JP2010255965A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2010255965A
JP2010255965A JP2009108650A JP2009108650A JP2010255965A JP 2010255965 A JP2010255965 A JP 2010255965A JP 2009108650 A JP2009108650 A JP 2009108650A JP 2009108650 A JP2009108650 A JP 2009108650A JP 2010255965 A JP2010255965 A JP 2010255965A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
indoor heat
valve
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009108650A
Other languages
Japanese (ja)
Inventor
Shoji Takaku
昭二 高久
Kazuhiro Endo
和広 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009108650A priority Critical patent/JP2010255965A/en
Publication of JP2010255965A publication Critical patent/JP2010255965A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner of high energy efficiency by reducing in-pipe refrigerant pressure loss of an indoor heat exchanger and a pressure loss in piping connecting an indoor cycle and an outdoor cycle, and improving indoor heat exchanging performance in a cooling operation and a dehumidifying operation, in an air conditioner using a HFO-1234yf refrigerant and having a dehumidifying valve on the way of the piping of the indoor heat exchanger. <P>SOLUTION: In this air conditioner performing cooling, heating and dehumidifying operations by circulating a HFO-1234yf single refrigerant, or a mixed refrigerant prepared by mixing HFO-1234yf and another refrigerant as a working fluid, a gas-liquid separator is disposed at a downstream side of the dehumidifying valve and an upstream side of a second indoor heat exchanger, and a gas refrigerant after gas-liquid separation by the gas-liquid separator is allowed to flow to a suction side of a compressor through a flow rate adjustment valve in a cooling operation. Thus pressure loss of the refrigerant flowing into the indoor heat exchanger and the connection piping is reduced, and cooling performance and dehumidifying performance are improved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は地球温暖化係数(GWP)が低いHFO−1234yf単体あるいはHFO−1234yfと既存の冷媒を組み合わせた混合冷媒を使用したヒートポンプに関する。   The present invention relates to a heat pump using HFO-1234yf alone having a low global warming potential (GWP) or a mixed refrigerant in which HFO-1234yf and an existing refrigerant are combined.

一般家庭で多く使用されている空気調和機としては、室内機と室外機が別体で構成されており、室内機内には空気と冷媒を熱交換させるための熱交換器と空気を送り出す送風機が設置されており、室外機内には空気と冷媒を熱交換させるための熱交換器と送風機、冷媒を循環させる圧縮機および冷媒を減圧する減圧機等が設置されている。これらの室内機と室外機の間に接続配管を用いて冷媒流路を接続することで、室内機と室外機の間を冷媒が行き来して冷凍サイクルが成り立っている。   As an air conditioner that is often used in general households, an indoor unit and an outdoor unit are configured separately, and a heat exchanger for exchanging heat between the air and the refrigerant and a blower that sends out air are contained in the indoor unit. In the outdoor unit, a heat exchanger and a blower for exchanging heat between the air and the refrigerant, a compressor for circulating the refrigerant, a decompressor for depressurizing the refrigerant, and the like are installed. By connecting the refrigerant flow path between the indoor unit and the outdoor unit using a connection pipe, the refrigerant goes back and forth between the indoor unit and the outdoor unit to establish a refrigeration cycle.

この構成の空気調和機において、冷媒流路切替え弁等により冷媒の流れ方向を替えることにより冷房運転,暖房運転および除湿運転を行っており、これらの各運転条件に関してこれまでも省エネルギー化を図るための研究が盛んに行われている。   In the air conditioner having this configuration, cooling operation, heating operation, and dehumidification operation are performed by changing the flow direction of the refrigerant using a refrigerant flow path switching valve or the like. There has been a great deal of research.

一方、近年地球環境保護の一環として、空気調和機において地球温暖化係数(GWP)の低い冷媒に切替える検討を空調業界全体で取り組んでいる。その中で、近年地球温暖化係数の低い次世代冷媒としてHFO−1234yfが開発された。この冷媒は従来カーエアコンでも使用されてきたHFC−134aと熱物性が近いこともあり、欧州の自動車工業会等で検討され実用化されつつある。   On the other hand, in recent years, as a part of global environmental protection, the air conditioning industry as a whole has been studying switching to refrigerants with low global warming potential (GWP) in air conditioners. Among them, HFO-1234yf has recently been developed as a next-generation refrigerant with a low global warming potential. This refrigerant is close in thermophysical properties to HFC-134a that has been used in conventional car air conditioners, and is being studied and put into practical use by the European Automobile Manufacturers Association.

この流れを受けカーエアコン以外の空気調和機、すなわちルームエアコンや業務用エアコンにおいても、現在使用している地球温暖化係数の高いR410A,R407C等の代替冷媒として使用することができるか、各空調メーカーで見極めを行っているところである。   In response to this flow, air conditioners other than car air conditioners, that is, room air conditioners and commercial air conditioners, can be used as alternative refrigerants such as R410A and R407C having a high global warming potential. The manufacturer is making an assessment.

しかしながら、この冷媒はルームエアコンや業務用エアコンで使用してきたR410A等の冷媒に比べ動作圧力が低い冷媒であり、特に熱交換器内部や室内サイクルと室外サイクルをつなぐ接続配管内等での冷媒の圧力損失が性能に与える影響が大きく、従来の機器に冷媒だけを入れ替えた試験(ドロップイン試験)の結果によると、冷房性能が従来比で半減するという結果も出ている。この時の室内熱交換器の冷媒圧力損失はR410A比で2〜3倍程度になり、さらに圧力全体が低いことから、損失割合が大きくなってしまう結果となっている。   However, this refrigerant has a lower operating pressure than refrigerants such as R410A that have been used in room air conditioners and commercial air conditioners, and in particular, the refrigerant in the heat exchanger and in the connecting pipe that connects the indoor cycle and the outdoor cycle. Pressure loss has a large effect on performance, and according to the result of a test (drop-in test) in which only a refrigerant is replaced with a conventional device, the cooling performance is reduced by half compared to the conventional one. The refrigerant pressure loss of the indoor heat exchanger at this time is about 2 to 3 times that of the R410A ratio, and since the overall pressure is low, the loss ratio increases.

このようにHFO−1234yfの冷媒を作動流体として用いた場合、ルームエアコン等ではこの低圧冷媒に対して、大幅な機器構成の改善を行う必要がある。特に冷媒の特性を考慮して、熱交換器内あるいは接続配管での圧力損失の低減を図る大幅な改善対策が必要である。   Thus, when the refrigerant | coolant of HFO-1234yf is used as a working fluid, in a room air-conditioner etc., it is necessary to perform the substantial apparatus structure improvement with respect to this low voltage | pressure refrigerant | coolant. Considering the characteristics of the refrigerant in particular, significant improvement measures are required to reduce the pressure loss in the heat exchanger or in the connecting pipe.

これまでルームエアコン等の製品開発を行っていく中で、運転中の冷媒の圧力損失を低減させる有効な手段として、熱交換器を多パス化して冷媒の流速を低減することで圧力損失の低減を図ってきた。しかし、熱交換器において冷媒流を多パス化する場合、その多くはガス冷媒と液冷媒が混在する二相流冷媒の状態で各流路に分流させることになる。この時問題となるのは液冷媒の偏流や各流路に分かれたあとの熱交換量のバランスが崩れることによる性能低下があった。これまでの製品開発においても各メーカー共に様々な検討を行ってきたが、完全には解決されていないのが実状である。   While developing room air conditioners and other products so far, as an effective means to reduce the pressure loss of refrigerant during operation, reducing the pressure loss by reducing the flow rate of refrigerant by using multiple heat exchangers I have been trying. However, when the refrigerant flow is multipassed in the heat exchanger, most of the refrigerant flow is divided into each flow path in the state of a two-phase flow refrigerant in which a gas refrigerant and a liquid refrigerant are mixed. At this time, the problem is that the liquid refrigerant drifts and the heat exchange amount after being divided into each flow path is lost, resulting in performance degradation. In the past product development, various manufacturers have conducted various studies, but the reality is that they have not been completely solved.

熱交換器を蒸発器として使用する場合の、冷媒圧力損失を低減させる方式として例えば特許文献1のように、蒸発器となる熱交換器に流入する前に気液分離器を設け、圧力損失を増加させる要因のひとつであるガス冷媒をバイパスして、圧力損失を低減することによる性能向上を図った例がある。   When a heat exchanger is used as an evaporator, as a method for reducing refrigerant pressure loss, for example, as disclosed in Patent Document 1, a gas-liquid separator is provided before flowing into a heat exchanger serving as an evaporator, and pressure loss is reduced. There is an example of improving the performance by reducing the pressure loss by bypassing the gas refrigerant which is one of the increasing factors.

特開2003−50060号公報JP 2003-5060 A

しかしながら、特許文献1では室内熱交換器に流入する前に室外機内で気液分離をさせることで、室内熱交換器入口から出口までの圧力損失を低減すると共に、熱交換器入口において多パス化することなく圧力損失の低減を図ることができる点においては冷房性能及び暖房性能を向上させる方式として有効であるが、室内熱交換器の冷媒入口から冷媒出口までの配管経路途中に除湿弁を設け、除湿弁を閉じることで除湿弁の冷媒上流側の熱交換器を凝縮器とし、除湿弁の冷媒下流側を蒸発器として作用させた時に、本公知例では除湿運転時の考慮がなされていないため、除湿運転時の除湿効率向上は見込めない。   However, in Patent Document 1, gas-liquid separation is performed in the outdoor unit before flowing into the indoor heat exchanger, so that pressure loss from the indoor heat exchanger inlet to the outlet is reduced and multiple passes are made at the heat exchanger inlet. It is effective as a method for improving the cooling performance and the heating performance in that it can reduce pressure loss without performing dehumidification, but a dehumidification valve is provided in the middle of the piping path from the refrigerant inlet to the refrigerant outlet of the indoor heat exchanger. When the dehumidifying valve is closed, the heat exchanger on the refrigerant upstream side of the dehumidifying valve is used as a condenser, and the refrigerant downstream side of the dehumidifying valve is used as an evaporator. In this known example, no consideration is given during dehumidifying operation. Therefore, improvement in dehumidifying efficiency during dehumidifying operation cannot be expected.

また、冷房運転に関しても気液分離する際の冷媒の乾き度としては、液冷媒が多い状態での分離となるためガス冷媒除去の効果が少なくなってしまう。   Further, regarding the cooling operation, the dryness of the refrigerant at the time of gas-liquid separation is separated in a state where there is a large amount of liquid refrigerant, so that the effect of removing the gas refrigerant is reduced.

また、本公知例では先に述べたように室内熱交換器の冷媒入口から冷媒出口に至る配管経路途中に除湿弁を用いているため、この構成では除湿弁下流側の熱交換器にて冷媒を分流させる場合、ガス冷媒が多い状態での分流となることから冷媒の分流バランスが不安定になることが想定できる。   In this known example, since the dehumidifying valve is used in the middle of the piping path from the refrigerant inlet to the refrigerant outlet of the indoor heat exchanger as described above, in this configuration, the refrigerant is used in the heat exchanger downstream of the dehumidifying valve. Can be assumed to be unstable because of the diversion in a state where there is a large amount of gas refrigerant.

さらに、HFO−1234yfに関してドロップイン試験を行った結果、圧縮機やインバータ効率が同等の仮定の下で、冷房性能を比較するとR410Aと同一能力時のCOP比として約50%減少という結果を得た。この状態で冷媒圧力損失を比較すると、R410Aに対して室内熱交換器内では2.5倍程度、室内熱交換器出口から圧縮機入口までの圧力損失は約9倍にもなることが分かった。このことから、HFO−1234yfに関しては冷房性能に関して大幅な改善が必要であり、特に室内サイクルと室外サイクルをつなぐ接続配管内での圧力損失の低減が大きな課題であることが分かった。また、この結果から除湿運転時においても、圧力損失低減に関して同様に対策をする必要があることは容易に推定できる。   Furthermore, as a result of a drop-in test on HFO-1234yf, when the cooling performance was compared under the assumption that the compressor and inverter efficiencies were equivalent, a result was obtained that the COP ratio at the same capacity as R410A was reduced by about 50%. . Comparing the refrigerant pressure loss in this state, it was found that the pressure loss from the indoor heat exchanger outlet to the compressor inlet was about 9 times as large as about 2.5 times in the indoor heat exchanger relative to R410A. . From this, it has been found that HFO-1234yf requires a significant improvement in cooling performance, and in particular, reduction of pressure loss in the connecting piping connecting the indoor cycle and the outdoor cycle is a major issue. Moreover, it can be easily estimated from this result that it is necessary to take a similar measure for reducing pressure loss even during the dehumidifying operation.

そこで本発明は前記事情を考慮したものであり、請求項1では、圧縮機と、四方弁と、室外熱交換器と、膨張弁と、除湿運転時に凝縮器となる第1室内熱交換器及び蒸発器となる第2室内熱交換器と、除湿運転時に第1熱交換器の下流側で且つ第2室内熱交換器の上流側に位置して冷媒を減圧する除湿弁と、を備え、圧縮機,四方弁,室外熱交換器,膨張弁,第1室内熱交換器,第2室内熱交換器、及び除湿弁を冷媒配管で接続して冷媒回路を形成し、作動流体としてHFO−1234yf単体冷媒又はHFO−1234yfと他の冷媒とを混合した混合冷媒を循環させて、冷房,暖房及び除湿運転を行う空気調和機であって、冷房運転時に除湿弁の下流側で且つ第2室内熱交換器の上流側に気液分離器を配置し、気液分離器により気液分離されたガス冷媒を流量調整弁を介して圧縮機の吸込側に流入させることを特徴とする。   Therefore, the present invention takes the above circumstances into consideration, and in claim 1, a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a first indoor heat exchanger that serves as a condenser during dehumidification operation, and A second indoor heat exchanger that serves as an evaporator, and a dehumidification valve that is located downstream of the first heat exchanger and upstream of the second indoor heat exchanger during dehumidifying operation and depressurizes the refrigerant. Machine, four-way valve, outdoor heat exchanger, expansion valve, first indoor heat exchanger, second indoor heat exchanger, and dehumidification valve are connected by a refrigerant pipe to form a refrigerant circuit, and HFO-1234yf alone as a working fluid An air conditioner that circulates a refrigerant or a mixed refrigerant obtained by mixing HFO-1234yf and another refrigerant to perform cooling, heating, and dehumidifying operation, and is located on the downstream side of the dehumidifying valve and in the second indoor heat exchange during the cooling operation A gas-liquid separator is placed upstream of the vessel, and the gas-liquid separator is used Characterized in that to flow into the suction side of the compressor gas refrigerant through the flow control valve.

また、請求項2では、請求項1の特徴に加え、冷房運転時に、除湿弁の下流側で且つ第2室内熱交換器の上流側に冷媒を複数流路に分流させる分岐管又はディストリビュータを配置し、第2室内熱交換器の出口側で複数流路に分流させた冷媒を合流させることを特徴とする。   Further, in claim 2, in addition to the features of claim 1, a branch pipe or a distributor for dividing the refrigerant into a plurality of flow paths is arranged downstream of the dehumidification valve and upstream of the second indoor heat exchanger during cooling operation. And the refrigerant | coolant divided into the several flow path is made to merge by the exit side of a 2nd indoor heat exchanger.

さらに、請求項3では、請求項1又は2の特徴に加え、混合冷媒が地球温暖化係数(GWP)が150を超えないようなHFO−1234yfと他の冷媒との混合比であることを特徴とする。   Furthermore, in claim 3, in addition to the features of claim 1 or 2, the mixed refrigerant is a mixture ratio of HFO-1234yf and another refrigerant such that the global warming potential (GWP) does not exceed 150. And

本発明にかかる請求項1記載の効果としては、作動流体としてHFO−1234yf単体冷媒又はHFO−1234yfと他の冷媒とを混合した混合冷媒を循環させて、冷房,暖房及び除湿運転を行う空気調和機であって、冷房運転時に除湿弁の下流側で且つ第2室内熱交換器の上流側に気液分離器を配置し、気液分離器により気液分離されたガス冷媒を流量調整弁を介して圧縮機の吸込側に流入させるので、冷房運転時に前記第1室内熱交換器から除湿弁を介して流出するガス冷媒比が多い状態の二相流冷媒を前記気液分離器でガス冷媒と液冷媒に分離させ、気液分離器で分離したガス冷媒はそのまま室外サイクルの圧縮機吸込みパイプへ流量調整弁を介して合流させ、液冷媒は第2室内熱交換器へ流入させる。   According to the first aspect of the present invention, the HFO-1234yf single refrigerant or a mixed refrigerant obtained by mixing HFO-1234yf and another refrigerant is circulated as a working fluid to perform air conditioning that performs cooling, heating, and dehumidifying operations. A gas-liquid separator is disposed downstream of the dehumidifying valve and upstream of the second indoor heat exchanger during cooling operation, and the gas refrigerant separated by the gas-liquid separator is supplied with a flow regulating valve. The two-phase flow refrigerant having a large ratio of gas refrigerant flowing out from the first indoor heat exchanger through the dehumidification valve during the cooling operation is gas refrigerant in the gas-liquid separator. The gas refrigerant separated by the gas-liquid separator is directly joined to the compressor suction pipe of the outdoor cycle via the flow rate adjusting valve, and the liquid refrigerant is caused to flow into the second indoor heat exchanger.

これによる第1の効果としては除湿弁を通過した後に従来は液・ガス混合の状態で分流させていたが、量産時の分流器取り付けのバラツキや形状のバラツキで、液冷媒の偏りによる熱交換量のバラツキを生じ、熱交換器出口部での冷媒温度の差が生じ最終的には量産品により熱交換器の性能にバラツキを生じていた。そこで気液分離器を使用することにより分流する際のガス冷媒を除去することで、分流させるときの冷媒を概ね液冷媒とすることができるため、液・ガス混合で分流させるときに対し分流割合を安定させることができると共に、熱交換器を多パスに分流させた時の分流バランスをコントロールし易くなる。第2の効果としては気液分離器によりガス冷媒を除去した液冷媒を第2室内熱交換器に流入させることで、第2室内熱交換器の圧力損失の低減を図ることができる。また、第3の効果としては、気液分離器により抽出したガス冷媒を圧縮機吸込み部へ送るための接続配管と気液分離器により分離した液冷媒が第2室内熱交換器を通過して室外サイクルへ送る配管の2系統の戻り接続配管にすることにより、接続配管の圧力損失を低減でき、これらにより熱交換器および接続配管での圧力損失を低減することができ冷房性能が向上する。また、第4の効果として、冷房運転時の冷媒の流れ方向で除湿弁を閉じることにより除湿運転を行う場合、除湿弁の冷媒下流側に気液分離器を設けることで熱交換に寄与しないガス冷媒を冷房運転時と同様に圧縮機吸込みパイプへバイパスすることで、冷媒の分流性能を向上させることができると共に、圧力損失低減を図ることができ、除湿性能を向上させることができる。   The first effect of this is that, after passing through the dehumidification valve, the flow was divided in the liquid / gas mixed state. However, the heat exchange due to the deviation of the liquid refrigerant due to the variation in the flow divider installation and the variation in mass production. As a result, there was a variation in the amount of refrigerant, a difference in refrigerant temperature at the outlet of the heat exchanger, and finally, there was a variation in the performance of the heat exchanger depending on the mass-produced product. Therefore, by removing the gas refrigerant at the time of diversion by using a gas-liquid separator, the refrigerant at the time of diversion can be made almost liquid liquor, so the diversion ratio with respect to the case of diversion by liquid / gas mixture Can be stabilized, and it becomes easy to control the diversion balance when the heat exchanger is divided into multiple paths. As a second effect, the pressure loss of the second indoor heat exchanger can be reduced by causing the liquid refrigerant from which the gas refrigerant has been removed by the gas-liquid separator to flow into the second indoor heat exchanger. The third effect is that the liquid refrigerant separated by the gas / liquid separator and the connecting pipe for sending the gas refrigerant extracted by the gas / liquid separator to the compressor suction section passes through the second indoor heat exchanger. By using two return connection pipes for the piping to be sent to the outdoor cycle, the pressure loss of the connection pipe can be reduced, thereby reducing the pressure loss in the heat exchanger and the connection pipe and improving the cooling performance. As a fourth effect, when dehumidifying operation is performed by closing the dehumidifying valve in the refrigerant flow direction during cooling operation, a gas that does not contribute to heat exchange by providing a gas-liquid separator on the refrigerant downstream side of the dehumidifying valve By bypassing the refrigerant to the compressor suction pipe in the same manner as in the cooling operation, the refrigerant diversion performance can be improved, the pressure loss can be reduced, and the dehumidification performance can be improved.

また、請求項2の効果としては、冷房運転時に、除湿弁の下流側で且つ第2室内熱交換器の上流側に冷媒を複数流路に分流させる分岐管又はディストリビュータを配置し、第2室内熱交換器の出口側で複数流路に分流させた冷媒を合流させるので、前述したとおり気液分離器から流出する冷媒は液冷媒であることから、複数パスにしても分流割合を安定させることができる。また、この時第1室内熱交換器に対し、第2室内熱交換器を構成するパイプを細径にした場合においても分流割合を安定させながら、より多くのパス構成にすることで低圧力損失を維持しつつ、性能向上を図ることができる。また、分流させるときに特殊な分岐管を使う必要がないことから原価低減も図ることができる。   According to the second aspect of the present invention, a branch pipe or a distributor for diverting the refrigerant into a plurality of flow paths is disposed downstream of the dehumidification valve and upstream of the second indoor heat exchanger during the cooling operation, Since the refrigerant split into the plurality of flow paths is merged at the outlet side of the heat exchanger, the refrigerant flowing out from the gas-liquid separator is a liquid refrigerant as described above, so that even if there are multiple passes, the diversion ratio is stabilized. Can do. At this time, even when the pipes constituting the second indoor heat exchanger are made smaller in diameter than the first indoor heat exchanger, a low pressure loss can be achieved by making more path configurations while stabilizing the diversion ratio. The performance can be improved while maintaining the above. Further, since it is not necessary to use a special branch pipe when diverting, the cost can be reduced.

また、請求項3の効果としては、混合冷媒が地球温暖化係数(GWP)が150を超えないようなHFO−1234yfと他の冷媒との混合比であるので、高圧力冷媒であるHFC−32を低圧力冷媒であるHFO−1234yfに混合することで、運転状態における冷凍サイクルの動作圧力を全体的に上げることができ、圧力損失による性能低下割合を緩和させることができる。但し、この場合は前述したとおり、地球温暖化係数(GWP)が150というガイドラインを超えることが無いように混合比を調整することで、地球環境保護の効果を得ることができる。   Further, the effect of claim 3 is that the mixed refrigerant has a mixing ratio of HFO-1234yf and other refrigerants such that the global warming potential (GWP) does not exceed 150, and therefore HFC-32 which is a high pressure refrigerant. Is mixed with HFO-1234yf which is a low-pressure refrigerant, the operating pressure of the refrigeration cycle in the operating state can be increased as a whole, and the rate of performance degradation due to pressure loss can be mitigated. However, in this case, as described above, the effect of protecting the global environment can be obtained by adjusting the mixing ratio so that the global warming potential (GWP) does not exceed the guideline of 150.

本発明に係る空気調和機の実施方法を示した説明図である。It is explanatory drawing which showed the implementation method of the air conditioner which concerns on this invention. 家庭用空気調和機の構成を示した説明図である。It is explanatory drawing which showed the structure of the domestic air conditioner. 従来の空気調和機の構成を示した説明図である。It is explanatory drawing which showed the structure of the conventional air conditioner. 従来のサイクルのモリエル線図である。It is a Mollier diagram of the conventional cycle. 本発明に係る他の空気調和機の実施方法を示した説明図である。It is explanatory drawing which showed the implementation method of the other air conditioner which concerns on this invention. 本発明に係る空気調和機の実施方法を示した説明図である。It is explanatory drawing which showed the implementation method of the air conditioner which concerns on this invention.

本発明を実施するための最良の形態は、圧縮機と、四方弁と、室外熱交換器と、膨張弁と、除湿運転時に凝縮器となる第1室内熱交換器及び蒸発器となる第2室内熱交換器と、除湿運転時に第1熱交換器の下流側で且つ第2室内熱交換器の上流側に位置して冷媒を減圧する除湿弁と、を備え、圧縮機,四方弁,室外熱交換器,膨張弁,第1室内熱交換器,第2室内熱交換器、及び除湿弁を冷媒配管で接続して冷媒回路を形成し、作動流体としてHFO−1234yf単体冷媒又はHFO−1234yfと他の冷媒とを混合した混合冷媒を循環させて、冷房,暖房及び除湿運転を行う空気調和機であって、冷房運転時に除湿弁の下流側で且つ第2室内熱交換器の上流側に気液分離器を配置し、気液分離器により気液分離されたガス冷媒を流量調整弁を介して圧縮機の吸込側に流入させる。これにより、冷房運転時に前記第1室内熱交換器から除湿弁を介して流出するガス冷媒比が多い状態の二相流冷媒を前記気液分離器でガス冷媒と液冷媒に分流させ、気液分離器で分離したガス冷媒はそのまま室外サイクルの圧縮機吸込みパイプへ流量調整弁を介して合流させ、液冷媒は第2室内熱交換器へ流入させる。第1の効果としては除湿弁を通過した後に従来は液・ガス混合の状態で分流させていたが、量産時の分流器取り付けのバラツキや形状のバラツキで、液冷媒の偏りによる熱交換量のバラツキを生じ、熱交換器出口部での冷媒温度の差が生じ最終的には量産品により熱交換器の性能にバラツキを生じていた。そこで気液分離器を使用することにより分流する際のガス冷媒を除去することで、分流させるときの冷媒を概ね液冷媒とすることができるため、液・ガス混合で分流させるときに対し分流割合を安定させることができると共に、熱交換器を多パスに分流させた時の分流バランスをコントロールし易くなる。第2の効果としては気液分離器によりガス冷媒を除去した液冷媒を第2室内熱交換器に流入させることで、第2室内熱交換器の圧力損失の低減を図ることができる。また、第3の効果としては、気液分離器により抽出したガス冷媒を圧縮機吸込み部へ送るための接続配管と気液分離器により分離した液冷媒が第2室内熱交換器を通過して室外サイクルへ送る配管の2系統の戻り接続配管にすることにより、接続配管の圧力損失を低減でき、これらにより熱交換器を有効に使うことができると同時に圧力損失低減により冷房性能向上が図れる。また、第4の効果として、冷房運転時の冷媒の流れ方向で除湿弁を閉じることにより除湿運転を行う場合、除湿弁の冷媒下流側に気液分離器を設けることで熱交換に寄与しないガス冷媒を冷房運転時と同様に圧縮機吸込みパイプへバイパスすることで、冷媒の分流性能を向上させることができると共に、圧力損失低減を図ることができ、除湿性能を向上させることができる。すなわち冷房性能および除湿性能を向上させるという目的を実現した。   The best mode for carrying out the present invention is a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and a second indoor heat exchanger and an evaporator that serve as a condenser during dehumidifying operation. An indoor heat exchanger and a dehumidifying valve that is located downstream of the first heat exchanger and upstream of the second indoor heat exchanger during dehumidifying operation and depressurizes the refrigerant, and includes a compressor, a four-way valve, and an outdoor unit A refrigerant circuit is formed by connecting a heat exchanger, an expansion valve, a first indoor heat exchanger, a second indoor heat exchanger, and a dehumidification valve with a refrigerant pipe, and HFO-1234yf single refrigerant or HFO-1234yf is used as a working fluid. An air conditioner that circulates a mixed refrigerant mixed with other refrigerants to perform cooling, heating, and dehumidifying operation, and that is disposed downstream of the dehumidifying valve and upstream of the second indoor heat exchanger during cooling operation. A liquid separator is installed to adjust the flow rate of the gas refrigerant separated by the gas-liquid separator. To flow into the suction side of the compressor via a valve. As a result, the two-phase flow refrigerant having a large gas refrigerant ratio flowing out from the first indoor heat exchanger through the dehumidifying valve during the cooling operation is divided into the gas refrigerant and the liquid refrigerant by the gas-liquid separator. The gas refrigerant separated by the separator is directly joined to the compressor suction pipe of the outdoor cycle via a flow rate adjusting valve, and the liquid refrigerant is caused to flow into the second indoor heat exchanger. As a first effect, after passing through the dehumidifying valve, the flow is divided in the liquid / gas mixed state. However, due to variations in the distribution of the flow divider and variations in the shape during mass production, the amount of heat exchange due to the liquid refrigerant bias is reduced. There was a variation, and a difference in the refrigerant temperature at the outlet of the heat exchanger occurred, resulting in a variation in the performance of the heat exchanger due to mass production. Therefore, by removing the gas refrigerant at the time of diversion by using a gas-liquid separator, the refrigerant at the time of diversion can be made almost liquid liquor, so the diversion ratio with respect to the case of diversion by liquid / gas mixture Can be stabilized, and it becomes easy to control the diversion balance when the heat exchanger is divided into multiple paths. As a second effect, the pressure loss of the second indoor heat exchanger can be reduced by causing the liquid refrigerant from which the gas refrigerant has been removed by the gas-liquid separator to flow into the second indoor heat exchanger. The third effect is that the liquid refrigerant separated by the gas / liquid separator and the connecting pipe for sending the gas refrigerant extracted by the gas / liquid separator to the compressor suction section passes through the second indoor heat exchanger. By using two return connection pipes for piping to the outdoor cycle, the pressure loss of the connection pipe can be reduced, thereby enabling effective use of the heat exchanger and at the same time improving the cooling performance by reducing the pressure loss. As a fourth effect, when dehumidifying operation is performed by closing the dehumidifying valve in the refrigerant flow direction during cooling operation, a gas that does not contribute to heat exchange by providing a gas-liquid separator on the refrigerant downstream side of the dehumidifying valve By bypassing the refrigerant to the compressor suction pipe in the same manner as in the cooling operation, the refrigerant diversion performance can be improved, the pressure loss can be reduced, and the dehumidification performance can be improved. That is, the purpose of improving the cooling performance and the dehumidifying performance was realized.

図2は一般的な家庭用空気調和機の構成を示した図である。室内機20内部には室内熱交換器7と室内ファン8が組み込まれており、室内熱交換器7は少ないスペースを有効に使うため、室内ファン8を取り囲むように配置しており、室内ファン8を回転させることにより図示した空気流方向に風が流れる。この時流入した空気は室内熱交換器7により熱交換を行い、冷房運転時は流入した空気を冷却し、暖房運転時は流入した空気を暖めて吹出すようになっている。また、室外機21内には作動流体である冷媒を高温・高圧にするための圧縮機1、冷房と暖房の冷媒流路方向を切替えるための四方弁2、図示はしていないが室外熱交換器、室外熱交換器に風を送るための室外ファン4、冷媒を減圧するための膨張弁5等を備え、室内機20と同様に室外ファン4を回転させることで室外熱交換器内を流れる冷媒と空気を熱交換させ、冷房運転時には冷媒を冷却し、暖房運転時は冷媒を暖めるようになっている。これら室内サイクルと室外サイクルを細径接続配管6,太径接続配管9にて接続し、内部には作動流体として冷媒が封入されている。これらを簡易的なサイクル構成図で示したものが図3である。   FIG. 2 is a diagram showing a configuration of a general household air conditioner. An indoor heat exchanger 7 and an indoor fan 8 are incorporated in the indoor unit 20, and the indoor heat exchanger 7 is disposed so as to surround the indoor fan 8 in order to effectively use a small space. The wind flows in the air flow direction shown in the figure by rotating the. At this time, the air that has flowed in is heat-exchanged by the indoor heat exchanger 7 so that the air that has flowed in is cooled during the cooling operation, and the air that has flowed in is heated and blown out during the heating operation. In addition, in the outdoor unit 21, a compressor 1 for making the refrigerant as a working fluid high temperature and high pressure, a four-way valve 2 for switching the cooling and heating refrigerant flow directions, outdoor heat exchange (not shown). And an outdoor fan 4 for sending air to the outdoor heat exchanger, an expansion valve 5 for depressurizing the refrigerant, etc., and rotating the outdoor fan 4 in the same manner as the indoor unit 20 flows in the outdoor heat exchanger. Heat is exchanged between the refrigerant and air, the refrigerant is cooled during cooling operation, and the refrigerant is warmed during heating operation. The indoor cycle and the outdoor cycle are connected by a small diameter connecting pipe 6 and a large diameter connecting pipe 9, and a refrigerant is sealed inside as a working fluid. FIG. 3 shows these in a simple cycle configuration diagram.

図3を冷房運転時の冷媒の流れ方向にて説明すると、圧縮機1にて高温・高圧ガスにされた冷媒は四方弁2を介して室外熱交換器3に流入し、室外熱交換器3において室外ファン4により送られる空気と熱交換し液冷媒に凝縮され、膨張弁5により低温・低圧ニ相流冷媒になる。そして,低温・低圧となったニ相流冷媒は細径接続配管6を介して室内機20内の室内熱交換器7に流入し、室内ファン8により送られる空気と熱交換した後、太径接続配管9及び四方弁2を介して再び圧縮機1に戻る。これをさらに理論モリエル線図で表したものが図4である。   When FIG. 3 is described in the flow direction of the refrigerant during the cooling operation, the refrigerant converted into the high-temperature and high-pressure gas by the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2, and the outdoor heat exchanger 3. In this case, heat is exchanged with the air sent by the outdoor fan 4 to be condensed into liquid refrigerant, and the expansion valve 5 becomes low-temperature and low-pressure two-phase flow refrigerant. The two-phase flow refrigerant that has become low temperature and low pressure flows into the indoor heat exchanger 7 in the indoor unit 20 through the small diameter connecting pipe 6 and exchanges heat with the air sent by the indoor fan 8. It returns to the compressor 1 again through the connecting pipe 9 and the four-way valve 2. FIG. 4 shows this in a theoretical Mollier diagram.

図4を説明すると、図4の縦軸は圧力、横軸は比エンタルピを表しており、図中の(1)から(2)は圧縮機1にて冷媒が圧縮される工程である。この時通常は、圧縮前の冷媒の状態が(1)の時(2)は等エントロピ線に沿って圧縮される。(2)から(3)は熱交換器内の冷媒とファンにより送られる空気が熱交換していく状態を示しており、(2)の高温・高圧冷媒が放熱しながら二相流冷媒となりさらに過冷却状態となり(3)に至る。(3)から(4)は膨張弁にて冷媒が減圧している状態である。この時(3)の冷媒は等エンタルピ状態で(4)の状態となる。(4)から(1)へは熱交換器内の冷媒とファンにより送られてくる空気が熱交換し、冷媒は暖められ、空気は冷却される。このようなサイクルを繰り返すことで、冷凍サイクルが構成されている。この時、実際の冷凍サイクルは(4)から熱交換する際に圧力損失を伴うために(1)′のように圧力が理論に対し下がる。また、(1)の状態から圧縮された冷媒は、実際圧縮機の効率により(2)′のように理論値よりもずれる。したがって実際に運転した場合の冷凍サイクルは図4の破線のようになる。   Referring to FIG. 4, the vertical axis in FIG. 4 represents pressure, and the horizontal axis represents specific enthalpy, and (1) to (2) in the figure are processes in which the compressor 1 compresses the refrigerant. At this time, normally, when the state of the refrigerant before compression is (1), the refrigerant is compressed along the isentropic line (2). (2) to (3) show the state in which the refrigerant in the heat exchanger and the air sent by the fan exchange heat, and the high-temperature / high-pressure refrigerant in (2) becomes a two-phase refrigerant while dissipating heat. It becomes a supercooled state and reaches (3). (3) to (4) are states in which the refrigerant is decompressed by the expansion valve. At this time, the refrigerant of (3) is in the state of (4) in an isenthalpy state. From (4) to (1), the air sent by the refrigerant and the fan in the heat exchanger exchanges heat, the refrigerant is warmed, and the air is cooled. A refrigeration cycle is configured by repeating such a cycle. At this time, since the actual refrigeration cycle is accompanied by a pressure loss when heat is exchanged from (4), the pressure drops from the theory as in (1) ′. Further, the refrigerant compressed from the state (1) deviates from the theoretical value as shown in (2) ′ by the efficiency of the actual compressor. Therefore, the refrigeration cycle in actual operation is as shown by the broken line in FIG.

このような基本構成の冷凍サイクルにおいて、本発明による冷凍サイクルは図1に示すような構成となっている。図1について冷房運転時の冷媒の流れ方向にて順に説明をすると、圧縮機1にて高温・高圧となった冷媒は四方弁2を介して室外機内部の室外熱交換器3に流入する。室外熱交換器3で冷媒は室外ファン4にて送られてくる空気と熱交換し、膨張弁5に至る。膨張弁5では等エンタルピ変化で冷媒は減圧され細径接続配管6に至る。細径接続配管6内を冷媒が通過して室内熱交換器7に流入し、室内ファン8により送られる空気と熱交換した後、太径接続配管9および四方弁2を介して再び圧縮機1に戻る。   In such a basic refrigeration cycle, the refrigeration cycle according to the present invention is configured as shown in FIG. 1 will be described in order in the refrigerant flow direction during the cooling operation, the refrigerant having high temperature and high pressure in the compressor 1 flows into the outdoor heat exchanger 3 inside the outdoor unit via the four-way valve 2. In the outdoor heat exchanger 3, the refrigerant exchanges heat with the air sent by the outdoor fan 4 and reaches the expansion valve 5. In the expansion valve 5, the refrigerant is depressurized by an isenthalpy change and reaches the small diameter connecting pipe 6. The refrigerant passes through the small diameter connecting pipe 6 and flows into the indoor heat exchanger 7, and exchanges heat with the air sent by the indoor fan 8, and then again through the large diameter connecting pipe 9 and the four-way valve 2. Return to.

ここで、室内熱交換器7は、除湿運転の際に冷媒を減圧することのできる除湿弁10により第1室内熱交換器11と第2室内熱交換器12に分割されており、除湿運転時には除湿弁10を絞ることで、除湿弁10を挟んで冷媒の流れ方向に対して上流側の第1室内熱交換器11は凝縮器となり、下流側の第2室内熱交換器12は蒸発器となる。   Here, the indoor heat exchanger 7 is divided into a first indoor heat exchanger 11 and a second indoor heat exchanger 12 by a dehumidifying valve 10 that can depressurize the refrigerant during the dehumidifying operation. By restricting the dehumidifying valve 10, the first indoor heat exchanger 11 on the upstream side with respect to the flow direction of the refrigerant sandwiching the dehumidifying valve 10 becomes a condenser, and the second indoor heat exchanger 12 on the downstream side becomes an evaporator. Become.

このとき室内熱交換器7内では、前記除湿弁10の冷媒下流側に気液分離器13を設置すると共に、気液分離器13の冷媒下流側に位置する第2室内熱交換器12を冷媒配管でつなぎ、さらに気液分離器13から圧縮機吸込み配管16へ流量調整弁15を介してバイパスする第2接続配管17を設置する構成とする。   At this time, in the indoor heat exchanger 7, the gas-liquid separator 13 is installed on the refrigerant downstream side of the dehumidifying valve 10, and the second indoor heat exchanger 12 located on the refrigerant downstream side of the gas-liquid separator 13 is used as the refrigerant. The second connecting pipe 17 is connected by piping and further bypassed from the gas-liquid separator 13 to the compressor suction pipe 16 via the flow rate adjusting valve 15.

このような構成の空気調和機において、冷房運転時に圧縮機回転数により流量調整弁15の開度を調整することで冷媒は除湿弁10の下流側に位置する気液分離器13に流入し内部で液冷媒とガス冷媒に分離される。その後、概ね液状態となった冷媒は第2室内熱交換器12に流入し熱交換を行いながら出口配管14に至る。一方、気液分離器13にて分離したガス冷媒は第2接続配管17により第2室内熱交換器12に流入することなく、流量調整弁15を介して圧縮機1の吸込み配管16に導かれる。   In the air conditioner having such a configuration, the refrigerant flows into the gas-liquid separator 13 located on the downstream side of the dehumidifying valve 10 by adjusting the opening of the flow rate adjusting valve 15 according to the rotational speed of the compressor during the cooling operation. Is separated into liquid refrigerant and gas refrigerant. Thereafter, the refrigerant that has become substantially liquid flows into the second indoor heat exchanger 12 and reaches the outlet pipe 14 while performing heat exchange. On the other hand, the gas refrigerant separated by the gas-liquid separator 13 is guided to the suction pipe 16 of the compressor 1 through the flow rate adjusting valve 15 without flowing into the second indoor heat exchanger 12 through the second connection pipe 17. .

冷媒HFO−1234yfは前述したとおり、従来から使われているR410A等の冷媒に対して動作圧力が低く、冷媒の圧力損失に対する性能への影響が大きい。また、冷媒そのものに関しても圧力損失が大きい特性を持っており、圧力損失が如何に少ないサイクル構成にするかで、この冷媒を用いた場合のサイクル性能が決まる。   As described above, the refrigerant HFO-1234yf has a lower operating pressure than the conventionally used refrigerant such as R410A, and has a large influence on the performance of the refrigerant in terms of pressure loss. Also, the refrigerant itself has a characteristic that the pressure loss is large, and the cycle performance when this refrigerant is used is determined depending on how the pressure loss causes a cycle configuration.

従来技術でも述べたように、冷媒の圧力損失を低減させるためには多パス化が有効な手段であるが、安易に多パス化すると分流比が不安定になると共に、サイクルパイプが複雑になり作業性も低下する。   As described in the prior art, multi-pass is an effective means to reduce refrigerant pressure loss, but if multi-pass is easily made, the diversion ratio becomes unstable and the cycle pipe becomes complicated. Workability also decreases.

また、膨張弁から室内熱交換器入口に至る配管経路途中に気液分離器を設け、冷媒の低圧力損失化を図った公知例もあるが、膨張弁直後の二相流冷媒にはガス成分が少ないため入口での分離の効果は少ないと推定できる。   There is also a known example in which a gas-liquid separator is provided in the middle of the piping path from the expansion valve to the indoor heat exchanger inlet to reduce the pressure loss of the refrigerant. Therefore, it can be estimated that the effect of separation at the entrance is small.

また、冷房運転時の室内サイクルから室外サイクルへの接続配管の圧力損失がR410A比で約9倍になる点については従来の配管接続方式では改善できる範囲ではない。例えば接続配管を太くすると配管が曲げにくく据付性が低下する。また、状況によっては折れる危険もある。   Further, the point that the pressure loss of the connecting pipe from the indoor cycle to the outdoor cycle during the cooling operation is about nine times as large as R410A is not in a range that can be improved by the conventional pipe connecting method. For example, if the connecting pipe is made thick, the pipe is difficult to bend and the installation property is lowered. There is also a risk of breakage depending on the situation.

これらを総合して考えた場合、従来では考えなかった室内熱交換器途中であって冷房運転時の除湿弁10の下流に気液分離器13を配置し、気液分離器13にて分離したガス冷媒を第2接続配管17にあるように、従来の室内熱交換器7からの戻りの太径接続配管9と別経路で圧縮機1に戻すことで接続配管の圧力損失低減や室内熱交換器7の圧力損失低減を図ることができる。   When these are considered together, the gas-liquid separator 13 is arranged in the middle of the indoor heat exchanger, which has not been considered in the past, and downstream of the dehumidifying valve 10 during the cooling operation, and is separated by the gas-liquid separator 13. As the gas refrigerant is in the second connection pipe 17, the pressure loss of the connection pipe is reduced and the indoor heat exchange is performed by returning the refrigerant to the compressor 1 through a separate path from the return large-diameter connection pipe 9 from the conventional indoor heat exchanger 7. The pressure loss of the vessel 7 can be reduced.

また、除湿弁10を閉じることで第1室内熱交換器11を凝縮器に、第2室内熱交換器12を蒸発器として作用させ、室内機からの吹出し空気温度を低下させること無く除湿運転をさせる場合においても、気液分離器13によりガス冷媒と液冷媒に分離することができ、ガス冷媒を圧縮機吸込みパイプ16へバイパスすることで、冷房運転時と同様の効果を得ることができる。   Further, by closing the dehumidifying valve 10, the first indoor heat exchanger 11 acts as a condenser and the second indoor heat exchanger 12 acts as an evaporator, so that the dehumidifying operation can be performed without lowering the temperature of air blown from the indoor unit. Even in the case where the gas refrigerant is used, the gas-liquid separator 13 can separate the refrigerant into a gas refrigerant and a liquid refrigerant. By bypassing the gas refrigerant to the compressor suction pipe 16, the same effect as in the cooling operation can be obtained.

図5は第2太径接続配管9′を追加した例であり、このような構成にすることでさらに接続配管での圧力損失を低減でき、性能改善を図ることができる。   FIG. 5 shows an example in which the second large-diameter connection pipe 9 ′ is added. With such a configuration, pressure loss in the connection pipe can be further reduced, and performance can be improved.

図6に本発明の請求項2記載の実施例を示す。   FIG. 6 shows an embodiment of the second aspect of the present invention.

冷房運転時の冷媒の流れ方向にて順に説明をすると、圧縮機1にて高温・高圧となった冷媒は四方弁2を介して室外機内部の室外熱交換器3に流入する。室外熱交換器3で冷媒は室外ファン4にて送られてくる空気と熱交換し、膨張弁5に至る。膨張弁5では等エンタルピ変化で冷媒は減圧され細径接続配管6に至る。細径接続配管6内を冷媒が通過して室内熱交換器7に流入し、室内ファン8により送られる空気と熱交換した後、太径接続配管9および四方弁2を介して再び圧縮機1に戻る。   If it demonstrates in order by the flow direction of the refrigerant | coolant at the time of air_conditionaing | cooling operation, the refrigerant | coolant which became high temperature and the high pressure in the compressor 1 will flow into the outdoor heat exchanger 3 inside an outdoor unit via the four-way valve 2. FIG. In the outdoor heat exchanger 3, the refrigerant exchanges heat with the air sent by the outdoor fan 4 and reaches the expansion valve 5. In the expansion valve 5, the refrigerant is depressurized by an isenthalpy change and reaches the small diameter connecting pipe 6. The refrigerant passes through the small diameter connecting pipe 6 and flows into the indoor heat exchanger 7, and exchanges heat with the air sent by the indoor fan 8, and then again through the large diameter connecting pipe 9 and the four-way valve 2. Return to.

ここで、室内熱交換器7は、除湿運転の際に冷媒を減圧することのできる除湿弁10により第1室内熱交換器11と第2室内熱交換器12に分割されており、除湿運転時には除湿弁10を絞ることで、除湿弁10を挟んで冷媒の流れ方向に対して上流側の第1室内熱交換器11は凝縮器となり、下流側の第2室内熱交換器12は蒸発器となる。   Here, the indoor heat exchanger 7 is divided into a first indoor heat exchanger 11 and a second indoor heat exchanger 12 by a dehumidifying valve 10 that can depressurize the refrigerant during the dehumidifying operation. By restricting the dehumidifying valve 10, the first indoor heat exchanger 11 on the upstream side with respect to the flow direction of the refrigerant sandwiching the dehumidifying valve 10 becomes a condenser, and the second indoor heat exchanger 12 on the downstream side becomes an evaporator. Become.

このとき室内熱交換器7内では、前記除湿弁10の冷媒下流側に気液分離器13を設置すると共に、気液分離器13の冷媒下流側に位置する第2室内熱交換器12を冷媒配管でつなぎ、さらに気液分離器13から圧縮機吸込み配管16へ流量調整弁15を介してバイパスする第2接続配管17を設置する構成とする。   At this time, in the indoor heat exchanger 7, the gas-liquid separator 13 is installed on the refrigerant downstream side of the dehumidifying valve 10, and the second indoor heat exchanger 12 located on the refrigerant downstream side of the gas-liquid separator 13 is used as the refrigerant. The second connecting pipe 17 is connected by piping and further bypassed from the gas-liquid separator 13 to the compressor suction pipe 16 via the flow rate adjusting valve 15.

このような構成の空気調和機において、冷房運転時に圧縮機回転数により流量調整弁15の開度を調整することで冷媒は除湿弁10の下流にて、気液分離器13に流入し内部で液冷媒とガス冷媒に分離される。その後、概ね液状態となった冷媒は第2室内熱交換器12に流入し熱交換を行いながら出口配管14に至る。一方、気液分離器13にて分離したガス冷媒は第2接続配管17により第2室内熱交換器12に流入することなく、流量調整弁15を介して圧縮機1の吸込み配管16に導かれる。   In the air conditioner having such a configuration, the refrigerant flows into the gas-liquid separator 13 downstream of the dehumidification valve 10 by adjusting the opening of the flow rate adjustment valve 15 according to the rotation speed of the compressor during cooling operation. Separated into liquid refrigerant and gas refrigerant. Thereafter, the refrigerant that has become substantially liquid flows into the second indoor heat exchanger 12 and reaches the outlet pipe 14 while performing heat exchange. On the other hand, the gas refrigerant separated by the gas-liquid separator 13 is guided to the suction pipe 16 of the compressor 1 through the flow rate adjusting valve 15 without flowing into the second indoor heat exchanger 12 through the second connection pipe 17. .

この時、第2室内熱交換器12は分岐管18により多パスに分流されているが、除湿弁10の冷媒下流でガス成分を除去し、分流時点ではほぼ液状態で分流するため分流割合を安定させつつ多パス化による第2室内熱交換器12の圧力損失を低減でき、性能向上を図ることができる。   At this time, the second indoor heat exchanger 12 is divided into multiple paths by the branch pipe 18, but the gas component is removed downstream of the refrigerant of the dehumidifying valve 10, and the flow is divided in a substantially liquid state at the time of the diversion, so the diversion ratio is set. While being stabilized, the pressure loss of the second indoor heat exchanger 12 due to the multi-pass can be reduced, and the performance can be improved.

また、除湿弁10にて減圧させる除湿方式においても、除湿弁10下流に位置する気液分離器13は冷房運転時と同様の効果を得ることができ、除湿性能も向上させることができる。   Moreover, also in the dehumidification system which depressurizes with the dehumidification valve 10, the gas-liquid separator 13 located downstream of the dehumidification valve 10 can acquire the effect similar to the time of air_conditionaing | cooling operation, and can also improve dehumidification performance.

1 圧縮機
2 四方弁
3 室外熱交換器
4 室外ファン
5 膨張弁
6 細径接続配管
7 室内熱交換器
8 室内ファン
9 太径接続配管
9′ 第2太径接続配管
10 除湿弁
11 第1室内熱交換器
12 第2室内熱交換器
13 気液分離器
14 出口配管
15 流量調整弁
16 圧縮機吸込み配管
17 第2接続配管
18 分岐管
20 室内機
21 室外機
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Outdoor fan 5 Expansion valve 6 Small diameter connection piping 7 Indoor heat exchanger 8 Indoor fan 9 Large diameter connection piping 9 '2nd large diameter connection piping 10 Dehumidification valve 11 1st indoor Heat exchanger 12 Second indoor heat exchanger 13 Gas-liquid separator 14 Outlet pipe 15 Flow rate adjusting valve 16 Compressor suction pipe 17 Second connection pipe 18 Branch pipe 20 Indoor unit 21 Outdoor unit

Claims (3)

圧縮機と、四方弁と、室外熱交換器と、膨張弁と、除湿運転時に凝縮器となる第1室内熱交換器及び蒸発器となる第2室内熱交換器と、除湿運転時に前記第1熱交換器の下流側で且つ前記第2室内熱交換器の上流側に位置して冷媒を減圧する除湿弁と、を備え、
前記圧縮機,前記四方弁,前記室外熱交換器,前記膨張弁,前記第1室内熱交換器,前記第2室内熱交換器、及び除湿弁を冷媒配管で接続して冷媒回路を形成し、作動流体としてHFO−1234yf単体冷媒又はHFO−1234yfと他の冷媒とを混合した混合冷媒を循環させて、冷房,暖房及び除湿運転を行う空気調和機であって、
冷房運転時に前記除湿弁の下流側で且つ前記第2室内熱交換器の上流側に気液分離器を配置し、前記気液分離器により気液分離されたガス冷媒を流量調整弁を介して前記圧縮機の吸込側に流入させることを特徴とする空気調和機。
A compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a first indoor heat exchanger serving as a condenser during dehumidifying operation, a second indoor heat exchanger serving as an evaporator, and the first during dehumidifying operation. A dehumidification valve that is located downstream of the heat exchanger and upstream of the second indoor heat exchanger and depressurizes the refrigerant,
Connecting the compressor, the four-way valve, the outdoor heat exchanger, the expansion valve, the first indoor heat exchanger, the second indoor heat exchanger, and a dehumidifying valve with a refrigerant pipe to form a refrigerant circuit; An air conditioner that performs cooling, heating, and dehumidifying operations by circulating a HFO-1234yf single refrigerant or a mixed refrigerant obtained by mixing HFO-1234yf and another refrigerant as a working fluid,
A gas-liquid separator is disposed downstream of the dehumidifying valve and upstream of the second indoor heat exchanger during cooling operation, and the gas refrigerant separated by the gas-liquid separator is passed through the flow rate adjustment valve. An air conditioner that flows into a suction side of the compressor.
請求項1において、冷房運転時に、前記除湿弁の下流側で且つ前記第2室内熱交換器の上流側に冷媒を複数流路に分流させる分岐管又はディストリビュータを配置し、前記第2室内熱交換器の出口側で複数流路に分流させた前記冷媒を合流させることを特徴とする空気調和機。   2. The second indoor heat exchange according to claim 1, wherein a branch pipe or a distributor for diverting a refrigerant into a plurality of flow paths is disposed downstream of the dehumidifying valve and upstream of the second indoor heat exchanger during cooling operation. An air conditioner characterized in that the refrigerant divided into a plurality of flow paths is merged on the outlet side of the vessel. 請求項1又は2において、前記混合冷媒が、地球温暖化係数(GWP)が150を超えないような前記HFO−1234yfと前記他の冷媒との混合比であることを特徴とする空気調和機。   3. The air conditioner according to claim 1, wherein the mixed refrigerant is a mixture ratio of the HFO-1234yf and the other refrigerant such that a global warming potential (GWP) does not exceed 150. 4.
JP2009108650A 2009-04-28 2009-04-28 Air conditioner Withdrawn JP2010255965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108650A JP2010255965A (en) 2009-04-28 2009-04-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108650A JP2010255965A (en) 2009-04-28 2009-04-28 Air conditioner

Publications (1)

Publication Number Publication Date
JP2010255965A true JP2010255965A (en) 2010-11-11

Family

ID=43317084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108650A Withdrawn JP2010255965A (en) 2009-04-28 2009-04-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP2010255965A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012085965A1 (en) * 2010-12-22 2012-06-28 日立アプライアンス株式会社 Air conditioner
JP2014190565A (en) * 2013-03-26 2014-10-06 Ntt Facilities Inc Air conditioner
CN106225291A (en) * 2016-07-20 2016-12-14 海信(山东)空调有限公司 Use air-conditioner control system and the air-conditioning of injector
CN107477900A (en) * 2016-10-31 2017-12-15 广东美的制冷设备有限公司 Air conditioner circulating system and round-robin method and air-conditioning
WO2018062316A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012085965A1 (en) * 2010-12-22 2012-06-28 日立アプライアンス株式会社 Air conditioner
JPWO2012085965A1 (en) * 2010-12-22 2014-05-22 日立アプライアンス株式会社 Air conditioner
JP2014190565A (en) * 2013-03-26 2014-10-06 Ntt Facilities Inc Air conditioner
CN106225291A (en) * 2016-07-20 2016-12-14 海信(山东)空调有限公司 Use air-conditioner control system and the air-conditioning of injector
WO2018062316A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
JP2018059702A (en) * 2016-09-30 2018-04-12 ダイキン工業株式会社 Air conditioner
CN107477900A (en) * 2016-10-31 2017-12-15 广东美的制冷设备有限公司 Air conditioner circulating system and round-robin method and air-conditioning

Similar Documents

Publication Publication Date Title
EP2808621B1 (en) Air-conditioning device
JP5496217B2 (en) heat pump
EP2557377B1 (en) Air conditioning and hot-water supply composite system
JP5627713B2 (en) Air conditioner
JP6058145B2 (en) Air conditioner
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
JP5797354B1 (en) Air conditioner
JP2010255966A (en) Air conditioner
EP3109567B1 (en) Air-conditioning device
JP5774216B2 (en) Multi-room air conditioner
WO2014128830A1 (en) Air conditioning device
EP2650620B1 (en) Heat pump device
JPWO2008117408A1 (en) Heat pump equipment
EP2902726B1 (en) Combined air-conditioning and hot-water supply system
WO2012101672A1 (en) Air conditioner device
EP2808622B1 (en) Air-conditioning device
JP5049889B2 (en) Refrigeration equipment
WO2016208042A1 (en) Air-conditioning device
JP2010255965A (en) Air conditioner
EP2808625B1 (en) A refrigerant charging method for an air-conditioning apparatus
JP2022528063A (en) Air regulator
EP3933300A1 (en) Air-conditioning device
JP6614877B2 (en) Air conditioner
JP5245510B2 (en) Air conditioning system and outdoor unit of air conditioning system
JP2012127648A (en) Heat pump apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703