から外気導入ダクト29に取り入れられる外気は、蒸発器10で除湿された後に給気ダクト27に送気され、上述の第二熱交換器6で冷却された還気と合流して空調対象室20に給気される。
In the replacement ventilation air conditioning shown in FIG. 4, the wind speed of the air uniformly blown upward from the supply plenum chamber 21 into the room is set to 0.2 m / sec or less. Therefore, since the air in the air-conditioning target room 20 is not normally disturbed, a low-temperature air layer is formed in the lower layer and a high-temperature air layer is distributed in the upper layer during the cooling / dehumidifying operation. The air temperature in the air-conditioning target room 20 is controlled so as to coincide with the indoor set temperature based on the temperature detected by a temperature sensor installed at a predetermined height position. A part of the upper layer air is exhausted from the exhaust port 26 through the exhaust duct 25 to the outside, and the remaining air is cooled by the second heat exchanger 6 when passing through the return air duct 31, and is supplied to the air supply duct. 27 and the air supply plenum chamber 21 are supplied to the air-conditioned room 20. The ratio of the amount of air discharged to the outside and the amount of air returned to the room is controlled by adjusting the opening of the damper 30, and the amount of outdoor air corresponding to the amount of air discharged to the outside is the outside air introduction duct 29. Is introduced into the air-conditioning target room 20.
The dew point temperature of the outside air determined based on the relative humidity of the outside air detected by the temperature / humidity sensor or a set temperature somewhat lower than the dew point temperature is compared with the evaporation temperature of the evaporator 10, and when the former temperature is lower than the latter, The outside air taken into the outside air introduction duct 29 from the outside air introduction port 28 is dehumidified by the evaporator 10 and then sent to the air supply duct 27 and merges with the return air cooled by the second heat exchanger 6 described above. Air is supplied to the air-conditioned room 20.

除湿を行わない時は、前記電磁開閉弁8が閉弁されるが、空気抵抗を減少させるために、蒸発器10をバイパスするバイパスダクトを外気導入ダクト29に設けることが好ましい。また、このバイパスダクトを還気ダクト31と接続して、外気を第二熱交換器6に導いてもよい。更に、蒸発器10の上流の外気導入ダクト29及びバイパスダクトの一方又は双方にダンパを介装してもよい。
置換換気空調の冷房時や冷房・除湿時には、還気を主体とする被処理空気と処理後の給気の温度差が小さいことから、比較的低容量の主圧縮機2を使用することができ、換気空調が省エネであると共に、高いCOP運転が可能である。
暖房運転を行う場合は、空調対象室20内の空気温度の分布が冷房時と多少異なるが、給気温度は冷房運転の時とほぼ同じであるので、冷房運転とほぼ同様の置換換気空調を行うことができる。
When the dehumidification is not performed, the electromagnetic on-off valve 8 is closed. In order to reduce the air resistance, it is preferable to provide a bypass duct in the outside air introduction duct 29 that bypasses the evaporator 10. Further, this bypass duct may be connected to the return air duct 31 to guide the outside air to the second heat exchanger 6. Further, a damper may be interposed in one or both of the outside air introduction duct 29 and the bypass duct upstream of the evaporator 10.
When cooling or dehumidifying the replacement ventilation air conditioning system, the main compressor 2 having a relatively low capacity can be used because the temperature difference between the treated air mainly composed of return air and the supply air after treatment is small. Ventilation air conditioning is energy saving and high COP operation is possible.
When heating operation is performed, the air temperature distribution in the air-conditioning target room 20 is slightly different from that during cooling, but the supply air temperature is almost the same as that during cooling operation. It can be carried out.

本発明の換気空調装置を冷媒マルチ方式とした場合の冷媒回路を図5に示す。
この冷媒マルチ方式の換気空調装置Bは、図1に示す冷媒回路において、冷媒配管1中の主膨張弁5及び第二熱交換器6と電磁開閉弁8、副膨張弁9、蒸発器10及び副圧縮機11を接続する冷媒管7とをユニット化して、複数のユニット、例えば室内機を並列接続したものである。
即ち、本実施の形態は、主圧縮機2、四方弁3、第一熱交換器4及び付属品(例えば、第一熱交換器4に付属するファン又は循環ポンプや、主圧縮機2の吸込み側の冷媒配管1に接続されるアキュムレータ等)で室外機を構成し、主膨張弁5、第二熱交換器6及び循環ファン12(図示せず)等のセットの複数で第一の室内機を構成し、同様に、電磁開閉弁8、副膨張弁9、蒸発器10、副圧縮機11及び除湿用ファン13(図示せず)等のセットの複数で外気処理機能を有する第二の室内機を構成する。
FIG. 5 shows a refrigerant circuit when the ventilation air-conditioning apparatus of the present invention is a refrigerant multi-type.
This refrigerant multi-type ventilation air conditioner B includes a main expansion valve 5 and a second heat exchanger 6 and an electromagnetic on-off valve 8, a sub-expansion valve 9, an evaporator 10 and an evaporator 10 in the refrigerant pipe 1 in the refrigerant circuit shown in FIG. The refrigerant pipe 7 connected to the sub compressor 11 is unitized, and a plurality of units, for example, indoor units are connected in parallel.
That is, this embodiment is the main compressor 2, the four-way valve 3, the first heat exchanger 4, and accessories (for example, a fan or a circulation pump attached to the first heat exchanger 4, a suction of the main compressor 2) The first indoor unit is composed of a plurality of sets including a main expansion valve 5, a second heat exchanger 6 and a circulation fan 12 (not shown). Similarly, a second room having a function of treating outside air with a plurality of sets of an electromagnetic on-off valve 8, a sub-expansion valve 9, an evaporator 10, a sub-compressor 11, a dehumidifying fan 13 (not shown), etc. Configure the machine.

この冷媒回路について詳述すると、主圧縮機2から四方弁3を介して第一熱交換器4を経て主圧縮機2に戻る冷媒配管1に、主膨張弁5aと第二熱交換器6a、主膨張弁5bと第二熱交換器6b、…、主膨張弁5nと第二熱交換器6nがそれぞれ並列に接続される。更に、第二熱交換器6a,6b,…,6nをバイパスするように、主膨張弁5a,5b,…,5n及び第二熱交換器6a,6b,…,6nの間と主圧縮機2の吸込み側との冷媒配管1に、電磁開閉弁8a,8b,…,8n、副膨張弁9a,9b,…,9n、蒸発器10a,10b,…,10n及び副圧縮機11a,11b,…,11nをそれぞれ直列接続した冷媒管7a,7b,…,7nが並列に接続されている。
換言すれば、各主膨張弁5a,5b,…,5nから延びる冷媒配管1は分岐して、一方はそのセットの第二熱交換器6a,6b,…,6n及びその下流側の冷媒回路へ、他方は電磁開閉弁8a,8b,…,8n、副膨張弁9a,9b,…,9n、蒸発器10a,10b,…,10n及び副圧縮機11a,11b,…,11nがセットされた冷媒管7a,7b,…,7nの副冷媒回路に連なる。
以上の冷媒マルチ方式の換気空調装置によれば、第二熱交換器6a及び蒸発器10a、第二熱交換器6b及び蒸発器10b、…、第二熱交換器6n及び蒸発器10n毎に、前述したような冷房・除湿運転及び冷暖房運転を個別に行うことができる。
When this refrigerant circuit is explained in full detail, the main expansion valve 5a and the second heat exchanger 6a are connected to the refrigerant pipe 1 returning from the main compressor 2 through the four-way valve 3 to the main compressor 2 through the first heat exchanger 4. The main expansion valve 5b and the second heat exchanger 6b,..., The main expansion valve 5n and the second heat exchanger 6n are connected in parallel. Furthermore, between the main expansion valves 5a, 5b, ..., 5n and the second heat exchangers 6a, 6b, ..., 6n and the main compressor 2 so as to bypass the second heat exchangers 6a, 6b, ..., 6n. , 8n, sub-expansion valves 9a, 9b, ..., 9n, evaporators 10a, 10b, ..., 10n and sub-compressors 11a, 11b, ... , 11n are connected in series to refrigerant pipes 7a, 7b,.
In other words, the refrigerant pipe 1 extending from each of the main expansion valves 5a, 5b,..., 5n is branched, and one is connected to the second heat exchangers 6a, 6b,. , 8n, sub expansion valves 9a, 9b,..., 9n, evaporators 10a, 10b,..., 10n and sub compressors 11a, 11b,. It continues to the sub refrigerant circuit of the pipes 7a, 7b,.
According to the above-described refrigerant multi-type ventilation air conditioner, the second heat exchanger 6a and the evaporator 10a, the second heat exchanger 6b and the evaporator 10b, ..., the second heat exchanger 6n and the evaporator 10n, The above-described cooling / dehumidifying operation and cooling / heating operation can be performed individually.

以上の換気空調装置Bにおいて、主膨張弁5a〜5nを室外機側に配置してもよく、第一の室内機を構成する循環ファン12及び第二の室内機を構成する除湿用ファン13は、これらの室内機のケーシングの外部に配置してもよい。また、副圧縮機11a〜11nは、必ずしも個別に設ける必要はなく、1台の容量可変型の圧縮機とすることもできる。その場合、蒸発器10a〜10nの稼働台数とその熱負荷に応じて、圧縮機の容量が制御される。場合によっては、蒸発器10a〜10nを各第二熱交換器6a〜6nに対応して設ける必要はなく、その一部を省略してもよい。例えば、1基の蒸発器10aのみを設ける場合、蒸発器10aの他に、電磁開閉弁8a,副膨張弁9a及び副圧縮機11aを含み、主膨張弁5aの下流から分岐した冷媒管7aが主圧縮機2の吸込み側に接続する。
一方、蒸発器10a〜10nを1台の室内ユニットとしてもよい。その場合、第二熱交換器6a〜6nも1台の室内ユニットとされ、主膨張弁5a〜5nから延びる冷媒配管1は各冷媒管7a〜7nに接続する。また、各第二熱交換器6a〜6nで熱交換される還気の給気経路と、各蒸発器10a〜10nで熱交換される取入空気の給気経路とを、1台の室内機に直列又は並列に納めることができる。
In the above ventilation air conditioner B, the main expansion valves 5a to 5n may be arranged on the outdoor unit side, and the circulation fan 12 constituting the first indoor unit and the dehumidifying fan 13 constituting the second indoor unit are These may be arranged outside the casing of the indoor unit. The sub-compressors 11a to 11n are not necessarily provided individually, and can be a single variable capacity compressor. In that case, the capacity of the compressor is controlled according to the number of operating evaporators 10a to 10n and the heat load thereof. Depending on the case, it is not necessary to provide the evaporators 10a to 10n corresponding to the second heat exchangers 6a to 6n, and a part thereof may be omitted. For example, when only one evaporator 10a is provided, in addition to the evaporator 10a, a refrigerant pipe 7a that includes an electromagnetic on-off valve 8a, a sub-expansion valve 9a, and a sub-compressor 11a and branches from the downstream of the main expansion valve 5a is provided. Connect to the suction side of the main compressor 2.
On the other hand, the evaporators 10a to 10n may be a single indoor unit. In that case, the second heat exchangers 6a to 6n are also one indoor unit, and the refrigerant pipes 1 extending from the main expansion valves 5a to 5n are connected to the refrigerant pipes 7a to 7n. Moreover, the supply path of the return air heat-exchanged by each 2nd heat exchanger 6a-6n, and the supply path of the intake air heat-exchanged by each evaporator 10a-10n are made into one indoor unit. Can be placed in series or in parallel.

本発明の換気空調装置の基本的な冷媒回路を示す。The basic refrigerant circuit of the ventilation air conditioner of this invention is shown. 図1に示す冷凍サイクルのモリエル線図である。FIG. 2 is a Mollier diagram of the refrigeration cycle shown in FIG. 1. 暖房運転時の図1に示す冷媒回路である。It is a refrigerant circuit shown in FIG. 1 at the time of heating operation. 本発明の換気空調装置の一実施例を示す置換換気空調の説明図である。It is explanatory drawing of substitution ventilation air conditioning which shows one Example of the ventilation air conditioning apparatus of this invention. 本発明の換気空調装置を冷媒マルチ方式とした場合の冷媒回路を示す。The refrigerant circuit at the time of setting the ventilation air-conditioning apparatus of this invention to a refrigerant | coolant multi-system is shown.

符号の説明Explanation of symbols

1・・・ 冷媒配管、2・・・ 主圧縮機、3・・・ 四方弁、4・・・ 第一熱交換器、5・・・ 主膨張弁(主減圧装置)、6・・・ 第二熱交換器、7・・・ 冷媒管、8・・・ 電磁開閉弁、9・・・ 副膨張弁(副減圧装置)、10・・・ 蒸発器、11・・・ 副圧縮機、20・・・ 空調対象室、25・・・ 排気ダクト、27・・・ 給気ダクト、29・・・ 外気導入ダクト(室外空気の給気経路)、31・・・ 還気ダクト(室内空気の給気経路)、A,B・・・ 換気空調装置。
DESCRIPTION OF SYMBOLS 1 ... Refrigerant piping, 2 ... Main compressor, 3 ... Four-way valve, 4 ... 1st heat exchanger, 5 ... Main expansion valve (main decompression device), 6 ... 2nd Two heat exchangers, 7 ... Refrigerant tube, 8 ... Electromagnetic on-off valve, 9 ... Sub expansion valve (sub decompression device), 10 ... Evaporator, 11 ... Sub compressor, 20 .. Air-conditioning target room, 25 ... Exhaust duct, 27 ... Air supply duct, 29 ... Outdoor air introduction duct (air supply path for outdoor air), 31 ... Return air duct (air supply for indoor air) Route), A, B ... Ventilation air conditioner.

Claims (3)

主圧縮機、四方弁、第一熱交換器、主減圧装置、第二熱交換器、更に四方弁及び主圧縮機を順次接続した冷媒回路と、副減圧装置、蒸発器及び副圧縮機を順次接続した副冷媒回路とを備え、副冷媒回路の上流側は、開閉弁を介して、冷媒回路の主減圧装置及び第二熱交換器の間に接続され、副冷媒回路の下流側となる副圧縮機の吐出側は、冷媒回路の主圧縮機の吸込み側に接続され、第二熱交換器で室内空気が熱交換され、蒸発器で取入空気が熱交換されることを特徴とする換気空調装置。 Main compressor, four-way valve, first heat exchanger, main decompression device, second heat exchanger, refrigerant circuit with sequential connection of four-way valve and main compressor , sub decompression device, evaporator, and sub compressor A sub-refrigerant circuit, and an upstream side of the sub-refrigerant circuit is connected between the main decompression device of the refrigerant circuit and the second heat exchanger via an on-off valve, and is connected to the sub-refrigerant circuit downstream side. Ventilation characterized in that the discharge side of the compressor is connected to the suction side of the main compressor of the refrigerant circuit , the indoor air is heat-exchanged by the second heat exchanger, and the intake air is heat-exchanged by the evaporator Air conditioner. 前記第二熱交換器が顕熱用熱交換器であり、前記蒸発器が潜熱用熱交換器であることを特徴とする請求項1記載の換気空調装置。   The ventilation air conditioner according to claim 1, wherein the second heat exchanger is a sensible heat exchanger, and the evaporator is a latent heat exchanger. 熱交換された前記室内空気の給気経路と熱交換された前記取入空気の給気経路とを別系統としたことを特徴とする請求項1又は2記載の換気空調装置。   The ventilation air conditioner according to claim 1 or 2, wherein a heat supply-exchanged indoor air supply path and a heat-exchanged intake air supply path are separate systems.
JP2005163987A 2005-06-03 2005-06-03 Ventilation air conditioner Active JP4647399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163987A JP4647399B2 (en) 2005-06-03 2005-06-03 Ventilation air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163987A JP4647399B2 (en) 2005-06-03 2005-06-03 Ventilation air conditioner

Publications (2)

Publication Number Publication Date
JP2006336971A JP2006336971A (en) 2006-12-14
JP4647399B2 true JP4647399B2 (en) 2011-03-09

Family

ID=37557672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163987A Active JP4647399B2 (en) 2005-06-03 2005-06-03 Ventilation air conditioner

Country Status (1)

Country Link
JP (1) JP4647399B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952210B2 (en) * 2006-11-21 2012-06-13 ダイキン工業株式会社 Air conditioner
AU2012271757B2 (en) * 2011-06-13 2016-03-24 Fred LINGELBACH Condenser evaporator system (CES) for a refrigeration system and method
JP6235468B2 (en) 2011-06-13 2017-11-22 リンゲルバック、フレッド Cooling system and cooling method
JP6116669B2 (en) * 2013-04-10 2017-04-19 三菱電機株式会社 Dehumidifier
KR20220040220A (en) * 2020-09-23 2022-03-30 엘지전자 주식회사 Multi-air conditioner for heating, cooling and air conditioning operations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724428U (en) * 1980-07-17 1982-02-08
JPS57127757A (en) * 1981-01-30 1982-08-09 Hitachi Ltd Refrigerating plant
JPS59158968U (en) * 1983-04-08 1984-10-25
JPH0216196Y2 (en) * 1986-08-21 1990-05-02
JP2005098607A (en) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724428U (en) * 1980-07-17 1982-02-08
JPS57127757A (en) * 1981-01-30 1982-08-09 Hitachi Ltd Refrigerating plant
JPS59158968U (en) * 1983-04-08 1984-10-25
JPH0216196Y2 (en) * 1986-08-21 1990-05-02
JP2005098607A (en) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JP2006336971A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4207166B2 (en) Dehumidifying air conditioner
JP6494765B2 (en) Air conditioning system
JP4835688B2 (en) Air conditioner, air conditioning system
JP4647399B2 (en) Ventilation air conditioner
JP2005291553A (en) Multiple air conditioner
JP4520370B2 (en) Water heat source heat pump type radiation panel air conditioner
CN112229002A (en) Air conditioning system and control method thereof
US20070157660A1 (en) Air conditioner capable of selectively dehumidifying separate areas
JP5537832B2 (en) External air conditioner and external air conditioning system
JP2006317012A (en) Air conditioner
JP5049500B2 (en) Dehumidifying air conditioning system and dehumidifying air conditioner
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JP2010243005A (en) Dehumidification system
JP2002286327A (en) Dehumidifying/air conditioning apparatus
JP3614775B2 (en) Heat pump air conditioner
JP2006153321A (en) Heat pump type air conditioner
JP2020041796A (en) Air conditioner with dehumidifying function and control method thereof
CN112577101A (en) Air conditioner and control method thereof
KR101702884B1 (en) Heat Pump-Type Heating and Cooling System
US20220090816A1 (en) Multi-air conditioner for heating, cooling, and ventilation
CN216790561U (en) Heat pump system and control device thereof
JP2018025337A (en) air conditioner
JP6938950B2 (en) Air conditioning system
WO2019155614A1 (en) Air-conditioning device, air-conditioning system, and heat exchange unit
JPH07139836A (en) Double coil type heat pump package air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150