JP4966742B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4966742B2
JP4966742B2 JP2007138961A JP2007138961A JP4966742B2 JP 4966742 B2 JP4966742 B2 JP 4966742B2 JP 2007138961 A JP2007138961 A JP 2007138961A JP 2007138961 A JP2007138961 A JP 2007138961A JP 4966742 B2 JP4966742 B2 JP 4966742B2
Authority
JP
Japan
Prior art keywords
temperature
expansion valve
refrigerant
air conditioner
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007138961A
Other languages
Japanese (ja)
Other versions
JP2008292073A (en
Inventor
信志 田中
則彦 勝見
直樹 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007138961A priority Critical patent/JP4966742B2/en
Publication of JP2008292073A publication Critical patent/JP2008292073A/en
Application granted granted Critical
Publication of JP4966742B2 publication Critical patent/JP4966742B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、冷凍サイクルを形成してなる空気調和機に関する。   The present invention relates to an air conditioner that forms a refrigeration cycle.

空気調和機は、圧縮機と、圧縮された冷媒を凝縮する凝縮器と、凝縮された冷媒を減圧する膨張弁と、減圧された冷媒を蒸発する蒸発器などを、冷媒配管で連結して冷凍サイクルを形成している。   An air conditioner is a refrigeration system in which a compressor, a condenser that condenses the compressed refrigerant, an expansion valve that decompresses the condensed refrigerant, an evaporator that evaporates the decompressed refrigerant, and the like are connected by refrigerant piping. Forming a cycle.

このような空気調和機において、蒸発器を並列接続された複数の分配流路で形成して、各分配流路を通流する冷媒と空気などを熱交換させることが知られている。   In such an air conditioner, it is known that an evaporator is formed by a plurality of distribution passages connected in parallel to exchange heat between the refrigerant flowing through each distribution passage and air.

例えば、特許文献1には、室内機の内部に、複数の冷凍サイクル系統の室内熱交換器(蒸発器)を上下方向に積み重ねて配置し、各室内熱交換器の流路を、分流器を用いて並列の複数流路に分配することが記載されている。また、このような構成において冷凍サイクル系統ごとに容量制御を行うことによって、全体としての運転効率を高め、また、暖気と冷気が混ざることに起因する水飛びを抑制することができるとされている。   For example, in Patent Document 1, indoor heat exchangers (evaporators) of a plurality of refrigeration cycle systems are stacked in an up-down direction inside an indoor unit, and the flow path of each indoor heat exchanger is connected to a shunt. And distributing to a plurality of parallel flow paths. In addition, by performing capacity control for each refrigeration cycle system in such a configuration, it is said that overall operation efficiency can be improved, and water splashing due to mixing of warm air and cold air can be suppressed. .

特開平10−132399号公報JP-A-10-132399

しかしながら、上記特許文献1の技術は、複数冷凍サイクルの全体の運転効率を高めることには配慮されているが、各冷凍サイクル系統の室内熱交換器単体の熱交換効率を向上させることについて配慮されているとはいえない。   However, although the technique of Patent Document 1 is considered to improve the overall operation efficiency of a plurality of refrigeration cycles, it is considered to improve the heat exchange efficiency of a single indoor heat exchanger of each refrigeration cycle system. I cannot say that.

すなわち、特許文献1の技術では、室内熱交換器を並列接続の分配流路で形成しているため、各分配流路の配置位置の相違などに起因して熱交換条件が異なるにも関わらず、分配流路ごとの適切な冷媒流量の制御がなされず、全体として熱交換効率が抑制されるおそれがある。   That is, in the technique of Patent Document 1, since the indoor heat exchanger is formed by parallel-connected distribution flow paths, the heat exchange conditions are different due to differences in the positions of the distribution flow paths. The appropriate flow rate of the refrigerant for each distribution channel is not controlled, and the heat exchange efficiency may be suppressed as a whole.

特に、特許文献1のように、複数の分配流路を室内機の内部側面に上下方向の位置を異ならせて配置して、かつ送風ファンが室内機の側面から吸い込んだ空気を上方から吹き出す構成の場合、各分配流路と送風ファンとの距離はそれぞれ異なり、各分配流路を通過する単位時間あたりの送風量が異なる。その結果、分配流路ごとに熱交換時の冷媒温度分布のバラツキが顕著に発生し、全体の熱交換効率が抑制されるおそれがある。   In particular, as disclosed in Patent Document 1, a plurality of distribution channels are arranged at different positions in the vertical direction on the inner side surface of the indoor unit, and the blower fan blows out the air sucked from the side surface of the indoor unit from above. In this case, the distance between each distribution flow path and the blower fan is different, and the amount of air flow per unit time passing through each distribution flow path is different. As a result, the distribution of the refrigerant temperature at the time of heat exchange varies significantly for each distribution channel, and the overall heat exchange efficiency may be suppressed.

そこで、本発明は、並列接続された複数の流路を有して形成される熱交換器の熱交換効率を向上させた空気調和機を実現することを課題とする。   Then, this invention makes it a subject to implement | achieve the air conditioner which improved the heat exchange efficiency of the heat exchanger formed with a some flow path connected in parallel.

上記課題を解決するため、本発明の空気調和機は、圧縮機と、四方弁と、凝縮器と、膨張弁と、蒸発器とを冷媒を循環する配管で連結して冷凍サイクルを形成している。そして、蒸発器は、並列接続された複数の分配流路を有して形成されており、この複数の分配流路のそれぞれに膨張弁が設けられる。さらに、この各膨張弁で減圧された冷媒温度が均一になるように各膨張弁の弁開度を制御する制御手段が備えられてなることを特徴とする。   In order to solve the above problems, an air conditioner according to the present invention forms a refrigeration cycle by connecting a compressor, a four-way valve, a condenser, an expansion valve, and an evaporator with a refrigerant circulation pipe. Yes. The evaporator is formed to have a plurality of distribution channels connected in parallel, and an expansion valve is provided in each of the plurality of distribution channels. Furthermore, a control means for controlling the valve opening degree of each expansion valve is provided so that the refrigerant temperature reduced by each expansion valve becomes uniform.

すなわち、分配流路ごとに膨張弁を設けて、各膨張弁の開度を制御して冷媒通流量を調整することにより、流路ごとの熱交換条件が異なっていても、各膨張弁で減圧された冷媒温度、つまり各分配流路の冷媒蒸発温度を所望の値に均一に調整することが可能となる。これにより、全ての分配流路において適切な熱交換を図ることができ、熱交換器全体の熱交換効率を向上させることができる。   In other words, an expansion valve is provided for each distribution channel, and the opening of each expansion valve is controlled to adjust the refrigerant flow rate. It is possible to uniformly adjust the refrigerant temperature, that is, the refrigerant evaporation temperature of each distribution flow path, to a desired value. Thereby, suitable heat exchange can be aimed at in all the distribution flow paths, and the heat exchange efficiency of the whole heat exchanger can be improved.

また、このような構成によれば、例えば、一部の分配流路では送風量が多くて冷媒圧力、温度が高くなるにも関わらず、別の一部の分配流路では送風量が少なく冷媒圧力及び温度が低下して、結露による熱交換器への露付・水飛びが発生するなどの弊害を抑制することができる。   Further, according to such a configuration, for example, although some of the distribution channels have a large amount of air flow and the refrigerant pressure and temperature are high, the other of the partial distribution channels has a small amount of air flow. It is possible to suppress adverse effects such as dew condensation and water splashing on the heat exchanger due to condensation due to a decrease in pressure and temperature.

また、上述のように、並列接続された複数の分配流路のそれぞれに膨張弁を設ける構成に代えて、複数の分配流路の配置位置の近接する流路を1ブロック単位として、複数にブロック分けされたそれぞれのブロックごとに膨張弁を設けてもよい。この場合も同様に、各膨張弁で減圧された冷媒温度が均一になるように各膨張弁の弁開度を制御すればよい。   In addition, as described above, instead of the configuration in which the expansion valve is provided in each of the plurality of distribution flow paths connected in parallel, the flow paths adjacent to the arrangement positions of the plurality of distribution flow paths are divided into a plurality of blocks. An expansion valve may be provided for each divided block. Similarly in this case, the valve opening degree of each expansion valve may be controlled so that the refrigerant temperature decompressed by each expansion valve becomes uniform.

この構成は、ほぼ同じような送風条件であるとみなせる配置位置の近接した分配流路を1ブロックとして全体を複数のブロックに分割し、ブロックごとに膨張弁を設けるものである。これによれば、各分配流路の冷媒温度分布のバラツキを抑制して熱交換器全体の熱交換効率を向上させ、かつ膨張弁の部品点数を抑制することができる。   This configuration divides the whole into a plurality of blocks, with the distribution flow channel close to the arrangement position considered to be almost the same blowing condition as one block, and provides an expansion valve for each block. According to this, it is possible to improve the heat exchange efficiency of the entire heat exchanger by suppressing variations in the refrigerant temperature distribution of each distribution flow path, and to suppress the number of parts of the expansion valve.

また、各膨張弁で減圧された冷媒の温度をそれぞれ検出する温度センサを設けて、制御手段を、制御周期ごとに各温度センサの検出温度と設定された基準温度とを比較し、基準温度より高い温度が検出された温度センサに対応する膨張弁の弁開度を増加させるとともに、基準温度より低い温度が検出された温度センサに対応する膨張弁の弁開度を低減させるように構成することができる。   Also, a temperature sensor for detecting the temperature of the refrigerant decompressed by each expansion valve is provided, and the control means compares the detected temperature of each temperature sensor with a set reference temperature for each control cycle, It is configured to increase the valve opening degree of the expansion valve corresponding to the temperature sensor in which the high temperature is detected, and to reduce the valve opening degree of the expansion valve corresponding to the temperature sensor in which the temperature lower than the reference temperature is detected. Can do.

また、蒸発器の複数の分配流路を、空気調和機の室外機及び室内機の少なくともいずれか一方の筐体内部の側面に上下方向の位置を異ならせて配置するとともに、蒸発器との熱交換空気を送風する送風ファンを筐体の上部に設け、筐体の側面から吸い込んだ空気を上方に送風するよう構成することができる。   In addition, the plurality of distribution channels of the evaporator are arranged at different positions in the vertical direction on the side surface inside the housing of at least one of the outdoor unit and the indoor unit of the air conditioner, and the heat from the evaporator A blower fan that blows replacement air may be provided in the upper part of the housing, and the air sucked from the side surface of the housing may be blown upward.

このような蒸発器及び送風ファンの配置構成により、蒸発器全体に対して熱交換空気を通流させて熱交換量を確保しつつ、さらに、上述の分配流路ごとの冷媒通流量制御により冷媒温度分布のバラツキを抑制して熱交換効率を高めることができる。   With such an arrangement configuration of the evaporator and the blower fan, the heat exchange air is passed through the entire evaporator to secure the heat exchange amount, and further, the refrigerant is controlled by the refrigerant flow rate control for each distribution flow path described above. The heat exchange efficiency can be increased by suppressing variations in temperature distribution.

本発明によれば、並列接続された複数の流路を有して形成される熱交換器の熱交換効率を向上させた空気調和機を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which improved the heat exchange efficiency of the heat exchanger formed with a some flow path connected in parallel is realizable.

以下、本発明を適用してなる空気調和機の実施形態を図1〜4を用いて説明する。なお、以下は、1台の室内機に2つの冷凍サイクル系統の熱交換器が備えられる場合を例に説明するが、これに限らず、本発明は、単一の冷凍サイクル系統の場合も適用可能である。   Hereinafter, an embodiment of an air conditioner to which the present invention is applied will be described with reference to FIGS. In the following, a case where a heat exchanger of two refrigeration cycle systems is provided in one indoor unit will be described as an example. However, the present invention is not limited to this, and the present invention is also applicable to a single refrigeration cycle system. Is possible.

図1は、本実施形態の空気調和機の室内機の冷凍サイクル構成を示す図であり、図2は、本実施形態の空気調和機の室外機の冷凍サイクル構成を示す図である。本実施形態の空気調和機は、図2に示す室外機20が、図1に示す室内機1の2つの冷媒サイクル系統にそれぞれ接続されて構成される。   FIG. 1 is a diagram showing a refrigeration cycle configuration of an indoor unit of an air conditioner of the present embodiment, and FIG. 2 is a diagram showing a refrigeration cycle configuration of an outdoor unit of the air conditioner of the present embodiment. The air conditioner of this embodiment is configured by connecting the outdoor unit 20 shown in FIG. 2 to the two refrigerant cycle systems of the indoor unit 1 shown in FIG.

図1,2に示すように、室外機20は、冷媒を圧縮する圧縮機11と、冷媒の流路を冷房及び暖房で切り替える四方弁12と、冷媒と室外空気とを熱交換する室外熱交換器13と、冷媒の減圧を行う室外膨張弁14と、冷凍サイクルで不要となった液冷媒を貯留する受液器15などが、ガス冷媒配管16及び液冷媒配管17を介して連結されて構成されている。   As shown in FIGS. 1 and 2, the outdoor unit 20 includes a compressor 11 that compresses a refrigerant, a four-way valve 12 that switches a refrigerant flow path between cooling and heating, and an outdoor heat exchange that exchanges heat between the refrigerant and outdoor air. And the like, a condenser 13, an outdoor expansion valve 14 that decompresses the refrigerant, a liquid receiver 15 that stores liquid refrigerant that is no longer necessary in the refrigeration cycle, and the like are connected via a gas refrigerant pipe 16 and a liquid refrigerant pipe 17. Has been.

また、室内機1には、冷媒の減圧を行う室内膨張弁6と、冷媒と室内空気とを熱交換する室内熱交換器4,5などが設けられており、これらはガス冷媒配管16及び液冷媒配管17を介して連結されている。そして、室外機20と室内機1とが、ガス冷媒配管16及び液冷媒配管17で連結されて2系統の冷凍サイクルが形成されている。   The indoor unit 1 is also provided with an indoor expansion valve 6 for reducing the pressure of the refrigerant, indoor heat exchangers 4 and 5 for exchanging heat between the refrigerant and room air, and the like. The refrigerant pipes 17 are connected. The outdoor unit 20 and the indoor unit 1 are connected by a gas refrigerant pipe 16 and a liquid refrigerant pipe 17 to form a two-line refrigeration cycle.

ここで、本実施形態の室内機は、図1に示すように、各液冷媒配管17が並列する3本のブロック流路18に分岐しており、さらにこれらのブロック流路18がそれぞれディストリビュータ3を介して3本に分岐している。そして、並列接続された9本の分配流路を有して室内熱交換器4,5が形成され、これらの分配流路のガス冷媒配管16側は、9本の流路が1つに集合してガス冷媒配管16に接続されている。   Here, as shown in FIG. 1, the indoor unit of the present embodiment is branched into three block flow paths 18 in which the liquid refrigerant pipes 17 are arranged in parallel, and these block flow paths 18 are respectively distributed to the distributor 3. It branches into three via. The indoor heat exchangers 4 and 5 are formed with nine distribution passages connected in parallel, and nine passages are gathered into one on the gas refrigerant pipe 16 side of these distribution passages. Then, it is connected to the gas refrigerant pipe 16.

言い換えると、室内熱交換器4,5は、それぞれ並列接続の9本の分配流路を有して形成されており、分配流路の液冷媒配管17側は、配置位置の隣接する3本の分配流路ごとにブロック分け(Aブロック〜Fブロック)されている。そして、各ブロックを構成する3流路がディストリビュータ3によって集合してブロック流路18をなし、さらに、3つのブロック流路18が1つにまとまって液冷媒配管17に接続されている。   In other words, each of the indoor heat exchangers 4 and 5 has nine distribution passages connected in parallel, and the liquid refrigerant pipe 17 side of the distribution passage has three adjacent arrangement positions. Each distribution channel is divided into blocks (A block to F block). Then, the three flow paths constituting each block are gathered by the distributor 3 to form a block flow path 18, and further, the three block flow paths 18 are joined together and connected to the liquid refrigerant pipe 17.

そして、本実施形態では、ブロック流路18ごとに室内膨張弁6が設けられており、各室内膨張弁6とディストリビュータ3との間には、温度センサ2が設けられている。また、室内熱交換器4,5のガス冷媒配管16側の、9本の分配流路の集合部には、温度センサ7が設けられている。さらに、各温度センサ2及び各温度センサ7からの信号を入力として、各室内膨張弁6の弁開度の制御信号を出力する制御手段19が設けられている。   In the present embodiment, the indoor expansion valve 6 is provided for each block flow path 18, and the temperature sensor 2 is provided between each indoor expansion valve 6 and the distributor 3. In addition, a temperature sensor 7 is provided at a collection portion of the nine distribution flow paths on the gas refrigerant pipe 16 side of the indoor heat exchangers 4 and 5. Furthermore, a control means 19 is provided that outputs a control signal of the valve opening degree of each indoor expansion valve 6 by using signals from the temperature sensors 2 and 7 as inputs.

このような空気調和機の基本的な動作を説明する。冷房運転の場合、図1,2の実線矢印で示すように、圧縮機11で圧縮された高温高圧のガス冷媒は圧縮機11から吐出され、ガス冷媒が四方弁12を経て、室外熱交換器13へと流入し、ここで熱交換器して凝縮液化する。凝縮液化した冷媒は室外膨張弁14を通り、余剰冷媒は受液器15に貯留され、残りが液冷媒配管17を解して室内機1へ送られる。   The basic operation of such an air conditioner will be described. In the case of the cooling operation, as indicated by solid arrows in FIGS. 1 and 2, the high-temperature and high-pressure gas refrigerant compressed by the compressor 11 is discharged from the compressor 11, and the gas refrigerant passes through the four-way valve 12 and then the outdoor heat exchanger. It flows in into 13 and heat-exchanges here, and is condensed and liquefied. The condensed and liquefied refrigerant passes through the outdoor expansion valve 14, the surplus refrigerant is stored in the liquid receiver 15, and the remainder passes through the liquid refrigerant pipe 17 and is sent to the indoor unit 1.

送られた液冷媒は、各ブロック流路18に分岐した後それぞれ室内膨張弁6へ流入し、ここで低圧まで減圧されて低圧二相状態となり、室内熱交換器4,5で室内空気と熱交換して蒸発・ガス化する。その後、ガス冷媒は、ガス冷媒配管16を介して室外機20に流入して四方弁12を経て圧縮機11へ戻る。   The sent liquid refrigerant branches into each block flow path 18 and then flows into the indoor expansion valve 6 where it is depressurized to a low pressure to be in a low-pressure two-phase state. Replace and evaporate and gasify. Thereafter, the gas refrigerant flows into the outdoor unit 20 through the gas refrigerant pipe 16 and returns to the compressor 11 through the four-way valve 12.

暖房運転の場合、図1,2の破線矢印で示すように、圧縮機11で圧縮された高温高圧のガス冷媒は、圧縮機11から吐出され、四方弁12,ガス冷媒配管16を経て室内熱交換器4、5へ流入し、各分配流路で室内空気と熱交換して凝縮液化する。凝縮液化した冷媒は、各室内膨張弁6を介して室外機20へ流入し、受液器15で余剰冷媒を回収された後、室外膨張弁14で減圧され室外熱交換器13で室外空気と熱交換して蒸発し、ガス化する。ガス化した冷媒は四方弁12を経て圧縮機11へ戻る。   In the case of heating operation, as indicated by the broken-line arrows in FIGS. 1 and 2, the high-temperature and high-pressure gas refrigerant compressed by the compressor 11 is discharged from the compressor 11, passes through the four-way valve 12 and the gas refrigerant pipe 16, and is heated indoors. It flows into the exchangers 4 and 5 and exchanges heat with room air in each distribution flow path to be condensed and liquefied. The condensed and liquefied refrigerant flows into the outdoor unit 20 through each indoor expansion valve 6, and after the surplus refrigerant is collected by the liquid receiver 15, the refrigerant is decompressed by the outdoor expansion valve 14, and the outdoor air is exchanged by the outdoor heat exchanger 13. It evaporates by heat exchange and gasifies. The gasified refrigerant returns to the compressor 11 through the four-way valve 12.

ところで、本実施形態の空気調和機の室内機は、図3(a),(b)に示すような構造を有している。図3(a)は、室内機の正面構造図であり、図3(b)は室内機1の側面構造図である。図に示すように、室内機1の筐体内の側面に沿って、室内熱交換器4,5が上下に積み重ねられて配置されており、室内熱交換器ごとのブロックA〜Fも上下方向の位置を異ならせて配置されている。また、筐体内の上部に送風ファン8が設けられており、送風ファン8は、モータ9によってベルト10を介して駆動される。これにより、筐体の側面から吸い込まれ室内熱交換器4,5を通過して熱交換された室内空気は、筐体上方から吹きだされる。   By the way, the indoor unit of the air conditioner of this embodiment has a structure as shown to Fig.3 (a), (b). FIG. 3A is a front structural diagram of the indoor unit, and FIG. 3B is a side structural diagram of the indoor unit 1. As shown in the figure, the indoor heat exchangers 4 and 5 are vertically stacked along the side surface in the casing of the indoor unit 1, and the blocks A to F for each indoor heat exchanger are also arranged in the vertical direction. They are arranged at different positions. A blower fan 8 is provided in the upper part of the housing, and the blower fan 8 is driven by a motor 9 via a belt 10. As a result, the indoor air that has been sucked in from the side surface of the housing and has passed through the indoor heat exchangers 4 and 5 is blown out from above the housing.

このような構造をもつ室内機での室内空気の流れについて、図4を用いて説明する。図4に示すように、室内熱交換器4,5の各ブロックA〜Fは、送風ファン8との位置関係に起因して、Aから順にFへ行くに従い熱交換器を通過する風速が早くなる。このため、単位時間あたりの送風量がブロックごとに異なり、熱交換条件にバラツキが生じる。仮に、各ブロックA〜Fにおいて同等の冷媒流量が通流している場合は、ブロックごとに冷媒温度分布にバラツキが生じ、これにより熱交換器全体の熱交換効率が抑制されることとなる。   The flow of indoor air in the indoor unit having such a structure will be described with reference to FIG. As shown in FIG. 4, each of the blocks A to F of the indoor heat exchangers 4 and 5 has a higher wind speed as it passes through the heat exchanger from A to F due to the positional relationship with the blower fan 8. Become. For this reason, the blast volume per unit time is different for each block, and the heat exchange conditions vary. If the same refrigerant flow is flowing in each of the blocks A to F, the refrigerant temperature distribution varies for each block, thereby suppressing the heat exchange efficiency of the entire heat exchanger.

そこで、本実施形態の特徴部である制御手段19は、例えば冷房運転時に以下のような制御を行っている。まず、基本的な制御として、各温度センサ2,7の検出温度を入力として、温度センサ2と7との差温に基づいて、圧縮機11の吸入側の過熱度などが適切な範囲内になるように室内膨張弁6の弁開度を調整している。   Therefore, the control means 19 which is a characteristic part of the present embodiment performs the following control during cooling operation, for example. First, as basic control, the detected temperature of each of the temperature sensors 2 and 7 is input, and the degree of superheat on the suction side of the compressor 11 is within an appropriate range based on the temperature difference between the temperature sensors 2 and 7. Thus, the valve opening degree of the indoor expansion valve 6 is adjusted.

これに加えて、本実施形態では、制御手段19は、制御周期ごとに、各温度センサ2で検出された室内膨張弁6で減圧された冷媒温度(t)と、予め設定された基準温度(t´)とをそれぞれ比較する。そして、基準温度より冷媒温度が高いとき(t>t´のとき)は、その冷媒温度が検出された温度センサ2に対応する室内膨張弁6の弁開度を増加させる信号を出力する。また、基準温度より冷媒温度が低いとき(t<t´)は、その冷媒温度が検出された温度センサ2に対応する室内膨張弁6の弁開度を低減させる信号を出力する。   In addition to this, in the present embodiment, the control means 19, for each control cycle, the refrigerant temperature (t) decompressed by the indoor expansion valve 6 detected by each temperature sensor 2 and a preset reference temperature ( and t ′). When the refrigerant temperature is higher than the reference temperature (when t> t ′), a signal for increasing the valve opening degree of the indoor expansion valve 6 corresponding to the temperature sensor 2 where the refrigerant temperature is detected is output. When the refrigerant temperature is lower than the reference temperature (t <t ′), a signal for reducing the valve opening degree of the indoor expansion valve 6 corresponding to the temperature sensor 2 where the refrigerant temperature is detected is output.

このように、制御手段19は、各室内膨張弁6で減圧された冷媒温度が均一になるように各室内膨張弁6の弁開度を制御して冷媒流量調整を行っている。これによれば、1台の室内機内に配置される熱交換器の分配流路ごと、あるいはブロックごとの熱交換条件が異なっていても、各室内膨張弁で減圧された冷媒温度、つまり各分配流路の冷媒蒸発温度を所望の値に均一に調整することが可能となる。これにより、全ての分配流路において熱交換の最適化を図ることができ、熱交換器全体の熱交換効率を向上させることができる。   In this way, the control means 19 adjusts the refrigerant flow rate by controlling the valve opening degree of each indoor expansion valve 6 so that the refrigerant temperature decompressed by each indoor expansion valve 6 becomes uniform. According to this, even if the heat exchange conditions for each distribution channel or block of the heat exchanger arranged in one indoor unit are different, the refrigerant temperature reduced by each indoor expansion valve, that is, each distribution It becomes possible to uniformly adjust the refrigerant evaporation temperature of the flow path to a desired value. Thereby, optimization of heat exchange can be aimed at in all the distribution channels, and the heat exchange efficiency of the whole heat exchanger can be improved.

また、これにより、熱交換器内の温度分布のバラツキに起因して発生する露付・水飛びを、冷媒配管の長さ、配管径などの調整によらず抑制することができる。特に、出力馬力の大きい空気調和機の室内熱交換器は大型であり、室内機内での配置条件や送風ファンとの位置関係などに起因する熱交換条件のバラツキが顕著となるが、本実施形態の制御を適用することで、分配流路ごとの熱交換を最適化し、熱交換効率を向上させることができる。   In addition, this makes it possible to suppress dew and water splashing caused by variations in temperature distribution in the heat exchanger regardless of adjustment of the length of the refrigerant pipe, the pipe diameter, and the like. In particular, the indoor heat exchanger of an air conditioner with a large output horsepower is large, and variations in heat exchange conditions due to the arrangement conditions in the indoor unit and the positional relationship with the blower fan are significant. By applying this control, it is possible to optimize the heat exchange for each distribution channel and improve the heat exchange efficiency.

なお、本実施形態では、複数の分配流路を、A〜Fのブロックに分けて、各ブロックの冷媒温度を均一にする場合を説明したが、これは、厳密には異なるものの、配置位置の近接する分配流路では、ほぼ同様の熱交換条件であるとみなしているためである。したがって、分配流路の配置条件などに考慮して、1ブロックの流路本数を適宜変更してもよい。また、例えばブロック分けをせずに、分配流路ごとに室内膨張弁を設けて、上述と同様の制御を行うことも可能である。また、温度センサ2により検出された温度に基づいて弁開度の制御を行っているが、これに代えて、例えば冷媒圧力などを適用してもよい。   In the present embodiment, a case has been described in which a plurality of distribution channels are divided into blocks A to F to make the refrigerant temperature uniform in each block. This is because the adjacent distribution channels are regarded as having substantially the same heat exchange conditions. Therefore, the number of channels in one block may be changed as appropriate in consideration of the arrangement conditions of the distribution channels. For example, without dividing into blocks, it is possible to provide an indoor expansion valve for each distribution flow path and perform the same control as described above. Further, the valve opening degree is controlled based on the temperature detected by the temperature sensor 2, but instead of this, for example, a refrigerant pressure or the like may be applied.

また、本実施形態では、冷房運転時に蒸発器として作用する室内熱交換器に対して、各室内膨張弁による冷媒流量制御を行う場合を説明したが、暖房運転時に蒸発器として作用する室外熱交換器に同様の構成及び制御を適用することも可能である。   Further, in the present embodiment, a case has been described in which the refrigerant flow rate control is performed by each indoor expansion valve for the indoor heat exchanger that acts as an evaporator during cooling operation, but outdoor heat exchange that acts as an evaporator during heating operation. It is also possible to apply a similar configuration and control to the vessel.

本実施形態の空気調和機の室内機の冷凍サイクル構成を示す図である。It is a figure which shows the refrigerating cycle structure of the indoor unit of the air conditioner of this embodiment. 本実施形態の空気調和機の室外機の冷凍サイクル構成を示す図である。It is a figure which shows the refrigerating cycle structure of the outdoor unit of the air conditioner of this embodiment. 本実施形態の空気調和機の室内機の正面及び側面構造図である。It is the front and side structure figure of the indoor unit of the air conditioner of this embodiment. 室内熱交換器の分配流路ごとの風速分布を説明する図である。It is a figure explaining the wind speed distribution for every distribution channel of an indoor heat exchanger.

符号の説明Explanation of symbols

1 室内機
2,7 温度センサ
3 ディストリビュータ
4,5 室内熱交換器
6 室内膨張弁
8 送風ファン
9 モータ
10 ベルト
11 圧縮機
12 四方弁
13 室外熱交換器
14 室外膨張弁
15 受液器
16 ガス冷媒配管
17 液冷媒配管
18 ブロック流路
19 制御手段
20 室外機
DESCRIPTION OF SYMBOLS 1 Indoor unit 2, 7 Temperature sensor 3 Distributor 4, 5 Indoor heat exchanger 6 Indoor expansion valve 8 Blower fan 9 Motor 10 Belt 11 Compressor 12 Four-way valve 13 Outdoor heat exchanger 14 Outdoor expansion valve 15 Receiver 16 Gas refrigerant Piping 17 Liquid refrigerant piping 18 Block flow path 19 Control means 20 Outdoor unit

Claims (3)

圧縮機と、四方弁と、凝縮器と、蒸発器とを冷媒を循環する配管で連結して冷凍サイクルを形成してなる空気調和機であって、
前記蒸発器は、並列接続された複数の分配流路を有し、該複数の分配流路のそれぞれの冷媒の流入側に膨張弁が設けられるとともに、
前記複数の分配流路とそれぞれの前記各膨張弁との間に、該各膨張弁で減圧された冷媒の温度をそれぞれ検出する温度センサが設けられ、該温度センサの検出温度が、設定された基準温度より高い場合に、対応する前記膨張弁の弁開度を大きくし、前記基準温度より低い場合に、前記対応する前記膨張弁の開度を小さくすることにより、前記各膨張弁で減圧された冷媒温度が均一になるように前記各膨張弁の弁開度を制御する制御手段を備えたことを特徴とする空気調和機。
A compressor, a four-way valve, a condenser and, evaporator and the air conditioner by forming a refrigerating cycle by connecting a pipe for circulating the refrigerant,
The evaporator has a plurality of distribution channels connected in parallel, with bulging expansion valve is provided on the inlet side of each of the refrigerant distribution passage of said plurality of,
A temperature sensor for detecting the temperature of the refrigerant decompressed by each expansion valve is provided between each of the plurality of distribution passages and each of the expansion valves, and the detection temperature of the temperature sensor is set. When the temperature of the expansion valve is higher than the reference temperature, the opening degree of the corresponding expansion valve is increased, and when the temperature is lower than the reference temperature, the opening degree of the corresponding expansion valve is decreased. An air conditioner comprising control means for controlling the valve opening of each expansion valve so that the refrigerant temperature becomes uniform.
圧縮機と、四方弁と、凝縮器と、蒸発器とを冷媒を循環する配管で連結して冷凍サイクルを形成してなる空気調和機であって、
前記蒸発器は、並列接続された複数の分配流路を有し、該複数の分配流路の配置位置近接する流路を1ブロック単位として複数にブロック分けされ、それぞれのブロックごとの冷媒の流入側に膨張弁が設けられるとともに、
前記複数のブロックとそれぞれの前記各膨張弁との間に、該各膨張弁で減圧された冷媒の温度をそれぞれ検出する温度センサが設けられ、該温度センサの検出温度が、設定された基準温度より高い場合に、対応する前記膨張弁の弁開度を大きくし、前記基準温度より低い場合に、対応する前記膨張弁の開度を小さくすることにより、前記各膨張弁で減圧された冷媒温度が均一になるように前記各膨張弁の弁開度を制御する制御手段を備えたことを特徴とする空気調和機。
A compressor, a four-way valve, a condenser and, evaporator and the air conditioner by forming a refrigerating cycle by connecting a pipe for circulating the refrigerant,
The evaporator has a plurality of distribution channels connected in parallel, is divided into blocks to multiple flow paths positions of the distribution channel of said plurality of proximity as a block by block, No, respectively Re its with Rise expansion valve is provided on the inlet side of the refrigerant for each block,
A temperature sensor for detecting the temperature of the refrigerant decompressed by each expansion valve is provided between each of the plurality of blocks and each of the expansion valves, and the detected temperature of the temperature sensor is a set reference temperature. The refrigerant temperature reduced by each expansion valve by increasing the valve opening degree of the corresponding expansion valve when higher, and decreasing the opening degree of the corresponding expansion valve when lower than the reference temperature. An air conditioner comprising control means for controlling the valve opening degree of each expansion valve so as to be uniform.
前記蒸発器の複数の分配流路は、空気調和機の室外機及び室内機の少なくともいずれか一方の筐体内部の側面に上下方向の位置を異ならせて配置され、前記蒸発器との熱交換空気を送風する送風ファンは、前記筐体の上部に設けられ、筐体の側面から吸い込んだ空気を上方に送風するよう構成されてなることを特徴とする請求項1又は2に記載の空気調和機。 The plurality of distribution channels of the evaporator are arranged at different positions in the vertical direction on the side surface inside the housing of at least one of the outdoor unit and the indoor unit of the air conditioner, and exchange heat with the evaporator. The air conditioner according to claim 1 or 2 , wherein a blower fan that blows air is provided at an upper portion of the casing and is configured to blow upward the air sucked from a side surface of the casing. Machine.
JP2007138961A 2007-05-25 2007-05-25 Air conditioner Expired - Fee Related JP4966742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138961A JP4966742B2 (en) 2007-05-25 2007-05-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138961A JP4966742B2 (en) 2007-05-25 2007-05-25 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008292073A JP2008292073A (en) 2008-12-04
JP4966742B2 true JP4966742B2 (en) 2012-07-04

Family

ID=40166981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138961A Expired - Fee Related JP4966742B2 (en) 2007-05-25 2007-05-25 Air conditioner

Country Status (1)

Country Link
JP (1) JP4966742B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072679A1 (en) * 2009-12-18 2011-06-23 Danfoss A/S A vapour compression system with split evaporator
US8887518B2 (en) * 2010-09-30 2014-11-18 Trane International Inc. Expansion valve control system and method for air conditioning apparatus
JP5889745B2 (en) * 2012-08-03 2016-03-22 日立アプライアンス株式会社 Refrigeration cycle apparatus, and refrigeration apparatus and air conditioner equipped with the refrigeration cycle apparatus
JP5874754B2 (en) * 2014-01-31 2016-03-02 ダイキン工業株式会社 Refrigeration equipment
CN105066501B (en) * 2015-07-22 2017-05-03 广东美的暖通设备有限公司 Outdoor unit of multi-split air conditioner and multi-split air conditioner comprising same
CN113639437A (en) * 2021-08-09 2021-11-12 青岛海尔空调器有限总公司 Air conditioner control method and device, electronic equipment, storage medium and air conditioner
CN113819593A (en) * 2021-08-16 2021-12-21 青岛海尔空调器有限总公司 Air conditioner refrigerant flow control method and device and air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015847U (en) * 1973-06-09 1975-02-19
JPS5450854U (en) * 1977-09-17 1979-04-09
JPS60138378A (en) * 1983-12-26 1985-07-23 株式会社前川製作所 Refrigerator
JP4151625B2 (en) * 2004-07-21 2008-09-17 松下電器産業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2008292073A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP6723354B2 (en) Refrigeration cycle equipment
KR101973203B1 (en) A united type system of air conditioning and cooling
JP4358832B2 (en) Refrigeration air conditioner
CN107014101B (en) Air conditioner
JP4966742B2 (en) Air conditioner
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
JP4969608B2 (en) Air conditioner
GB2569898A (en) Air conditioner
US20080092572A1 (en) Simultaneous cooling-heating multiple type air conditioner
JP5749210B2 (en) Air conditioner
JP6285172B2 (en) Air conditioner outdoor unit
JP2009133624A (en) Refrigerating/air-conditioning device
AU2013250512B2 (en) Air conditioner
JP4418936B2 (en) Air conditioner
KR20150017069A (en) Air conditioner
JPWO2012085965A1 (en) Air conditioner
KR20060066838A (en) Method for controlling indoor unit of multi-air conditioner
JP2014126291A (en) Air conditioning system
JP2019196851A5 (en)
JP5874754B2 (en) Refrigeration equipment
KR20130032681A (en) Air conditioner
CN104246387B (en) Air conditioner
JP6391832B2 (en) Air conditioner and heat source machine
JP2016020784A (en) Air conditioning device
KR101275580B1 (en) An air conditioner and Control method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Ref document number: 4966742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees