JP6883186B2 - Heat pump system - Google Patents

Heat pump system Download PDF

Info

Publication number
JP6883186B2
JP6883186B2 JP2017027348A JP2017027348A JP6883186B2 JP 6883186 B2 JP6883186 B2 JP 6883186B2 JP 2017027348 A JP2017027348 A JP 2017027348A JP 2017027348 A JP2017027348 A JP 2017027348A JP 6883186 B2 JP6883186 B2 JP 6883186B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
flow path
medium
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017027348A
Other languages
Japanese (ja)
Other versions
JP2018132269A (en
Inventor
明男 宮良
明男 宮良
圭史 仮屋
圭史 仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Priority to JP2017027348A priority Critical patent/JP6883186B2/en
Publication of JP2018132269A publication Critical patent/JP2018132269A/en
Application granted granted Critical
Publication of JP6883186B2 publication Critical patent/JP6883186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、循環する熱媒体により熱の授受を行うヒートポンプサイクルを用いたシステムに関し、特に、空気熱と共に地中熱を利用可能なヒートポンプシステムに関する。 The present invention relates to a system using a heat pump cycle that transfers heat by a circulating heat medium, and more particularly to a heat pump system that can utilize geothermal heat together with air heat.

熱媒体に仕事を加えて、相変化を繰返させつつ循環させて、低温側から高温側へ熱を移動させる冷凍サイクルは、従来から冷凍機や冷房用の空気調和装置等で用いられているが、近年、加熱用のヒートポンプとしての利用も、その効率性や環境負荷の小ささの点から注目され、二酸化炭素排出量の削減が社会的要請となっている昨今では、こうしたヒートポンプが、既存加熱装置の代替設備として急速に導入が進んでいる。ヒートポンプとして用いられる冷凍サイクルとしては、蒸発器、圧縮機、凝縮器及び膨張弁(減圧弁)を有する蒸気圧縮式冷凍サイクルが一般的である。 A refrigeration cycle in which work is added to a heat medium and the heat is circulated while repeating phase changes to transfer heat from the low temperature side to the high temperature side has been conventionally used in refrigerators, air conditioners for cooling, and the like. In recent years, the use as a heat pump for heating has also attracted attention from the viewpoint of its efficiency and small environmental load, and nowadays, reduction of carbon dioxide emissions has become a social demand, and such heat pumps are used for existing heating. It is rapidly being introduced as an alternative facility for equipment. As the refrigeration cycle used as a heat pump, a vapor compression refrigeration cycle having an evaporator, a compressor, a condenser and an expansion valve (pressure reducing valve) is generally used.

このようなヒートポンプを用いた暖冷房システムにおいて、一年を通じて温度変化の小さい地中熱を活用することで、暖房が必要な時期に著しく外気温が低い場合や、冷房が必要な時期に著しく外気温が高い場合でも、安定した暖房や冷房を行える装置が、種々提案されている。 In a heating / cooling system using such a heat pump, by utilizing geothermal heat with small temperature changes throughout the year, the outside temperature is extremely low when heating is required, or when cooling is required. Various devices have been proposed that can perform stable heating and cooling even when the temperature is high.

こうした従来のヒートポンプシステムのうち、空気熱源と地中熱源を複合的に利用する装置の例として、特開2016−200356号公報に開示されるものがある。 Among such conventional heat pump systems, there is one disclosed in Japanese Patent Application Laid-Open No. 2016-200356 as an example of an apparatus that uses an air heat source and an underground heat source in a combined manner.

特開2016−200356号公報Japanese Unexamined Patent Publication No. 2016-200356

従来のヒートポンプ装置は、前記特許文献に示されるように、空気熱を利用するヒートポンプと、地中熱を利用するヒートポンプが併設され、必要に応じて両方のヒートポンプを駆動して温水等の熱交換対象を加熱する仕組みとなっている。このため、性能面で優れるものの、独立した二つのヒートポンプサイクル装置を備える分、一般的な空気調和機(エアコンディショナー)のような空気熱を利用するヒートポンプを一つのみ有する装置と比べて、コスト高となることが避けられず、導入しにくいという課題を有していた。 As shown in the patent document, the conventional heat pump device includes a heat pump that utilizes air heat and a heat pump that utilizes geothermal heat, and drives both heat pumps as necessary to exchange heat such as hot water. It is a mechanism to heat the object. Therefore, although it is excellent in terms of performance, it is equipped with two independent heat pump cycle devices, so it costs more than a device having only one heat pump that uses air heat, such as a general air conditioner (air conditioner). It was inevitable that it would be expensive, and there was a problem that it was difficult to introduce it.

本発明は前記課題を解消するためになされたもので、空気熱を利用するヒートポンプに対し、付加的に地中熱との熱交換部分を組み込んで地中熱を利用可能として、システム全体のコストを抑えつつ地中熱利用による熱交換性能の向上が図れる、ヒートポンプシステムを提供することを目的とする。 The present invention has been made to solve the above problems, and it is possible to utilize the geothermal heat by additionally incorporating a heat exchange portion with the geothermal heat to the heat pump that utilizes the air heat, and the cost of the entire system. The purpose is to provide a heat pump system that can improve heat exchange performance by utilizing geothermal heat.

本発明に係るヒートポンプシステムは、相変化可能な熱媒体を室内空気と熱交換させる室内側熱交換器と、前記熱媒体を室外空気と熱交換させる室外側熱交換器と、気相の前記熱媒体を圧縮して熱媒体の温度及び圧力を高める圧縮機と、液相の前記熱媒体を膨張させて圧力を低下させる膨張器と、前記室外側熱交換器と圧縮機との熱媒体流路接続関係を変えて、圧縮機を出た熱媒体が室外側熱交換器に向かうようにする第一の流路接続状態と、室外側熱交換器を出た熱媒体が圧縮機に向かうようにする第二の流路接続状態とを、少なくとも切換可能とする一又は複数の流路切換用弁とを備えるヒートポンプシステムにおいて、室外に配設され、地下の地中熱を採熱した所定の熱交換用媒体と前記熱媒体とを熱交換させる地中熱熱交換器と、当該地中熱熱交換器への熱媒体の流通と非流通とを切換可能とする一又は複数の熱交換器切換用弁とを備え、前記地中熱熱交換器が、熱媒体を流通させる状態では、前記流路切換用弁が第一の流路接続状態にされると、熱媒体を凝縮させるか熱媒体の温度を低下させる熱交換を行い、前記第二の流路接続状態にされると、熱媒体を蒸発させるか熱媒体の温度を上昇させる熱交換を行うようにされるものである。 The heat pump system according to the present invention includes an indoor heat exchanger that exchanges heat with indoor air for a phase-changeable heat medium, an outdoor heat exchanger that exchanges heat with outdoor air for the heat medium, and the heat of the gas phase. A compressor that compresses the medium to increase the temperature and pressure of the heat medium, an expander that expands the heat medium in the liquid phase to reduce the pressure, and a heat medium flow path between the outdoor heat exchanger and the compressor. Change the connection relationship so that the heat medium leaving the compressor goes to the outdoor heat exchanger in the first flow path connection state, and the heat medium leaving the outdoor heat exchanger goes to the compressor. In a heat pump system including one or a plurality of flow path switching valves that can switch between the second flow path connection state and the second flow path connection state, a predetermined heat that is arranged outdoors and collects underground underground heat. Switching between one or more heat exchangers that enable switching between an underground heat exchanger that exchanges heat between the replacement medium and the heat medium and the flow and non-distribution of the heat medium to the underground heat exchanger. In a state where the underground heat exchanger is provided with a valve and the heat medium is circulated, when the flow path switching valve is in the first flow path connection state, the heat medium is condensed or the heat medium is condensed. When the second flow path is connected to the second flow path connection state, heat exchange is performed to evaporate the heat medium or raise the temperature of the heat medium.

このように本発明においては、空気熱を利用するヒートポンプサイクル及び冷凍サイクルを実現する室内側熱交換器、室外側熱交換器、圧縮機、膨張器及び流路切換用弁の各装置に加えて、地中熱との熱交換を可能とする地中熱熱交換器を設け、地中熱熱交換器に熱媒体を流通させて、室内側熱交換器が熱媒体の蒸発器として働く流路切換用弁の第一の接続状態では、室外側熱交換器の場合と同様に地中熱熱交換器を熱媒体の凝縮又は温度低下に用い、また、室内側熱交換器が熱媒体の凝縮器として働く流路切換用弁の第二の接続状態では、室外側熱交換器の場合と同様に地中熱熱交換器を熱媒体の蒸発又は温度上昇に用いるようにすることにより、室内側熱交換器が蒸発器として働く冷房時には、外気温度より一般に温度の低い地中に熱媒体の熱を放出して熱媒体の冷却能力を増やせることに加え、室内側熱交換器が凝縮器として働く暖房時には、外気温度より一般に温度の高い地中の熱で熱媒体を加熱して熱媒体に対する加温能力を増やせることとなり、室内側熱交換器での吸熱性能や放熱性能を大きく向上させられる。また、こうした性能向上を、空気熱を利用するヒートポンプに地中熱熱交換器を追加することで実現でき、且つ、このような地中熱熱交換器の追加は、熱媒体流路の接続関係調整、具体的には、例えば空気熱利用ヒートポンプ中の熱媒体を通す管路の一部変更による、地中熱熱交換器部分のヒートポンプへの連結により対応できることで、システム導入に係り、空気熱のみ利用するヒートポンプシステムの場合と比べてのコスト上昇分を必要最小限に抑えることができ、地中熱を併用可能なヒートポンプシステムの導入をより容易なものとすることができる。 As described above, in the present invention, in addition to the indoor heat exchanger, the outdoor heat exchanger, the compressor, the expander, and the flow path switching valve that realize the heat pump cycle utilizing air heat and the refrigeration cycle. , A flow path in which an underground heat exchanger that enables heat exchange with underground heat is provided, a heat medium is circulated through the underground heat exchanger, and the indoor heat exchanger acts as an evaporator of the heat medium. In the first connection state of the switching valve, the underground heat exchanger is used to condense the heat medium or lower the temperature as in the case of the outdoor heat exchanger, and the indoor heat exchanger condenses the heat medium. In the second connection state of the flow path switching valve that acts as a vessel, the underground heat exchanger is used for evaporation or temperature rise of the heat medium as in the case of the outdoor heat exchanger, so that the indoor side When the heat exchanger works as an evaporator, in addition to being able to release the heat of the heat medium to the ground, which is generally lower than the outside air temperature, to increase the cooling capacity of the heat medium, the indoor heat exchanger works as a condenser. At the time of heating, the heat medium can be heated by the heat of the ground, which is generally higher than the outside air temperature, to increase the heating capacity for the heat medium, and the heat absorption performance and heat dissipation performance of the indoor heat exchanger can be greatly improved. Further, such performance improvement can be realized by adding a geothermal heat exchanger to the heat pump that uses air heat, and the addition of such a geothermal heat exchanger is related to the connection of the heat medium flow path. Adjustment, specifically, by connecting the geothermal heat exchanger part to the heat pump by partially changing the pipeline through which the heat medium in the heat pump using air heat is passed, it is possible to deal with the air heat related to the system introduction. It is possible to minimize the cost increase as compared with the case of a heat pump system that uses only the heat pump system, and it is possible to facilitate the introduction of a heat pump system that can also use geothermal heat.

また、本発明に係るヒートポンプシステムは必要に応じて、前記熱交換器切換用弁が、前記室外側熱交換器と膨張器との間、又は、膨張器と室内側熱交換器との間の熱媒体流路に、前記地中熱熱交換器が熱媒体を流通可能に介在する状態と介在しない状態とを切換可能とするものである。 Further, in the heat pump system according to the present invention, if necessary, the heat exchanger switching valve is provided between the outdoor heat exchanger and the expander, or between the expander and the indoor heat exchanger. The geothermal heat exchanger can switch between a state in which the heat medium can flow and a state in which the heat medium does not intervene in the heat medium flow path.

このように本発明においては、地中熱熱交換器が、熱交換器切換用弁を介してヒートポンプの熱媒体流路中の所定箇所に介在可能に設けられ、熱媒体を流通させる状態では地中熱熱交換器が室外側熱交換器と直列に接続する位置関係となって、室外側熱交換器に流通する熱媒体がそのまま地中熱熱交換器にも流通することにより、室内側熱交換器が蒸発器として働く冷房時には、室外側熱交換器で主に熱媒体温度を下げ、地中熱熱交換器で主に熱媒体を凝縮させることができ、また、室内側熱交換器が凝縮器として働く暖房時には、地中熱熱交換器で主に熱媒体温度を上げ、室外側熱交換器で主に熱媒体を蒸発させることができるなど、室外側熱交換器と地中熱熱交換器とで熱交換に係る負荷を分担でき、特に暖房の際は、地中熱熱交換器が室外側熱交換器の前段で予熱用熱交換器の役割を果たすこととなり、室外側熱交換器の前で熱媒体が温度上昇する分、室外側熱交換器における熱媒体の顕熱域での熱交換を減らして、蒸発器をなす室外側熱交換器における空気から熱媒体への熱伝達の効率を向上させられるなど、損失を抑えて熱交換性能を高められ、冷房や暖房を効率よく実行できる。 As described above, in the present invention, the underground heat exchanger is provided at a predetermined position in the heat medium flow path of the heat pump via the heat exchanger switching valve, and is ground in a state where the heat medium is circulated. The medium heat heat exchanger is connected in series with the outdoor heat exchanger, and the heat medium that flows through the outdoor heat exchanger also flows directly to the underground heat exchanger, resulting in indoor heat. During cooling, when the exchanger acts as an evaporator, the outdoor heat exchanger can mainly lower the heat medium temperature, the underground heat exchanger can mainly condense the heat medium, and the indoor heat exchanger can be used. During heating, which works as a condenser, the underground heat exchanger can mainly raise the temperature of the heat medium, and the outdoor heat exchanger can mainly evaporate the heat medium. The load related to heat exchange can be shared with the exchanger, and especially during heating, the underground heat exchanger acts as a preheating heat exchanger in front of the outdoor heat exchanger, and the outdoor heat exchange. As the temperature of the heat medium rises in front of the vessel, the heat exchange in the exposed heat region of the heat medium in the outdoor heat exchanger is reduced, and the heat transfer from air to the heat medium in the outdoor heat exchanger forming the evaporator. The heat exchange performance can be improved by suppressing the loss, such as improving the efficiency of the cooling and heating, and the cooling and heating can be performed efficiently.

また、本発明に係るヒートポンプシステムは必要に応じて、前記地中熱熱交換器に一端が接続可能とされると共に、他端が圧縮機入口側に接続可能とされて、必要に応じて熱媒体を流通させるバイパス流路と、当該バイパス流路の他端を圧縮機入口に連通させない状態と、バイパス流路の他端を圧縮機入口に連通可能とする状態とを、切換可能とする一又は複数のバイパス切換用弁とを備え、前記熱交換器切換用弁が、前記地中熱熱交換器と室外側熱交換器との間での熱媒体の流通を許容する一方、地中熱熱交換器及び室外側熱交換器と室内側熱交換器との間での熱媒体の流通は許容しない流路接続状態に、さらに切換可能とされ、且つ、前記バイパス流路の一端を地中熱熱交換器に連通させて、室外側熱交換器から地中熱熱交換器を経てバイパス流路に熱媒体が流通可能となる状態と、バイパス流路の一端を地中熱熱交換器に連通させない状態とを別途切換可能とされてなるものである。 Further, the heat pump system according to the present invention has one end connectable to the underground heat exchanger and the other end connectable to the compressor inlet side as needed, and heat is required. It is possible to switch between a bypass flow path through which the medium flows, a state in which the other end of the bypass flow path is not communicated with the compressor inlet, and a state in which the other end of the bypass flow path is communicated with the compressor inlet. Alternatively, it is provided with a plurality of bypass switching valves, and the heat exchanger switching valve allows the flow of a heat medium between the underground heat exchanger and the outdoor heat exchanger, while the underground heat. It is possible to further switch to a flow path connection state that does not allow the flow of heat medium between the heat exchanger and the outdoor heat exchanger and the indoor heat exchanger, and one end of the bypass flow path is underground. A state in which the heat medium can flow from the outdoor heat exchanger to the bypass flow path via the underground heat exchanger by communicating with the heat heat exchanger, and one end of the bypass flow path becomes the underground heat exchanger. It is possible to switch between the non-communication state and the non-communication state separately.

このように本発明においては、地中熱熱交換器と圧縮機入口側を繋げるバイパス流路を設け、熱媒体が室内側熱交換器を通らずにバイパス流路を通って圧縮機、室外側熱交換器、及び地中熱熱交換器を循環する状態を生じさせるようにすることにより、暖房時に室外側熱交換器で吸熱に伴う温度低下により熱交換器周囲への着霜状態に至った場合に、地中熱熱交換器で熱媒体に取り入れた地中の熱を圧縮機を介して室外側熱交換器に導入し、室外側熱交換器で熱を外に放出することで除霜が可能となり、地中の熱を利用して室内側熱交換器への影響を与えることなく効率よく除霜を実行でき、着霜による熱交換性能低下を必要最小限に抑えられると共に、除霜のために別途熱を発生させずに済み、除霜に係るエネルギー消費を抑えられる。 As described above, in the present invention, the bypass flow path connecting the underground heat exchanger and the compressor inlet side is provided, and the heat medium passes through the bypass flow path without passing through the indoor heat exchanger, and the compressor and the outdoor side. By creating a state in which the heat exchanger and the underground heat exchanger circulate, the temperature of the outdoor heat exchanger drops due to heat absorption during heating, resulting in frost formation around the heat exchanger. In some cases, the underground heat taken into the heat medium by the underground heat exchanger is introduced into the outdoor heat exchanger via a compressor, and the heat is released to the outside by the outdoor heat exchanger to defrost. It is possible to efficiently perform defrosting without affecting the indoor heat exchanger using the heat in the ground, and the deterioration of heat exchange performance due to frost formation can be minimized and defrosting is possible. Therefore, it is not necessary to generate heat separately, and energy consumption related to defrosting can be suppressed.

また、本発明に係るヒートポンプシステムは必要に応じて、前記バイパス切換用弁が、前記バイパス流路の他端を前記室外側熱交換器の一方の熱媒体流入出口のみに連通可能とする状態に、さらに切換可能とされてなるものである。 Further, in the heat pump system according to the present invention, if necessary, the bypass switching valve allows the other end of the bypass flow path to communicate with only one heat medium inflow port of the outdoor heat exchanger. , Furthermore, it is possible to switch.

このように本発明においては、バイパス流路が地中熱熱交換器と室外側熱交換器の圧縮機に近い熱媒体流入出口とを繋げる状態として、熱媒体が室内側熱交換器や圧縮機を通らずにバイパス流路を通って室外側熱交換器、及び地中熱熱交換器を循環する状態を生じさせるようにすることにより、暖房時に室外側熱交換器で吸熱に伴う温度低下により熱交換器周囲への着霜状態に至った場合に、地中熱熱交換器で地中の熱が取り入れられた熱媒体を室外側熱交換器に到達させて、室外側熱交換器で熱媒体の熱を外に放出することで除霜が可能となり、地中の熱を利用して室内側熱交換器への影響を与えることなく効率よく除霜を実行でき、着霜による熱交換性能低下を必要最小限に抑えられると共に、除霜のために別途熱を発生させたり圧縮機を駆動する必要はなく、必要最小限のエネルギー消費で除霜を実行でき、システム全体の効率を高められる。 As described above, in the present invention, the heat medium is the indoor heat exchanger or the compressor in a state where the bypass flow path connects the underground heat exchanger and the heat medium inflow port close to the compressor of the outdoor heat exchanger. By creating a state in which the outdoor heat exchanger and the underground heat exchanger circulate through the bypass flow path without passing through, the temperature drops due to heat absorption in the outdoor heat exchanger during heating. When frost is formed around the heat exchanger, the heat medium in which the underground heat is taken in by the underground heat exchanger is brought to the outdoor heat exchanger and heated by the outdoor heat exchanger. Defrosting is possible by releasing the heat of the medium to the outside, and it is possible to efficiently perform defrosting without affecting the indoor heat exchanger using the heat in the ground, and the heat exchange performance by frost formation. Defrosting can be performed with the minimum necessary energy consumption, and the efficiency of the entire system can be improved, as the deterioration can be minimized and there is no need to generate heat or drive a compressor separately for defrosting. ..

また、本発明に係るヒートポンプシステムは必要に応じて、前記地中熱熱交換器が、膨張器と室内側熱交換器との間の熱媒体流路における室外部分に、前記熱交換器切換用弁を介して、膨張器と室内側熱交換器とにそれぞれ連通する状態と、膨張器のみに連通する状態と、膨張器と室内側熱交換器のいずれにも連通しない状態とを切換可能に接続され、前記バイパス流路が、膨張器と室内側熱交換器との間の熱媒体流路における室外部分と、室内側熱交換器と流路切換用弁との間の熱媒体流路における室外部分との間に配設され、前記熱交換器切換用弁が、バイパス流路の一端が膨張器と室内側熱交換器に連通せず地中熱熱交換器にのみ連通する状態と、バイパス流路の一端が膨張器、室内側熱交換器及び地中熱熱交換器のいずれにも連通しない状態とを切換可能とされ、前記バイパス切換用弁が、バイパス流路の他端が室内側熱交換器に連通せず切換用弁にのみ連通する状態と、バイパス流路の他端が室内側熱交換器と切換用弁のいずれにも連通しない状態とを切換可能とされるものである。 Further, in the heat pump system according to the present invention, if necessary, the underground heat exchanger is used for switching the heat exchanger to an outdoor portion in the heat medium flow path between the expander and the indoor heat exchanger. It is possible to switch between a state in which the inflator and the indoor heat exchanger are communicated with each other via a valve, a state in which only the inflator is communicated, and a state in which the inflator and the indoor heat exchanger are not communicated with each other. The bypass flow path is connected, and the bypass flow path is formed in an outdoor portion in the heat medium flow path between the expander and the indoor heat exchanger and in the heat medium flow path between the indoor heat exchanger and the flow path switching valve. A state in which one end of the bypass flow path does not communicate with the expander and the indoor heat exchanger but communicates only with the underground heat exchanger, which is arranged between the outdoor part and the heat exchanger switching valve. It is possible to switch between a state in which one end of the bypass flow path does not communicate with any of the expander, the indoor heat exchanger and the underground heat exchanger, and the bypass switching valve has a chamber at the other end of the bypass flow path. It is possible to switch between a state where it does not communicate with the inner heat exchanger and only communicates with the switching valve, and a state where the other end of the bypass flow path does not communicate with either the indoor heat exchanger or the switching valve. is there.

このように本発明においては、室内に配設される室内側熱交換器と、室外に配設される室外側熱交換器、圧縮機、膨張弁、及び流路切換用弁との間の熱媒体流路で、且つ室外にあらわれた箇所に対し、地中熱熱交換器やバイパス流路を各切換用弁を介して連通状態を切換可能として接続することにより、システムの室内機部分と室外機部分の間に地中熱熱交換器を利用するための熱媒体回路を無理なく適切に組み込んで、地中熱熱交換器に熱媒体を流通させて地中熱を熱源として利用できる状態が、既存の室内機部分と室外機部分の構成を変えることなく得られることとなり、地中熱を利用可能とする構成部分を低コストで設置可能となり、地中熱を利用するシステムをより容易に導入できる。 As described above, in the present invention, the heat between the indoor heat exchanger arranged indoors and the outdoor heat exchanger, compressor, expansion valve, and flow path switching valve arranged outdoors. By connecting a geothermal heat exchanger or bypass flow path to a location that appears outdoors in the medium flow path via each switching valve so that the communication state can be switched, the indoor unit part of the system and the outdoor unit can be connected. A heat medium circuit for using a geothermal heat exchanger is reasonably and appropriately incorporated between the machine parts, and the heat medium can be circulated through the geothermal heat exchanger so that the geothermal heat can be used as a heat source. , It can be obtained without changing the configuration of the existing indoor unit part and outdoor unit part, and the component part that can use geothermal heat can be installed at low cost, making it easier to install a system that uses geothermal heat. Can be introduced.

また、本発明に係るヒートポンプシステムは必要に応じて、前記バイパス切換用弁が、前記バイパス流路の他端が前記流路切換用弁と室外側熱交換器との間の熱媒体流路に対し、流路切換用弁側には連通する一方で室外側熱交換器側には連通しないように接続される状態に、さらに切換可能とされ、前記熱交換器切換用弁が、前記地中熱熱交換器と室内側熱交換器との間での熱媒体の流通を許容する一方、地中熱熱交換器及び室内側熱交換器と室外側熱交換器との間での熱媒体の流通は許容せず、且つ、前記バイパス流路の一端を地中熱熱交換器に連通させて、地中熱熱交換器を通じて室内側熱交換器とバイパス流路との間で熱媒体が流通可能となる流路接続状態に、さらに切換可能とされてなるものである。 Further, in the heat pump system according to the present invention, if necessary, the bypass switching valve has the other end of the bypass flow path in the heat medium flow path between the flow path switching valve and the outdoor heat exchanger. On the other hand, the heat exchanger switching valve is connected to the outdoor heat exchanger side so as to communicate with the flow path switching valve side so as not to communicate with the outdoor heat exchanger side. Allows the flow of heat medium between the heat exchanger and the indoor heat exchanger, while allowing the heat medium to flow between the underground heat exchanger and the indoor heat exchanger and the outdoor heat exchanger. Distribution is not allowed, and one end of the bypass flow path is communicated with the underground heat exchanger, and the heat medium flows between the indoor heat exchanger and the bypass flow path through the underground heat exchanger. It is possible to further switch to the possible flow path connection state.

このように本発明においては、地中熱熱交換器と流路切換用弁を繋げるバイパス流路を設け、必要に応じて、熱媒体が室外側熱交換器を通らずにバイパス流路を通って地中熱熱交換器、室内側熱交換器、及び圧縮機を循環する状態を生じさせるようにすることにより、室内側熱交換器が蒸発器として作動する冷房時には、地中熱熱交換器が凝縮器をなし、外気温度が著しく高く、空気熱を利用する室外側熱交換器では放熱させにくい状況でも、外気温度より一般に温度の低い地中に熱媒体の熱を放出するようにして、熱媒体を冷却し凝縮させられることに加え、室内側熱交換器が凝縮器として働く暖房時には、地中熱熱交換器が蒸発器をなして、外気温度が著しく低く、空気熱を利用する室外側熱交換器では吸熱させにくい状況でも、外気温度より一般に温度の高い地中熱を取り入れるようにして、熱媒体を加熱し蒸発させられることとなり、地中熱を利用して室内側熱交換器での吸熱性能や放熱性能を十分確保できる。 As described above, in the present invention, a bypass flow path connecting the geothermal heat exchanger and the flow path switching valve is provided, and if necessary, the heat medium passes through the bypass flow path without passing through the outdoor heat exchanger. By creating a state in which the geothermal heat exchanger, the indoor heat exchanger, and the compressor circulate, the geothermal heat exchanger operates as an evaporator during cooling. Is a condenser, the outside air temperature is extremely high, and even in situations where it is difficult to dissipate heat with an outdoor heat exchanger that uses air heat, the heat of the heat medium is released to the ground, which is generally lower than the outside air temperature. In addition to being able to cool and condense the heat medium, the geothermal heat exchanger acts as an evaporator during heating, where the indoor heat exchanger acts as a condenser, and the outside air temperature is extremely low, making the room use air heat. Even in situations where it is difficult for the outside heat exchanger to absorb heat, the heat medium can be heated and evaporated by taking in geothermal heat, which is generally higher than the outside air temperature, and the indoor heat exchanger uses the geothermal heat. Sufficient heat absorption performance and heat dissipation performance can be ensured.

また、本発明に係るヒートポンプシステムは必要に応じて、前記室内側熱交換器が複数配設され、前記各室内側熱交換器、室外側熱交換器、及び地中熱熱交換器における一方の熱媒体流入出口に、それぞれ膨張器が接続されると共に、各膨張器が共通の熱媒体流路に接続されて、前記各熱交換器が膨張器を介して連通する状態とされ、前記各室内側熱交換器における他方の熱媒体流入出口を、圧縮機の入口側と出口側にそれぞれ連通させる状態と連通させない状態とを切換可能とする冷暖切換用弁がそれぞれ配設され、室内側熱交換器を出た熱媒体が圧縮機に向かうようにする冷房用接続状態と、圧縮機を出た熱媒体が室内側熱交換器に向かうようにする暖房用接続状態とを、少なくとも切換可能とされ、前記流路切換用弁が、前記室外側熱交換器における他方の熱媒体流入出口を、圧縮機の入口側と出口側にそれぞれ連通させる状態と連通させない状態とを切換可能とするものとされ、前記第一の流路接続状態と、前記第二の流路接続状態と、室外側熱交換器を圧縮機に連通させず室外側熱交換器に熱媒体が流通しない第三の流路接続状態とを、切換可能とされ、前記熱交換器切換用弁が、前記地中熱熱交換器における他方の熱媒体流入出口を、圧縮機の入口側と出口側にそれぞれ連通させる状態と連通させない状態とを切換可能とするものとされ、圧縮機を出た熱媒体が地中熱熱交換器に向かう第四の流路接続状態と、地中熱熱交換器を出た熱媒体が圧縮機に向かう第五の流路接続状態と、地中熱熱交換器を圧縮機に連通させず地中熱熱交換器に熱媒体が流通しない第六の流路接続状態とを、切換可能とされるものである。 Further, in the heat pump system according to the present invention, a plurality of the indoor heat exchangers are arranged as necessary, and one of the indoor heat exchangers, the outdoor heat exchangers, and the underground heat exchangers. An inflator is connected to each of the heat medium inflow and outflow ports, and each inflator is connected to a common heat medium flow path so that each of the heat exchangers communicates with each other through the inflator. A cooling / heating switching valve is provided to enable switching between a state in which the other heat medium inflow outlet of the inner heat exchanger is communicated with and a state in which the other heat medium inflow outlet is communicated with the inlet side and the outlet side of the compressor, respectively, and heat exchange is provided on the indoor side. At least it is possible to switch between the cooling connection state in which the heat medium leaving the container faces the compressor and the heating connection state in which the heat medium leaving the compressor faces the indoor heat exchanger. The flow path switching valve makes it possible to switch between a state in which the other heat medium inflow outlet in the outdoor heat exchanger is communicated with and a state in which the other heat medium inflow outlet is communicated with the inlet side and the outlet side of the compressor, respectively. , The first flow path connection state, the second flow path connection state, and the third flow path connection in which the outdoor heat exchanger is not communicated with the compressor and the heat medium does not flow to the outdoor heat exchanger. The state can be switched, and the heat exchanger switching valve does not communicate with the state in which the other heat medium inflow outlet in the underground heat exchanger communicates with the inlet side and the outlet side of the compressor, respectively. It is assumed that the state can be switched between the fourth flow path connection state in which the heat medium leaving the compressor goes to the underground heat exchanger and the heat medium leaving the underground heat exchanger is the compressor. It is possible to switch between the fifth flow path connection state toward the ground and the sixth flow path connection state in which the underground heat exchanger is not communicated with the compressor and the heat medium does not flow to the underground heat exchanger. It is a thing.

このように本発明においては、複数配設された室内側熱交換器が冷房や暖房に係る熱交換に用いられる場合に、各切換用弁を用いて、各室内側熱交換器や圧縮機に対し、室外側熱交換器のみを連通させ、熱源として空気熱のみを用いる状態と、室外側熱交換器と地中熱熱交換器をそれぞれ連通させて、熱源として空気熱と地中熱を用いる状態と、地中熱熱交換器のみを連通させて、熱源として地中熱のみを用いる状態とを切り換えられることにより、室内側熱交換器を複数用いるいわゆるマルチエアコン構成の場合でも、無理なく室外側熱交換器と地中熱熱交換器の一方又は両方を利用して冷凍サイクルやヒートポンプサイクルを構築して、効率よく冷房や暖房を行える状態が得られる。また、各切換用弁による流路接続調整で、熱媒体が室内側熱交換器を通らずに圧縮機、室外側熱交換器、及び地中熱熱交換器を循環する状態を生じさせることができ、室外側熱交換器において熱交換器周囲への着霜状態に至った場合に、地中熱熱交換器で熱媒体に取り入れた地中の熱を室外側熱交換器のみに導入するようにして除霜を実行可能となり、地中熱を利用して効率よく除霜を行って熱交換性能低下を回避できる。 As described above, in the present invention, when a plurality of indoor heat exchangers are used for heat exchange related to cooling and heating, each switching valve is used in each indoor heat exchanger and compressor. On the other hand, only the outdoor heat exchanger is communicated and only air heat is used as the heat source, and the outdoor heat exchanger and the underground heat exchanger are communicated with each other and air heat and underground heat are used as heat sources. By switching between the state and the state where only the underground heat exchanger is communicated and only the underground heat is used as the heat source, the room can be comfortably operated even in the case of a so-called multi-air conditioner configuration in which multiple indoor heat exchangers are used. A refrigeration cycle or heat pump cycle can be constructed using one or both of the outer heat exchanger and the underground heat exchanger to obtain a state in which cooling and heating can be performed efficiently. Further, by adjusting the flow path connection by each switching valve, it is possible to create a state in which the heat medium circulates in the compressor, the outdoor heat exchanger, and the geothermal heat exchanger without passing through the indoor heat exchanger. When the outdoor heat exchanger reaches a frosted state around the heat exchanger, the geothermal heat taken into the heat medium by the geothermal heat exchanger should be introduced only to the outdoor heat exchanger. It becomes possible to carry out defrosting, and it is possible to efficiently perform defrosting using geothermal heat and avoid deterioration of heat exchange performance.

また、本発明に係るヒートポンプシステムは必要に応じて、前記地中熱熱交換器の一方の熱媒体流入出口に接続される膨張器が、前記共通の熱媒体流路における室外にあらわれた所定箇所に接続され、前記熱交換器切換用弁が、地中熱熱交換器における他方の熱媒体流入出口に接続されると共に、圧縮機の入口側と出口側に通じる各熱媒体流路における室外にあらわれた所定箇所にそれぞれ接続されるものである。 Further, in the heat pump system according to the present invention, if necessary, an expander connected to one of the heat medium inflow ports of the geothermal heat exchanger appears at a predetermined location outdoors in the common heat medium flow path. The heat exchanger switching valve is connected to the other heat medium inflow port in the geothermal heat exchanger, and is connected to the outside in each heat medium flow path leading to the inlet side and the outlet side of the compressor. It is connected to each of the predetermined locations that appear.

このように本発明においては、複数の室内側熱交換器が室内に配設されるヒートポンプシステムにおける、室外にあらわれた熱媒体流路に対し、地中熱熱交換器が熱交換機切換用弁を介して連通状態を切換可能として接続されることにより、システムの室外部分に地中熱熱交換器を利用するための熱媒体回路を無理なく適切に組み込んで、地中熱熱交換器に熱媒体を流通させて地中熱を熱源として利用できる状態が、システムを構成する既存の室内外の各機器の構成を変えることなく得られることとなり、地中熱を利用可能とする構成部分を低コストで設置可能となり、地中熱を利用するシステムをより容易に導入できる。 As described above, in the present invention, in the heat pump system in which a plurality of indoor heat exchangers are arranged indoors, the geothermal heat exchanger provides a heat exchanger switching valve to the heat medium flow path appearing outdoors. By being connected so that the communication state can be switched via the system, a heat medium circuit for using the geothermal heat exchanger can be reasonably and appropriately incorporated in the outdoor part of the system, and the heat medium can be incorporated into the geothermal heat exchanger. It is possible to obtain a state in which geothermal heat can be used as a heat source by distributing the above without changing the configuration of each of the existing indoor and outdoor devices that make up the system, and the components that enable geothermal heat can be used at low cost. It can be installed at, and a system that uses geothermal heat can be introduced more easily.

本発明の第1の実施形態に係るヒートポンプシステムの空気熱利用冷房状態説明図である。It is explanatory drawing of the air heat utilization cooling state of the heat pump system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係るヒートポンプシステムの空気熱及び地中熱利用冷房状態説明図である。It is explanatory drawing of the cooling state using air heat and geothermal heat of the heat pump system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係るヒートポンプシステムの地中熱利用冷房状態説明図である。It is explanatory drawing of the cooling state using geothermal heat of the heat pump system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係るヒートポンプシステムの空気熱利用暖房状態説明図である。It is explanatory drawing of the heating state using air heat of the heat pump system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係るヒートポンプシステムの空気熱及び地中熱利用暖房状態説明図である。It is explanatory drawing of the heating state using air heat and geothermal heat of the heat pump system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係るヒートポンプシステムの地中熱利用暖房状態説明図である。It is explanatory drawing of the heating state using geothermal heat of the heat pump system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係るヒートポンプシステムにおける室外側熱交換器の第一の除霜状態説明図である。It is 1st defrost state explanatory view of the outdoor heat exchanger in the heat pump system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係るヒートポンプシステムにおける室外側熱交換器の第二の除霜状態説明図である。It is a 2nd defrost state explanatory view of the outdoor heat exchanger in the heat pump system which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係るヒートポンプシステムの空気熱利用冷房状態説明図である。It is explanatory drawing of the air heat utilization cooling state of the heat pump system which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係るヒートポンプシステムの空気熱及び地中熱利用冷房状態説明図である。It is explanatory drawing of the cooling state using air heat and geothermal heat of the heat pump system which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係るヒートポンプシステムの空気熱利用暖房状態説明図である。の概略系統図である。It is explanatory drawing of the heating state using air heat of the heat pump system which concerns on 2nd Embodiment of this invention. It is a schematic system diagram of. 本発明の第2の実施形態に係るヒートポンプシステムの空気熱及び地中熱利用暖房状態説明図である。It is explanatory drawing of the heating state using air heat and geothermal heat of the heat pump system which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係るヒートポンプシステムにおける室外側熱交換器の除霜状態説明図である。It is explanatory drawing of the defrost state of the outdoor heat exchanger in the heat pump system which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係るヒートポンプシステムによる地中温度回復状態説明図である。It is explanatory drawing of the underground temperature recovery state by the heat pump system which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係るヒートポンプシステムの空気熱利用冷暖房状態説明図である。It is explanatory drawing of the air-heat utilization air-conditioning state of the heat pump system which concerns on 3rd Embodiment of this invention. 本発明の第3の実施形態に係るヒートポンプシステムの空気熱及び地中熱利用冷暖房状態説明図である。It is explanatory drawing of the air-conditioning state using air heat and geothermal heat of the heat pump system which concerns on 3rd Embodiment of this invention. 本発明の第3の実施形態に係るヒートポンプシステムにおける室外側熱交換器の除霜状態説明図である。It is explanatory drawing of the defrost state of the outdoor heat exchanger in the heat pump system which concerns on 3rd Embodiment of this invention. 本発明の第3の実施形態に係るヒートポンプシステムによる地中温度回復状態説明図である。It is explanatory drawing of the underground temperature recovery state by the heat pump system which concerns on 3rd Embodiment of this invention.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態を図1ないし図8に基づいて説明する。本実施形態では、ヒートポンプを室内機と室外機のある空気調和機(エアコンディショナー)に適用した例について説明する。
(First Embodiment of the present invention)
Hereinafter, the first embodiment of the present invention will be described with reference to FIGS. 1 to 8. In this embodiment, an example in which a heat pump is applied to an air conditioner (air conditioner) having an indoor unit and an outdoor unit will be described.

前記各図において本実施形態に係るヒートポンプシステム1は、熱媒体を室内空気と熱交換させる室内側熱交換器11と、熱媒体を室外空気と熱交換させる室外側熱交換器12と、気相の熱媒体を圧縮して熱媒体の温度及び圧力を高める圧縮機13と、液相の熱媒体を膨張させて圧力を低下させる前記膨張器としての膨張弁14と、室内側熱交換器11及び室外側熱交換器12と圧縮機13との流路接続関係を変える流路切換用弁15と、室外に配設され、地中に対する吸放熱用の所定の熱交換用媒体と熱媒体とを熱交換させる地中熱熱交換器16と、地中熱熱交換器16への熱媒体の流通と非流通とを切換可能とする複数の熱交換器切換用弁61、62、63、64と、地中熱熱交換器16に一端が接続可能とされると共に、他端が圧縮機13に接続可能とされるバイパス流路17と、バイパス流路17の他端と圧縮機13及び室外側熱交換器12との流路接続関係を切換可能とする複数のバイパス切換用弁71、72、73、74、75とを備える構成である。 In each of the above figures, the heat pump system 1 according to the present embodiment has an indoor heat exchanger 11 that exchanges heat with the indoor air, an outdoor heat exchanger 12 that exchanges heat with the outdoor air, and a gas phase. The compressor 13 that compresses the heat medium of the above to increase the temperature and pressure of the heat medium, the expansion valve 14 as the expander that expands the heat medium of the liquid phase to reduce the pressure, the indoor heat exchanger 11 and A flow path switching valve 15 for changing the flow path connection relationship between the outdoor heat exchanger 12 and the compressor 13, and a predetermined heat exchange medium and heat medium arranged outside the room for absorbing and radiating heat from the ground. The underground heat exchanger 16 for heat exchange and a plurality of heat exchanger switching valves 61, 62, 63, 64 that can switch between the flow and non-distribution of the heat medium to the underground heat exchanger 16. A bypass flow path 17 having one end connectable to the underground heat exchanger 16 and the other end connectable to the compressor 13, the other end of the bypass flow path 17, the compressor 13 and the outdoor side. The configuration includes a plurality of bypass switching valves 71, 72, 73, 74, 75 that can switch the flow path connection relationship with the heat exchanger 12.

前記室内側熱交換器11は、例えばHFCやHFOなどの、相変化可能な熱媒体(冷媒)が内部を流れる流路を有し、この熱媒体の流路の外側に熱交換対象の空気が流通し、流路壁を介して熱媒体と空気とが熱交換を行う構造の公知の熱交換器である。この室内側熱交換器11は、具体的には、空気調和機の室内機筐体内に配設され、熱交換器の周囲に流通可能とされる室内空気と、熱交換器内部を流通する熱媒体とを熱交換させることとなる。 The indoor heat exchanger 11 has a flow path through which a phase-changeable heat medium (refrigerant) such as HFC or HFO flows, and air to be heat exchanged is outside the flow path of the heat medium. It is a known heat exchanger having a structure that circulates and exchanges heat between a heat medium and air through a flow path wall. Specifically, the indoor heat exchanger 11 is arranged in the indoor unit housing of the air conditioner, and the indoor air that can be circulated around the heat exchanger and the heat that circulates inside the heat exchanger. The heat is exchanged with the medium.

室内側熱交換器11は、一方の熱媒体流入出口を所定の熱媒体流路、例えば管路など、を介して流路切換用弁15と接続され、他方の熱媒体流入出口を所定の熱媒体流路を介して膨張弁14と接続されて配設される。 In the indoor heat exchanger 11, one heat medium inflow port is connected to a flow path switching valve 15 via a predetermined heat medium flow path, for example, a pipeline, and the other heat medium inflow port is connected to a predetermined heat. It is arranged so as to be connected to the expansion valve 14 via the medium flow path.

室内側熱交換器11は、室内に対し冷房を行う場合には、熱媒体に対し蒸発器となり、室内に対し暖房を行う場合には、熱媒体に対し凝縮器となる仕組みである。詳細には、蒸発器として用いられる冷房の場合、室内側熱交換器11では、膨張弁14と連通する他方の熱媒体流入出口に、この膨張弁14を経て膨張した液相の熱媒体が流入する。室内側熱交換器11では、低い圧力で且つ液相の熱媒体と、この状態の熱媒体を蒸発させて飽和蒸気を生じさせられる、比較的高い所定温度の室内空気とを熱交換させ、室内空気からの熱で熱媒体を蒸発させて気相とする一方、熱媒体蒸発に用いた熱の分、室内空気の温度を低下させることとなる。そして、流路切換用弁15と連通する一方の熱媒体流入出口から、熱交換で蒸発した気相の熱媒体が流出し、熱媒体は流路切換用弁15を経て圧縮機13に流入することとなる。 The indoor heat exchanger 11 serves as an evaporator for the heat medium when cooling the room, and acts as a condenser for the heat medium when heating the room. Specifically, in the case of a cooling used as an evaporator, in the indoor heat exchanger 11, the heat medium of the liquid phase expanded through the expansion valve 14 flows into the other heat medium inflow port communicating with the expansion valve 14. To do. The indoor heat exchanger 11 exchanges heat between a low pressure and liquid phase heat medium and indoor air at a relatively high predetermined temperature that evaporates the heat medium in this state to generate saturated vapor, and indoors the room. While the heat medium is evaporated by the heat from the air to form a vapor phase, the temperature of the indoor air is lowered by the amount of heat used for the heat medium evaporation. Then, the heat medium of the gas phase evaporated by heat exchange flows out from one of the heat medium inflow outlets communicating with the flow path switching valve 15, and the heat medium flows into the compressor 13 via the flow path switching valve 15. It will be.

また、凝縮器として用いられる暖房の場合、室内側熱交換器11では、一方の熱媒体流入出口が流路切換用弁15を介して圧縮機13の出口側と連通することとなるが、この圧縮機13で圧縮されて高温高圧となった気相の熱媒体を一方の熱媒体流入出口に流入させる。そして、室内側熱交換器11では、気相の熱媒体と、この熱媒体を凝縮させて飽和液を生じさせられる、比較的低い所定温度の室内空気とを熱交換させ、熱媒体から室内空気へ熱を移行させて熱媒体を凝縮させ、液相とする一方、熱媒体凝縮にあたり熱を放出した分、室内空気の温度を上昇させることとなる。そして、膨張弁14と連通する他方の熱媒体流入出口から、熱交換で凝縮した液相の熱媒体が流出し、熱媒体は膨張弁14に達することとなる。 Further, in the case of heating used as a condenser, in the indoor heat exchanger 11, one of the heat medium inflow outlets communicates with the outlet side of the compressor 13 via the flow path switching valve 15. The heat medium of the gas phase compressed by the compressor 13 and having a high temperature and high pressure is made to flow into one of the heat medium inflow outlets. Then, in the indoor heat exchanger 11, the heat medium of the gas phase and the indoor air having a relatively low predetermined temperature at which the heat medium is condensed to generate a saturated liquid are exchanged with each other, and the indoor air is transferred from the heat medium. While the heat is transferred to the heat medium to condense the heat medium into a liquid phase, the temperature of the indoor air is raised by the amount of heat released when the heat medium is condensed. Then, the heat medium of the liquid phase condensed by heat exchange flows out from the other heat medium inflow port communicating with the expansion valve 14, and the heat medium reaches the expansion valve 14.

前記室外側熱交換器12は、前記室内側熱交換器11と同様、熱媒体が内部を流れる流路を有し、この熱媒体の流路の外側に熱交換対象の空気が流通し、流路壁を介して熱媒体と空気とが熱交換を行う構造の公知の熱交換器である。この室外側熱交換器12は、具体的には、空気調和機の室外機筐体内に配設され、熱交換器の周囲に流通可能とされる室外空気と、熱交換器内部を流通する熱媒体とを熱交換させることとなる。 Like the indoor heat exchanger 11, the outdoor heat exchanger 12 has a flow path through which the heat medium flows, and the air to be heat exchanged flows outside the flow path of the heat medium and flows. It is a known heat exchanger having a structure in which heat exchange is performed between a heat medium and air via a road wall. Specifically, the outdoor heat exchanger 12 is arranged in the outdoor unit housing of the air conditioner, and the outdoor air that can be circulated around the heat exchanger and the heat that circulates inside the heat exchanger. The heat is exchanged with the medium.

室外側熱交換器12は、一方の熱媒体流入出口を所定の熱媒体流路、例えば管路など、を介してバイパス切換用弁74と接続され、他方の熱媒体流入出口を所定の熱媒体流路を介して熱交換器切換用弁62、63と接続されて配設される。そして、室外側熱交換器12の一方の熱媒体流入出口は、バイパス切換用弁74、73を介して流路切換用弁15と連通可能とされ、他方の熱媒体流入出口は、熱交換器切換用弁62、61を介して、膨張弁14と連通可能とされる。 In the outdoor heat exchanger 12, one heat medium inflow port is connected to the bypass switching valve 74 via a predetermined heat medium flow path, for example, a pipeline, and the other heat medium inflow port is connected to a predetermined heat medium. It is arranged so as to be connected to the heat exchanger switching valves 62 and 63 via a flow path. One of the heat medium inflow outlets of the outdoor heat exchanger 12 can communicate with the flow path switching valve 15 via the bypass switching valves 74 and 73, and the other heat medium inflow outlet is the heat exchanger. It is possible to communicate with the expansion valve 14 via the switching valves 62 and 61.

この室外側熱交換器12は、室内に対し暖房を行う場合には、熱媒体に対し蒸発器となり、室内に対し冷房を行う場合には、熱媒体に対し凝縮器となる仕組みである。詳細には、蒸発器として用いられる暖房の場合、室外側熱交換器12では、膨張弁14と連通する他方の熱媒体流入出口に、膨張弁14を経て膨張した液相の熱媒体が流入する。そして、室外側熱交換器12では、低い圧力で且つ液相の熱媒体と、この状態の熱媒体を蒸発させて飽和蒸気を生じさせられる比較的高い所定温度の室外空気とを熱交換させ、室外空気からの熱で熱媒体を蒸発させて気相とする一方、熱媒体蒸発に用いた熱の分、室外空気の温度を低下させることとなる。そして、流路切換用弁15と連通する一方の熱媒体流入出口から、熱交換で蒸発した気相の熱媒体が流出し、熱媒体は流路切換用弁15を経て圧縮機13に流入することとなる。 The outdoor heat exchanger 12 serves as an evaporator for the heat medium when heating the room, and acts as a condenser for the heat medium when cooling the room. Specifically, in the case of heating used as an evaporator, in the outdoor heat exchanger 12, the heat medium of the liquid phase expanded through the expansion valve 14 flows into the other heat medium inflow port communicating with the expansion valve 14. .. Then, in the outdoor heat exchanger 12, heat exchange is performed between the heat medium having a liquid phase at a low pressure and the outdoor air having a relatively high predetermined temperature capable of evaporating the heat medium in this state to generate saturated vapor. While the heat medium is evaporated by the heat from the outdoor air to form a vapor phase, the temperature of the outdoor air is lowered by the amount of heat used for the heat medium evaporation. Then, the heat medium of the gas phase evaporated by heat exchange flows out from one of the heat medium inflow outlets communicating with the flow path switching valve 15, and the heat medium flows into the compressor 13 via the flow path switching valve 15. It will be.

また、凝縮器として用いられる冷房の場合、室外側熱交換器12では、一方の熱媒体流入出口が流路切換用弁15を介して圧縮機13の出口側と連通することとなるが、この圧縮機13で圧縮されて高温高圧となった気相の熱媒体を一方の熱媒体流入出口に流入させる。そして、室内側熱交換器11では、気相の熱媒体と、この状態の熱媒体を凝縮させて飽和液を生じさせられる、比較的低い所定温度の室外空気とを熱交換させ、熱媒体から室外空気へ熱を移行させて熱媒体を凝縮させ、液相とする一方、熱媒体凝縮にあたり熱を放出した分、室外空気の温度を上昇させることとなる。そして、膨張弁14と連通する他方の熱媒体流入出口から、熱交換で凝縮した液相の熱媒体が流出し、熱媒体は膨張弁14に達することとなる。 Further, in the case of cooling used as a condenser, in the outdoor heat exchanger 12, one of the heat medium inflow outlets communicates with the outlet side of the compressor 13 via the flow path switching valve 15. The heat medium of the gas phase compressed by the compressor 13 and having a high temperature and high pressure is made to flow into one of the heat medium inflow outlets. Then, in the indoor heat exchanger 11, the heat medium of the gas phase and the outdoor air having a relatively low predetermined temperature, which can condense the heat medium in this state to generate a saturated liquid, are heat-exchanged from the heat medium. The heat is transferred to the outdoor air to condense the heat medium to form a liquid phase, while the temperature of the outdoor air is raised by the amount of heat released when the heat medium is condensed. Then, the heat medium of the liquid phase condensed by heat exchange flows out from the other heat medium inflow port communicating with the expansion valve 14, and the heat medium reaches the expansion valve 14.

室外側熱交換器12における内部の流路を流通する熱媒体に対し、熱交換対象となる室外空気は、極めて大量に存在するものであることから、熱交換後の空気が外部の大気中に拡散した後の、空気全体に対する熱交換後の空気の保有する熱の影響、すなわち、拡散後の空気全体の温度変化はほとんど無視でき、熱交換継続に伴い室外側熱交換器12に順次新規に導入される室外空気には温度変化は生じておらず、熱交換開始当初と同じ温度条件で継続して熱交換が行えると見なせる。 Since the outdoor air to be heat exchanged is present in an extremely large amount with respect to the heat medium flowing through the internal flow path in the outdoor heat exchanger 12, the air after the heat exchange is introduced into the outside air. The effect of the heat held by the air after heat exchange on the entire air after diffusion, that is, the temperature change of the entire air after diffusion is almost negligible, and as the heat exchange continues, the outdoor heat exchanger 12 is newly added in sequence. There is no temperature change in the introduced outdoor air, and it can be considered that heat exchange can be continued under the same temperature conditions as when heat exchange started.

前記圧縮機13は、気相の熱媒体を圧縮してその温度及び圧力を高める、冷凍サイクルやヒートポンプサイクルに用いられる公知の装置であり、詳細な説明を省略する。この圧縮機13は、その熱媒体入口と出口の双方を流路切換用弁15と接続され、入口を室内側熱交換器11に連通させ、出口を室外側熱交換器12に連通させる状態と、入口を室外側熱交換器12に連通させ、出口を室内側熱交換器11に連通させる状態とを切換可能とされる構成である。 The compressor 13 is a known device used in a refrigeration cycle or a heat pump cycle that compresses a heat medium in a gas phase to increase its temperature and pressure, and detailed description thereof will be omitted. In the compressor 13, both the inlet and outlet of the heat medium are connected to the flow path switching valve 15, the inlet is communicated with the indoor heat exchanger 11, and the outlet is communicated with the outdoor heat exchanger 12. The structure is such that the inlet can be communicated with the outdoor heat exchanger 12 and the outlet can be communicated with the indoor heat exchanger 11.

前記膨張弁14は、液相の熱媒体を膨張させてその圧力を低下させる、冷凍サイクルやヒートポンプサイクルに用いられる公知の装置であり、詳細な説明を省略する。この膨張弁14は、一方の弁開口を所定の熱媒体流路を介して室内側熱交換器11の他方の熱媒体流入出口と接続され、他方の弁開口を所定の熱媒体流路を介して熱交換器切換用弁61と接続されて配設される。 The expansion valve 14 is a known device used in a refrigeration cycle or a heat pump cycle that expands a heat medium of a liquid phase to reduce the pressure thereof, and detailed description thereof will be omitted. In the expansion valve 14, one valve opening is connected to the other heat medium inflow port of the indoor heat exchanger 11 via a predetermined heat medium flow path, and the other valve opening is connected to the other heat medium flow path via a predetermined heat medium flow path. It is arranged so as to be connected to the heat exchanger switching valve 61.

前記流路切換用弁15は、接続される四つの熱媒体流路a、b、c、d同士の連通する組合せを切り換えて、室内側熱交換器11を蒸発器とし、室外側熱交換器12を凝縮器として使用する冷房の状態と、室内側熱交換器11を凝縮器、室外側熱交換器12を蒸発器として使用する暖房の状態とを切換可能とする、公知の家庭用の空気調和機(エアコンディショナー)に用いられる四方弁であり、弁機構についての詳細な説明は省略する。 The flow path switching valve 15 switches the combination in which the four connected heat medium flow paths a, b, c, and d communicate with each other, and uses the indoor heat exchanger 11 as an evaporator and the outdoor heat exchanger. Known household air that can switch between a cooling state in which 12 is used as a condenser and a heating state in which the indoor heat exchanger 11 is used as a condenser and the outdoor heat exchanger 12 is used as an evaporator. It is a four-way valve used in a harmonizer (air conditioner), and detailed description of the valve mechanism is omitted.

この流路切換用弁15では、室外側熱交換器12と圧縮機13との熱媒体流路接続関係を変えて、室外側熱交換器12の一方の熱媒体流入出口を圧縮機13出口と連通させ、圧縮機13を出た熱媒体が室外側熱交換器12に向かうようにする第一の流路接続状態と、室外側熱交換器12の一方の熱媒体流入出口を圧縮機13入口と連通させ、室外側熱交換器12を出た熱媒体が圧縮機13に向かうようにする第二の流路接続状態とを、切換可能としている。 In the flow path switching valve 15, one of the heat medium inflow outlets of the outdoor heat exchanger 12 is used as the compressor 13 outlet by changing the heat medium flow path connection relationship between the outdoor heat exchanger 12 and the compressor 13. The first flow path connection state in which the heat medium exiting the compressor 13 is directed toward the outdoor heat exchanger 12 and the one heat medium inflow outlet of the outdoor heat exchanger 12 are connected to the compressor 13 inlet. It is possible to switch between the second flow path connection state in which the heat medium exiting the outdoor heat exchanger 12 is directed toward the compressor 13 by communicating with the compressor 13.

合わせて、流路切換用弁15は、室内側熱交換器11と圧縮機13との熱媒体流路接続関係も変えるものであり、第一の流路接続状態では、室内側熱交換器11の一方の熱媒体流入出口を圧縮機13入口と連通させ、室内側熱交換器11を出た熱媒体が圧縮機13に向かうようにし、且つ、第二の流路接続状態では、室内側熱交換器11の一方の熱媒体流入出口を圧縮機13出口と連通させ、圧縮機13を出た熱媒体が室内側熱交換器11に向かうようにする仕組みである。
なお、流路切換用弁15を一つの弁としているが、複数弁の組合せで構成することもできる。
At the same time, the flow path switching valve 15 also changes the heat medium flow path connection relationship between the indoor heat exchanger 11 and the compressor 13, and in the first flow path connection state, the indoor heat exchanger 11 One of the heat medium inflow outlets is communicated with the compressor 13 inlet so that the heat medium exiting the indoor heat exchanger 11 faces the compressor 13, and in the second flow path connection state, the indoor heat is generated. One of the heat medium inflow outlets of the exchanger 11 is communicated with the compressor 13 outlet so that the heat medium exiting the compressor 13 faces the indoor heat exchanger 11.
Although the flow path switching valve 15 is used as one valve, it may be configured by combining a plurality of valves.

前記地中熱熱交換器16は、熱媒体と、これの熱交換対象となる地中熱の熱交換用媒体とを、伝熱面で隔てられた所定の流路内にそれぞれ流通させ、これら熱媒体と熱交換用媒体との間で伝熱面を介して熱交換を行わせる公知の熱交換器、例えば、プレート式熱交換器など、であり、熱交換器の機構についての詳細な説明は省略する。 The geothermal heat exchanger 16 circulates a heat medium and a heat exchange medium for geothermal heat, which is a heat exchange target thereof, in a predetermined flow path separated by a heat transfer surface. A known heat exchanger that exchanges heat between a heat medium and a heat exchange medium via a heat transfer surface, for example, a plate heat exchanger, etc., and a detailed description of the mechanism of the heat exchanger. Is omitted.

この地中熱熱交換器16は、ヒートポンプサイクルにおける室外側熱交換器12と膨張弁14との間に介在可能として室外に配設され、地中に埋設された地中熱交換部50での熱交換により地中の温度に準じた所定温度とされた上で地上側に還流される所定の熱交換用媒体、例えば、水などと、熱媒体とを熱交換させる構成である。 The geothermal heat exchanger 16 is arranged outdoors so as to be intervenable between the outdoor heat exchanger 12 and the expansion valve 14 in the heat pump cycle, and is located in the geothermal heat exchanger 50 buried in the ground. The heat exchange is such that the heat medium is exchanged with a predetermined heat exchange medium, for example, water, which is returned to the ground side after being set to a predetermined temperature according to the temperature in the ground by heat exchange.

そして、地中熱熱交換器16は、膨張弁14と室外側熱交換器12との間の熱媒体流路に、熱交換器切換用弁61、62、63、64を介して接続されており、これら複数の弁で、この地中熱熱交換器16の熱媒体側流路が熱媒体を流通可能とされて膨張弁14と室外側熱交換器12との間に介在する状態と、地中熱熱交換器16が全く介在しない状態とを、切換可能とされる仕組みである。 The geothermal heat exchanger 16 is connected to the heat medium flow path between the expansion valve 14 and the outdoor heat exchanger 12 via the heat exchanger switching valves 61, 62, 63, 64. In these plurality of valves, the heat medium side flow path of the geothermal heat exchanger 16 is enabled to flow the heat medium and is interposed between the expansion valve 14 and the outdoor heat exchanger 12. It is a mechanism that enables switching between a state in which the geothermal heat exchanger 16 does not intervene at all.

地中熱熱交換器16に熱媒体を流通させ、熱媒体を熱交換用媒体と熱交換させる状態では、流路切換用弁15が第一の流路接続状態にされると、地中熱熱交換器16は、室外側熱交換器12の場合と同様に凝縮器として機能し、熱媒体を凝縮させるか熱媒体の温度を低下させる熱交換を行うこととなる。また、流路切換用弁15が第二の流路接続状態とされると、地中熱熱交換器16は、室外側熱交換器12の場合と同様に蒸発器として機能し、熱媒体を蒸発させるか熱媒体の温度を上昇させる熱交換を行うようにされる。 In a state where the heat medium is circulated through the underground heat exchanger 16 and the heat medium is exchanged with the heat exchange medium, when the flow path switching valve 15 is in the first flow path connection state, the geothermal heat is generated. The heat exchanger 16 functions as a condenser as in the case of the outdoor heat exchanger 12, and performs heat exchange that condenses the heat medium or lowers the temperature of the heat medium. Further, when the flow path switching valve 15 is in the second flow path connection state, the geothermal heat exchanger 16 functions as an evaporator as in the case of the outdoor heat exchanger 12, and the heat medium is used. Heat exchange is performed to evaporate or raise the temperature of the heat medium.

前記熱交換器切換用弁61、62、63、64は、室外側熱交換器12と地中熱熱交換器16との間、及び、地中熱熱交換器16と膨張弁14との間の熱媒体流路にそれぞれ配設され、室外側熱交換器12と膨張弁14との間で地中熱熱交換器16が熱媒体を流通可能に介在する状態と、室外側熱交換器12と膨張弁14とを直結して中間に地中熱熱交換器16を介在させず、地中熱熱交換器16には熱媒体を流通させない状態とを切換可能とするものである。 The heat exchanger switching valves 61, 62, 63, 64 are between the outdoor heat exchanger 12 and the geothermal heat exchanger 16 and between the geothermal heat exchanger 16 and the expansion valve 14. A state in which the geothermal heat exchanger 16 intervenes between the outdoor heat exchanger 12 and the expansion valve 14 so that the heat medium can flow, and the outdoor heat exchanger 12 are arranged in the heat medium flow paths of the above. And the expansion valve 14 are directly connected to each other so that the geothermal heat exchanger 16 is not interposed in the middle, and the state in which the heat medium is not circulated through the geothermal heat exchanger 16 can be switched.

具体的には、地中熱熱交換器16の一方の熱媒体流入出口に接続される熱媒体流路と膨張弁14との間での熱媒体の流通状態と流通停止状態とを切り換える第一の熱交換器切換用弁61と、地中熱熱交換器16の一方の熱媒体流入出口に接続される熱媒体流路eと室外側熱交換器12との間での熱媒体の流通状態と流通停止状態とを切り換える第二の熱交換器切換用弁62と、地中熱熱交換器16の他方の熱媒体流入出口に接続される熱媒体流路fと室外側熱交換器12との間での熱媒体の流通状態と流通停止状態とを切り換える第三の熱交換器切換用弁63と、地中熱熱交換器16の一方の熱媒体流入出口に接続される熱媒体流路e、又は、地中熱熱交換器16の他方の熱媒体流入出口に接続される熱媒体流路fに配設され、地中熱熱交換器16における熱媒体の流通状態と流通停止状態とを切り換える第四の熱交換器切換用弁64とを備える構成である。 Specifically, the first switching between the flow state and the flow stop state of the heat medium between the heat medium flow path connected to one heat medium inflow port of the underground heat exchanger 16 and the expansion valve 14. Heat exchanger switching valve 61, and the heat medium flow state between the heat medium flow path e connected to one heat medium inflow port of the underground heat exchanger 16 and the outdoor heat exchanger 12. A second heat exchanger switching valve 62 that switches between the state and the flow stop state, a heat medium flow path f connected to the other heat medium inflow port of the underground heat exchanger 16, and an outdoor heat exchanger 12. A heat medium flow path connected to a third heat exchanger switching valve 63 for switching between a heat medium flow state and a flow stop state between the two, and one heat medium inflow port of the underground heat exchanger 16. e, or the heat medium flow path f connected to the other heat medium inflow port of the underground heat exchanger 16, and the flow state and flow stop state of the heat medium in the underground heat exchanger 16. It is configured to include a fourth heat exchanger switching valve 64 for switching between the two.

これら熱交換器切換用弁61、62、63、64において、第一の熱交換器切換用弁61を開とし、第二の熱交換器切換用弁62を閉とし、第三の熱交換器切換用弁63を開とし、第四の熱交換器切換用弁64を開とすることで、室外側熱交換器12から第三の熱交換器切換用弁63、第四の熱交換器切換用弁64、地中熱熱交換器16、第一の熱交換器切換用弁61を経て、膨張弁14に至る経路に熱媒体が流通可能となり、室外側熱交換器12と膨張弁14との間で地中熱熱交換器16が熱媒体を流通可能に介在する状態とすることができる(図2、図5参照)。 In these heat exchanger switching valves 61, 62, 63, 64, the first heat exchanger switching valve 61 is opened, the second heat exchanger switching valve 62 is closed, and the third heat exchanger is closed. By opening the switching valve 63 and opening the fourth heat exchanger switching valve 64, the outdoor heat exchanger 12 to the third heat exchanger switching valve 63 and the fourth heat exchanger switching are switched. A heat medium can flow through the valve 64, the underground heat exchanger 16, the first heat exchanger switching valve 61, and the expansion valve 14, and the outdoor heat exchanger 12 and the expansion valve 14 The underground heat exchanger 16 can be placed between them so that the heat medium can flow (see FIGS. 2 and 5).

また、第一の熱交換器切換用弁61を開とし、第二の熱交換器切換用弁62を開とし、第三の熱交換器切換用弁63を閉とし、第四の熱交換器切換用弁64を閉とすることで、室外側熱交換器12から第二の熱交換器切換用弁62、第一の熱交換器切換用弁61を経て、膨張弁14に至る経路に熱媒体が流通可能となり、室外側熱交換器12と膨張弁14とを直結して中間に地中熱熱交換器16を介在させず、地中熱熱交換器16には熱媒体を流通させない状態とすることができる(図1、図4参照)。 Further, the first heat exchanger switching valve 61 is opened, the second heat exchanger switching valve 62 is opened, the third heat exchanger switching valve 63 is closed, and the fourth heat exchanger is closed. By closing the switching valve 64, heat is transferred from the outdoor heat exchanger 12 to the expansion valve 14 via the second heat exchanger switching valve 62 and the first heat exchanger switching valve 61. A state in which the medium can be circulated, the outdoor heat exchanger 12 and the expansion valve 14 are directly connected, the underground heat exchanger 16 is not interposed in the middle, and the heat medium is not circulated through the underground heat exchanger 16. (See FIGS. 1 and 4).

この他、第一の熱交換器切換用弁61と第三の熱交換器切換用弁63をそれぞれ閉とし、第二の熱交換器切換用弁62及び第四の熱交換器切換用弁64をそれぞれ開とすることで、膨張弁14と地中熱熱交換器16との間では熱媒体の流通を停止させつつ、室外側熱交換器12から第二の熱交換器切換用弁62を経て、地中熱熱交換器16に至る経路に熱媒体が流通可能となり、室外側熱交換器12と地中熱熱交換器16との間での熱媒体の流通を許容する一方、膨張弁14を介した地中熱熱交換器16と室内側熱交換器11との間での熱媒体の流通は許容しない流路接続状態とすることができる(図7参照)。 In addition, the first heat exchanger switching valve 61 and the third heat exchanger switching valve 63 are closed, respectively, and the second heat exchanger switching valve 62 and the fourth heat exchanger switching valve 64 are closed. By opening each of the above, the outdoor heat exchanger 12 to the second heat exchanger switching valve 62 are opened while stopping the flow of the heat medium between the expansion valve 14 and the underground heat exchanger 16. Through this, the heat medium can be circulated in the path leading to the underground heat exchanger 16, and the heat medium can be circulated between the outdoor heat exchanger 12 and the underground heat exchanger 16, while the expansion valve. It is possible to establish a flow path connection state in which the flow of the heat medium between the underground heat exchanger 16 and the indoor heat exchanger 11 via the 14 is not allowed (see FIG. 7).

逆に、第一の熱交換器切換用弁61と第四の熱交換器切換用弁64をそれぞれ開とし、第二の熱交換器切換用弁62及び第三の熱交換器切換用弁63をそれぞれ閉とすることで、室外側熱交換器12と地中熱熱交換器16との間では熱媒体の流通を停止させつつ、膨張弁14から第一の熱交換器切換用弁61を経て、地中熱熱交換器16に至る経路に熱媒体が流通可能となり、膨張弁14を介した室内側熱交換器11と地中熱熱交換器16との間での熱媒体の流通を許容する一方、地中熱熱交換器16と室外側熱交換器12との間での熱媒体の流通は許容しない流路接続状態とすることができる(図3、図6参照)。 On the contrary, the first heat exchanger switching valve 61 and the fourth heat exchanger switching valve 64 are opened, respectively, and the second heat exchanger switching valve 62 and the third heat exchanger switching valve 63 are opened. By closing each of the above, the expansion valve 14 to the first heat exchanger switching valve 61 can be moved from the expansion valve 14 to the first heat exchanger switching valve 61 while stopping the flow of the heat medium between the outdoor heat exchanger 12 and the underground heat exchanger 16. After that, the heat medium can be circulated in the path leading to the underground heat exchanger 16, and the heat medium can be circulated between the indoor heat exchanger 11 and the underground heat exchanger 16 via the expansion valve 14. On the other hand, it is possible to establish a flow path connection state in which the flow of the heat medium between the underground heat exchanger 16 and the outdoor heat exchanger 12 is not permitted (see FIGS. 3 and 6).

前記バイパス流路17は、地中熱熱交換器16の他方の熱媒体流入出口に接続される熱媒体流路fに一端が接続されると共に、他端がバイパス切換用弁71、72、73、74、75を介して流路切換用弁15、圧縮機13、又は室外側熱交換器12に接続可能とされて、必要に応じて熱媒体を流通させるものである。 One end of the bypass flow path 17 is connected to a heat medium flow path f connected to the other heat medium inflow port of the geothermal heat exchanger 16, and the other end is a bypass switching valve 71, 72, 73. , 74, 75 can be connected to the flow path switching valve 15, the compressor 13, or the outdoor heat exchanger 12, and the heat medium is circulated as needed.

バイパス流路17の一端は、熱交換器切換用弁のうち、第四の熱交換器切換用弁64が設けられる熱媒体流路fに接続されることで、第四の熱交換器切換用弁64を開とすると、地中熱熱交換器16に連通する一方、第四の熱交換器切換用弁64を閉とすると、地中熱熱交換器16に連通しないなど、地中熱熱交換器16への連通状態を必要に応じて切換可能とされる仕組みである。 One end of the bypass flow path 17 is connected to the heat medium flow path f provided with the fourth heat exchanger switching valve 64 among the heat exchanger switching valves, so that the fourth heat exchanger switching valve can be used. When the valve 64 is opened, it communicates with the geothermal heat exchanger 16, while when the fourth heat exchanger switching valve 64 is closed, it does not communicate with the geothermal heat exchanger 16. It is a mechanism that allows the communication state to the exchanger 16 to be switched as needed.

また、バイパス流路17の一端に対し、第三の熱交換器切換用弁63を閉とした上で、第四の熱交換器切換用弁64と共に第二の熱交換器切換用弁62を開とすることで、バイパス流路17の一端が地中熱熱交換器16を通じて室外側熱交換器12にも連通する状態となり、バイパス流路17から地中熱熱交換器16を経て室外側熱交換器12に至る経路に熱媒体を流通可能とすることができる。そして、この場合に第一の熱交換器切換用弁61を閉としておけば、膨張弁14や室内側熱交換器11への熱媒体の流通を阻止でき、熱媒体が室内側熱交換器11を通る代わりにバイパス流路17を通る状態を設定可能となる(図7、図8参照)。 Further, after closing the third heat exchanger switching valve 63 with respect to one end of the bypass flow path 17, the second heat exchanger switching valve 62 is provided together with the fourth heat exchanger switching valve 64. By opening the bypass flow path 17, one end of the bypass flow path 17 communicates with the outdoor heat exchanger 12 through the geothermal heat exchanger 16, and the bypass flow path 17 passes through the geothermal heat exchanger 16 to the outdoor side. The heat medium can be circulated in the path leading to the heat exchanger 12. In this case, if the first heat exchanger switching valve 61 is closed, the flow of the heat medium to the expansion valve 14 and the indoor heat exchanger 11 can be blocked, and the heat medium becomes the indoor heat exchanger 11. It is possible to set the state of passing through the bypass flow path 17 instead of passing through (see FIGS. 7 and 8).

この他、バイパス流路17の一端に対し、第三の熱交換器切換用弁63を閉とした上で、第四の熱交換器切換用弁64と共に第一の熱交換器切換用弁61を開とすることで、バイパス流路17の一端が地中熱熱交換器16を通じて膨張弁14や室内側熱交換器11にも連通する状態となり、バイパス流路17から地中熱熱交換器16や膨張弁14を経て室内側熱交換器11に至る経路に熱媒体を流通可能とすることができる。そして、この場合に第二の熱交換器切換用弁62を閉としておけば、室外側熱交換器12への熱媒体の流通を阻止でき、熱媒体が室外側熱交換器12を通る代わりにバイパス流路17を通る状態を設定可能となる(図3、図6参照)。 In addition, after closing the third heat exchanger switching valve 63 with respect to one end of the bypass flow path 17, the first heat exchanger switching valve 61 together with the fourth heat exchanger switching valve 64 By opening, one end of the bypass flow path 17 is in a state of communicating with the expansion valve 14 and the indoor heat exchanger 11 through the geothermal heat exchanger 16, and the geothermal heat exchanger is communicated from the bypass flow path 17. The heat medium can be circulated through the path 16 and the expansion valve 14 to the indoor heat exchanger 11. Then, in this case, if the second heat exchanger switching valve 62 is closed, the flow of the heat medium to the outdoor heat exchanger 12 can be blocked, and instead of the heat medium passing through the outdoor heat exchanger 12. The state of passing through the bypass flow path 17 can be set (see FIGS. 3 and 6).

前記バイパス切換用弁71、72、73、74、75は、バイパス流路17の他端と、流路切換用弁15と圧縮機13入口とを接続する熱媒体流路a、及び、流路切換用弁15と室外側熱交換器12の一方の熱媒体流入出口とを接続する熱媒体流路b、との接続関係他を切換可能とするものである。 The bypass switching valves 71, 72, 73, 74, 75 are the heat medium flow path a connecting the other end of the bypass flow path 17, the flow path switching valve 15 and the inlet of the compressor 13, and the flow path. The connection relationship between the switching valve 15 and the heat medium flow path b that connects one of the heat medium inflow outlets of the outdoor heat exchanger 12 and the like can be switched.

具体的には、バイパス切換用弁としては、流路切換用弁15と圧縮機13入口とを接続する熱媒体流路aと、バイパス流路17の他端との間での、熱媒体の流通状態と流通停止状態とを切り換える第一のバイパス切換用弁71と、流路切換用弁15と室外側熱交換器12の一方の熱媒体流入出口とを接続する熱媒体流路bと、バイパス流路17の他端との間での、熱媒体の流通状態と流通停止状態とを切り換える第二のバイパス切換用弁72と、前記熱媒体流路bにおける、前記第二のバイパス切換用弁72の接続箇所より流路切換用弁15側の流路部分に配設され、この流路部分での熱媒体の流通状態と流通停止状態とを切り換える第三のバイパス切換用弁73と、同じ熱媒体流路bにおける、前記第二のバイパス切換用弁72の接続箇所より室外側熱交換器12側の流路部分に配設され、この流路部分での熱媒体の流通状態と流通停止状態とを切り換える第四のバイパス切換用弁74と、バイパス流路17に配設され、バイパス流路17における熱媒体の流通状態と流通停止状態とを切り換える第五のバイパス切換用弁75とを備える構成である。 Specifically, as the bypass switching valve, the heat medium between the heat medium flow path a connecting the flow path switching valve 15 and the inlet of the compressor 13 and the other end of the bypass flow path 17 A first bypass switching valve 71 that switches between a flow state and a flow stop state, a heat medium flow path b that connects the flow path switching valve 15 and one heat medium inflow port of the outdoor heat exchanger 12. A second bypass switching valve 72 for switching between a flow state and a flow stop state of the heat medium between the other end of the bypass flow path 17 and the second bypass switching valve 72 in the heat medium flow path b. A third bypass switching valve 73, which is arranged in the flow path portion on the flow path switching valve 15 side from the connection portion of the valve 72 and switches between the flow state and the flow stop state of the heat medium in this flow path portion, In the same heat medium flow path b, it is arranged in the flow path portion on the outdoor heat exchanger 12 side from the connection portion of the second bypass switching valve 72, and the flow state and distribution of the heat medium in this flow path portion. A fourth bypass switching valve 74 for switching between the stopped state and a fifth bypass switching valve 75 arranged in the bypass flow path 17 for switching between the flow state and the flow stop state of the heat medium in the bypass flow path 17. It is a configuration including.

これらバイパス切換用弁71、72、73、74、75において、第一のバイパス切換用弁71及び第二のバイパス切換用弁72をいずれも閉とし、第三のバイパス切換用弁73及び第四のバイパス切換用弁74をいずれも開とし、第五のバイパス切換用弁75を閉とすることで、バイパス流路17の他端が、流路切換用弁15と圧縮機13入口とを接続する熱媒体流路aと、流路切換用弁15と室外側熱交換器12の一方の熱媒体流入出口とを接続する熱媒体流路bのいずれにも連通せず、且つ、流路切換用弁15から第三のバイパス切換用弁73、第四のバイパス切換用弁74を経て、室外側熱交換器12に至る熱媒体流路bに熱媒体が流通可能となり、バイパス流路17を用いない通常の冷房又は暖房を行う際の接続状態が得られる。すなわち、バイパス流路17の他端を圧縮機13入口に連通させない一方、室内側熱交換器11における一方の熱媒体流入出口を圧縮機13入口に連通させ、且つ室外側熱交換器12における一方の熱媒体流入出口を圧縮機13出口に連通させる冷房時の接続状態(図1、図2参照)や、室内側熱交換器11における一方の熱媒体流入出口を圧縮機13出口に連通させ、且つ室外側熱交換器12における一方の熱媒体流入出口を圧縮機13入口に連通させる暖房時の接続状態(図4、図5参照)にできる。 In these bypass switching valves 71, 72, 73, 74, 75, the first bypass switching valve 71 and the second bypass switching valve 72 are all closed, and the third bypass switching valve 73 and the fourth By opening all the bypass switching valves 74 and closing the fifth bypass switching valve 75, the other end of the bypass flow path 17 connects the flow path switching valve 15 and the compressor 13 inlet. The heat medium flow path a is not communicated with any of the heat medium flow path b connecting the flow path switching valve 15 and one of the heat medium inflow outlets of the outdoor heat exchanger 12, and the flow path is switched. The heat medium can flow through the heat medium flow path b from the valve 15, the third bypass switching valve 73, and the fourth bypass switching valve 74 to the outdoor heat exchanger 12, and the bypass flow path 17 is provided. A connection state can be obtained when performing normal cooling or heating that is not used. That is, while the other end of the bypass flow path 17 is not communicated with the inlet of the compressor 13, one of the heat medium inflow outlets of the indoor heat exchanger 11 is communicated with the inlet of the compressor 13 and one of the outdoor heat exchangers 12. The connection state during cooling (see FIGS. 1 and 2) in which the heat medium inflow port is communicated with the compressor 13 outlet, and one of the heat medium inflow outlets in the indoor heat exchanger 11 is communicated with the compressor 13 outlet. In addition, the connection state during heating (see FIGS. 4 and 5) can be set so that one of the heat medium inflow outlets in the outdoor heat exchanger 12 communicates with the compressor 13 inlet.

また、第一のバイパス切換用弁71を開とし、第二のバイパス切換用弁72を閉とし、第三のバイパス切換用弁73及び第四のバイパス切換用弁74をいずれも開とし、第五のバイパス切換用弁75を開とすることで、バイパス流路17の他端が、流路切換用弁15と圧縮機13入口とを接続する熱媒体流路aに連通する一方、流路切換用弁15と室外側熱交換器12の一方の熱媒体流入出口とを接続する熱媒体流路bには連通せず、加えて、流路切換用弁15から第三のバイパス切換用弁73、第四のバイパス切換用弁74を経て、室外側熱交換器12に至る熱媒体流路bに熱媒体が流通可能となり、バイパス流路17の他端を圧縮機13入口に連通させて、バイパス流路17から圧縮機13に向けて熱媒体を流通させられる状態が得られる(図7参照)。 Further, the first bypass switching valve 71 is opened, the second bypass switching valve 72 is closed, the third bypass switching valve 73 and the fourth bypass switching valve 74 are both opened, and the second bypass switching valve 74 is opened. By opening the bypass switching valve 75 of 5, the other end of the bypass flow path 17 communicates with the heat medium flow path a connecting the flow path switching valve 15 and the inlet of the compressor 13, while the flow path. It does not communicate with the heat medium flow path b that connects the switching valve 15 and one of the heat medium inflow outlets of the outdoor heat exchanger 12, and in addition, the flow path switching valve 15 to the third bypass switching valve The heat medium can flow through the heat medium flow path b leading to the outdoor heat exchanger 12 via the 73 and the fourth bypass switching valve 74, and the other end of the bypass flow path 17 is communicated with the inlet of the compressor 13. , A state is obtained in which the heat medium can be circulated from the bypass flow path 17 toward the compressor 13 (see FIG. 7).

この状態で、バイパス流路17の一端側で、第一の熱交換器切換用弁61を閉とし、第二の熱交換器切換用弁62を開とし、第三の熱交換器切換用弁63を閉とし、第四の熱交換器切換用弁64を開とすることで、バイパス流路17が地中熱熱交換器16を通じて室外側熱交換器12に連通し、室外側熱交換器12から地中熱熱交換器16を経てバイパス流路17に熱媒体が流通可能となる一方、室内側熱交換器11には熱媒体が流通しない状態となり、熱媒体が室内側熱交換器11を通る代わりにバイパス流路17を通って、圧縮機13に達する状態となる。 In this state, the first heat exchanger switching valve 61 is closed, the second heat exchanger switching valve 62 is opened, and the third heat exchanger switching valve 62 is opened on one end side of the bypass flow path 17. By closing 63 and opening the fourth heat exchanger switching valve 64, the bypass flow path 17 communicates with the outdoor heat exchanger 12 through the underground heat exchanger 16 and is connected to the outdoor heat exchanger 12. While the heat medium can flow from 12 to the underground heat exchanger 16 to the bypass flow path 17, the heat medium does not flow to the indoor heat exchanger 11, and the heat medium becomes the indoor heat exchanger 11. Instead of passing through the above, it passes through the bypass flow path 17 and reaches the compressor 13.

これにより、熱媒体が圧縮機13から第一の流路接続状態にある流路切換用弁15を経て室外側熱交換器12に流入し、室外側熱交換器12から地中熱熱交換器16に向かい、地中熱熱交換器16を出た熱媒体がバイパス流路17を通って圧縮機13に還流する循環経路を生じさせる状態、すなわち、地中熱熱交換器16で地中熱により熱媒体を昇温させ、圧縮機13で熱媒体を高圧にした上で、室外側熱交換器12で熱媒体から熱を放出させて、室外側熱交換器12で除霜を実行可能な第一の除霜用接続状態が得られることとなる。 As a result, the heat medium flows from the compressor 13 through the flow path switching valve 15 in the first flow path connection state into the outdoor heat exchanger 12, and from the outdoor heat exchanger 12 to the geothermal heat exchanger. A state in which the heat medium exiting the geothermal heat exchanger 16 heads toward 16 creates a circulation path that returns to the compressor 13 through the bypass flow path 17, that is, the geothermal heat exchanger 16. The heat medium is heated to a high pressure by the compressor 13, heat is released from the heat medium by the outdoor heat exchanger 12, and defrosting can be performed by the outdoor heat exchanger 12. The first defrosting connection state will be obtained.

さらに、第一のバイパス切換用弁71を閉とし、第二のバイパス切換用弁72を開とし、第三のバイパス切換用弁73を閉とし、第四のバイパス切換用弁74を開とし、第五のバイパス切換用弁75を開とすることで、バイパス流路17の他端が、流路切換用弁15と室外側熱交換器12の一方の熱媒体流入出口とを接続する熱媒体流路bのうち、第二のバイパス切換用弁72の接続箇所より室外側熱交換器12側の流路部分に連通する一方、流路切換用弁15と圧縮機13入口とを接続する熱媒体流路aや、熱媒体流路bのうち第二のバイパス切換用弁72の接続箇所より流路切換用弁15側の流路部分には連通せず、これによりバイパス流路17の他端を室外側熱交換器12の一方の熱媒体流入出口のみに連通させて、バイパス流路17から室外側熱交換器12に向けて熱媒体を流通させられる状態が得られる(図8参照)。 Further, the first bypass switching valve 71 is closed, the second bypass switching valve 72 is opened, the third bypass switching valve 73 is closed, and the fourth bypass switching valve 74 is opened. By opening the fifth bypass switching valve 75, the other end of the bypass flow path 17 connects the flow path switching valve 15 and one heat medium inflow port of the outdoor heat exchanger 12. Of the flow path b, the heat that connects the flow path switching valve 15 and the compressor 13 inlet while communicating with the flow path portion on the outdoor heat exchanger 12 side from the connection point of the second bypass switching valve 72. The medium flow path a and the heat medium flow path b do not communicate with the flow path portion on the flow path switching valve 15 side from the connection point of the second bypass switching valve 72, whereby the bypass flow path 17 and others A state is obtained in which the end is communicated with only one heat medium inflow port of the outdoor heat exchanger 12 so that the heat medium can flow from the bypass flow path 17 toward the outdoor heat exchanger 12 (see FIG. 8). ..

この状態で、バイパス流路17の一端側で、第一の熱交換器切換用弁61を閉とし、第二の熱交換器切換用弁62を開とし、第三の熱交換器切換用弁63を閉とし、第四の熱交換器切換用弁64を開とすることで、バイパス流路17の一端が地中熱熱交換器16を通じて室外側熱交換器12の他方の熱媒体流入出口に連通し、室外側熱交換器12から地中熱熱交換器16を経てバイパス流路17に熱媒体が流通可能となる一方、室内側熱交換器11には熱媒体が流通しない状態となり、熱媒体が室内側熱交換器11を通る代わりにバイパス流路17を通って、室外側熱交換器12に達する状態となる。 In this state, the first heat exchanger switching valve 61 is closed, the second heat exchanger switching valve 62 is opened, and the third heat exchanger switching valve 62 is opened on one end side of the bypass flow path 17. By closing 63 and opening the fourth heat exchanger switching valve 64, one end of the bypass flow path 17 passes through the underground heat exchanger 16 and the other heat medium inflow outlet of the outdoor heat exchanger 12. The heat medium can flow from the outdoor heat exchanger 12 to the bypass flow path 17 via the underground heat exchanger 16, while the heat medium does not flow to the indoor heat exchanger 11. Instead of passing through the indoor heat exchanger 11, the heat medium passes through the bypass flow path 17 and reaches the outdoor heat exchanger 12.

これにより、熱媒体が室外側熱交換器12に流入し、室外側熱交換器12から地中熱熱交換器16に向かい、地中熱熱交換器16を出た熱媒体がバイパス流路17を通って室外側熱交換器12に還流する循環経路を生じさせる状態、すなわち、地中熱熱交換器16で地中熱により熱媒体を昇温させ、この熱媒体をバイパス流路17を通じて室外側熱交換器12に導き、室外側熱交換器12で熱媒体から熱を放出させて、室外側熱交換器12で除霜を実行可能な第二の除霜用接続状態が得られることとなる。 As a result, the heat medium flows into the outdoor heat exchanger 12, goes from the outdoor heat exchanger 12 to the geothermal heat exchanger 16, and the heat medium exiting the geothermal heat exchanger 16 passes through the bypass flow path 17. A state in which a circulation path is generated to return to the outdoor heat exchanger 12 through the outdoor heat exchanger 12, that is, the heat medium is heated by the geothermal heat in the geothermal heat exchanger 16, and the heat medium is passed through the bypass flow path 17 to the chamber. A second defrosting connection state is obtained in which the outdoor heat exchanger 12 is guided to the outdoor heat exchanger 12 and heat is released from the heat medium by the outdoor heat exchanger 12 so that defrosting can be performed by the outdoor heat exchanger 12. Become.

この他、第一のバイパス切換用弁71を閉とし、第二のバイパス切換用弁72及び第三のバイパス切換用弁73をいずれも開とし、第四のバイパス切換用弁74を閉とし、第五のバイパス切換用弁75を開とすることで、バイパス流路17の他端が、流路切換用弁15と室外側熱交換器12の一方の熱媒体流入出口とを接続する熱媒体流路bのうち、第二のバイパス切換用弁72の接続箇所より流路切換用弁15側の流路部分に連通する一方、流路切換用弁15と圧縮機13入口とを接続する熱媒体流路aや、熱媒体流路bのうち第二のバイパス切換用弁72の接続箇所より室外側熱交換器12側の流路部分には連通せず、これによりバイパス流路17の他端を流路切換用弁15と室外側熱交換器12の一方の熱媒体流入出口とを接続する熱媒体流路bの一部に連通させて、バイパス流路17から熱媒体流路b、流路切換用弁15、熱媒体流路aを経て圧縮機13に至る経路に熱媒体を流通させられる状態が得られる。 In addition, the first bypass switching valve 71 is closed, the second bypass switching valve 72 and the third bypass switching valve 73 are both opened, and the fourth bypass switching valve 74 is closed. By opening the fifth bypass switching valve 75, the other end of the bypass flow path 17 connects the flow path switching valve 15 and one heat medium inflow port of the outdoor heat exchanger 12. Of the flow path b, the heat that connects the flow path switching valve 15 and the compressor 13 inlet while communicating with the flow path portion on the flow path switching valve 15 side from the connection point of the second bypass switching valve 72. The medium flow path a and the heat medium flow path b do not communicate with the flow path portion on the outdoor heat exchanger 12 side from the connection point of the second bypass switching valve 72, whereby the bypass flow path 17 and others are not communicated. The end is communicated with a part of the heat medium flow path b connecting the flow path switching valve 15 and one heat medium inflow port of the outdoor heat exchanger 12, and the heat medium flow path b is connected from the bypass flow path 17. A state is obtained in which the heat medium can be circulated in the path leading to the compressor 13 via the flow path switching valve 15 and the heat medium flow path a.

この状態で、バイパス流路17の一端側で、第一の熱交換器切換用弁61を開とし、第二の熱交換器切換用弁62及び第三の熱交換器切換用弁63をいずれも閉とし、第四の熱交換器切換用弁64を開とすることで、バイパス流路17が地中熱熱交換器16を通じて室内側熱交換器11に連通し、室内側熱交換器11から地中熱熱交換器16を経てバイパス流路17に至る経路に熱媒体が流通可能となる一方、室外側熱交換器12には熱媒体が流通しない状態となり、熱媒体が室外側熱交換器12を通る代わりにバイパス流路17を通って、地中熱熱交換器16に流通する状態となる。 In this state, the first heat exchanger switching valve 61 is opened on one end side of the bypass flow path 17, and the second heat exchanger switching valve 62 and the third heat exchanger switching valve 63 are eventually opened. By opening the fourth heat exchanger switching valve 64, the bypass flow path 17 communicates with the indoor heat exchanger 11 through the underground heat exchanger 16 and the indoor heat exchanger 11 The heat medium can flow through the path from the underground heat exchanger 16 to the bypass flow path 17, while the heat medium does not flow through the outdoor heat exchanger 12, and the heat medium exchanges outdoor heat. Instead of passing through the vessel 12, it passes through the bypass flow path 17 and flows to the underground heat exchanger 16.

これにより、室外側熱交換器12の代わりに地中熱熱交換器16を用いた冷房又は暖房用の接続状態が得られる。すなわち、室外側熱交換器12を冷凍サイクルやヒートポンプサイクルから外す一方、室内側熱交換器11における一方の熱媒体流入出口を圧縮機13入口に連通させ、且つ地中熱熱交換器16における他方の熱媒体流入出口をバイパス流路17を通じて圧縮機13出口に連通させる冷房時の接続状態(図3参照)や、室内側熱交換器11における一方の熱媒体流入出口を圧縮機13出口に連通させ、且つ地中熱熱交換器16における他方の熱媒体流入出口をバイパス流路17を通じて圧縮機13入口に連通させる暖房時の接続状態(図6参照)にできる。 As a result, a connection state for cooling or heating using the geothermal heat exchanger 16 instead of the outdoor heat exchanger 12 can be obtained. That is, while the outdoor heat exchanger 12 is removed from the refrigeration cycle and the heat pump cycle, one heat medium inflow outlet in the indoor heat exchanger 11 is communicated with the compressor 13 inlet, and the other in the geothermal heat exchanger 16. The connection state during cooling (see FIG. 3) in which the heat medium inflow outlet of the above is communicated with the compressor 13 outlet through the bypass flow path 17, and one of the heat medium inflow outlets in the indoor heat exchanger 11 is communicated with the compressor 13 outlet. The connection state during heating (see FIG. 6) can be set so that the other heat medium inflow outlet in the geothermal heat exchanger 16 is communicated with the compressor 13 inlet through the bypass flow path 17.

さらに、本実施形態に係るヒートポンプシステムは、公知の空気調和機に用いられるものと同様、各熱交換器に空気を強制的に送り込むファンや、室内空気の温度等を検出する温度センサ、空気調和機を使用する使用者により操作される操作部、使用者の操作内容や各種センサでの検出結果に基づいて圧縮機及びファンの作動制御や流路切換用弁による冷暖切換制御を行う制御部を備える構成であり、詳細な説明は省略する。 Further, the heat pump system according to the present embodiment has a fan for forcibly sending air to each heat exchanger, a temperature sensor for detecting the temperature of indoor air, and air conditioning, similar to those used in known air conditioners. An operation unit operated by the user who uses the machine, a control unit that controls the operation of the compressor and fan based on the operation content of the user and the detection results of various sensors, and the cooling / heating switching control by the flow path switching valve. The configuration is provided, and detailed description thereof will be omitted.

ただし、本実施形態では、特に、室内空気の温度の他に、室外空気の温度、地中の温度、サイクル中の一又は複数箇所における熱媒体の温度、地中に対する吸熱又は放熱用の熱交換用媒体の温度等をそれぞれ検出する各温度センサが設けられると共に、室外側熱交換器への着霜状態を検出する霜センサが設けられ、制御部がこうした各温度センサ及び霜センサでの検出結果に基づいて、各部の作動制御に加えて、必要に応じて地中熱熱交換器と地中の熱交換部間で熱交換用媒体を循環させるポンプの制御や、各切換用弁の開閉制御を実行することとなる。 However, in the present embodiment, in particular, in addition to the temperature of the indoor air, the temperature of the outdoor air, the temperature in the ground, the temperature of the heat medium at one or more points in the cycle, the heat exchange for heat absorption or heat dissipation to the ground. Each temperature sensor for detecting the temperature of the medium is provided, and a frost sensor for detecting the frosted state on the outdoor heat exchanger is provided, and the control unit detects the detection result with each of these temperature sensors and the frost sensor. Based on the above, in addition to the operation control of each part, the control of the pump that circulates the heat exchange medium between the geothermal heat exchanger and the underground heat exchange part and the opening / closing control of each switching valve are performed as needed. Will be executed.

次に、本実施形態に係るヒートポンプシステムの作動状態について説明する。
まず、ヒートポンプシステムを作動させて、室内空間に対し冷房を行う状態について説明する。
冷房を行うにあたっては、熱源を室外の空気熱のみ、地中熱のみ、あるいは、空気熱と地中熱の両方、とする状態を、室内や室外、地中の状況等に応じて切り換えることができる。例えば、通常、冷房を行う時期は室外空気温度より地中温度が低いことから、室外空気温度が過度に高く、冷房効率が低くなる場合は、熱源として地中熱のみを用いるようにすることで、効率よく冷房を行うことができる。
Next, the operating state of the heat pump system according to the present embodiment will be described.
First, a state in which the heat pump system is operated to cool the indoor space will be described.
When cooling, it is possible to switch the state where the heat source is only outdoor air heat, only underground heat, or both air heat and underground heat, depending on the indoor, outdoor, underground conditions, etc. it can. For example, since the underground temperature is usually lower than the outdoor air temperature during the cooling period, if the outdoor air temperature is excessively high and the cooling efficiency is low, only the geothermal heat should be used as the heat source. , Efficient cooling can be performed.

また、冷房運転の開始時などは、空気調和機の室内機側の負荷が大きくなることから、熱源として室外の空気熱と地中熱の両方を用いるようにするのが好ましい。そして、室内温度が所望の温度に達して安定状態に移行し、空気調和機がオンオフ繰り返しや出力を抑えるような低負荷運転状態となった場合には、熱源として地中熱のみを用いる状態に切り換えるようにすれば、効率のよい運転状態を継続でき、好ましい。 Further, since the load on the indoor unit side of the air conditioner becomes large at the start of the cooling operation, it is preferable to use both outdoor air heat and geothermal heat as the heat source. Then, when the room temperature reaches a desired temperature and shifts to a stable state, and the air conditioner becomes a low-load operation state in which on / off repetition and output are suppressed, only geothermal heat is used as a heat source. If the switching is performed, an efficient operating state can be maintained, which is preferable.

この他、熱媒体の温度が室外空気温度より低い状況では、主に熱源として室外の空気熱と地中熱を用いる状態として冷房運転を実行する一方、熱媒体の温度が室外空気温度に近い値となり、地中の温度が過度に上がるなど地中に過大な熱負荷が加わっていることが予想される場合には、熱源を室外の空気熱のみとする運転状態に移行し、地中熱熱交換器16と熱交換用媒体を通じた地中への熱の放出を停止して、地中温度の回復を図るようにするのが好ましい。 In addition, when the temperature of the heat medium is lower than the outdoor air temperature, the cooling operation is performed with the outdoor air heat and the geothermal heat mainly used as heat sources, while the heat medium temperature is close to the outdoor air temperature. If it is expected that an excessive heat load is applied to the ground, such as when the temperature in the ground rises excessively, the system shifts to an operating state in which the heat source is only outdoor air heat, and the geothermal heat is generated. It is preferable to stop the release of heat into the ground through the exchanger 16 and the heat exchange medium so that the ground temperature can be recovered.

(熱源が空気熱のみの場合)
室内空間に対し冷房を行う際に、熱源として室外の空気熱のみを用いる場合、すなわち、室外側の凝縮器として室外側熱交換器12のみを用いる場合には、図1に示すように、熱交換器切換用弁の弁61、62を開として、室外側熱交換器12が各弁を通じて膨張弁14に連通する状態としておく。流路切換用弁15は第一の流路接続状態として、熱媒体流路aと熱媒体流路dを連通させ、熱媒体流路bと熱媒体流路cを連通させる状態とする。
(When the heat source is only air heat)
When cooling the indoor space, when only outdoor air heat is used as the heat source, that is, when only the outdoor heat exchanger 12 is used as the outdoor condenser, heat is used as shown in FIG. The valves 61 and 62 of the exchanger switching valve are opened so that the outdoor heat exchanger 12 communicates with the expansion valve 14 through each valve. The flow path switching valve 15 is in the first flow path connection state, in which the heat medium flow path a and the heat medium flow path d are communicated with each other, and the heat medium flow path b and the heat medium flow path c are communicated with each other.

システムを作動させると、室内側熱交換器11が、蒸発器として、ファン(図示を省略)で送風されて導入される室内空気と液相の熱媒体とを熱交換させる。この室内側熱交換器11での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室内側熱交換器11外へ出て、熱媒体流路d、流路切換用弁15、熱媒体流路aを経て圧縮機13に向う。一方、室内側熱交換器11での熱交換で室内空気は冷却され、温度を下げた状態で室内空間に放出され、室内温度を所望の温度まで低下させる(室内空間を冷却する)。 When the system is operated, the indoor heat exchanger 11 exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the liquid phase as an evaporator. The heat medium that is heated by heat exchange in the indoor heat exchanger 11 and evaporates as the temperature rises to become a gas phase goes out of the indoor heat exchanger 11 and flows through the heat medium flow path d. It goes to the compressor 13 via the path switching valve 15 and the heat medium flow path a. On the other hand, the indoor air is cooled by the heat exchange in the indoor heat exchanger 11 and released into the indoor space in a state where the temperature is lowered, and the indoor temperature is lowered to a desired temperature (cooling the indoor space).

室内側熱交換器11を出て圧縮機13に達した高温気相の熱媒体は、外部の駆動源により作動するこの圧縮機13により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機13を出た気相の熱媒体は、熱媒体流路c、流路切換用弁15、熱媒体流路b及び開状態とされた弁73、74を経て室外側熱交換器12に導入される。 The heat medium of the high temperature gas phase that has left the indoor heat exchanger 11 and reached the compressor 13 is pressurized by the compressor 13 that is operated by an external drive source. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase leaving the compressor 13 passes through the heat medium flow path c, the flow path switching valve 15, the heat medium flow path b, and the valves 73 and 74 in the open state, and then the outdoor heat exchanger. Introduced in 12.

室外側熱交換器12は、凝縮器として、ファン(図示を省略)で送風されて導入された室外空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、室外側熱交換器12での熱交換で被加熱媒体である室外空気は加熱され、温度を上げた状態で外気中に排出される。 As a condenser, the outdoor heat exchanger 12 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase. The heat medium of the gas phase cooled by this heat exchange condenses and changes into a liquid phase. On the other hand, the outdoor air, which is the medium to be heated, is heated by the heat exchange in the outdoor heat exchanger 12, and is discharged into the outside air in a state where the temperature is raised.

室外側熱交換器12で凝縮して得られた液相の熱媒体は、室外側熱交換器12外に排出されて膨張弁14に向かうが、地中熱熱交換器16近傍の熱交換器切換用弁のうち、弁61、62が開、弁63、64が閉となることで、室外側熱交換器12を出た熱媒体は弁61、62を通過して、地中熱熱交換器16に流通することなく膨張弁14に達する。 The liquid phase heat medium obtained by condensing in the outdoor heat exchanger 12 is discharged to the outside of the outdoor heat exchanger 12 and heads for the expansion valve 14, but the heat exchanger in the vicinity of the geothermal heat exchanger 16 Among the switching valves, the valves 61 and 62 are opened and the valves 63 and 64 are closed, so that the heat medium exiting the outdoor heat exchanger 12 passes through the valves 61 and 62 and exchanges geothermal heat. It reaches the expansion valve 14 without circulating to the vessel 16.

膨張弁14で熱媒体は膨張し、圧力及び温度を低減させた状態となった上で、室内側熱交換器11へ向け進むこととなる。
この後、熱媒体は室内側熱交換器11内に戻り、前記同様に室内側熱交換器11での熱交換以降の各過程を繰返して、冷房を継続実行することとなる。
The heat medium expands at the expansion valve 14, and after the pressure and temperature are reduced, the heat medium proceeds toward the indoor heat exchanger 11.
After that, the heat medium returns to the inside of the indoor side heat exchanger 11, and each process after the heat exchange in the indoor side heat exchanger 11 is repeated in the same manner as described above to continuously execute the cooling.

(熱源が空気熱と地中熱の場合)
室内空間に対し冷房を行う際に、熱源として室外の空気熱と地中熱を用いる場合、すなわち、室外側の凝縮器として室外側熱交換器12と地中熱熱交換器16を共に用いる場合には、図2に示すように、熱交換器切換用弁の弁64、61を開として、室外側熱交換器12が地中熱熱交換器16を通じて膨張弁14に連通する状態に切り換える。
(When the heat source is air heat and geothermal heat)
When outdoor air heat and geothermal heat are used as heat sources when cooling the indoor space, that is, when both the outdoor heat exchanger 12 and the geothermal heat exchanger 16 are used as the outdoor condenser. As shown in FIG. 2, the valves 64 and 61 of the heat exchanger switching valves are opened, and the outdoor heat exchanger 12 is switched to a state in which the outdoor heat exchanger 12 communicates with the expansion valve 14 through the geothermal heat exchanger 16.

システムを作動させると、室内側熱交換器11が、蒸発器として、ファン(図示を省略)で送風されて導入される室内空気と液相の熱媒体とを熱交換させる。この室内側熱交換器11での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室内側熱交換器11外へ出て、熱媒体流路d、流路切換用弁15、熱媒体流路aを経て圧縮機13に向う。一方、室内側熱交換器11での熱交換で室内空気は冷却され、温度を下げた状態で室内空間に放出され、室内温度を所望の温度まで低下させる(室内空間を冷却する)。 When the system is operated, the indoor heat exchanger 11 exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the liquid phase as an evaporator. The heat medium that is heated by heat exchange in the indoor heat exchanger 11 and evaporates as the temperature rises to become a gas phase goes out of the indoor heat exchanger 11 and flows through the heat medium flow path d. It goes to the compressor 13 via the path switching valve 15 and the heat medium flow path a. On the other hand, the indoor air is cooled by the heat exchange in the indoor heat exchanger 11 and released into the indoor space in a state where the temperature is lowered, and the indoor temperature is lowered to a desired temperature (cooling the indoor space).

室内側熱交換器11を出て圧縮機13に達した高温気相の熱媒体は、外部の駆動源により作動するこの圧縮機13により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機13を出た気相の熱媒体は、熱媒体流路c、流路切換用弁15、熱媒体流路b及び開状態とされた弁73、74を経て室外側熱交換器12に導入される。 The heat medium of the high temperature gas phase that has left the indoor heat exchanger 11 and reached the compressor 13 is pressurized by the compressor 13 that is operated by an external drive source. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase leaving the compressor 13 passes through the heat medium flow path c, the flow path switching valve 15, the heat medium flow path b, and the valves 73 and 74 in the open state, and then the outdoor heat exchanger. Introduced in 12.

室外側熱交換器12は、凝縮器として、ファン(図示を省略)で送風されて導入された被加熱媒体である室外空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体はその温度を低下させ、一部は凝縮して液相に変化する。一方、室外側熱交換器12での熱交換で被加熱媒体である室外空気は加熱され、温度を上げた状態で外気中に排出される。 The outdoor heat exchanger 12 exchanges heat between the outdoor air, which is a medium to be heated and introduced by being blown by a fan (not shown), and the heat medium of the gas phase as a condenser. The heat medium of the gas phase cooled by this heat exchange lowers its temperature, and a part of it condenses and changes into a liquid phase. On the other hand, the outdoor air, which is the medium to be heated, is heated by the heat exchange in the outdoor heat exchanger 12, and is discharged into the outside air in a state where the temperature is raised.

室外側熱交換器12で温度を低下させた熱媒体は、室外側熱交換器12外に排出されるが、地中熱熱交換器16近傍の熱交換器切換用弁のうち、弁61、63、64が開、弁62が閉となることで、室外側熱交換器12を出た熱媒体は弁63、熱媒体流路f及び弁64を通過して地中熱熱交換器16に流通することとなる。 The heat medium whose temperature has been lowered by the outdoor heat exchanger 12 is discharged to the outside of the outdoor heat exchanger 12, but among the heat exchanger switching valves near the geothermal heat exchanger 16, the valve 61, When 63 and 64 are opened and the valve 62 is closed, the heat medium exiting the outdoor heat exchanger 12 passes through the valve 63, the heat medium flow path f and the valve 64 to the geothermal heat exchanger 16. It will be distributed.

地中熱熱交換器16では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、地中熱熱交換器16での熱交換で熱交換用媒体は加熱され、温度を上げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中に熱を放出して温度を下げた上で、あらためて地中熱熱交換器16に還流する。こうした熱交換用媒体の地中熱熱交換器16と地中熱交換部50との間での循環は、地中熱熱交換器16における熱交換が継続される間、繰り返されることとなる。 In the geothermal heat exchanger 16, the heat exchange medium introduced by being pressurized by a pump (not shown) exchanges heat with the heat medium, and the heat medium of the gas phase cooled by this heat exchange is used. It will condense and change to a liquid phase. On the other hand, the heat exchange medium is heated by the heat exchange in the geothermal heat exchanger 16 and heads for the geothermal heat exchange unit 50 in a state where the temperature is raised. Then, the heat exchange medium releases heat into the ground by the geothermal heat exchange unit 50 to lower the temperature, and then returns to the geothermal heat exchanger 16 again. The circulation of the heat exchange medium between the geothermal heat exchanger 16 and the geothermal heat exchanger 50 will be repeated as long as the heat exchange in the geothermal heat exchanger 16 is continued.

地中熱熱交換器16で凝縮して得られた液相の熱媒体は、地中熱熱交換器16を出た後、熱媒体流路e、弁61を通過して膨張弁14に達する。膨張弁14で熱媒体は膨張し、圧力及び温度を低減させた状態となった上で、室内側熱交換器11へ向け進むこととなる。
この後、熱媒体は室内側熱交換器11内に戻り、前記同様に室内側熱交換器11での熱交換以降の各過程を繰返して、冷房を継続実行することとなる。
The liquid phase heat medium obtained by condensing in the geothermal heat exchanger 16 exits the geothermal heat exchanger 16 and then passes through the heat medium flow path e and the valve 61 to reach the expansion valve 14. .. The heat medium expands at the expansion valve 14, and after the pressure and temperature are reduced, the heat medium proceeds toward the indoor heat exchanger 11.
After that, the heat medium returns to the inside of the indoor side heat exchanger 11, and each process after the heat exchange in the indoor side heat exchanger 11 is repeated in the same manner as described above to continuously execute the cooling.

(熱源が地中熱のみの場合)
室内空間に対し冷房を行う際に、熱源として地中熱のみを用いる場合、すなわち、室外側の凝縮器として地中熱熱交換器16のみを用いる場合には、図3に示すように、あらかじめバイパス切換用弁の弁72、75を開、弁74を閉として、熱媒体流路bがバイパス流路17に連通して、圧縮機13を出た熱媒体がバイパス流路17に流通する状態に切り換えると共に、熱交換器切換用弁の弁64、61を開として、バイパス流路17が地中熱熱交換器16を通じて膨張弁14に連通する状態に切り換える。
(When the heat source is only geothermal heat)
When only geothermal heat is used as the heat source when cooling the indoor space, that is, when only the geothermal heat exchanger 16 is used as the outdoor condenser, as shown in FIG. 3, in advance. A state in which the valves 72 and 75 of the bypass switching valve are opened, the valves 74 are closed, the heat medium flow path b communicates with the bypass flow path 17, and the heat medium exiting the compressor 13 flows to the bypass flow path 17. At the same time, the valves 64 and 61 of the heat exchanger switching valve are opened to switch to a state in which the bypass flow path 17 communicates with the expansion valve 14 through the geothermal heat exchanger 16.

前記同様、室内側熱交換器11が、蒸発器として、ファン(図示を省略)で送風されて導入される室内空気と液相の熱媒体とを熱交換させる。この室内側熱交換器11での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室内側熱交換器11外へ出て、熱媒体流路d、流路切換用弁15、熱媒体流路aを経て圧縮機13に向う。一方、室内側熱交換器11での熱交換で室内空気は冷却され、温度を下げた状態で室内空間に放出され、室内温度を所望の温度まで低下させる(室内空間を冷却する)。 Similarly to the above, the indoor heat exchanger 11 exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the liquid phase as an evaporator. The heat medium that is heated by heat exchange in the indoor heat exchanger 11 and evaporates as the temperature rises to become a gas phase goes out of the indoor heat exchanger 11 and flows through the heat medium flow path d. It goes to the compressor 13 via the path switching valve 15 and the heat medium flow path a. On the other hand, the indoor air is cooled by the heat exchange in the indoor heat exchanger 11 and released into the indoor space in a state where the temperature is lowered, and the indoor temperature is lowered to a desired temperature (cooling the indoor space).

室内側熱交換器11を出て圧縮機13に達した高温気相の熱媒体は、外部の駆動源により作動するこの圧縮機13により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機13を出た気相の熱媒体は、熱媒体流路c、流路切換用弁15、熱媒体流路b及び開状態とされた弁73、72、75を経てバイパス流路17に達する。 The heat medium of the high temperature gas phase that has left the indoor heat exchanger 11 and reached the compressor 13 is pressurized by the compressor 13 that is operated by an external drive source. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase leaving the compressor 13 passes through the heat medium flow path c, the flow path switching valve 15, the heat medium flow path b, and the valves 73, 72, and 75 in the open state, and then the bypass flow path. Reach 17

一方、バイパス流路17の一端が接続される熱媒体流路f中の弁64が開となり、且つ地中熱熱交換器16近傍で、弁61が開、弁62、63が閉となることで、バイパス流路17を通った気相の熱媒体は熱媒体流路f及び弁64を通過して地中熱熱交換器16に流通することとなる。 On the other hand, the valve 64 in the heat medium flow path f to which one end of the bypass flow path 17 is connected is opened, and the valve 61 is opened and the valves 62 and 63 are closed in the vicinity of the geothermal heat exchanger 16. Then, the gas phase heat medium that has passed through the bypass flow path 17 passes through the heat medium flow path f and the valve 64 and flows to the geothermal heat exchanger 16.

地中熱熱交換器16では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、地中熱熱交換器16での熱交換で熱交換用媒体は加熱され、温度を上げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中に熱を放出して温度を下げた上で、あらためて地中熱熱交換器16に還流する。こうした熱交換用媒体の地中熱熱交換器16と地中熱交換部50との間での循環は、地中熱熱交換器16における熱交換が継続される間、繰り返されることとなる。 In the geothermal heat exchanger 16, the heat exchange medium introduced by being pressurized by a pump (not shown) exchanges heat with the heat medium, and the heat medium of the gas phase cooled by this heat exchange is used. It will condense and change to a liquid phase. On the other hand, the heat exchange medium is heated by the heat exchange in the geothermal heat exchanger 16 and heads for the geothermal heat exchange unit 50 in a state where the temperature is raised. Then, the heat exchange medium releases heat into the ground by the geothermal heat exchange unit 50 to lower the temperature, and then returns to the geothermal heat exchanger 16 again. The circulation of the heat exchange medium between the geothermal heat exchanger 16 and the geothermal heat exchanger 50 will be repeated as long as the heat exchange in the geothermal heat exchanger 16 is continued.

地中熱熱交換器16で凝縮して得られた液相の熱媒体は、地中熱熱交換器16を出た後、熱媒体流路e、弁61を通過して膨張弁14に達する。膨張弁14で熱媒体は膨張し、圧力及び温度を低減させた状態となった上で、室内側熱交換器11へ向け進むこととなる。
この後、熱媒体は室内側熱交換器11内に戻り、前記同様に室内側熱交換器11での熱交換以降の各過程を繰返して、冷房を継続実行することとなる。
The liquid phase heat medium obtained by condensing in the geothermal heat exchanger 16 exits the geothermal heat exchanger 16 and then passes through the heat medium flow path e and the valve 61 to reach the expansion valve 14. .. The heat medium expands at the expansion valve 14, and after the pressure and temperature are reduced, the heat medium proceeds toward the indoor heat exchanger 11.
After that, the heat medium returns to the inside of the indoor side heat exchanger 11, and each process after the heat exchange in the indoor side heat exchanger 11 is repeated in the same manner as described above to continuously execute the cooling.

なお、上記のような冷房時の熱源に地中熱を用いる場合に対応して、夜間や室内に人がいない間など、冷房運転を要しない時間帯に、地中から熱を奪うと共にその熱を室外空気に放出するサイクルとして運転を実行し、冷房運転に伴う熱放出で上昇した地中温度の回復や地中への冷熱の蓄熱を積極的に図るようにすることもできる。 In addition, in response to the case where geothermal heat is used as the heat source during cooling as described above, heat is taken from the ground and the heat is taken from the ground during times when cooling operation is not required, such as at night or when there are no people in the room. It is also possible to execute the operation as a cycle in which the air is released to the outdoor air, and to actively recover the underground temperature that has risen due to the heat release accompanying the cooling operation and store the cold heat in the ground.

この地中温度の回復等のための運転を行うためには、バイパス切換用弁の弁75、71、73、74を開、弁72を閉として、バイパス流路17が熱媒体流路aに連通し、バイパス流路17を出た熱媒体が圧縮機13に流通する状態に切り換えると共に、熱交換器切換用弁の弁62、64を開として、バイパス流路17が地中熱熱交換器16を通じて室外側熱交換器12に連通する状態に切り換える。また、流路切換用弁15は第一の流路接続状態として、熱媒体流路aと熱媒体流路dを連通させ、熱媒体流路bと熱媒体流路cを連通させる状態とする(図7参照)。 In order to perform the operation for recovering the underground temperature or the like, the valves 75, 71, 73, 74 of the bypass switching valve are opened, the valves 72 are closed, and the bypass flow path 17 becomes the heat medium flow path a. The heat medium that has passed through the bypass flow path 17 is switched to a state in which it flows to the compressor 13, and the valves 62 and 64 of the heat exchanger switching valves are opened, so that the bypass flow path 17 is a geothermal heat exchanger. The state is switched to the state of communicating with the outdoor heat exchanger 12 through 16. Further, the flow path switching valve 15 is in a state where the heat medium flow path a and the heat medium flow path d are communicated with each other and the heat medium flow path b and the heat medium flow path c are communicated with each other as the first flow path connection state. (See FIG. 7).

運転を実行すると、地中熱熱交換器16では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で加熱された液相の熱媒体は昇温し、蒸発して気相に変化する。一方、地中熱熱交換器16での熱交換で熱交換用媒体は冷却され、温度を下げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中から熱を吸収して温度を上げた上で、あらためて地中熱熱交換器16に還流する。こうした熱交換用媒体の地中熱熱交換器16と地中熱交換部50との間での循環は、運転継続の間繰り返され、熱交換用媒体が地中から熱を吸収することで、地中の温度を低下させることができる。 When the operation is executed, in the underground heat exchanger 16, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the liquid heated by this heat exchange. The heat medium of the phase heats up and evaporates to change into a gas phase. On the other hand, the heat exchange medium is cooled by the heat exchange in the geothermal heat exchanger 16 and heads for the geothermal heat exchange unit 50 in a state where the temperature is lowered. Then, the heat exchange medium absorbs heat from the ground by the geothermal heat exchange unit 50 to raise the temperature, and then returns to the geothermal heat exchanger 16 again. The circulation of the heat exchange medium between the geothermal heat exchanger 16 and the geothermal heat exchange unit 50 is repeated for the duration of the operation, and the heat exchange medium absorbs heat from the ground. The temperature in the ground can be lowered.

地中熱熱交換器16で蒸発して得られた気相の熱媒体は、地中熱熱交換器16を出た後、熱媒体流路f、弁64を通過してバイパス流路17に流通する。
一方、バイパス流路17の他端は、開状態とされた弁75、71により熱媒体流路aと連通していることから、バイパス流路17を通った気相の熱媒体は、弁75、71及び熱媒体流路aを経て圧縮機13に向かう。
The gas phase heat medium obtained by evaporating in the geothermal heat exchanger 16 exits the geothermal heat exchanger 16 and then passes through the heat medium flow path f and the valve 64 to the bypass flow path 17. To circulate.
On the other hand, since the other end of the bypass flow path 17 communicates with the heat medium flow path a by the valves 75 and 71 opened, the gas phase heat medium passing through the bypass flow path 17 is the valve 75. , 71 and the heat medium flow path a toward the compressor 13.

圧縮機13に達した高温気相の熱媒体は、圧縮機13により加圧され、圧力及び温度を増大させた状態となる。そして、圧縮機13を出た気相の熱媒体は、熱媒体流路c、流路切換用弁15、熱媒体流路b及び開状態とされた弁73、74を経て室外側熱交換器12に導入される。 The heat medium of the high temperature gas phase that has reached the compressor 13 is pressurized by the compressor 13 to increase the pressure and temperature. Then, the heat medium of the gas phase leaving the compressor 13 passes through the heat medium flow path c, the flow path switching valve 15, the heat medium flow path b, and the valves 73 and 74 in the open state, and then the outdoor heat exchanger. Introduced in 12.

室外側熱交換器12は、凝縮器として、ファン(図示を省略)で送風されて導入された室外空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体はその温度を低下させ、凝縮して液相に変化する。一方、室外側熱交換器12での熱交換で室外空気は加熱され、温度を上げた状態で外気中に排出される。 As a condenser, the outdoor heat exchanger 12 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase. The heat medium of the gas phase cooled by this heat exchange lowers its temperature and condenses into a liquid phase. On the other hand, the outdoor air is heated by the heat exchange in the outdoor heat exchanger 12, and is discharged into the outside air in a state where the temperature is raised.

室外側熱交換器12で凝縮した熱媒体は、室外側熱交換器12外に排出されるが、地中熱熱交換器16近傍の熱交換器切換用弁のうち、弁62、64が開、弁61、63が閉となることで、室外側熱交換器12を出た熱媒体は、弁62及び熱媒体流路eを通過して地中熱熱交換器16へ向け進むこととなる。 The heat medium condensed by the outdoor heat exchanger 12 is discharged to the outside of the outdoor heat exchanger 12, but the valves 62 and 64 of the heat exchanger switching valves near the geothermal heat exchanger 16 are opened. When the valves 61 and 63 are closed, the heat medium exiting the outdoor heat exchanger 12 passes through the valve 62 and the heat medium flow path e and proceeds toward the geothermal heat exchanger 16. ..

この後、熱媒体は地中熱熱交換器16内に戻り、前記同様に地中熱熱交換器16での熱交換以降の各過程を繰返すこととなる。
地中温度が適切な温度まで低下したり、室内空間に冷房を行う時間帯に至った場合には、この地中温度の回復等に係る運転を停止し、必要に応じて冷房運転に移行する。
After that, the heat medium returns to the inside of the geothermal heat exchanger 16, and each process after the heat exchange in the geothermal heat exchanger 16 is repeated in the same manner as described above.
When the underground temperature drops to an appropriate temperature or the time zone for cooling the indoor space is reached, the operation related to the recovery of the underground temperature is stopped and the operation is shifted to the cooling operation as necessary. ..

続いて、ヒートポンプシステムを作動させて、室内空間に対し暖房を行う状態について説明する。
暖房を行う場合も、冷房の場合と同様、熱源を室外の空気熱のみ、地中熱のみ、あるいは、空気熱と地中熱の両方、とする状態を、室内や室外、地中の状況等に応じて切り換えることができる。例えば、通常、暖房を行う時期は室外空気温度より地中温度が高いことから、室外空気温度が過度に低く、暖房効率が低くなる場合は、熱源として地中熱のみを用いるようにすることで、効率よく暖房を行うことができる。
Subsequently, a state in which the heat pump system is operated to heat the indoor space will be described.
When heating, as in the case of cooling, the heat source is only outdoor air heat, only underground heat, or both air heat and underground heat, such as indoor, outdoor, and underground conditions. It can be switched according to. For example, since the underground temperature is usually higher than the outdoor air temperature during the heating period, if the outdoor air temperature is excessively low and the heating efficiency is low, only the geothermal heat should be used as the heat source. , Efficient heating can be performed.

また、暖房運転の開始時などは、空気調和機の室内機側の負荷が大きくなることから、熱源として室外の空気熱と地中熱の両方を用いるようにするのが好ましい。そして、室内温度が所望の温度に達して安定状態に移行し、空気調和機がオンオフ繰り返しや出力を抑えるような低負荷運転状態となった場合には、熱源として地中熱のみを用いる状態に切り換えるようにすれば、効率のよい運転状態を継続でき、好ましい。 Further, since the load on the indoor unit side of the air conditioner becomes large at the start of the heating operation, it is preferable to use both outdoor air heat and geothermal heat as the heat source. Then, when the room temperature reaches a desired temperature and shifts to a stable state, and the air conditioner becomes a low-load operation state in which on / off repetition and output are suppressed, only geothermal heat is used as a heat source. If the switching is performed, an efficient operating state can be maintained, which is preferable.

この他、熱媒体の温度が室外空気温度より高い状況では、主に熱源として室外の空気熱と地中熱を用いる状態として暖房運転を実行する一方、熱媒体の温度が室外空気温度に近い値となり、地中の温度が過度に下がるなど地中に過大な熱負荷が加わっていることが予想される場合には、熱源を室外の空気熱のみとする運転状態に移行し、地中熱熱交換器16と熱交換用媒体を通じた地中からの吸熱を停止して、地中温度の回復を図るようにするのが好ましい。 In addition, when the temperature of the heat medium is higher than the outdoor air temperature, the heating operation is performed mainly using outdoor air heat and geothermal heat as heat sources, while the heat medium temperature is close to the outdoor air temperature. If it is expected that an excessive heat load is applied to the ground, such as when the temperature in the ground drops excessively, the system shifts to an operating state in which the heat source is only outdoor air heat, and the geothermal heat is generated. It is preferable to stop the heat absorption from the ground through the exchanger 16 and the heat exchange medium so that the underground temperature can be recovered.

(熱源が空気熱のみの場合)
室内空間に対し暖房を行う際に、熱源として室外の空気熱のみを用いる場合、すなわち、室外側の蒸発器として室外側熱交換器12のみを用いる場合には、図4に示すように、熱交換器切換用弁の弁61、62を開として、室外側熱交換器12が各弁を通じて膨張弁14に連通する状態としておく。流路切換用弁15は第二の流路接続状態として、熱媒体流路aと熱媒体流路bを連通させ、熱媒体流路cと熱媒体流路dを連通させる状態とする。
(When the heat source is only air heat)
When heating the indoor space, when only the outdoor air heat is used as the heat source, that is, when only the outdoor heat exchanger 12 is used as the outdoor heat exchanger, the heat is as shown in FIG. The valves 61 and 62 of the exchanger switching valve are opened so that the outdoor heat exchanger 12 communicates with the expansion valve 14 through each valve. The flow path switching valve 15 is in a state in which the heat medium flow path a and the heat medium flow path b are communicated with each other and the heat medium flow path c and the heat medium flow path d are communicated with each other in the second flow path connection state.

システムを作動させると、室内側熱交換器11は、凝縮器として、ファン(図示を省略)で送風されて導入される室内空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、室内側熱交換器11での熱交換で室内空気は加熱され、温度を上げた状態で室内空間に放出され、室内温度を所望の温度まで上昇させる(室内空間を暖める)。 When the system is operated, the indoor heat exchanger 11 exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase as a condenser. The heat medium of the gas phase cooled by this heat exchange condenses and changes into a liquid phase. On the other hand, the indoor air is heated by the heat exchange in the indoor heat exchanger 11 and released into the indoor space in a state where the temperature is raised, and the indoor temperature is raised to a desired temperature (warming the indoor space).

室内側熱交換器11で凝縮して得られた液相の熱媒体は、室内側熱交換器11を出て膨張弁14に達する。膨張弁14で液相の熱媒体は膨張し、圧力及び温度を低減させた状態となる。 The liquid phase heat medium obtained by condensing in the indoor heat exchanger 11 exits the indoor heat exchanger 11 and reaches the expansion valve 14. The expansion valve 14 expands the heat medium of the liquid phase, and the pressure and temperature are reduced.

この膨張弁14で圧力や温度を低下させた液相の熱媒体は、膨張弁14の外に排出されるが、地中熱熱交換器16近傍の熱交換器切換用弁のうち、弁61、62が開、弁63、64が閉となることで、膨張弁14を出た熱媒体は弁61、62を通過して、地中熱熱交換器16に流通することなく、室外側熱交換器12に達する。 The liquid phase heat medium whose pressure and temperature are lowered by the expansion valve 14 is discharged to the outside of the expansion valve 14, but among the heat exchanger switching valves near the geothermal heat exchanger 16, the valve 61 , 62 is opened and valves 63 and 64 are closed, so that the heat medium exiting the expansion valve 14 passes through the valves 61 and 62 and does not circulate to the geothermal heat exchanger 16 and is used for outdoor heat. Reach the exchanger 12.

室外側熱交換器12は、蒸発器として、ファン(図示を省略)で送風されて導入される室外空気と液相の熱媒体とを熱交換させる。この室外側熱交換器12での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室外側熱交換器12外へ出て、熱媒体流路b及び開状態とされた弁73、74を経て流路切換用弁15に達し、さらに流路切換用弁15から熱媒体流路aを経て圧縮機13に向う。一方、室外側熱交換器12での熱交換で室外空気は冷却され、温度を下げた状態で外気中に排出される。 As an evaporator, the outdoor heat exchanger 12 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the liquid phase. The heat medium that is heated by heat exchange in the outdoor heat exchanger 12 and evaporates as the temperature rises to become a gas phase goes out of the outdoor heat exchanger 12 and opens the heat medium flow path b. It reaches the flow path switching valve 15 via the valves 73 and 74 in the state, and further goes from the flow path switching valve 15 to the compressor 13 via the heat medium flow path a. On the other hand, the outdoor air is cooled by the heat exchange in the outdoor heat exchanger 12, and is discharged into the outside air in a state where the temperature is lowered.

室外側熱交換器12を出て圧縮機13に達した高温気相の熱媒体は、外部の駆動源により作動するこの圧縮機13により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機13を出た気相の熱媒体は、熱媒体流路c、流路切換用弁15、熱媒体流路dを経て、室内側熱交換器11へ向け進むこととなる。
この後、熱媒体は室内側熱交換器11内に戻り、前記同様に室内側熱交換器11での熱交換以降の各過程を繰返して、暖房を継続実行することとなる。
The heat medium of the high temperature gas phase that has left the outdoor heat exchanger 12 and reached the compressor 13 is pressurized by the compressor 13 operated by an external drive source. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase that has exited the compressor 13 travels toward the indoor heat exchanger 11 via the heat medium flow path c, the flow path switching valve 15, and the heat medium flow path d.
After that, the heat medium returns to the inside of the indoor heat exchanger 11, and the heating is continuously executed by repeating each process after the heat exchange in the indoor heat exchanger 11 in the same manner as described above.

(熱源が空気熱と地中熱の場合)
室内空間に対し暖房を行う際に、熱源として室外の空気熱と地中熱を用いる場合、すなわち、室外側の蒸発器として室外側熱交換器12と地中熱熱交換器16を共に用いる場合には、図5に示すように、熱交換器切換用弁の弁64、61を開として、室外側熱交換器12が地中熱熱交換器16を通じて膨張弁14に連通する状態に切り換える。
(When the heat source is air heat and geothermal heat)
When outdoor air heat and geothermal heat are used as heat sources when heating the indoor space, that is, when both the outdoor heat exchanger 12 and the geothermal heat exchanger 16 are used as the outdoor heat exchangers. As shown in FIG. 5, the valves 64 and 61 of the heat exchanger switching valve are opened, and the outdoor heat exchanger 12 is switched to a state in which the outdoor heat exchanger 12 communicates with the expansion valve 14 through the geothermal heat exchanger 16.

システムを作動させると、室内側熱交換器11は、凝縮器として、ファン(図示を省略)で送風されて導入される室内空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、室内側熱交換器11での熱交換で室内空気は加熱され、温度を上げた状態で室内空間に放出され、室内温度を所望の温度まで上昇させる(室内空間を暖める)。 When the system is operated, the indoor heat exchanger 11 exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase as a condenser. The heat medium of the gas phase cooled by this heat exchange condenses and changes into a liquid phase. On the other hand, the indoor air is heated by the heat exchange in the indoor heat exchanger 11 and released into the indoor space in a state where the temperature is raised, and the indoor temperature is raised to a desired temperature (warming the indoor space).

室内側熱交換器11で凝縮して得られた液相の熱媒体は、室内側熱交換器11を出て、膨張弁14に達する。膨張弁14で液相の熱媒体は膨張し、圧力及び温度を低下させた状態となる。 The liquid phase heat medium obtained by condensing in the indoor heat exchanger 11 exits the indoor heat exchanger 11 and reaches the expansion valve 14. The heat medium of the liquid phase expands at the expansion valve 14, and the pressure and temperature are lowered.

この膨張弁14で圧力や温度を低下させた液相の熱媒体は、膨張弁14の外に排出されるが、地中熱熱交換器16近傍の熱交換器切換用弁のうち、弁61、63、64が開、弁62が閉となることで、膨張弁14を出た熱媒体は弁61、及び熱媒体流路eを通過して地中熱熱交換器16に流通することとなる。 The liquid phase heat medium whose pressure and temperature are lowered by the expansion valve 14 is discharged to the outside of the expansion valve 14, but among the heat exchanger switching valves near the geothermal heat exchanger 16, the valve 61 , 63, 64 are opened and the valve 62 is closed, so that the heat medium exiting the expansion valve 14 passes through the valve 61 and the heat medium flow path e and flows to the geothermal heat exchanger 16. Become.

地中熱熱交換器16では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で加熱された液相の熱媒体は昇温し、一部は蒸発して気相に変化することとなる。一方、地中熱熱交換器16での熱交換で熱交換用媒体は冷却され、温度を下げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中から熱を吸収して温度を上げた上で、あらためて地中熱熱交換器16に還流する。こうした熱交換用媒体の地中熱熱交換器16と地中熱交換部50との間での循環は、地中熱熱交換器16における熱交換が継続される間、繰り返されることとなる。 In the underground heat exchanger 16, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the liquid phase heat medium heated by this heat exchange is used. The temperature rises, and part of it evaporates and changes to the gas phase. On the other hand, the heat exchange medium is cooled by the heat exchange in the geothermal heat exchanger 16 and heads for the geothermal heat exchange unit 50 in a state where the temperature is lowered. Then, the heat exchange medium absorbs heat from the ground by the geothermal heat exchange unit 50 to raise the temperature, and then returns to the geothermal heat exchanger 16 again. The circulation of the heat exchange medium between the geothermal heat exchanger 16 and the geothermal heat exchanger 50 will be repeated as long as the heat exchange in the geothermal heat exchanger 16 is continued.

地中熱熱交換器16で昇温した熱媒体は、地中熱熱交換器16を出た後、熱媒体流路f、弁64、63を通過して室外側熱交換器12に達する。
室外側熱交換器12は、蒸発器として、ファン(図示を省略)で送風されて導入される室外空気と熱媒体とを熱交換させる。この室外側熱交換器12での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室外側熱交換器12外へ出て、熱媒体流路b及び開状態とされた弁73、74を経て流路切換用弁15に達し、さらに流路切換用弁15から熱媒体流路aを経て圧縮機13に向う。一方、室外側熱交換器12での熱交換で室外空気は冷却され、温度を下げた状態で外気中に排出される。
The heat medium heated by the geothermal heat exchanger 16 exits the geothermal heat exchanger 16 and then passes through the heat medium flow paths f, valves 64, and 63 to reach the outdoor heat exchanger 12.
As an evaporator, the outdoor heat exchanger 12 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and a heat medium. The heat medium that is heated by heat exchange in the outdoor heat exchanger 12 and evaporates as the temperature rises to become a gas phase goes out of the outdoor heat exchanger 12 and opens the heat medium flow path b. It reaches the flow path switching valve 15 via the valves 73 and 74 in the state, and further goes from the flow path switching valve 15 to the compressor 13 via the heat medium flow path a. On the other hand, the outdoor air is cooled by the heat exchange in the outdoor heat exchanger 12, and is discharged into the outside air in a state where the temperature is lowered.

室外側熱交換器12を出て圧縮機13に達した高温気相の熱媒体は、外部の駆動源により作動するこの圧縮機13により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機13を出た気相の熱媒体は、熱媒体流路c、流路切換用弁15、熱媒体流路dを経て、室内側熱交換器11へ向け進むこととなる。
この後、熱媒体は室内側熱交換器11内に戻り、前記同様に室内側熱交換器11での熱交換以降の各過程を繰返して、暖房を継続実行することとなる。
The heat medium of the high temperature gas phase that has left the outdoor heat exchanger 12 and reached the compressor 13 is pressurized by the compressor 13 operated by an external drive source. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase that has exited the compressor 13 travels toward the indoor heat exchanger 11 via the heat medium flow path c, the flow path switching valve 15, and the heat medium flow path d.
After that, the heat medium returns to the inside of the indoor heat exchanger 11, and the heating is continuously executed by repeating each process after the heat exchange in the indoor heat exchanger 11 in the same manner as described above.

(熱源が地中熱のみの場合)
室内空間に対し暖房を行う際に、熱源として地中熱のみを用いる場合、すなわち、室外側の蒸発器として地中熱熱交換器16のみを用いる場合には、図6に示すように、あらかじめバイパス切換用弁の弁75、72、73を開、弁74を閉として、バイパス流路17が熱媒体流路bに連通し、バイパス流路17を出た熱媒体が圧縮機13に流通する状態に切り換えると共に、熱交換器切換用弁の弁61、64を開として、バイパス流路17が地中熱熱交換器16を通じて膨張弁14に連通する状態に切り換える。流路切換用弁15は第二の流路接続状態として、熱媒体流路aと熱媒体流路bを連通させ、熱媒体流路cと熱媒体流路dを連通させる状態とする。
(When the heat source is only geothermal heat)
When only geothermal heat is used as the heat source when heating the indoor space, that is, when only the geothermal heat exchanger 16 is used as the outdoor heat exchanger, as shown in FIG. 6, in advance. By opening the valves 75, 72, 73 of the bypass switching valve and closing the valve 74, the bypass flow path 17 communicates with the heat medium flow path b, and the heat medium exiting the bypass flow path 17 flows to the compressor 13. At the same time as switching to the state, the valves 61 and 64 of the heat exchanger switching valve are opened, and the bypass flow path 17 is switched to the state of communicating with the expansion valve 14 through the geothermal heat exchanger 16. The flow path switching valve 15 is in a state in which the heat medium flow path a and the heat medium flow path b are communicated with each other and the heat medium flow path c and the heat medium flow path d are communicated with each other in the second flow path connection state.

前記同様、室内側熱交換器11は、凝縮器として、ファン(図示を省略)で送風されて導入される室内空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、室内側熱交換器11での熱交換で室内空気は加熱され、温度を上げた状態で室内空間に放出され、室内温度を所望の温度まで上昇させる(室内空間を暖める)。 Similarly to the above, the indoor heat exchanger 11 exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase as a condenser. The heat medium of the gas phase cooled by this heat exchange condenses and changes into a liquid phase. On the other hand, the indoor air is heated by the heat exchange in the indoor heat exchanger 11 and released into the indoor space in a state where the temperature is raised, and the indoor temperature is raised to a desired temperature (warming the indoor space).

室内側熱交換器11で凝縮して得られた液相の熱媒体は、室内側熱交換器11を出て膨張弁14に達する。膨張弁14で液相の熱媒体は膨張し、圧力及び温度を低減させた状態となる。 The liquid phase heat medium obtained by condensing in the indoor heat exchanger 11 exits the indoor heat exchanger 11 and reaches the expansion valve 14. The expansion valve 14 expands the heat medium of the liquid phase, and the pressure and temperature are reduced.

この膨張弁14で圧力や温度を低下させた液相の熱媒体は、膨張弁14の外に排出されるが、地中熱熱交換器16近傍の熱交換器切換用弁のうち、弁61、64が開、弁62、63が閉となることで、膨張弁14を出た熱媒体は弁61、及び熱媒体流路eを通過して地中熱熱交換器16に流通することとなる。 The liquid phase heat medium whose pressure and temperature are lowered by the expansion valve 14 is discharged to the outside of the expansion valve 14, but among the heat exchanger switching valves near the geothermal heat exchanger 16, the valve 61 , 64 is opened and the valves 62 and 63 are closed, so that the heat medium exiting the expansion valve 14 passes through the valve 61 and the heat medium flow path e and flows to the geothermal heat exchanger 16. Become.

地中熱熱交換器16では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で加熱された液相の熱媒体は昇温し、蒸発して気相に変化することとなる。一方、地中熱熱交換器16での熱交換で熱交換用媒体は冷却され、温度を下げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中から熱を吸収して温度を上げた上で、あらためて地中熱熱交換器16に還流する。こうした熱交換用媒体の地中熱熱交換器16と地中熱交換部50との間での循環は、地中熱熱交換器16における熱交換が継続される間、繰り返されることとなる。 In the underground heat exchanger 16, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the liquid phase heat medium heated by this heat exchange is used. The temperature rises, evaporates and changes to the gas phase. On the other hand, the heat exchange medium is cooled by the heat exchange in the geothermal heat exchanger 16 and heads for the geothermal heat exchange unit 50 in a state where the temperature is lowered. Then, the heat exchange medium absorbs heat from the ground by the geothermal heat exchange unit 50 to raise the temperature, and then returns to the geothermal heat exchanger 16 again. The circulation of the heat exchange medium between the geothermal heat exchanger 16 and the geothermal heat exchanger 50 will be repeated as long as the heat exchange in the geothermal heat exchanger 16 is continued.

地中熱熱交換器16で蒸発して得られた気相の熱媒体は、地中熱熱交換器16を出た後、熱媒体流路f、弁64を通過してバイパス流路17に達する。
一方、バイパス流路17の他端は、開状態とされた弁75、72、73により熱媒体流路bと連通していることから、バイパス流路17を通った気相の熱媒体は、弁75、72、73及び熱媒体流路bを経て流路切換用弁15に達し、さらに流路切換用弁15から熱媒体流路aを経て圧縮機13に向かう。
The gas phase heat medium obtained by evaporating in the geothermal heat exchanger 16 exits the geothermal heat exchanger 16 and then passes through the heat medium flow path f and the valve 64 to the bypass flow path 17. Reach.
On the other hand, since the other end of the bypass flow path 17 communicates with the heat medium flow path b by the valves 75, 72, 73 in the open state, the gas phase heat medium that has passed through the bypass flow path 17 can be used. It reaches the flow path switching valve 15 via the valves 75, 72, 73 and the heat medium flow path b, and further goes from the flow path switching valve 15 to the compressor 13 via the heat medium flow path a.

圧縮機13に達した高温気相の熱媒体は、圧縮機13により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機13を出た気相の熱媒体は、熱媒体流路c、流路切換用弁15、熱媒体流路dを経て、室内側熱交換器11へ向け進むこととなる。
この後、熱媒体は室内側熱交換器11内に戻り、前記同様に室内側熱交換器11での熱交換以降の各過程を繰返して、暖房を継続実行することとなる。
The heat medium of the high temperature gas phase that has reached the compressor 13 is pressurized by the compressor 13. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase that has exited the compressor 13 travels toward the indoor heat exchanger 11 via the heat medium flow path c, the flow path switching valve 15, and the heat medium flow path d.
After that, the heat medium returns to the inside of the indoor side heat exchanger 11, and in the same manner as described above, each process after the heat exchange in the indoor side heat exchanger 11 is repeated to continuously execute the heating.

(熱源を地中熱として除霜を行う場合)
こうした暖房運転時において、室外の温度が低い場合、室外側熱交換器12の空気と熱交換する外面部分に霜が付き、空気との熱交換が妨げられることがある。こうした着霜時に対応する除霜運転状態について説明する。
(When defrosting is performed using the heat source as geothermal heat)
During such heating operation, if the outdoor temperature is low, frost may form on the outer surface portion of the outdoor heat exchanger 12 that exchanges heat with air, which may hinder heat exchange with air. The defrosting operation state corresponding to such frost formation will be described.

(第一の除霜接続状態に基づく除霜運転状態)
暖房時に着霜を検出し、除霜を行う場合、いったん暖房運転を停止し、除霜運転状態に移行する。除霜を行うためには、図7に示すように、バイパス切換用弁の弁75、71、73、74を開、弁72を閉として、バイパス流路17が熱媒体流路aに連通し、バイパス流路17を出た熱媒体が圧縮機13に流通する状態に切り換えると共に、熱交換器切換用弁の弁62、64を開として、バイパス流路17が地中熱熱交換器16を通じて室外側熱交換器12に連通する状態に切り換える。流路切換用弁15は第一の流路接続状態として、熱媒体流路aと熱媒体流路dを連通させ、熱媒体流路bと熱媒体流路cを連通させる状態とする。
(Defrosting operation state based on the first defrosting connection state)
When frost formation is detected during heating and defrosting is performed, the heating operation is temporarily stopped and the state shifts to the defrosting operation state. In order to perform defrosting, as shown in FIG. 7, the valves 75, 71, 73, 74 of the bypass switching valve are opened, the valves 72 are closed, and the bypass flow path 17 communicates with the heat medium flow path a. The heat medium exiting the bypass flow path 17 is switched to a state in which it flows to the compressor 13, and the valves 62 and 64 of the heat exchanger switching valves are opened, so that the bypass flow path 17 passes through the geothermal heat exchanger 16. Switch to the state of communicating with the outdoor heat exchanger 12. The flow path switching valve 15 is in the first flow path connection state, in which the heat medium flow path a and the heat medium flow path d are communicated with each other, and the heat medium flow path b and the heat medium flow path c are communicated with each other.

除霜運転を実行すると、地中熱熱交換器16では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で加熱された液相の熱媒体は昇温し、蒸発して気相に変化することとなる。一方、地中熱熱交換器16での熱交換で熱交換用媒体は冷却され、温度を下げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中から熱を吸収して温度を上げた上で、あらためて地中熱熱交換器16に還流する。こうした熱交換用媒体の地中熱熱交換器16と地中熱交換部50との間での循環は、地中熱熱交換器16における熱交換が継続される間、繰り返される。 When the defrosting operation is executed, in the underground heat exchanger 16, heat exchange is performed between the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium, and the heat is heated by this heat exchange. The heat medium of the liquid phase heats up and evaporates to change into a gas phase. On the other hand, the heat exchange medium is cooled by the heat exchange in the geothermal heat exchanger 16 and heads for the geothermal heat exchange unit 50 in a state where the temperature is lowered. Then, the heat exchange medium absorbs heat from the ground by the geothermal heat exchange unit 50 to raise the temperature, and then returns to the geothermal heat exchanger 16 again. The circulation of the heat exchange medium between the geothermal heat exchanger 16 and the geothermal heat exchanger 50 is repeated as long as the heat exchange in the geothermal heat exchanger 16 is continued.

地中熱熱交換器16で蒸発して得られた気相の熱媒体は、地中熱熱交換器16を出た後、熱媒体流路f、弁64を通過してバイパス流路17に流通する。
一方、バイパス流路17の他端は、開状態とされた弁75、71により熱媒体流路aと連通していることから、バイパス流路17を通った気相の熱媒体は、弁75、71及び熱媒体流路aを経て圧縮機13に向かう。
The gas phase heat medium obtained by evaporating in the geothermal heat exchanger 16 exits the geothermal heat exchanger 16 and then passes through the heat medium flow path f and the valve 64 to the bypass flow path 17. To circulate.
On the other hand, since the other end of the bypass flow path 17 communicates with the heat medium flow path a by the valves 75 and 71 opened, the gas phase heat medium passing through the bypass flow path 17 is the valve 75. , 71 and the heat medium flow path a toward the compressor 13.

圧縮機13に達した高温気相の熱媒体は、圧縮機13により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機13を出た気相の熱媒体は、熱媒体流路c、流路切換用弁15、熱媒体流路b及び開状態とされた弁73、74を経て室外側熱交換器12に導入される。 The heat medium of the high temperature gas phase that has reached the compressor 13 is pressurized by the compressor 13. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase leaving the compressor 13 passes through the heat medium flow path c, the flow path switching valve 15, the heat medium flow path b, and the valves 73 and 74 in the open state, and then the outdoor heat exchanger. Introduced in 12.

室外側熱交換器12は、凝縮器として、ファン(図示を省略)で送風されて導入された室外空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体はその温度を低下させ、凝縮して液相に変化する。一方、室外側熱交換器12での熱交換で室外空気は加熱され、温度を上げた状態で室外側熱交換器を出ようとすることから、室外側熱交換器12表面の着霜部分は、この温度を上昇させた空気と接触して温められる。こうして温められる着霜部分では、最終的に霜が溶けて除霜状態となる。着霜部分を温めた後の空気は、外気中に排出される。 As a condenser, the outdoor heat exchanger 12 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase. The heat medium of the gas phase cooled by this heat exchange lowers its temperature and condenses into a liquid phase. On the other hand, since the outdoor air is heated by the heat exchange in the outdoor heat exchanger 12 and tries to exit the outdoor heat exchanger in a state where the temperature is raised, the frosted portion on the surface of the outdoor heat exchanger 12 is formed. , It is warmed by contact with the air that raised this temperature. In the frosted portion that is warmed in this way, the frost finally melts and becomes a defrosted state. The air after warming the frosted portion is discharged into the outside air.

室外側熱交換器12で凝縮した熱媒体は、室外側熱交換器12外に排出されるが、地中熱熱交換器16近傍の熱交換器切換用弁のうち、弁62、64が開、弁61、63が閉となることで、室外側熱交換器12を出た熱媒体は、弁62及び熱媒体流路eを通過して地中熱熱交換器16へ向け進むこととなる。 The heat medium condensed by the outdoor heat exchanger 12 is discharged to the outside of the outdoor heat exchanger 12, but the valves 62 and 64 of the heat exchanger switching valves near the geothermal heat exchanger 16 are opened. When the valves 61 and 63 are closed, the heat medium exiting the outdoor heat exchanger 12 passes through the valve 62 and the heat medium flow path e and proceeds toward the geothermal heat exchanger 16. ..

この後、熱媒体は地中熱熱交換器16内に戻り、前記同様に地中熱熱交換器16での熱交換以降の各過程を繰返して、除霜を継続実行することとなる。
室外側熱交換器12における全ての着霜箇所で霜が溶け、除霜が完了したら、除霜運転状態から暖房運転状態に復帰することができる。
After that, the heat medium returns to the inside of the geothermal heat exchanger 16, and the defrosting is continuously executed by repeating each process after the heat exchange in the geothermal heat exchanger 16 in the same manner as described above.
When the frost is melted at all the frosted points in the outdoor heat exchanger 12 and the defrosting is completed, the defrosting operation state can be returned to the heating operation state.

(第二の除霜接続状態に基づく除霜運転状態)
なお、除霜は、圧縮機を用いずに実行することもできる。この圧縮機を用いない除霜運転状態について説明する。
(Defrosting operation state based on the second defrosting connection state)
The defrosting can also be performed without using a compressor. The defrosting operation state without using this compressor will be described.

前記同様、除霜はいったん暖房運転を停止し、除霜運転状態に移行することで行われるが、除霜を行うために、図8に示すように、バイパス切換用弁の弁75、72、74を開、弁71、73を閉として、バイパス流路17が熱媒体流路bに連通し、バイパス流路17を出た熱媒体が室外側熱交換器12に流通する状態に切り換える。熱交換器切換用弁については、前記同様、弁62、64を開として、バイパス流路17が地中熱熱交換器16を通じて室外側熱交換器12に連通する状態とする。なお、熱媒体は熱媒体流路中の所定箇所に設けられたポンプ(図示を省略)による加圧を受けて、地中熱熱交換器からバイパス流路を経て室外側熱交換器に至り、再び地中熱熱交換器に達する循環経路を、継続して循環可能とされているものとする。 Similar to the above, defrosting is performed by temporarily stopping the heating operation and shifting to the defrosting operation state. However, in order to perform defrosting, as shown in FIG. 8, the valves 75 and 72 of the bypass switching valve, The 74 is opened, the valves 71 and 73 are closed, the bypass flow path 17 communicates with the heat medium flow path b, and the heat medium exiting the bypass flow path 17 is switched to a state in which the heat medium flows through the outdoor heat exchanger 12. As for the heat exchanger switching valve, the valves 62 and 64 are opened in the same manner as described above so that the bypass flow path 17 communicates with the outdoor heat exchanger 12 through the geothermal heat exchanger 16. The heat medium is pressurized by a pump (not shown) provided at a predetermined location in the heat medium flow path, and reaches the outdoor heat exchanger from the geothermal heat exchanger via the bypass flow path. It is assumed that the circulation path reaching the geothermal heat exchanger again can be continuously circulated.

除霜運転を実行すると、地中熱熱交換器16では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で加熱された液相の熱媒体は昇温することとなる。一方、地中熱熱交換器16での熱交換で熱交換用媒体は冷却され、温度を下げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中から熱を吸収して温度を上げた上で、あらためて地中熱熱交換器16に還流する。こうした熱交換用媒体の地中熱熱交換器16と地中熱交換部50との間での循環は、地中熱熱交換器16における熱交換が継続される間、繰り返される。 When the defrosting operation is executed, in the underground heat exchanger 16, heat exchange is performed between the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium, and the heat is heated by this heat exchange. The heat medium of the liquid phase will heat up. On the other hand, the heat exchange medium is cooled by the heat exchange in the geothermal heat exchanger 16 and heads for the geothermal heat exchange unit 50 in a state where the temperature is lowered. Then, the heat exchange medium absorbs heat from the ground by the geothermal heat exchange unit 50 to raise the temperature, and then returns to the geothermal heat exchanger 16 again. The circulation of the heat exchange medium between the geothermal heat exchanger 16 and the geothermal heat exchanger 50 is repeated as long as the heat exchange in the geothermal heat exchanger 16 is continued.

地中熱熱交換器16で昇温した熱媒体は、地中熱熱交換器16を出た後、熱媒体流路f、弁64を通過してバイパス流路17に流通する。
一方、バイパス流路17の他端は、開状態とされた弁75、72により熱媒体流路bと連通し、熱媒体流路bでは弁73が閉、弁74が開とされていることから、バイパス流路17を通った熱媒体は、弁75、72及び熱媒体流路b、弁74を経て室外側熱交換器12に導入される。
The heat medium heated by the geothermal heat exchanger 16 exits the geothermal heat exchanger 16 and then passes through the heat medium flow path f and the valve 64 and flows to the bypass flow path 17.
On the other hand, the other end of the bypass flow path 17 communicates with the heat medium flow path b by the valves 75 and 72 in the open state, and the valve 73 is closed and the valve 74 is open in the heat medium flow path b. The heat medium that has passed through the bypass flow path 17 is introduced into the outdoor heat exchanger 12 via the valves 75 and 72, the heat medium flow path b, and the valve 74.

室外側熱交換器12では、ファン(図示を省略)で送風されて導入された室外空気と、熱媒体とが熱交換し、この熱交換で冷却された熱媒体はその温度を低下させる。一方、室外側熱交換器12での熱交換で室外空気は加熱され、温度を上げた状態で室外側熱交換器12を出ようとすることから、室外側熱交換器12表面の着霜部分は、この温度を上昇させた空気と接触して温められる。こうして温められる着霜部分では、霜が溶けて除霜が進行する状態となる。着霜部分を温めた後の空気は、外気中に排出される。 In the outdoor heat exchanger 12, the outdoor air introduced by being blown by a fan (not shown) and the heat medium exchange heat, and the heat medium cooled by this heat exchange lowers the temperature. On the other hand, since the outdoor air is heated by the heat exchange in the outdoor heat exchanger 12 and tries to exit the outdoor heat exchanger 12 in a state where the temperature is raised, the frosted portion on the surface of the outdoor heat exchanger 12 Is warmed in contact with the air that raised this temperature. In the frosted portion that is warmed in this way, the frost melts and defrosting proceeds. The air after warming the frosted portion is discharged into the outside air.

室外側熱交換器12で温度を低下させた熱媒体は、室外側熱交換器12外に排出されるが、地中熱熱交換器16近傍の熱交換器切換用弁のうち、弁62、64が開、弁61、63が閉となることで、室外側熱交換器12を出た熱媒体は、弁62及び熱媒体流路eを通過して地中熱熱交換器16へ向け進むこととなる。 The heat medium whose temperature has been lowered by the outdoor heat exchanger 12 is discharged to the outside of the outdoor heat exchanger 12, but among the heat exchanger switching valves near the geothermal heat exchanger 16, the valve 62, When 64 is opened and the valves 61 and 63 are closed, the heat medium exiting the outdoor heat exchanger 12 passes through the valve 62 and the heat medium flow path e and proceeds toward the geothermal heat exchanger 16. It will be.

この後、熱媒体は地中熱熱交換器16内に戻り、前記同様に地中熱熱交換器16での熱交換以降の各過程を繰返して、除霜を継続実行することとなる。
室外側熱交換器12における全ての着霜箇所で霜が溶け、除霜が完了したら、除霜運転状態から暖房運転状態に復帰することができる。
After that, the heat medium returns to the inside of the geothermal heat exchanger 16, and the defrosting is continuously executed by repeating each process after the heat exchange in the geothermal heat exchanger 16 in the same manner as described above.
When the frost is melted at all the frosted points in the outdoor heat exchanger 12 and the defrosting is completed, the defrosting operation state can be returned to the heating operation state.

なお、上記のような暖房時の熱源に地中熱を用いる場合に対応して、夜間や室内に人がいない間など、暖房運転を要しない時間帯に、室外空気から熱を吸収すると共に、その熱を地中に放出するサイクルとして運転を実行し、暖房運転に伴う吸熱で低下した地中温度の回復や地中への蓄熱を積極的に図るようにすることもできる。 In addition, in response to the case where geothermal heat is used as the heat source during heating as described above, heat is absorbed from the outdoor air during times when heating operation is not required, such as at night or when there are no people in the room. It is also possible to execute the operation as a cycle of releasing the heat to the ground, and to positively recover the underground temperature lowered by the heat absorption accompanying the heating operation and store the heat in the ground.

この地中温度の回復等のための運転を行うためには、圧縮機13を出た熱媒体がバイパス流路17を通じて地中熱熱交換器16に達し、地中熱熱交換器16から熱媒体が室外側熱交換器12に至り、さらに圧縮機13に還流するように、各バイパス切換用弁71、72、73、74、75を設定すると共に、熱交換器切換用弁の弁62、64を開として、バイパス流路17が地中熱熱交換器16を通じて室外側熱交換器12に連通する状態とする。流路切換用弁15は第一の流路接続状態として、熱媒体流路aと熱媒体流路dを連通させ、熱媒体流路bと熱媒体流路cを連通させる状態とする。 In order to perform the operation for recovering the underground temperature or the like, the heat medium leaving the compressor 13 reaches the geothermal heat exchanger 16 through the bypass flow path 17, and heat is generated from the geothermal heat exchanger 16. The bypass switching valves 71, 72, 73, 74, 75 are set so that the medium reaches the outdoor heat exchanger 12 and further returns to the compressor 13, and the heat exchanger switching valve valves 62, 64 is opened so that the bypass flow path 17 communicates with the outdoor heat exchanger 12 through the geothermal heat exchanger 16. The flow path switching valve 15 is in the first flow path connection state, in which the heat medium flow path a and the heat medium flow path d are communicated with each other, and the heat medium flow path b and the heat medium flow path c are communicated with each other.

運転を実行すると、地中熱熱交換器16では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で冷却された気相の熱媒体は温度を低下させ、一部は凝縮して液相に変化することとなる。一方、地中熱熱交換器16での熱交換で熱交換用媒体は加熱され、温度を上げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中に熱を放出して温度を下げた上で、あらためて地中熱熱交換器16に還流する。こうした熱交換用媒体の地中熱熱交換器16と地中熱交換部50との間での循環は、運転継続の間繰り返され、熱交換用媒体が地中に熱を放出することで、地中の温度を上昇させることができる。 When the operation is executed, in the geothermal heat exchanger 16, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the air cooled by this heat exchange is exchanged. The heat medium of the phase lowers the temperature, and part of it condenses and changes to a liquid phase. On the other hand, the heat exchange medium is heated by the heat exchange in the geothermal heat exchanger 16 and heads for the geothermal heat exchange unit 50 in a state where the temperature is raised. Then, the heat exchange medium releases heat into the ground by the geothermal heat exchange unit 50 to lower the temperature, and then returns to the geothermal heat exchanger 16 again. The circulation of the heat exchange medium between the geothermal heat exchanger 16 and the geothermal heat exchange unit 50 is repeated for the duration of the operation, and the heat exchange medium releases heat into the ground. The temperature in the ground can be raised.

地中熱熱交換器16で温度を低下させた熱媒体は、地中熱熱交換器16を出た後、熱媒体流路e、弁62を通過して室外側熱交換器12に達する。室外側熱交換器12は、ファン(図示を省略)で送風されて導入される室外空気と熱媒体とを熱交換させる。この室外側熱交換器12での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室外側熱交換器12外へ出て、圧縮機13に向う。一方、室外側熱交換器12での熱交換で室外空気は冷却され、温度を下げた状態で外気中に排出される。 The heat medium whose temperature has been lowered by the geothermal heat exchanger 16 exits the geothermal heat exchanger 16 and then passes through the heat medium flow path e and the valve 62 to reach the outdoor heat exchanger 12. The outdoor heat exchanger 12 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium. The heat medium that is heated by heat exchange in the outdoor heat exchanger 12 and evaporates as the temperature rises to become a gas phase goes out of the outdoor heat exchanger 12 and faces the compressor 13. On the other hand, the outdoor air is cooled by the heat exchange in the outdoor heat exchanger 12, and is discharged into the outside air in a state where the temperature is lowered.

室外側熱交換器12を出て圧縮機13に達した高温気相の熱媒体は、この圧縮機13により加圧され、圧力及び温度を増大させた状態となる。そして、圧縮機13を出た気相の熱媒体は、バイパス流路17を経て、弁64、熱媒体流路fを通過して地中熱熱交換器16へ向け進むこととなる。 The heat medium of the high temperature gas phase that has left the outdoor heat exchanger 12 and reached the compressor 13 is pressurized by the compressor 13 to increase the pressure and temperature. Then, the heat medium of the gas phase exiting the compressor 13 passes through the bypass flow path 17, passes through the valve 64 and the heat medium flow path f, and proceeds toward the geothermal heat exchanger 16.

この後、熱媒体は地中熱熱交換器16内に戻り、前記同様に地中熱熱交換器16での熱交換以降の各過程を繰返すこととなる。
地中温度が適切な温度まで上昇したり、室内空間に暖房を行う時間帯に至った場合には、この地中温度の回復等に係る運転を停止し、必要に応じて暖房運転に移行する。
After that, the heat medium returns to the inside of the geothermal heat exchanger 16, and each process after the heat exchange in the geothermal heat exchanger 16 is repeated in the same manner as described above.
When the underground temperature rises to an appropriate temperature or the time zone for heating the indoor space is reached, the operation related to the recovery of the underground temperature is stopped and the operation is shifted to the heating operation as necessary. ..

このように、本実施形態に係るヒートポンプシステムにおいては、地中熱熱交換器16が、熱交換器切換用弁61、62、63、64を介してヒートポンプの熱媒体流路中の所定箇所に介在可能に設けられ、熱媒体を流通させる状態では地中熱熱交換器16が室外側熱交換器12と直列に接続する位置関係となって、室外側熱交換器12に流通する熱媒体がそのまま地中熱熱交換器16にも流通することから、室内側熱交換器11が蒸発器として働く冷房時には、室外側熱交換器12で主に熱媒体温度を下げ、地中熱熱交換器16で主に熱媒体を凝縮させることができ、また、室内側熱交換器12が凝縮器として働く暖房時には、地中熱熱交換器16で主に熱媒体温度を上げ、室外側熱交換器12で主に熱媒体を蒸発させることができるなど、室外側熱交換器12と地中熱熱交換器16とで熱交換に係る負荷を分担でき、特に暖房の際は、地中熱熱交換器16が室外側熱交換器12の前段で予熱用熱交換器の役割を果たすこととなり、室外側熱交換器12の前で熱媒体が温度上昇する分、室外側熱交換器12における熱媒体の顕熱域での熱交換を減らして、蒸発器をなす室外側熱交換器12における空気から熱媒体への熱伝達の効率を向上させられるなど、損失を抑えて熱交換性能を高められ、冷房や暖房を効率よく実行できる。 As described above, in the heat pump system according to the present embodiment, the underground heat exchanger 16 is located at a predetermined position in the heat medium flow path of the heat pump via the heat exchanger switching valves 61, 62, 63, 64. In a state where the heat medium is circulated so as to be intervening, the underground heat exchanger 16 is connected in series with the outdoor heat exchanger 12, and the heat medium circulated in the outdoor heat exchanger 12 is in a positional relationship. Since it is also distributed to the underground heat exchanger 16 as it is, when the indoor heat exchanger 11 acts as an evaporator during cooling, the outdoor heat exchanger 12 mainly lowers the heat medium temperature, and the underground heat exchanger 11 16 can mainly condense the heat medium, and during heating when the indoor heat exchanger 12 acts as a condenser, the underground heat exchanger 16 mainly raises the heat medium temperature and the outdoor heat exchanger. The load related to heat exchange can be shared between the outdoor heat exchanger 12 and the underground heat exchanger 16, such that the heat medium can be mainly evaporated in 12, and the underground heat exchange is particularly performed during heating. The vessel 16 plays the role of a preheating heat exchanger in front of the outdoor heat exchanger 12, and the heat medium in the outdoor heat exchanger 12 rises as the temperature rises in front of the outdoor heat exchanger 12. By reducing the heat exchange in the sensible heat region and improving the efficiency of heat transfer from the air to the heat medium in the outdoor heat exchanger 12 forming the evaporator, the loss can be suppressed and the heat exchange performance can be improved. Cooling and heating can be performed efficiently.

また、地中熱熱交換器16と圧縮機13入口側を繋げるバイパス流路17を設け、熱媒体が室内側熱交換器11を通らずにバイパス流路を通って圧縮機13、室外側熱交換器12、及び地中熱熱交換器16を循環する状態を生じさせるようにすることで、暖房時に室外側熱交換器12で吸熱に伴う温度低下により熱交換器周囲への着霜状態に至った場合に、地中熱熱交換器16で熱媒体に取り入れた地中の熱を圧縮機13を介して室外側熱交換器12に導入し、室外側熱交換器12で熱を外に放出することで除霜が可能となり、地中熱を利用して室内側熱交換器11への影響を与えることなく効率よく除霜を実行でき、着霜による熱交換性能低下を必要最小限に抑えられると共に、除霜のために別途熱を発生させずに済み、除霜に係るエネルギー消費を抑えられる。 Further, a bypass flow path 17 connecting the underground heat exchanger 16 and the inlet side of the compressor 13 is provided, and the heat medium does not pass through the indoor heat exchanger 11 but passes through the bypass flow path to heat the compressor 13 and the outdoor side. By creating a state in which the exchanger 12 and the underground heat exchanger 16 circulate, the outdoor heat exchanger 12 becomes frosted around the heat exchanger due to the temperature drop due to heat absorption during heating. When it reaches, the underground heat taken into the heat medium by the underground heat exchanger 16 is introduced into the outdoor heat exchanger 12 via the compressor 13, and the heat is discharged to the outside by the outdoor heat exchanger 12. By releasing it, defrosting becomes possible, and defrosting can be performed efficiently without affecting the indoor heat exchanger 11 by utilizing the underground heat, and the deterioration of heat exchange performance due to frost formation is minimized. In addition to being suppressed, it is not necessary to generate heat separately for defrosting, and energy consumption related to defrosting can be suppressed.

(本発明の第2の実施形態)
本発明の第2の実施形態を図9ないし図14に基づいて説明する。本実施形態においても、ヒートポンプを室内機と室外機のある空気調和機に適用した例について説明する。
(Second Embodiment of the present invention)
A second embodiment of the present invention will be described with reference to FIGS. 9 to 14. Also in this embodiment, an example in which the heat pump is applied to an air conditioner having an indoor unit and an outdoor unit will be described.

前記各図において本実施形態に係るヒートポンプシステム2は、前記第1の実施形態同様、室内側熱交換器21と、室外側熱交換器22と、圧縮機23と、膨張弁24と、流路切換用弁25と、地中熱熱交換器26と、熱交換器切換用弁65、66、67、68と、バイパス流路27と、バイパス切換用弁76、77とを備える一方、異なる点として、室内に配設される室内側熱交換器21が、公知のヒートポンプサイクルを用いる空気調和機の室内機部分に設けられるものと同様に配設され、室外に配設される室外側熱交換器22、圧縮機23、膨張弁24、及び流路切換用弁25が、公知のヒートポンプサイクルを用いる空気調和機の室外機部分に設けられるものと同様に配設され、公知の空気調和機の場合に、室内の室内側熱交換器21と、室外に配設される前記各機器との、室内外の境界部分における熱媒体流路接続点に相当する箇所に、前記地中熱熱交換器26、熱交換器切換用弁65、66、67、68、バイパス流路27、及びバイパス切換用弁76、77を含む熱媒体回路部分を挿入追加するように配設した構成を有するものである。 In each of the drawings, the heat pump system 2 according to the present embodiment has an indoor heat exchanger 21, an outdoor heat exchanger 22, a compressor 23, an expansion valve 24, and a flow path, as in the first embodiment. The switching valve 25, the underground heat exchanger 26, the heat exchanger switching valves 65, 66, 67, 68, the bypass flow path 27, and the bypass switching valves 76, 77 are provided, but they are different. As an indoor heat exchanger 21, the indoor heat exchanger 21 is arranged in the same manner as that provided in the indoor unit portion of the air conditioner using a known heat pump cycle, and the outdoor heat exchange is arranged outdoors. The vessel 22, the compressor 23, the expansion valve 24, and the flow path switching valve 25 are arranged in the same manner as those provided in the outdoor unit portion of the air exchanger using the known heat pump cycle, and the known air exchanger. In this case, the underground heat exchanger is located at a location corresponding to a heat medium flow path connection point at the boundary between indoors and outdoors between the indoor heat exchanger 21 in the room and each of the devices arranged outdoors. 26, the heat exchanger switching valves 65, 66, 67, 68, the bypass flow path 27, and the heat medium circuit portion including the bypass switching valves 76, 77 are arranged so as to be inserted and added. ..

なお、前記室内側熱交換器21、室外側熱交換器22、圧縮機23、膨張弁24、流路切換用弁25、及び地中熱熱交換器26の各構成そのものについては、前記第1の実施形態と同様のものであり、詳細な説明を省略する。 The first configuration of the indoor heat exchanger 21, the outdoor heat exchanger 22, the compressor 23, the expansion valve 24, the flow path switching valve 25, and the geothermal heat exchanger 26 is the first. It is the same as the embodiment of the above, and detailed description thereof will be omitted.

前記室内側熱交換器21は、一方の熱媒体流入出口を所定の熱媒体流路、例えば管路など、を介してバイパス切換用弁77と接続され、他方の熱媒体流入出口を所定の熱媒体流路を介して熱交換器切換用弁65と接続されるものである。そして、室内側熱交換器21の一方の熱媒体流入出口は、バイパス切換用弁77を介して流路切換用弁25と連通可能とされ、他方の熱媒体流入出口は、熱交換器切換用弁65、67を介して、膨張弁24と連通可能とされる。 In the indoor heat exchanger 21, one heat medium inflow port is connected to a bypass switching valve 77 via a predetermined heat medium flow path, for example, a pipeline, and the other heat medium inflow port is connected to a predetermined heat. It is connected to the heat exchanger switching valve 65 via the medium flow path. Then, one heat medium inflow outlet of the indoor heat exchanger 21 can communicate with the flow path switching valve 25 via the bypass switching valve 77, and the other heat medium inflow outlet is for heat exchanger switching. It is possible to communicate with the expansion valve 24 via the valves 65 and 67.

前記室外側熱交換器22は、一方の熱媒体流入出口を所定の熱媒体流路、例えば管路など、を介して流路切換用弁25と接続され、他方の熱媒体流入出口を所定の熱媒体流路を介して膨張弁24と接続されるものである。 In the outdoor heat exchanger 22, one heat medium inflow port is connected to a flow path switching valve 25 via a predetermined heat medium flow path, for example, a pipeline, and the other heat medium inflow port is designated. It is connected to the expansion valve 24 via a heat medium flow path.

前記膨張弁24は、一方の弁開口を所定の熱媒体流路を介して熱交換器切換用弁67、68と接続され、他方の弁開口を所定の熱媒体流路を介して室外側熱交換器22と接続されて配設される。 In the expansion valve 24, one valve opening is connected to heat exchanger switching valves 67 and 68 via a predetermined heat medium flow path, and the other valve opening is connected to outdoor heat through a predetermined heat medium flow path. It is arranged so as to be connected to the exchanger 22.

前記流路切換用弁25は、室外側熱交換器22の一方の熱媒体流入出口を圧縮機23出口と連通させ、室内側熱交換器21の一方の熱媒体流入出口を圧縮機23入口と連通可能とする第一の流路接続状態と、室外側熱交換器22の一方の熱媒体流入出口を圧縮機23入口と連通させ、室内側熱交換器21の一方の熱媒体流入出口を圧縮機23出口と連通可能とする第二の流路接続状態とを、切換可能とするものである。
なお、流路切換用弁25は四方弁などの単独の弁に限られるものではなく、同様の機能を得られる複数弁の組合せで構成することもできる。
The flow path switching valve 25 communicates one heat medium inflow outlet of the outdoor heat exchanger 22 with the compressor 23 outlet, and one heat medium inflow outlet of the indoor heat exchanger 21 with the compressor 23 inlet. The first flow path connection state that enables communication and one heat medium inflow outlet of the outdoor heat exchanger 22 are communicated with the compressor 23 inlet, and one heat medium inflow outlet of the indoor heat exchanger 21 is compressed. The second flow path connection state that enables communication with the machine 23 outlet can be switched.
The flow path switching valve 25 is not limited to a single valve such as a four-way valve, and may be configured by a combination of a plurality of valves capable of obtaining the same function.

前記地中熱熱交換器26は、ヒートポンプサイクルにおける室内側熱交換器21と膨張弁24との間に介在可能として室外に配設されるものである。この地中熱熱交換器26は、室内側熱交換器21と膨張弁24との間の熱媒体流路に、熱交換器切換用弁65、66、67、68を介して接続されており、これら複数の弁で、この地中熱熱交換器26の熱媒体側流路が熱媒体を流通可能とされて室内側熱交換器21と膨張弁24との間に介在する状態と、地中熱熱交換器26が全く介在しない状態とを、切換可能とされる仕組みである。
地中熱熱交換器26と熱交換器切換用弁66との間には、補助膨張弁28が設けられる。
The geothermal heat exchanger 26 is arranged outdoors so as to be able to intervene between the indoor heat exchanger 21 and the expansion valve 24 in the heat pump cycle. The geothermal heat exchanger 26 is connected to the heat medium flow path between the indoor heat exchanger 21 and the expansion valve 24 via heat exchanger switching valves 65, 66, 67, 68. In these plurality of valves, the heat medium side flow path of the geothermal heat exchanger 26 is enabled to flow the heat medium and is interposed between the indoor heat exchanger 21 and the expansion valve 24, and the ground. It is a mechanism that makes it possible to switch between a state in which the medium heat heat exchanger 26 does not intervene at all.
An auxiliary expansion valve 28 is provided between the geothermal heat exchanger 26 and the heat exchanger switching valve 66.

前記熱交換器切換用弁65、66、67、68は、室内側熱交換器22と地中熱熱交換器26との間、及び、地中熱熱交換器26と膨張弁24との間の熱媒体流路にそれぞれ配設され、室内側熱交換器21と膨張弁24との間で地中熱熱交換器26が熱媒体を流通可能に介在する状態と、室内側熱交換器21と膨張弁24とを直結して中間に地中熱熱交換器26を介在させず、地中熱熱交換器26には熱媒体を流通させない状態とを切換可能とするものである。 The heat exchanger switching valves 65, 66, 67, 68 are between the indoor heat exchanger 22 and the geothermal heat exchanger 26, and between the geothermal heat exchanger 26 and the expansion valve 24. The geothermal heat exchanger 26 is arranged in each of the heat medium flow paths of the above, and the geothermal heat exchanger 26 is interposed between the indoor heat exchanger 21 and the expansion valve 24 so that the heat medium can flow, and the indoor heat exchanger 21. And the expansion valve 24 are directly connected so that the geothermal heat exchanger 26 is not interposed in the middle, and the state in which the heat medium is not circulated in the geothermal heat exchanger 26 can be switched.

具体的には、地中熱熱交換器26の一方の熱媒体流入出口に接続される熱媒体流路kと室内側熱交換器21との間での熱媒体の流通状態と流通停止状態とを切り換える第一の熱交換器切換用弁65と、地中熱熱交換器26の一方の熱媒体流入出口に接続される熱媒体流路kに配設され、地中熱熱交換器26における熱媒体の流通状態と流通停止状態とを切り換える第二の熱交換器切換用弁66と、地中熱熱交換器26の一方の熱媒体流入出口に接続される熱媒体流路kと膨張弁24との間での熱媒体の流通状態と流通停止状態とを切り換える第三の熱交換器切換用弁67と、地中熱熱交換器26の他方の熱媒体流入出口に接続される熱媒体流路lと膨張弁24との間での熱媒体の流通状態と流通停止状態とを切り換える第四の熱交換器切換用弁68とを備える構成である。 Specifically, the flow state and the flow stop state of the heat medium between the heat medium flow path k connected to one heat medium inflow port of the underground heat exchanger 26 and the indoor heat exchanger 21. The first heat exchanger switching valve 65 for switching the above and the heat medium flow path k connected to one of the heat medium inflow ports of the underground heat exchanger 26 are arranged in the underground heat exchanger 26. A second heat exchanger switching valve 66 that switches between a flow state and a flow stop state of the heat medium, and a heat medium flow path k and an expansion valve connected to one heat medium inflow port of the underground heat exchanger 26. A heat medium connected to a third heat exchanger switching valve 67 that switches between a flow state and a flow stop state of the heat medium between 24 and the other heat medium inflow port of the underground heat exchanger 26. It is configured to include a fourth heat exchanger switching valve 68 for switching between a flow state and a flow stop state of the heat medium between the flow path l and the expansion valve 24.

これら熱交換器切換用弁65、66、67、68において、第一の熱交換器切換用弁65を開とし、第二の熱交換器切換用弁66を開とし、第三の熱交換器切換用弁67を閉とし、第四の熱交換器切換用弁68を開とすることで、膨張弁24から第四の熱交換器切換用弁68、地中熱熱交換器26、第二の熱交換器切換用弁66、第一の熱交換器切換用弁65を経て、室内側熱交換器21に至る経路に熱媒体が流通可能となり、室内側熱交換器21と膨張弁24との間で地中熱熱交換器26が熱媒体を流通可能に介在する状態とすることができる(図10、図12参照)。 In these heat exchanger switching valves 65, 66, 67, 68, the first heat exchanger switching valve 65 is opened, the second heat exchanger switching valve 66 is opened, and the third heat exchanger is opened. By closing the switching valve 67 and opening the fourth heat exchanger switching valve 68, the expansion valve 24 to the fourth heat exchanger switching valve 68, the underground heat exchanger 26, and the second The heat medium can flow through the heat exchanger switching valve 66 and the first heat exchanger switching valve 65 to the indoor heat exchanger 21, and the indoor heat exchanger 21 and the expansion valve 24 The underground heat exchanger 26 can intervene the heat medium in a flowable state between the two (see FIGS. 10 and 12).

また、第一の熱交換器切換用弁65を開とし、第二の熱交換器切換用弁66を閉とし、第三の熱交換器切換用弁67を開とし、第四の熱交換器切換用弁68を閉とすることで、膨張弁24から第三の熱交換器切換用弁67、第一の熱交換器切換用弁65を経て、室内側熱交換器21に至る経路に熱媒体が流通可能となり、室内側熱交換器21と膨張弁24とを直結して中間に地中熱熱交換器26を介在させず、地中熱熱交換器26には熱媒体を流通させない状態とすることができる(図9、図11参照)。 Further, the first heat exchanger switching valve 65 is opened, the second heat exchanger switching valve 66 is closed, the third heat exchanger switching valve 67 is opened, and the fourth heat exchanger is opened. By closing the switching valve 68, heat is transferred from the expansion valve 24 through the third heat exchanger switching valve 67 and the first heat exchanger switching valve 65 to the indoor heat exchanger 21. A state in which the medium can be circulated, the indoor heat exchanger 21 and the expansion valve 24 are directly connected, the underground heat exchanger 26 is not interposed in the middle, and the heat medium is not circulated through the underground heat exchanger 26. (See FIGS. 9 and 11).

この他、第一の熱交換器切換用弁65と第三の熱交換器切換用弁67をそれぞれ閉とし、第二の熱交換器切換用弁66及び第四の熱交換器切換用弁68をそれぞれ開とすることで、室内側熱交換器21と地中熱熱交換器26との間では熱媒体の流通を停止させつつ、膨張弁24から第四の熱交換器切換用弁68を経て、地中熱熱交換器26に至る経路に熱媒体が流通可能となり、膨張弁24を介した室外側熱交換器22と地中熱熱交換器26との間での熱媒体の流通を許容する一方、地中熱熱交換器26と室内側熱交換器21との間での熱媒体の流通は許容しない流路接続状態とすることができる(図13、図14参照)。 In addition, the first heat exchanger switching valve 65 and the third heat exchanger switching valve 67 are closed, respectively, and the second heat exchanger switching valve 66 and the fourth heat exchanger switching valve 68 are closed. By opening each of the above, the expansion valve 24 to the fourth heat exchanger switching valve 68 are opened while stopping the flow of the heat medium between the indoor heat exchanger 21 and the underground heat exchanger 26. Then, the heat medium can be circulated in the path leading to the underground heat exchanger 26, and the heat medium can be circulated between the outdoor heat exchanger 22 and the underground heat exchanger 26 via the expansion valve 24. On the other hand, it is possible to establish a flow path connection state in which the flow of the heat medium between the underground heat exchanger 26 and the indoor heat exchanger 21 is not permitted (see FIGS. 13 and 14).

前記バイパス流路27は、地中熱熱交換器26の一方の熱媒体流入出口に接続される熱媒体流路kに一端が接続されると共に、他端が流路切換用弁25に接続され、且つバイパス切換用弁77を介して室内側熱交換器21の一方の熱媒体流入出口に接続可能とされて、必要に応じて熱媒体を流通させるものである。 One end of the bypass flow path 27 is connected to the heat medium flow path k connected to one of the heat medium inflow outlets of the geothermal heat exchanger 26, and the other end is connected to the flow path switching valve 25. In addition, the heat medium can be connected to one of the heat medium inflow outlets of the indoor heat exchanger 21 via the bypass switching valve 77, and the heat medium is circulated as needed.

バイパス流路27の一端は、熱交換器切換用弁のうち、第二の熱交換器切換用弁66が設けられる熱媒体流路kに接続されることで、第二の熱交換器切換用弁66を開とすると、地中熱熱交換器26に連通する一方、第二の熱交換器切換用弁66を閉とすると、地中熱熱交換器26に連通しないなど、地中熱熱交換器26への連通状態を必要に応じて切換可能とされる仕組みである。 One end of the bypass flow path 27 is connected to the heat medium flow path k provided with the second heat exchanger switching valve 66 among the heat exchanger switching valves, so that the second heat exchanger switching valve can be used. When the valve 66 is opened, it communicates with the geothermal heat exchanger 26, while when the second heat exchanger switching valve 66 is closed, it does not communicate with the geothermal heat exchanger 26. It is a mechanism that allows the communication state to the exchanger 26 to be switched as needed.

また、バイパス流路27の一端に対し、第三の熱交換器切換用弁67を閉とした上で、第二の熱交換器切換用弁66と共に第四の熱交換器切換用弁68を開とすることで、バイパス流路27の一端が地中熱熱交換器26を通じて膨張弁24や室外側熱交換器22にも連通する状態となり、バイパス流路27から地中熱熱交換器26や膨張弁24を経て室外側熱交換器22に至る経路に熱媒体を流通可能とすることができる。そして、この場合に第一の熱交換器切換用弁65を閉としておけば、室内側熱交換器21への熱媒体の流通を阻止でき、熱媒体が室内側熱交換器21を通る代わりにバイパス流路27を通る状態を設定可能となる(図13、図14参照)。 Further, after closing the third heat exchanger switching valve 67 with respect to one end of the bypass flow path 27, the fourth heat exchanger switching valve 68 is inserted together with the second heat exchanger switching valve 66. By opening, one end of the bypass flow path 27 is in a state of communicating with the expansion valve 24 and the outdoor heat exchanger 22 through the underground heat exchanger 26, and the bypass flow path 27 is connected to the geothermal heat exchanger 26. The heat medium can be circulated through the path from the expansion valve 24 to the outdoor heat exchanger 22. Then, in this case, if the first heat exchanger switching valve 65 is closed, the flow of the heat medium to the indoor heat exchanger 21 can be blocked, and instead of the heat medium passing through the indoor heat exchanger 21. The state of passing through the bypass flow path 27 can be set (see FIGS. 13 and 14).

前記バイパス切換用弁76、77は、バイパス流路27の他端と、流路切換用弁25、及び、室内側熱交換器21の一方の熱媒体流入出口との各接続関係を切換可能とするものである。 The bypass switching valves 76 and 77 can switch the connection relationship between the other end of the bypass flow path 27, the flow path switching valve 25, and one heat medium inflow port of the indoor heat exchanger 21. Is what you do.

具体的には、バイパス切換用弁としては、バイパス流路27に配設され、バイパス流路27における熱媒体の流通状態と流通停止状態とを切り換える第一のバイパス切換用弁76と、室内側熱交換器22の一方の熱媒体流入出口と、バイパス流路27の他端及び流路切換用弁25との間での、熱媒体の流通状態と流通停止状態とを切り換える第二のバイパス切換用弁77とを備える構成である。 Specifically, as the bypass switching valve, the first bypass switching valve 76, which is arranged in the bypass flow path 27 and switches between the flow state and the flow stop state of the heat medium in the bypass flow path 27, and the indoor side. A second bypass switch for switching between the flow state and the flow stop state of the heat medium between one heat medium inflow port of the heat exchanger 22 and the other end of the bypass flow path 27 and the flow path switching valve 25. It is configured to include a valve 77.

これらバイパス切換用弁76、77において、第一のバイパス切換用弁76を閉とし、第二のバイパス切換用弁77を開とすることで、バイパス流路27に熱媒体が流通せず、且つ、流路切換用弁25から第二のバイパス切換用弁77を経て、室内側熱交換器21に至る熱媒体流路に熱媒体が流通可能となり、バイパス流路27を用いない通常の冷房又は暖房を行う際の接続状態が得られる。すなわち、室内側熱交換器21における一方の熱媒体流入出口を圧縮機23入口に連通させ、且つ室外側熱交換器22における一方の熱媒体流入出口を圧縮機23出口に連通させる冷房時の接続状態(図9、図10参照)や、室内側熱交換器21における一方の熱媒体流入出口を圧縮機23出口に連通させ、且つ室外側熱交換器22における一方の熱媒体流入出口を圧縮機23入口に連通させる暖房時の接続状態(図11、図12参照)にできる。 In these bypass switching valves 76 and 77, by closing the first bypass switching valve 76 and opening the second bypass switching valve 77, the heat medium does not flow through the bypass flow path 27 and the heat medium does not flow. , The heat medium can flow from the flow path switching valve 25 to the heat medium flow path from the flow path switching valve 25 to the indoor heat exchanger 21 via the second bypass switching valve 77, and normal cooling or normal cooling without using the bypass flow path 27 or The connection state at the time of heating can be obtained. That is, a connection during cooling in which one heat medium inflow outlet in the indoor heat exchanger 21 is communicated with the compressor 23 inlet and one heat medium inflow outlet in the outdoor heat exchanger 22 is communicated with the compressor 23 outlet. State (see FIGS. 9 and 10), one heat medium inflow outlet in the indoor heat exchanger 21 is communicated with the compressor 23 outlet, and one heat medium inflow outlet in the outdoor heat exchanger 22 is the compressor. The connection state at the time of heating (see FIGS. 11 and 12) can be set to communicate with the 23 entrances.

また、第一のバイパス切換用弁76を開とし、第二のバイパス切換用弁77を閉とすることで、バイパス流路27が、流路切換用弁25に連通する一方、流路切換用弁25と室内側熱交換器21の一方の熱媒体流入出口とが連通せず、流路切換用弁25から第一のバイパス切換用弁76を経て、バイパス流路27全体に熱媒体が流通可能となり、バイパス流路27の他端を流路切換用弁25を通じて圧縮機23入口に連通させて、バイパス流路27から圧縮機23に向けて熱媒体を流通させられる状態が得られる(図13参照)。 Further, by opening the first bypass switching valve 76 and closing the second bypass switching valve 77, the bypass flow path 27 communicates with the flow path switching valve 25, while the flow path switching valve 25 is used. The valve 25 and one of the heat medium inflow outlets of the indoor heat exchanger 21 do not communicate with each other, and the heat medium flows from the flow path switching valve 25 through the first bypass switching valve 76 to the entire bypass flow path 27. This makes it possible, and a state is obtained in which the other end of the bypass flow path 27 is communicated with the inlet of the compressor 23 through the flow path switching valve 25, and the heat medium can be circulated from the bypass flow path 27 toward the compressor 23 (FIG. See 13).

この状態で、バイパス流路27の一端側で、第一の熱交換器切換用弁65を閉とし、第二の熱交換器切換用弁66を開とし、第三の熱交換器切換用弁67を閉とし、第四の熱交換器切換用弁68を開とすることで、バイパス流路27が地中熱熱交換器26を通じて膨張弁24及び室外側熱交換器22に連通し、室外側熱交換器22から膨張弁24、地中熱熱交換器26を経てバイパス流路27に熱媒体が流通可能となる一方、室内側熱交換器21には熱媒体が流通しない状態となり、熱媒体が室内側熱交換器21を通る代わりにバイパス流路27を通って、圧縮機23に達する状態となる。 In this state, the first heat exchanger switching valve 65 is closed, the second heat exchanger switching valve 66 is opened, and the third heat exchanger switching valve is opened on one end side of the bypass flow path 27. By closing 67 and opening the fourth heat exchanger switching valve 68, the bypass flow path 27 communicates with the expansion valve 24 and the outdoor heat exchanger 22 through the underground heat exchanger 26, and the chamber The heat medium can flow from the outer heat exchanger 22 to the bypass flow path 27 via the expansion valve 24 and the underground heat exchanger 26, while the heat medium does not flow to the indoor heat exchanger 21, resulting in heat. Instead of passing through the indoor heat exchanger 21, the medium passes through the bypass flow path 27 and reaches the compressor 23.

これにより、熱媒体が圧縮機23から第一の流路接続状態にある流路切換用弁25を経て室外側熱交換器22に流入し、室外側熱交換器22から膨張弁24を経て地中熱熱交換器26に向かい、地中熱熱交換器26を出た熱媒体がバイパス流路27を通って圧縮機23に還流する循環経路を生じさせる状態、すなわち、地中熱熱交換器26で地中熱により熱媒体を昇温させ、圧縮機23で熱媒体を高圧にした上で、室外側熱交換器22で熱媒体から熱を放出させて、室外側熱交換器22で除霜を実行可能な除霜用接続状態が得られることとなる。 As a result, the heat medium flows from the compressor 23 through the flow path switching valve 25 in the first flow path connection state into the outdoor heat exchanger 22, and from the outdoor heat exchanger 22 via the expansion valve 24 to the ground. A state in which the heat medium exiting the geothermal heat exchanger 26 is returned to the compressor 23 through the bypass flow path 27 toward the medium heat exchanger 26, that is, the geothermal heat exchanger. In 26, the heat medium is heated by geothermal heat, the heat medium is made high pressure by the compressor 23, heat is released from the heat medium by the outdoor heat exchanger 22, and the heat is removed by the outdoor heat exchanger 22. A defrosting connection state capable of frosting will be obtained.

次に、本実施形態に係るヒートポンプシステムの作動状態について説明する。
まず、ヒートポンプシステムを作動させて、室内空間に対し冷房を行う状態について説明する。
冷房を行うにあたっては、熱源を室外の空気熱のみ、又は、空気熱と地中熱の両方、とする状態を、室内や室外、地中の状況等に応じて切り換えることができる。
Next, the operating state of the heat pump system according to the present embodiment will be described.
First, a state in which the heat pump system is operated to cool the indoor space will be described.
When cooling, the state in which the heat source is only outdoor air heat or both air heat and geothermal heat can be switched according to the indoor, outdoor, and underground conditions.

例えば、熱媒体の温度が室外空気温度より低い状況では、主に熱源として室外の空気熱と地中熱を用いる状態として冷房運転を実行する一方、熱媒体の温度が室外空気温度に近い値となり、地中の温度が過度に上がるなど地中に過大な熱負荷が加わっていることが予想される場合には、熱源を室外の空気熱のみとする運転状態に移行し、地中熱熱交換器26と熱交換用媒体を通じた地中への熱の放出を停止して、地中温度の回復を図るようにするのが好ましい。 For example, when the temperature of the heat medium is lower than the outdoor air temperature, the cooling operation is performed with the outdoor air heat and the underground heat mainly used as heat sources, while the heat medium temperature becomes a value close to the outdoor air temperature. If it is expected that an excessive heat load is applied to the ground, such as when the temperature in the ground rises excessively, the system shifts to an operating state in which the heat source is only outdoor air heat, and the heat is exchanged in the ground. It is preferable to stop the release of heat into the ground through the vessel 26 and the heat exchange medium so that the ground temperature can be recovered.

(熱源が空気熱のみの場合)
室内空間に対し冷房を行う際に、熱源として室外の空気熱のみを用いる場合、すなわち、室外側の凝縮器として室外側熱交換器22のみを用いる場合には、図9に示すように、熱交換器切換用弁の弁67、65を開とし、弁66、68を閉として、室外側熱交換器22が膨張弁24や各弁を通じて室内側熱交換器21に連通する状態としておく。また、バイパス切換用弁の弁76を閉、弁77を開とし、流路切換用弁25は第一の流路接続状態として、室内側熱交換器21と圧縮機23入口とを連通させ、室外側熱交換器22と圧縮機23出口とを連通させる状態とする。
(When the heat source is only air heat)
When cooling the indoor space, when only outdoor air heat is used as the heat source, that is, when only the outdoor heat exchanger 22 is used as the outdoor condenser, heat is shown as shown in FIG. The valves 67 and 65 of the exchanger switching valve are opened and the valves 66 and 68 are closed so that the outdoor heat exchanger 22 communicates with the indoor heat exchanger 21 through the expansion valve 24 and each valve. Further, the valve 76 of the bypass switching valve is closed, the valve 77 is opened, and the flow path switching valve 25 is in the first flow path connection state, and the indoor heat exchanger 21 and the compressor 23 inlet are communicated with each other. The outdoor heat exchanger 22 and the compressor 23 outlet are connected to each other.

システムを作動させると、室内側熱交換器21が、蒸発器として、ファン(図示を省略)で送風されて導入される室内空気と液相の熱媒体とを熱交換させる。この室内側熱交換器21での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室内側熱交換器21外へ出て、バイパス切換用弁77、熱媒体流路j、流路切換用弁25、熱媒体流路gを経て圧縮機23に向う。一方、室内側熱交換器21での熱交換で室内空気は冷却され、温度を下げた状態で室内空間に放出され、室内温度を所望の温度まで低下させる(室内空間を冷却する)。 When the system is operated, the indoor heat exchanger 21, as an evaporator, exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the liquid phase. The heat medium that is heated by heat exchange in the indoor heat exchanger 21 and evaporates as the temperature rises to become a gas phase goes out of the indoor heat exchanger 21 and heats the bypass switching valve 77. It goes to the compressor 23 via the medium flow path j, the flow path switching valve 25, and the heat medium flow path g. On the other hand, the indoor air is cooled by the heat exchange in the indoor heat exchanger 21 and released into the indoor space in a state where the temperature is lowered, and the indoor temperature is lowered to a desired temperature (cooling the indoor space).

室内側熱交換器21を出て圧縮機23に達した高温気相の熱媒体は、この圧縮機23により加圧され、圧力及び温度を増大させた状態となる。そして、圧縮機23を出た気相の熱媒体は、熱媒体流路i、流路切換用弁25、熱媒体流路hを経て室外側熱交換器22に導入される。 The heat medium of the high temperature gas phase that has left the indoor heat exchanger 21 and reached the compressor 23 is pressurized by the compressor 23, and the pressure and temperature are increased. Then, the heat medium of the gas phase exiting the compressor 23 is introduced into the outdoor heat exchanger 22 via the heat medium flow path i, the flow path switching valve 25, and the heat medium flow path h.

室外側熱交換器22は、凝縮器として、ファン(図示を省略)で送風されて導入された室外空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、室外側熱交換器22での熱交換で室外空気は加熱され、温度を上げた状態で外気中に排出される。 The outdoor heat exchanger 22 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase as a condenser. The heat medium of the gas phase cooled by this heat exchange condenses and changes into a liquid phase. On the other hand, the outdoor air is heated by the heat exchange in the outdoor heat exchanger 22, and is discharged into the outside air in a state where the temperature is raised.

室外側熱交換器22で凝縮して得られた液相の熱媒体は、室外側熱交換器22外に排出され、膨張弁24に達する。この膨張弁24で、熱媒体は膨張し、圧力及び温度を低減させた状態となった上で、さらに室内側熱交換器21へ向かおうとするが、地中熱熱交換器26近傍の熱交換器切換用弁のうち、弁67、65が開、弁66、68が閉となることで、膨張弁24を出た熱媒体は弁67、65を通過して、地中熱熱交換器26に流通することなく、室内側熱交換器21へ向け進むこととなる。
この後、熱媒体は室内側熱交換器21内に戻り、前記同様に室内側熱交換器21での熱交換以降の各過程を繰返して、冷房を継続実行することとなる。
The liquid phase heat medium obtained by condensing in the outdoor heat exchanger 22 is discharged to the outside of the outdoor heat exchanger 22 and reaches the expansion valve 24. With this expansion valve 24, the heat medium expands to reduce the pressure and temperature, and then tries to go to the indoor heat exchanger 21, but the heat in the vicinity of the geothermal heat exchanger 26 Of the exchanger switching valves, the valves 67 and 65 are opened and the valves 66 and 68 are closed, so that the heat medium exiting the expansion valve 24 passes through the valves 67 and 65 and is a geothermal heat exchanger. It will proceed toward the indoor heat exchanger 21 without being distributed to the 26.
After that, the heat medium returns to the inside of the indoor heat exchanger 21, and in the same manner as described above, each process after the heat exchange in the indoor heat exchanger 21 is repeated to continuously execute the cooling.

(熱源が空気熱と地中熱の場合)
室内空間に対し冷房を行う際に、熱源として室外の空気熱と地中熱を用いる場合、すなわち、室外側の凝縮器として室外側熱交換器22と地中熱熱交換器26を共に用いる場合には、図10に示すように、熱交換器切換用弁の弁65、66、68を開とし、弁67を閉として、室外側熱交換器22と膨張弁24が地中熱熱交換器26を通じて室内側熱交換器21に連通する状態に切り換える。
(When the heat source is air heat and geothermal heat)
When outdoor air heat and geothermal heat are used as heat sources when cooling the indoor space, that is, when both the outdoor heat exchanger 22 and the geothermal heat exchanger 26 are used as the outdoor condenser. As shown in FIG. 10, the valves 65, 66, 68 of the heat exchanger switching valve are opened, the valve 67 is closed, and the outdoor heat exchanger 22 and the expansion valve 24 are geothermal heat exchangers. The state is switched to the state of communicating with the indoor heat exchanger 21 through 26.

システムを作動させると、室内側熱交換器21が、蒸発器として、ファン(図示を省略)で送風されて導入される室内空気と液相の熱媒体とを熱交換させる。この室内側熱交換器21での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室内側熱交換器21外へ出て、バイパス切換用弁77、熱媒体流路j、流路切換用弁25、熱媒体流路gを経て圧縮機23に向う。一方、室内側熱交換器21での熱交換で室内空気は冷却され、温度を下げた状態で室内空間に放出され、室内温度を所望の温度まで低下させる(室内空間を冷却する)。 When the system is operated, the indoor heat exchanger 21, as an evaporator, exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the liquid phase. The heat medium that is heated by heat exchange in the indoor heat exchanger 21 and evaporates as the temperature rises to become a gas phase goes out of the indoor heat exchanger 21 and heats the bypass switching valve 77. It goes to the compressor 23 via the medium flow path j, the flow path switching valve 25, and the heat medium flow path g. On the other hand, the indoor air is cooled by the heat exchange in the indoor heat exchanger 21 and released into the indoor space in a state where the temperature is lowered, and the indoor temperature is lowered to a desired temperature (cooling the indoor space).

室内側熱交換器21を出て圧縮機23に達した高温気相の熱媒体は、この圧縮機23により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機23を出た気相の熱媒体は、熱媒体流路i、流路切換用弁25、熱媒体流路hを経て室外側熱交換器22に導入される。 The heat medium of the high temperature gas phase that has left the indoor heat exchanger 21 and reached the compressor 23 is pressurized by the compressor 23. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase exiting the compressor 23 is introduced into the outdoor heat exchanger 22 via the heat medium flow path i, the flow path switching valve 25, and the heat medium flow path h.

室外側熱交換器22は、凝縮器として、ファン(図示を省略)で送風されて導入された室外空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体はその温度を低下させ、一部は凝縮して液相に変化する。一方、室外側熱交換器22での熱交換で室外空気は加熱され、温度を上げた状態で外気中に排出される。 The outdoor heat exchanger 22 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase as a condenser. The heat medium of the gas phase cooled by this heat exchange lowers its temperature, and a part of it condenses and changes into a liquid phase. On the other hand, the outdoor air is heated by the heat exchange in the outdoor heat exchanger 22, and is discharged into the outside air in a state where the temperature is raised.

室外側熱交換器22で温度を低下させた熱媒体は、室外側熱交換器22外に排出され、膨張弁24に達する。この膨張弁24で、熱媒体は膨張し、圧力及び温度を低減させた状態となった上で、膨張弁24を出るが、地中熱熱交換器26近傍の熱交換器切換用弁のうち、弁65、66、68が開、弁67が閉となることで、膨張弁24を出た熱媒体は、熱媒体流路l及び弁68を通過して地中熱熱交換器26に流通することとなる。 The heat medium whose temperature has been lowered by the outdoor heat exchanger 22 is discharged to the outside of the outdoor heat exchanger 22 and reaches the expansion valve 24. In this expansion valve 24, the heat medium expands to reduce the pressure and temperature, and then exits the expansion valve 24. Among the heat exchanger switching valves in the vicinity of the geothermal heat exchanger 26, , Valves 65, 66, 68 are opened and the valve 67 is closed, so that the heat medium exiting the expansion valve 24 passes through the heat medium flow path l and the valve 68 and flows to the geothermal heat exchanger 26. Will be done.

地中熱熱交換器26では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、地中熱熱交換器26での熱交換で熱交換用媒体は加熱され、温度を上げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中に熱を放出して温度を下げた上で、あらためて地中熱熱交換器26に還流する。こうした熱交換用媒体の地中熱熱交換器26と地中熱交換部50との間での循環は、地中熱熱交換器26における熱交換が継続される間、繰り返されることとなる。 In the geothermal heat exchanger 26, the heat exchange medium introduced by being pressurized by a pump (not shown) exchanges heat with the heat medium, and the heat medium of the gas phase cooled by this heat exchange is used. It will condense and change to a liquid phase. On the other hand, the heat exchange medium is heated by the heat exchange in the geothermal heat exchanger 26, and heads for the geothermal heat exchange unit 50 in a state where the temperature is raised. Then, the heat exchange medium releases heat into the ground by the geothermal heat exchange unit 50 to lower the temperature, and then returns to the geothermal heat exchanger 26 again. The circulation of the heat exchange medium between the geothermal heat exchanger 26 and the geothermal heat exchanger 50 will be repeated as long as the heat exchange in the geothermal heat exchanger 26 is continued.

地中熱熱交換器26で凝縮して得られた液相の熱媒体は、地中熱熱交換器26を出た後、補助膨張弁28で圧力及び温度をさらに低減させた後、熱媒体流路k、弁66、65を通過して室内側熱交換器21へ向け進むこととなる。
この後、熱媒体は室内側熱交換器21内に戻り、前記同様に室内側熱交換器21での熱交換以降の各過程を繰返して、冷房を継続実行することとなる。
The liquid phase heat medium obtained by condensing with the underground heat exchanger 26 is the heat medium after leaving the underground heat exchanger 26 and further reducing the pressure and temperature with the auxiliary expansion valve 28. It passes through the flow paths k, valves 66, and 65 and proceeds toward the indoor heat exchanger 21.
After that, the heat medium returns to the inside of the indoor heat exchanger 21, and in the same manner as described above, each process after the heat exchange in the indoor heat exchanger 21 is repeated to continuously execute the cooling.

なお、上記のような冷房時の熱源に地中熱を用いる場合に対応して、夜間や室内に人がいない間など、冷房運転を要しない時間帯に、地中から熱を奪うと共にその熱を室外空気に放出するサイクルとして運転を実行し、冷房運転に伴う熱放出で上昇した地中温度の回復や地中への冷熱の蓄熱を積極的に図るようにすることもできる。 In addition, in response to the case where geothermal heat is used as the heat source during cooling as described above, heat is taken from the ground and the heat is taken from the ground during times when cooling operation is not required, such as at night or when there are no people in the room. It is also possible to execute the operation as a cycle in which the air is released to the outdoor air, and to actively recover the underground temperature that has risen due to the heat release accompanying the cooling operation and store the cold heat in the ground.

この地中温度の回復等のための運転を行うためには、バイパス切換用弁の弁76を開、弁77を閉として、バイパス流路27が熱媒体流路jに連通し、バイパス流路27を出た熱媒体が流路切換用弁25に流通する状態に切り換えると共に、熱交換器切換用弁の弁66、68を開、弁65、67を閉として、バイパス流路27が地中熱熱交換器26を通じて膨張弁24及び室外側熱交換器22に連通する状態に切り換える。流路切換用弁25は第一の流路接続状態として、熱媒体流路gと熱媒体流路jを連通させ、熱媒体流路hと熱媒体流路iを連通させることで、バイパス流路27と圧縮機23入口とを連通させると共に、室外側熱交換器22と圧縮機23出口とを連通させる状態とする(図13参照)。 In order to perform the operation for recovering the underground temperature or the like, the valve 76 of the bypass switching valve is opened, the valve 77 is closed, the bypass flow path 27 communicates with the heat medium flow path j, and the bypass flow path The heat medium exiting 27 is switched to a state in which it flows through the flow path switching valve 25, the valves 66 and 68 of the heat exchanger switching valve are opened, the valves 65 and 67 are closed, and the bypass flow path 27 is underground. The state is switched to communicate with the expansion valve 24 and the outdoor heat exchanger 22 through the heat heat exchanger 26. The flow path switching valve 25 is in the first flow path connection state, and the heat medium flow path g and the heat medium flow path j are communicated with each other, and the heat medium flow path h and the heat medium flow path i are communicated with each other to cause a bypass flow. The road 27 and the inlet of the compressor 23 are communicated with each other, and the outdoor heat exchanger 22 and the outlet of the compressor 23 are communicated with each other (see FIG. 13).

運転を実行すると、地中熱熱交換器26では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で加熱された液相の熱媒体は昇温し、蒸発して気相に変化する。一方、地中熱熱交換器26での熱交換で熱交換用媒体は冷却され、温度を下げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中から熱を吸収して温度を上げた上で、あらためて地中熱熱交換器26に還流する。こうした熱交換用媒体の地中熱熱交換器26と地中熱交換部50との間での循環は、運転継続の間繰り返され、熱交換用媒体が地中から熱を吸収することで、地中の温度を低下させることができる。 When the operation is executed, in the underground heat exchanger 26, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the liquid heated by this heat exchange. The heat medium of the phase heats up and evaporates to change into a gas phase. On the other hand, the heat exchange medium is cooled by the heat exchange in the geothermal heat exchanger 26, and heads for the geothermal heat exchange unit 50 in a state where the temperature is lowered. Then, the heat exchange medium absorbs heat from the ground by the geothermal heat exchange unit 50 to raise the temperature, and then returns to the geothermal heat exchanger 26 again. The circulation of the heat exchange medium between the geothermal heat exchanger 26 and the geothermal heat exchange unit 50 is repeated for the duration of the operation, and the heat exchange medium absorbs heat from the ground. The temperature in the ground can be lowered.

地中熱熱交換器26で蒸発して得られた気相の熱媒体は、地中熱熱交換器26を出た後、熱媒体流路k、補助膨張弁28、及び弁66を通過してバイパス流路27に流通する。
一方、バイパス流路27の他端は、流路切換用弁25と連通していることから、開状態とされた弁76を経てバイパス流路27を通った気相の熱媒体は、流路切換用弁25を経て圧縮機23に向かう。
The gas phase heat medium obtained by evaporating in the geothermal heat exchanger 26 passes through the heat medium flow path k, the auxiliary expansion valve 28, and the valve 66 after leaving the geothermal heat exchanger 26. And circulates in the bypass flow path 27.
On the other hand, since the other end of the bypass flow path 27 communicates with the flow path switching valve 25, the heat medium of the gas phase that has passed through the bypass flow path 27 through the valve 76 in the open state flows through the flow path. It goes to the compressor 23 via the switching valve 25.

圧縮機23に達した高温気相の熱媒体は、圧縮機23により加圧され、圧力及び温度を増大させた状態となる。そして、圧縮機23を出た気相の熱媒体は、熱媒体流路i、流路切換用弁25、熱媒体流路hを経て室外側熱交換器22に導入される。 The heat medium of the high temperature gas phase that has reached the compressor 23 is pressurized by the compressor 23, and the pressure and temperature are increased. Then, the heat medium of the gas phase exiting the compressor 23 is introduced into the outdoor heat exchanger 22 via the heat medium flow path i, the flow path switching valve 25, and the heat medium flow path h.

室外側熱交換器22では、ファン(図示を省略)で送風されて導入された室外空気と、気相の熱媒体とが熱交換し、この熱交換で冷却された気相の熱媒体はその温度を低下させ、凝縮して液相に変化する。一方、室外側熱交換器22での熱交換で室外空気は加熱され、温度を上げた状態で外気中に排出される。 In the outdoor heat exchanger 22, the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase exchange heat, and the heat medium of the gas phase cooled by this heat exchange is the heat medium. It lowers the temperature and condenses into a liquid phase. On the other hand, the outdoor air is heated by the heat exchange in the outdoor heat exchanger 22, and is discharged into the outside air in a state where the temperature is raised.

室外側熱交換器22で凝縮した熱媒体は、室外側熱交換器22外に排出され、膨張弁24に達する。この膨張弁24で、熱媒体は膨張し、圧力及び温度を低減させた状態となった上で、膨張弁24を出るが、地中熱熱交換器26近傍の熱交換器切換用弁のうち、弁66、68が開、弁65、67が閉となることで、膨張弁24を出た熱媒体は、熱媒体流路l及び弁68を通過して、地中熱熱交換器26へ向け進むこととなる。 The heat medium condensed by the outdoor heat exchanger 22 is discharged to the outside of the outdoor heat exchanger 22 and reaches the expansion valve 24. In this expansion valve 24, the heat medium expands to reduce the pressure and temperature, and then exits the expansion valve 24. Among the heat exchanger switching valves in the vicinity of the geothermal heat exchanger 26, , Valves 66 and 68 are opened and valves 65 and 67 are closed, so that the heat medium exiting the expansion valve 24 passes through the heat medium flow path l and the valve 68 to the geothermal heat exchanger 26. It will move toward.

この後、熱媒体は地中熱熱交換器26内に戻り、前記同様に地中熱熱交換器26での熱交換以降の各過程を繰返すこととなる。
地中温度が適切な温度まで低下したり、室内空間に冷房を行う時間帯に至った場合には、この地中温度の回復等に係る運転を停止し、必要に応じて冷房運転に移行する。
After that, the heat medium returns to the inside of the geothermal heat exchanger 26, and each process after the heat exchange in the geothermal heat exchanger 26 is repeated in the same manner as described above.
When the underground temperature drops to an appropriate temperature or the time zone for cooling the indoor space is reached, the operation related to the recovery of the underground temperature is stopped and the operation is shifted to the cooling operation as necessary. ..

続いて、ヒートポンプシステムを作動させて、室内空間に対し暖房を行う状態について説明する。
暖房を行う場合も、冷房の場合と同様、熱源を室外の空気熱のみ、又は、空気熱と地中熱の両方、とする状態を、室内や室外、地中の状況等に応じて切り換えることができる。
Subsequently, a state in which the heat pump system is operated to heat the indoor space will be described.
When heating, as in the case of cooling, the state where the heat source is only outdoor air heat or both air heat and geothermal heat is switched according to the indoor, outdoor, and underground conditions. Can be done.

例えば、熱媒体の温度が室外空気温度より高い状況では、主に熱源として室外の空気熱と地中熱を用いる状態として暖房運転を実行する一方、熱媒体の温度が室外空気温度に近い値となり、地中の温度が過度に下がるなど地中に過大な熱負荷が加わっていることが予想される場合には、熱源を室外の空気熱のみとする運転状態に移行し、地中熱熱交換器26と熱交換用媒体を通じた地中からの吸熱を停止して、地中温度の回復を図るようにするのが好ましい。 For example, in a situation where the temperature of the heat medium is higher than the outdoor air temperature, the heating operation is performed with the outdoor air heat and the geothermal heat mainly used as heat sources, while the heat medium temperature becomes a value close to the outdoor air temperature. If it is expected that an excessive heat load is applied to the ground, such as when the underground temperature drops excessively, the system shifts to an operating state in which the heat source is only outdoor air heat, and geothermal heat exchange occurs. It is preferable to stop the heat absorption from the ground through the vessel 26 and the heat exchange medium so that the ground temperature can be recovered.

(熱源が空気熱のみの場合)
室内空間に対し暖房を行う際に、熱源として室外の空気熱のみを用いる場合、すなわち、室外側の蒸発器として室外側熱交換器22のみを用いる場合には、図11に示すように、熱交換器切換用弁の弁65、67を開とし、弁66、68を閉として、室外側熱交換器22及び膨張弁24が各弁を通じて室内側熱交換器21に連通する状態としておく。また、バイパス切換用弁の弁76を閉、弁77を開とし、流路切換用弁25は第二の流路接続状態として、熱媒体流路gと熱媒体流路hを連通させ、熱媒体流路iと熱媒体流路jを連通させることで、室内側熱交換器21と圧縮機23出口とを連通させると共に、室外側熱交換器22と圧縮機23入口とを連通させる状態とする。
(When the heat source is only air heat)
When heating the indoor space, when only the outdoor air heat is used as the heat source, that is, when only the outdoor heat exchanger 22 is used as the outdoor heat exchanger, the heat is as shown in FIG. The valves 65 and 67 of the exchanger switching valve are opened and the valves 66 and 68 are closed so that the outdoor heat exchanger 22 and the expansion valve 24 communicate with the indoor heat exchanger 21 through the respective valves. Further, the valve 76 of the bypass switching valve is closed, the valve 77 is opened, and the flow path switching valve 25 is in the second flow path connection state, and the heat medium flow path g and the heat medium flow path h are communicated with each other to generate heat. By communicating the medium flow path i and the heat medium flow path j, the indoor heat exchanger 21 and the compressor 23 outlet are communicated with each other, and the outdoor heat exchanger 22 and the compressor 23 inlet are communicated with each other. To do.

システムを作動させると、室内側熱交換器21は、凝縮器として、ファン(図示を省略)で送風されて導入される室内空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、室内側熱交換器21での熱交換で室内空気は加熱され、温度を上げた状態で室内空間に放出され、室内温度を所望の温度まで上昇させる(室内空間を暖める)。 When the system is operated, the indoor heat exchanger 21 exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase as a condenser. The heat medium of the gas phase cooled by this heat exchange condenses and changes into a liquid phase. On the other hand, the indoor air is heated by the heat exchange in the indoor heat exchanger 21 and released into the indoor space in a state where the temperature is raised, and the indoor temperature is raised to a desired temperature (warming the indoor space).

室内側熱交換器21で凝縮して得られた液相の熱媒体は、室内側熱交換器21の外に排出されるが、地中熱熱交換器26近傍の熱交換器切換用弁のうち、弁65、67が開、弁66、68が閉となることで、室内側熱交換器21を出た熱媒体は弁65、67を通過して、地中熱熱交換器26に流通することなく、膨張弁24に達する。 The liquid phase heat medium obtained by condensing in the indoor heat exchanger 21 is discharged to the outside of the indoor heat exchanger 21, but in the heat exchanger switching valve near the geothermal heat exchanger 26. When the valves 65 and 67 are opened and the valves 66 and 68 are closed, the heat medium exiting the indoor heat exchanger 21 passes through the valves 65 and 67 and is distributed to the geothermal heat exchanger 26. It reaches the expansion valve 24 without doing anything.

膨張弁24で液相の熱媒体は膨張し、圧力及び温度を低減させた状態となる。この膨張弁24で圧力や温度を低下させた液相の熱媒体は、膨張弁24の外に排出され、室外側熱交換器22に達する。 The heat medium of the liquid phase expands at the expansion valve 24, and the pressure and temperature are reduced. The liquid phase heat medium whose pressure and temperature are lowered by the expansion valve 24 is discharged to the outside of the expansion valve 24 and reaches the outdoor heat exchanger 22.

室外側熱交換器22は、蒸発器として、ファン(図示を省略)で送風されて導入される室外空気と液相の熱媒体とを熱交換させる。この室外側熱交換器22での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室外側熱交換器22外へ出て、熱媒体流路hを経て流路切換用弁25に達し、さらに流路切換用弁25から熱媒体流路gを経て圧縮機23に向う。一方、室外側熱交換器22での熱交換で室外空気は冷却され、温度を下げた状態で外気中に排出される。 The outdoor heat exchanger 22 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the liquid phase as an evaporator. The heat medium that is heated by heat exchange in the outdoor heat exchanger 22 and evaporates as the temperature rises to become a gas phase goes out of the outdoor heat exchanger 22 and passes through the heat medium flow path h. It reaches the flow path switching valve 25, and further flows from the flow path switching valve 25 to the compressor 23 via the heat medium flow path g. On the other hand, the outdoor air is cooled by the heat exchange in the outdoor heat exchanger 22, and is discharged into the outside air in a state where the temperature is lowered.

室外側熱交換器22を出て圧縮機23に達した高温気相の熱媒体は、この圧縮機23により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機23を出た気相の熱媒体は、流路切換用弁15、バイパス切換用弁77を経て、室内側熱交換器21へ向け進むこととなる。
この後、熱媒体は室内側熱交換器21内に戻り、前記同様に室内側熱交換器21での熱交換以降の各過程を繰返して、暖房を継続実行することとなる。
The heat medium of the high temperature gas phase that has left the outdoor heat exchanger 22 and reached the compressor 23 is pressurized by the compressor 23. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase that has exited the compressor 23 travels toward the indoor heat exchanger 21 via the flow path switching valve 15 and the bypass switching valve 77.
After that, the heat medium returns to the inside of the indoor heat exchanger 21, and the heating is continuously executed by repeating each process after the heat exchange in the indoor heat exchanger 21 in the same manner as described above.

(熱源が空気熱と地中熱の場合)
室内空間に対し暖房を行う際に、熱源として室外の空気熱と地中熱を用いる場合、すなわち、室外側の蒸発器として室外側熱交換器22と地中熱熱交換器26を共に用いる場合には、図12に示すように、熱交換器切換用弁の弁65、66、68を開とし、弁67を閉として、室外側熱交換器22と膨張弁24が地中熱熱交換器26を通じて室内側熱交換器21に連通する状態に切り換える。
(When the heat source is air heat and geothermal heat)
When outdoor air heat and geothermal heat are used as heat sources when heating the indoor space, that is, when both the outdoor heat exchanger 22 and the geothermal heat exchanger 26 are used as the outdoor heat exchangers. As shown in FIG. 12, the valves 65, 66, 68 of the heat exchanger switching valve are opened, the valve 67 is closed, and the outdoor heat exchanger 22 and the expansion valve 24 are geothermal heat exchangers. The state is switched to the state of communicating with the indoor heat exchanger 21 through 26.

システムを作動させると、室内側熱交換器21は、凝縮器として、ファン(図示を省略)で送風されて導入される室内空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、室内側熱交換器21での熱交換で室内空気は加熱され、温度を上げた状態で室内空間に放出され、室内温度を所望の温度まで上昇させる(室内空間を暖める)。 When the system is operated, the indoor heat exchanger 21 exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase as a condenser. The heat medium of the gas phase cooled by this heat exchange condenses and changes into a liquid phase. On the other hand, the indoor air is heated by the heat exchange in the indoor heat exchanger 21 and released into the indoor space in a state where the temperature is raised, and the indoor temperature is raised to a desired temperature (warming the indoor space).

室内側熱交換器21で凝縮して得られた液相の熱媒体は、室内側熱交換器21の外に排出されるが、地中熱熱交換器26近傍の熱交換器切換用弁のうち、弁65、66、68が開、弁67が閉となることで、室内側熱交換器21を出た熱媒体は弁65、66、補助膨張弁28、及び熱媒体流路kを通過して地中熱熱交換器26に流通することとなる。 The liquid phase heat medium obtained by condensing in the indoor heat exchanger 21 is discharged to the outside of the indoor heat exchanger 21, but in the heat exchanger switching valve near the geothermal heat exchanger 26. When the valves 65, 66, 68 are opened and the valve 67 is closed, the heat medium exiting the indoor heat exchanger 21 passes through the valves 65, 66, the auxiliary expansion valve 28, and the heat medium flow path k. Then, it will be distributed to the geothermal heat exchanger 26.

地中熱熱交換器26では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で加熱された液相の熱媒体は昇温し、一部は蒸発して気相に変化することとなる。一方、地中熱熱交換器26での熱交換で熱交換用媒体は冷却され、温度を下げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中から熱を吸収して温度を上げた上で、あらためて地中熱熱交換器26に還流する。こうした熱交換用媒体の地中熱熱交換器26と地中熱交換部50との間での循環は、地中熱熱交換器26における熱交換が継続される間、繰り返されることとなる。 In the underground heat exchanger 26, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the liquid phase heat medium heated by this heat exchange is used. The temperature rises, and part of it evaporates and changes to the gas phase. On the other hand, the heat exchange medium is cooled by the heat exchange in the geothermal heat exchanger 26, and heads for the geothermal heat exchange unit 50 in a state where the temperature is lowered. Then, the heat exchange medium absorbs heat from the ground by the geothermal heat exchange unit 50 to raise the temperature, and then returns to the geothermal heat exchanger 26 again. The circulation of the heat exchange medium between the geothermal heat exchanger 26 and the geothermal heat exchanger 50 will be repeated as long as the heat exchange in the geothermal heat exchanger 26 is continued.

地中熱熱交換器26で昇温した熱媒体は、地中熱熱交換器26を出た後、熱媒体流路l、弁68を通過して膨張弁24に達する。
膨張弁24で熱媒体は膨張し、圧力及び温度を低下させた状態となる。そして、この膨張弁24で圧力や温度を低下させた熱媒体は、膨張弁24の外に排出され、室外側熱交換器22に達する。
The heat medium heated by the geothermal heat exchanger 26 exits the geothermal heat exchanger 26, passes through the heat medium flow path l and the valve 68, and reaches the expansion valve 24.
The heat medium expands at the expansion valve 24, and the pressure and temperature are lowered. Then, the heat medium whose pressure and temperature are lowered by the expansion valve 24 is discharged to the outside of the expansion valve 24 and reaches the outdoor heat exchanger 22.

室外側熱交換器22は、蒸発器として、ファン(図示を省略)で送風されて導入される室外空気と熱媒体とを熱交換させる。この室外側熱交換器22での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室外側熱交換器22外へ出て、熱媒体流路hを経て流路切換用弁25に達し、さらに流路切換用弁25から熱媒体流路gを経て圧縮機23に向う。一方、室外側熱交換器22での熱交換で室外空気は冷却され、温度を下げた状態で外気中に排出される。 As an evaporator, the outdoor heat exchanger 22 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and a heat medium. The heat medium that is heated by heat exchange in the outdoor heat exchanger 22 and evaporates as the temperature rises to become a gas phase goes out of the outdoor heat exchanger 22 and passes through the heat medium flow path h. It reaches the flow path switching valve 25, and further flows from the flow path switching valve 25 to the compressor 23 via the heat medium flow path g. On the other hand, the outdoor air is cooled by the heat exchange in the outdoor heat exchanger 22, and is discharged into the outside air in a state where the temperature is lowered.

室外側熱交換器22を出て圧縮機23に達した高温気相の熱媒体は、この圧縮機23により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機23を出た気相の熱媒体は、流路切換用弁25、バイパス切換用弁77を経て、室内側熱交換器21へ向け進むこととなる。
この後、熱媒体は室内側熱交換器21内に戻り、前記同様に室内側熱交換器21での熱交換以降の各過程を繰返して、暖房を継続実行することとなる。
The heat medium of the high temperature gas phase that has left the outdoor heat exchanger 22 and reached the compressor 23 is pressurized by the compressor 23. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase that has exited the compressor 23 travels toward the indoor heat exchanger 21 via the flow path switching valve 25 and the bypass switching valve 77.
After that, the heat medium returns to the inside of the indoor heat exchanger 21, and the heating is continuously executed by repeating each process after the heat exchange in the indoor heat exchanger 21 in the same manner as described above.

(熱源を地中熱として除霜を行う場合)
こうした暖房運転時において、室外の温度が低い場合、室外側熱交換器22の空気と熱交換する外面部分に着霜が生じることがある。こうした着霜時に対応する除霜運転状態について説明する。
(When defrosting is performed using the heat source as geothermal heat)
During such a heating operation, if the outdoor temperature is low, frost may occur on the outer surface portion that exchanges heat with the air of the outdoor heat exchanger 22. The defrosting operation state corresponding to such frost formation will be described.

暖房時に着霜を検出し、除霜を行う場合には、いったん暖房運転を停止し、除霜運転状態に移行する。除霜を行うためには、図13に示すように、バイパス切換用弁の弁76を開、弁77を閉として、バイパス流路27が熱媒体流路gに連通し、バイパス流路27を出た熱媒体が圧縮機23に流通する状態に切り換えると共に、熱交換器切換用弁の弁66、68を開、弁65、67を閉として、バイパス流路27が地中熱熱交換器26を通じて膨張弁24及び室外側熱交換器22に連通する状態に切り換える。流路切換用弁25は第一の流路接続状態として、熱媒体流路gと熱媒体流路jを連通させ、熱媒体流路hと熱媒体流路iを連通させることで、室内側熱交換器21と圧縮機23入口とを連通させると共に、室外側熱交換器22と圧縮機23出口とを連通させる状態とする。 When frost formation is detected during heating and defrosting is performed, the heating operation is temporarily stopped and the state shifts to the defrosting operation state. In order to perform defrosting, as shown in FIG. 13, the valve 76 of the bypass switching valve is opened, the valve 77 is closed, the bypass flow path 27 communicates with the heat medium flow path g, and the bypass flow path 27 is opened. The heat medium that came out is switched to a state in which it flows through the compressor 23, the valves 66 and 68 of the heat exchanger switching valves are opened, the valves 65 and 67 are closed, and the bypass flow path 27 is the geothermal heat exchanger 26. It switches to a state of communicating with the expansion valve 24 and the outdoor heat exchanger 22 through. The flow path switching valve 25 is in the first flow path connection state, and the heat medium flow path g and the heat medium flow path j are communicated with each other, and the heat medium flow path h and the heat medium flow path i are communicated with each other on the indoor side. The heat exchanger 21 and the compressor 23 inlet are communicated with each other, and the outdoor heat exchanger 22 and the compressor 23 outlet are communicated with each other.

除霜運転を実行すると、地中熱熱交換器26では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で加熱された液相の熱媒体は昇温し、蒸発して気相に変化することとなる。一方、地中熱熱交換器26での熱交換で熱交換用媒体は冷却され、温度を下げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中から熱を吸収して温度を上げた上で、あらためて地中熱熱交換器26に還流する。こうした熱交換用媒体の地中熱熱交換器26と地中熱交換部50との間での循環は、地中熱熱交換器26における熱交換が継続される間、繰り返される。 When the defrosting operation is executed, in the underground heat exchanger 26, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the heat is heated by this heat exchange. The heat medium of the liquid phase heats up and evaporates to change into a gas phase. On the other hand, the heat exchange medium is cooled by the heat exchange in the geothermal heat exchanger 26, and heads for the geothermal heat exchange unit 50 in a state where the temperature is lowered. Then, the heat exchange medium absorbs heat from the ground by the geothermal heat exchange unit 50 to raise the temperature, and then returns to the geothermal heat exchanger 26 again. The circulation of the heat exchange medium between the geothermal heat exchanger 26 and the geothermal heat exchanger 50 is repeated as long as the heat exchange in the geothermal heat exchanger 26 is continued.

地中熱熱交換器26で蒸発して得られた気相の熱媒体は、地中熱熱交換器26を出た後、熱媒体流路k、補助膨張弁28、及び弁66を通過してバイパス流路27に流通する。
一方、バイパス流路27の他端は、流路切換用弁25と連通していることから、開状態とされた弁76を経てバイパス流路27を通った気相の熱媒体は、流路切換用弁25を経て圧縮機23に向かう。
The gas phase heat medium obtained by evaporating in the geothermal heat exchanger 26 passes through the heat medium flow path k, the auxiliary expansion valve 28, and the valve 66 after leaving the geothermal heat exchanger 26. And circulates in the bypass flow path 27.
On the other hand, since the other end of the bypass flow path 27 communicates with the flow path switching valve 25, the heat medium of the gas phase that has passed through the bypass flow path 27 through the valve 76 in the open state flows through the flow path. It goes to the compressor 23 via the switching valve 25.

圧縮機23に達した高温気相の熱媒体は、圧縮機23により加圧され、圧力及び温度を増大させた状態となる。そして、圧縮機23を出た気相の熱媒体は、熱媒体流路i、流路切換用弁25、熱媒体流路hを経て室外側熱交換器22に導入される。 The heat medium of the high temperature gas phase that has reached the compressor 23 is pressurized by the compressor 23, and the pressure and temperature are increased. Then, the heat medium of the gas phase exiting the compressor 23 is introduced into the outdoor heat exchanger 22 via the heat medium flow path i, the flow path switching valve 25, and the heat medium flow path h.

室外側熱交換器22は、凝縮器として、ファン(図示を省略)で送風されて導入された室外空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体はその温度を低下させ、凝縮して液相に変化する。一方、室外側熱交換器22での熱交換で室外空気は加熱され、温度を上げた状態で室外側熱交換器を出ようとすることから、室外側熱交換器22表面の着霜部分は、この温度を上昇させた空気と接触して温められる。こうして温められる着霜部分では、最終的に霜が溶けて除霜状態となる。着霜部分を温めた後の空気は、外気中に排出される。 The outdoor heat exchanger 22 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase as a condenser. The heat medium of the gas phase cooled by this heat exchange lowers its temperature and condenses into a liquid phase. On the other hand, since the outdoor air is heated by the heat exchange in the outdoor heat exchanger 22 and tries to exit the outdoor heat exchanger with the temperature raised, the frosted portion on the surface of the outdoor heat exchanger 22 is present. , It is warmed by contact with the air that raised this temperature. In the frosted portion that is warmed in this way, the frost finally melts and becomes a defrosted state. The air after warming the frosted portion is discharged into the outside air.

室外側熱交換器22で温度を低下させた熱媒体は、室外側熱交換器22外に排出され、膨張弁24に達する。この膨張弁24で、熱媒体は膨張し、圧力及び温度を低減させた状態となった上で、膨張弁24を出るが、地中熱熱交換器26近傍の熱交換器切換用弁のうち、弁66、68が開、弁65、67が閉となることで、膨張弁24を出た熱媒体は、熱媒体流路l及び弁68を通過して、地中熱熱交換器26へ向け進むこととなる。 The heat medium whose temperature has been lowered by the outdoor heat exchanger 22 is discharged to the outside of the outdoor heat exchanger 22 and reaches the expansion valve 24. In this expansion valve 24, the heat medium expands to reduce the pressure and temperature, and then exits the expansion valve 24. Among the heat exchanger switching valves in the vicinity of the geothermal heat exchanger 26, , Valves 66 and 68 are opened and valves 65 and 67 are closed, so that the heat medium exiting the expansion valve 24 passes through the heat medium flow path l and the valve 68 to the geothermal heat exchanger 26. It will move toward.

この後、熱媒体は地中熱熱交換器26内に戻り、前記同様に地中熱熱交換器26での熱交換以降の各過程を繰返して、除霜を継続実行することとなる。
室外側熱交換器22における全ての着霜箇所で霜が溶け、除霜が完了したら、除霜運転状態から暖房運転状態に復帰することができる。
After that, the heat medium returns to the inside of the geothermal heat exchanger 26, and each process after the heat exchange in the geothermal heat exchanger 26 is repeated in the same manner as described above to continuously execute defrosting.
When the frost is melted at all the frosted points in the outdoor heat exchanger 22 and the defrosting is completed, the defrosting operation state can be returned to the heating operation state.

なお、上記のような暖房時の熱源に地中熱を用いる場合に対応して、夜間や室内に人がいない間など、暖房運転を要しない時間帯に、室外空気から熱を吸収すると共に、その熱を地中に放出するサイクルとして運転を実行し、暖房運転に伴う吸熱で低下した地中温度の回復や地中への蓄熱を積極的に図るようにすることもできる。 In addition, in response to the case where geothermal heat is used as the heat source during heating as described above, heat is absorbed from the outdoor air during times when heating operation is not required, such as at night or when there are no people in the room. It is also possible to execute the operation as a cycle of releasing the heat to the ground, and to positively recover the underground temperature lowered by the heat absorption accompanying the heating operation and store the heat in the ground.

この地中温度の回復等のための運転を行うためには、図14に示すように、バイパス切換用弁の弁76を開、弁77を閉として、バイパス流路27が熱媒体流路jに連通し、バイパス流路27と流路切換用弁25との間で熱媒体が流通する状態に切り換えると共に、熱交換器切換用弁の弁66、68を開、弁65、67を閉として、バイパス流路27が地中熱熱交換器26を通じて膨張弁24及び室外側熱交換器22に連通する状態に切り換える。流路切換用弁25は第二の流路接続状態として、熱媒体流路gと熱媒体流路hを連通させ、熱媒体流路iと熱媒体流路jを連通させることで、バイパス流路27と圧縮機23出口とを連通させると共に、室外側熱交換器22と圧縮機23入口とを連通させる状態とする。 In order to perform the operation for recovering the underground temperature or the like, as shown in FIG. 14, the valve 76 of the bypass switching valve is opened, the valve 77 is closed, and the bypass flow path 27 is the heat medium flow path j. The heat exchanger is switched to a state in which the heat medium flows between the bypass flow path 27 and the flow path switching valve 25, and the valves 66 and 68 of the heat exchanger switching valve are opened and the valves 65 and 67 are closed. , The bypass flow path 27 is switched to a state in which it communicates with the expansion valve 24 and the outdoor heat exchanger 22 through the geothermal heat exchanger 26. The flow path switching valve 25 is in a second flow path connection state, and the heat medium flow path g and the heat medium flow path h are communicated with each other, and the heat medium flow path i and the heat medium flow path j are communicated with each other to cause a bypass flow. The road 27 and the outlet of the compressor 23 are communicated with each other, and the outdoor heat exchanger 22 and the inlet of the compressor 23 are communicated with each other.

運転を実行すると、地中熱熱交換器26では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で冷却された気相の熱媒体は温度を低下させ、一部は凝縮して液相に変化することとなる。一方、地中熱熱交換器26での熱交換で熱交換用媒体は加熱され、温度を上げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中に熱を放出して温度を下げた上で、あらためて地中熱熱交換器26に還流する。こうした熱交換用媒体の地中熱熱交換器26と地中熱交換部50との間での循環は、運転継続の間繰り返され、熱交換用媒体が地中に熱を放出することで、地中の温度を上昇させることができる。 When the operation is executed, in the geothermal heat exchanger 26, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the air cooled by this heat exchange is exchanged. The heat medium of the phase lowers the temperature, and part of it condenses and changes to a liquid phase. On the other hand, the heat exchange medium is heated by the heat exchange in the geothermal heat exchanger 26, and heads for the geothermal heat exchange unit 50 in a state where the temperature is raised. Then, the heat exchange medium releases heat into the ground by the geothermal heat exchange unit 50 to lower the temperature, and then returns to the geothermal heat exchanger 26 again. The circulation of the heat exchange medium between the geothermal heat exchanger 26 and the geothermal heat exchange unit 50 is repeated for the duration of the operation, and the heat exchange medium releases heat into the ground. The temperature in the ground can be raised.

地中熱熱交換器26で温度を低下させた熱媒体は、地中熱熱交換器26を出た後、熱媒体流路l、弁68を通過して膨張弁24に達する。熱媒体はこの膨張弁24で膨張し、圧力及び温度を低減させた状態となった上で、膨張弁24を出て、室外側熱交換器22に達する。室外側熱交換器22は、ファン(図示を省略)で送風されて導入される室外空気と熱媒体とを熱交換させる。この室外側熱交換器22での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室外側熱交換器22外へ出て、熱媒体流路h、gを経て圧縮機23に向う。一方、室外側熱交換器22での熱交換で室外空気は冷却され、温度を下げた状態で外気中に排出される。 The heat medium whose temperature has been lowered by the geothermal heat exchanger 26 exits the geothermal heat exchanger 26, passes through the heat medium flow path l and the valve 68, and reaches the expansion valve 24. The heat medium expands with the expansion valve 24 to reduce the pressure and temperature, then exits the expansion valve 24 and reaches the outdoor heat exchanger 22. The outdoor heat exchanger 22 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium. The heat medium that is heated by heat exchange in the outdoor heat exchanger 22 and evaporates as the temperature rises to become a vapor phase goes out of the outdoor heat exchanger 22 and goes out of the outdoor heat exchanger 22 to the heat medium flow paths h, g. Then, it goes to the compressor 23. On the other hand, the outdoor air is cooled by the heat exchange in the outdoor heat exchanger 22, and is discharged into the outside air in a state where the temperature is lowered.

室外側熱交換器22を出て圧縮機23に達した高温気相の熱媒体は、この圧縮機23により加圧され、圧力及び温度を増大させた状態となる。そして、圧縮機23を出た気相の熱媒体は、流路切換用弁25を経てバイパス流路27に至り、さらに弁66、補助膨張弁28、及び熱媒体流路kを通過して地中熱熱交換器26へ向け進むこととなる。 The heat medium of the high temperature gas phase that has left the outdoor heat exchanger 22 and reached the compressor 23 is pressurized by the compressor 23, and the pressure and temperature are increased. Then, the heat medium of the gas phase leaving the compressor 23 reaches the bypass flow path 27 via the flow path switching valve 25, and further passes through the valve 66, the auxiliary expansion valve 28, and the heat medium flow path k to be ground. It will proceed toward the medium heat exchanger 26.

この後、熱媒体は地中熱熱交換器26内に戻り、前記同様に地中熱熱交換器26での熱交換以降の各過程を繰返すこととなる。
地中温度が適切な温度まで上昇したり、室内空間に暖房を行う時間帯に至った場合には、この地中温度の回復等に係る運転を停止し、必要に応じて暖房運転に移行する。
After that, the heat medium returns to the inside of the geothermal heat exchanger 26, and each process after the heat exchange in the geothermal heat exchanger 26 is repeated in the same manner as described above.
When the underground temperature rises to an appropriate temperature or the time zone for heating the indoor space is reached, the operation related to the recovery of the underground temperature is stopped and the operation is shifted to the heating operation as necessary. ..

このように、本実施形態に係るヒートポンプシステムにおいては、室内に配設される室内側熱交換器21と、室外に配設される室外側熱交換器22、圧縮機23、膨張弁24、及び流路切換用弁25との間の熱媒体流路で、且つ室外にあらわれた箇所に対し、地中熱熱交換器26やバイパス流路27を各切換用弁を介して連通状態を切換可能として接続することから、システムの室内機部分と室外機部分の間に地中熱熱交換器26を利用するための熱媒体回路を無理なく適切に組み込んで、地中熱熱交換器26に熱媒体を流通させて地中熱を熱源として利用できる状態が、既存の室内機部分と室外機部分の構成を変えることなく得られることとなり、地中熱を利用可能とする構成部分を低コストで設置可能となり、地中熱を利用するシステムをより容易に導入できる。 As described above, in the heat pump system according to the present embodiment, the indoor heat exchanger 21 arranged indoors, the outdoor heat exchanger 22 arranged outdoors, the compressor 23, the expansion valve 24, and the expansion valve 24, and the outdoor heat exchanger 22 arranged outdoors. It is possible to switch the state of communication between the geothermal heat exchanger 26 and the bypass flow path 27 via each switching valve to the heat medium flow path between the flow path switching valve 25 and the location that appears outdoors. Therefore, a heat medium circuit for using the geothermal heat exchanger 26 is reasonably and appropriately incorporated between the indoor unit portion and the outdoor unit portion of the system to heat the geothermal heat exchanger 26. A state in which the medium can be circulated and the geothermal heat can be used as a heat source can be obtained without changing the configuration of the existing indoor unit part and the outdoor unit part, and the component part that enables the geothermal heat can be used at low cost. It can be installed, and a system that uses geothermal heat can be introduced more easily.

また、地中熱熱交換器26に対し流路切換用弁25を通じて圧縮機23入口側を連通可能とするバイパス流路27を設け、熱媒体が室内側熱交換器21を通らずにバイパス流路27を通って圧縮機23、室外側熱交換器22、及び地中熱熱交換器26を循環する状態を生じさせるようにすることで、室外側熱交換器22の着霜時に対応して、地中熱熱交換器26で取り入れた地中熱を室外側熱交換器22に導入し、室外側熱交換器22での放熱による除霜を可能としたり、室外側熱交換器22で室外空気から熱を吸収し、その熱を地中熱熱交換器26を通じて地中に放出するようにして、低下した地中温度の回復や地中への蓄熱を図ったり、地中から吸熱して取り出した熱を地中熱熱交換器26を通じて室外側熱交換器22に伝え、その熱を室外空気に放出するようにして、上昇した地中温度の回復や地中への冷熱の蓄熱を図ることができ、地中熱を適切に利用可能として、冷暖房の効率を向上させられる。 Further, a bypass flow path 27 is provided to allow the underground heat exchanger 26 to communicate with the inlet side of the compressor 23 through the flow path switching valve 25, so that the heat medium does not pass through the indoor heat exchanger 21 and bypass flows. By creating a state in which the compressor 23, the outdoor heat exchanger 22, and the underground heat exchanger 26 circulate through the path 27, the outdoor heat exchanger 22 responds to frost formation. , The underground heat taken in by the underground heat exchanger 26 is introduced into the outdoor heat exchanger 22 to enable defrosting by heat dissipation in the outdoor heat exchanger 22, or the outdoor heat exchanger 22 is used to remove frost. It absorbs heat from the air and releases the heat to the ground through the underground heat exchanger 26 to recover the lowered underground temperature, store heat in the ground, or absorb heat from the ground. The extracted heat is transferred to the outdoor heat exchanger 22 through the underground heat exchanger 26, and the heat is released to the outdoor air to recover the elevated underground temperature and store cold heat in the ground. It can improve the efficiency of heating and cooling by making the underground heat available appropriately.

(本発明の第3の実施形態)
本発明の第3の実施形態を図15ないし図18に基づいて説明する。本実施形態においては、複数の室内機を備えるいわゆるマルチエアコンタイプの空気調和機に適用した例について説明する。
(Third Embodiment of the present invention)
A third embodiment of the present invention will be described with reference to FIGS. 15 to 18. In this embodiment, an example applied to a so-called multi air conditioner type air conditioner including a plurality of indoor units will be described.

前記各図において本実施形態に係るヒートポンプシステム3は、前記第1の実施形態同様、室内側熱交換器31、32と、室外側熱交換器33と、圧縮機34と、膨張弁35a、35b、35c、35dと、流路切換用弁36、37と、地中熱熱交換器38と、熱交換器切換用弁81、82とを備える一方、異なる点として、室内側熱交換器31、32が複数配設され、前記各室内側熱交換器31、32、室外側熱交換器33、及び地中熱熱交換器38における一方の熱媒体流入出口に、それぞれ膨張弁35a、35b、35c、35dが接続されると共に、これら膨張弁35a、35b、35c、35dが共通の熱媒体流路に接続され、各室内側熱交換器31、32における他方の熱媒体流入出口を、圧縮機34の入口側と出口側にそれぞれ連通させる状態と連通させない状態とを切換可能とする冷暖切換用弁91、92、93、94がそれぞれ配設され、前記流路切換用弁36、37が、室外側熱交換器33における他方の熱媒体流入出口を、圧縮機34の入口側と出口側にそれぞれ連通させる状態と連通させない状態とを切換可能とするものとされ、前記熱交換器切換用弁81、82が、地中熱熱交換器38における他方の熱媒体流入出口を、圧縮機34の入口側と出口側にそれぞれ連通させる状態と連通させない状態とを切換可能とするものとされる構成を有するものである。 In each of the drawings, the heat pump system 3 according to the present embodiment has the indoor heat exchangers 31 and 32, the outdoor heat exchangers 33, the compressor 34, and the expansion valves 35a and 35b, as in the first embodiment. , 35c, 35d, flow path switching valves 36, 37, underground heat exchanger 38, and heat exchanger switching valves 81, 82, except that the indoor heat exchanger 31, A plurality of 32 are arranged, and expansion valves 35a, 35b, 35c are provided at one of the heat medium inflow / outlets of the indoor heat exchangers 31, 32, the outdoor heat exchanger 33, and the underground heat exchanger 38, respectively. , 35d are connected, and these expansion valves 35a, 35b, 35c, 35d are connected to a common heat medium flow path, and the other heat medium inflow port in each indoor side heat exchangers 31 and 32 is connected to the compressor 34. Cooling / heating switching valves 91, 92, 93, 94, which enable switching between a state in which communication is performed and a state in which communication is not performed, are arranged on the inlet side and the outlet side, respectively. The other heat medium inflow port of the outer heat exchanger 33 can be switched between a state in which the other heat medium inflow port communicates with the inlet side and the outlet side of the compressor 34 and a state in which the other heat medium inflow port does not communicate with each other. , 82 is configured to enable switching between a state in which the other heat medium inflow outlet in the underground heat exchanger 38 communicates with the inlet side and the outlet side of the compressor 34 and a state in which the other heat medium inflow outlet does not communicate with each other. Have.

なお、前記室内側熱交換器31、32、室外側熱交換器33、圧縮機34、膨張弁35a、35b、35c、35d、及び地中熱熱交換器38の各構成そのものについては、前記第1の実施形態と同様のものであり、詳細な説明を省略する。 Regarding the configurations of the indoor heat exchangers 31 and 32, the outdoor heat exchanger 33, the compressor 34, the expansion valves 35a, 35b, 35c, 35d, and the geothermal heat exchanger 38, the above-mentioned first. It is the same as that of the first embodiment, and detailed description thereof will be omitted.

前記室内側熱交換器31は、一方の熱媒体流入出口を膨張弁35aと接続されて、膨張弁35aを介して共通熱媒体流路mに連通し、他方の熱媒体流入出口を冷暖切換用弁91、92と接続されるものである。そして、室内側熱交換器31の他方の熱媒体流入出口は、冷暖切換用弁91を介して圧縮機34出口側と連通可能とされ、冷暖切換用弁92を介して圧縮機34入口側と連通可能とされる。 In the indoor heat exchanger 31, one heat medium inflow outlet is connected to the expansion valve 35a and communicates with the common heat medium flow path m via the expansion valve 35a, and the other heat medium inflow outlet is used for cooling / heating switching. It is connected to the valves 91 and 92. The other heat medium inflow outlet of the indoor heat exchanger 31 can communicate with the compressor 34 outlet side via the cooling / heating switching valve 91, and communicates with the compressor 34 inlet side via the cooling / heating switching valve 92. It is possible to communicate.

冷暖切換用弁91、92は、弁91を閉、弁92を開として、室内側熱交換器31を出た熱媒体が圧縮機34に向かうようにする冷房用接続状態と、弁91を開、弁92を閉として、圧縮機34を出た熱媒体が室内側熱交換器31に向かうようにする暖房用接続状態とを切換可能としている。室内側熱交換器31を冷房、暖房のいずれにも使用しない場合は、冷暖切換用弁91、92をいずれも閉とし、室内側熱交換器31に熱媒体を流入させない状態として、熱媒体の熱損失を抑えることもできる。 The cooling / heating switching valves 91 and 92 have a cooling connection state in which the valve 91 is closed and the valve 92 is opened so that the heat medium exiting the indoor heat exchanger 31 faces the compressor 34, and the valve 91 is opened. , The valve 92 is closed, and it is possible to switch between the heating connection state in which the heat medium exiting the compressor 34 faces the indoor heat exchanger 31. When the indoor heat exchanger 31 is not used for either cooling or heating, both the cooling / heating switching valves 91 and 92 are closed so that the heat medium does not flow into the indoor heat exchanger 31. It is also possible to suppress heat loss.

前記室内側熱交換器32は、一方の熱媒体流入出口を膨張弁35bと接続されて、膨張弁35bを介して共通熱媒体流路mに連通し、他方の熱媒体流入出口を冷暖切換用弁93、94と接続されるものである。そして、室内側熱交換器32の他方の熱媒体流入出口は、冷暖切換用弁93を介して圧縮機34出口側と連通可能とされ、冷暖切換用弁94を介して圧縮機34入口側と連通可能とされる。 In the indoor heat exchanger 32, one heat medium inflow outlet is connected to the expansion valve 35b and communicates with the common heat medium flow path m via the expansion valve 35b, and the other heat medium inflow outlet is used for cooling / heating switching. It is connected to valves 93 and 94. The other heat medium inflow outlet of the indoor heat exchanger 32 can communicate with the compressor 34 outlet side via the cooling / heating switching valve 93, and communicates with the compressor 34 inlet side via the cooling / heating switching valve 94. It is possible to communicate.

冷暖切換用弁93、94は、弁93を閉、弁94を開として、室内側熱交換器32を出た熱媒体が圧縮機34に向かうようにする冷房用接続状態と、弁93を開、弁94を閉として、圧縮機34を出た熱媒体が室内側熱交換器32に向かうようにする暖房用接続状態とを切換可能としている。室内側熱交換器32を冷房、暖房のいずれにも使用しない場合は、冷暖切換用弁93、94をいずれも閉とし、室内側熱交換器32に熱媒体を流入させない状態として、熱媒体の熱損失を抑えることもできる。 The cooling / heating switching valves 93 and 94 have a cooling connection state in which the valve 93 is closed and the valve 94 is opened so that the heat medium exiting the indoor heat exchanger 32 faces the compressor 34 and the valve 93 is opened. , The valve 94 is closed, and it is possible to switch between the heating connection state in which the heat medium exiting the compressor 34 faces the indoor heat exchanger 32. When the indoor heat exchanger 32 is not used for either cooling or heating, both the cooling / heating switching valves 93 and 94 are closed so that the heat medium does not flow into the indoor heat exchanger 32. It is also possible to suppress heat loss.

前記室外側熱交換器33は、一方の熱媒体流入出口を膨張弁35cと接続されて、膨張弁35bを介して共通熱媒体流路mに連通し、他方の熱媒体流入出口を流路切換用弁36、37と接続されるものである。そして、室外側熱交換器33の他方の熱媒体流入出口は、流路切換用弁36を介して圧縮機34出口側と連通可能とされ、流路切換用弁37を介して圧縮機34入口側と連通可能とされる。 In the outdoor heat exchanger 33, one heat medium inflow port is connected to the expansion valve 35c and communicates with the common heat medium flow path m via the expansion valve 35b, and the other heat medium inflow port is switched. It is connected to the valves 36 and 37. The other heat medium inflow outlet of the outdoor heat exchanger 33 can communicate with the compressor 34 outlet side via the flow path switching valve 36, and the compressor 34 inlet via the flow path switching valve 37. It is possible to communicate with the side.

流路切換用弁36、37は、弁36を開、弁37を閉として、室外側熱交換器33の他方の熱媒体流入出口を圧縮機34出口と連通させる第一の流路接続状態と、弁36を閉、弁37を開として、室外側熱交換器33の他方の熱媒体流入出口を圧縮機34入口と連通させる第二の流路接続状態と、弁36、37をいずれも閉として、室外側熱交換器33を圧縮機34に連通させず、室外側熱交換器33に熱媒体を流通させない第三の流路接続状態とを、切換可能としている。 The flow path switching valves 36 and 37 have a first flow path connection state in which the valve 36 is opened and the valve 37 is closed so that the other heat medium inflow outlet of the outdoor heat exchanger 33 communicates with the compressor 34 outlet. , The valve 36 is closed, the valve 37 is opened, and the second flow path connection state in which the other heat medium inflow outlet of the outdoor heat exchanger 33 is communicated with the compressor 34 inlet, and the valves 36 and 37 are both closed. As a result, it is possible to switch between a third flow path connection state in which the outdoor heat exchanger 33 is not communicated with the compressor 34 and the heat medium is not circulated through the outdoor heat exchanger 33.

室外側熱交換器33は、室内側熱交換器31、32の一方を冷房運転、他方を暖房運転とする際に冷房負荷が暖房負荷より大きくなる場合や、室内側熱交換器31、32をいずれも冷房運転状態とする場合には、冷房負荷に対応して、流路切換用弁36、37を第一の流路接続状態として、凝縮器として作動する(図16参照)。また、室内側熱交換器31、32の一方を冷房運転、他方を暖房運転とする際に暖房負荷が冷房負荷より大きくなる場合や、室内側熱交換器31、32をいずれも暖房運転状態とする場合には、暖房負荷に対応して、流路切換用弁36、37を第二の流路接続状態として、蒸発器として作動することとなる(図15参照)。 In the outdoor heat exchanger 33, when one of the indoor heat exchangers 31 and 32 is in the cooling operation and the other is in the heating operation, the cooling load becomes larger than the heating load, or the indoor heat exchangers 31 and 32 are used. When both are in the cooling operation state, the flow path switching valves 36 and 37 are set as the first flow path connection state in response to the cooling load and operate as a condenser (see FIG. 16). Further, when one of the indoor heat exchangers 31 and 32 is in the cooling operation and the other is in the heating operation, the heating load becomes larger than the cooling load, or the indoor heat exchangers 31 and 32 are both in the heating operation state. In this case, the flow path switching valves 36 and 37 are connected to the second flow path and operate as an evaporator in response to the heating load (see FIG. 15).

この他、室内側熱交換器31、32の冷房又は暖房負荷に対し、地中熱熱交換器38における熱媒体の熱交換で全て対応して、室外側熱交換器33を熱媒体の凝縮器又は蒸発器として作動させない場合には、流路切換用弁36、37を第三の流路接続状態として、室外側熱交換器33に熱媒体を流通させないようにすることもできる。 In addition, the outdoor heat exchanger 33 is used as a heat medium condenser in response to the cooling or heating load of the indoor heat exchangers 31 and 32 by exchanging heat of the heat medium in the geothermal heat exchanger 38. Alternatively, when it is not operated as an evaporator, the flow path switching valves 36 and 37 may be connected to the third flow path to prevent the heat medium from flowing through the outdoor heat exchanger 33.

前記地中熱熱交換器38は、一方の熱媒体流入出口を膨張弁35dと接続されて、膨張弁35dを介して共通熱媒体流路mに連通し、他方の熱媒体流入出口を熱交換器切換用弁81、82と接続されるものである。そして、地中熱熱交換器38の他方の熱媒体流入出口は、熱交換器切換用弁81を介して圧縮機34出口側と連通可能とされ、熱交換器切換用弁82を介して圧縮機34入口側と連通可能とされる。 In the geothermal heat exchanger 38, one heat medium inflow port is connected to the expansion valve 35d and communicates with the common heat medium flow path m via the expansion valve 35d, and the other heat medium inflow port is heat exchanged. It is connected to the device switching valves 81 and 82. The other heat medium inflow outlet of the geothermal heat exchanger 38 is made communicable with the outlet side of the compressor 34 via the heat exchanger switching valve 81, and is compressed via the heat exchanger switching valve 82. It is possible to communicate with the entrance side of the machine 34.

熱交換器切換用弁81、82は、弁81を開、弁82を閉として、圧縮機34を出た熱媒体が地中熱熱交換器38に向かう第四の流路接続状態と、弁81を閉、弁82を開として、地中熱熱交換器38を出た熱媒体が圧縮機34に向かう第五の流路接続状態と、弁81、82をいずれも閉として、地中熱熱交換器38を圧縮機34に連通させず、地中熱熱交換器38に熱媒体を流通させない第六の流路接続状態とを、切換可能としている。 The heat exchanger switching valves 81 and 82 have a fourth flow path connection state in which the heat medium exiting the compressor 34 is directed to the geothermal heat exchanger 38 with the valve 81 opened and the valve 82 closed, and the valves. With 81 closed and valve 82 open, the heat medium exiting the underground heat exchanger 38 is connected to the fifth flow path toward the compressor 34, and both valves 81 and 82 are closed to geothermal heat. It is possible to switch between the sixth flow path connection state in which the heat exchanger 38 is not communicated with the compressor 34 and the heat medium is not circulated through the geothermal heat exchanger 38.

地中熱熱交換器38は、室外側熱交換器33に対し流路切換用弁36、37が第一の流路接続状態とされて、室外側熱交換器33が凝縮器として作動する場合には、熱交換器切換用弁81、82を第四の流路接続状態として、凝縮器として作動する(図16参照)。また、室外側熱交換器33に対し流路切換用弁36、37が第二の流路接続状態とされて、室外側熱交換器33が蒸発器として作動する場合には、熱交換器切換用弁81、82を第五の流路接続状態として、蒸発器として作動することとなる。 In the geothermal heat exchanger 38, when the flow path switching valves 36 and 37 are connected to the outdoor heat exchanger 33 in the first flow path and the outdoor heat exchanger 33 operates as a condenser. The heat exchanger switching valves 81 and 82 are connected to the fourth flow path and operate as a condenser (see FIG. 16). Further, when the flow path switching valves 36 and 37 are connected to the outdoor heat exchanger 33 in the second flow path connection state and the outdoor heat exchanger 33 operates as an evaporator, the heat exchanger is switched. The valves 81 and 82 are connected to the fifth flow path and operate as an evaporator.

この他、室内側熱交換器31、32の冷房又は暖房負荷に対し、室外側熱交換器33における熱媒体の熱交換で全て対応して、地中熱熱交換器38を熱媒体の凝縮器又は蒸発器として作動させない場合には、熱交換器切換用弁81、82を第六の流路接続状態として、地中熱熱交換器38に熱媒体を流通させないようにすることもできる(図15参照)。 In addition, the geothermal heat exchanger 38 is used as a heat medium condenser in response to the cooling or heating load of the indoor heat exchangers 31 and 32 by heat exchange of the heat medium in the outdoor heat exchanger 33. Alternatively, when not operating as an evaporator, the heat exchanger switching valves 81 and 82 may be connected to the sixth flow path to prevent the heat medium from flowing through the geothermal heat exchanger 38 (Fig.). 15).

さらに、冷暖切換用弁91、92、93、94をいずれも閉とし、室内側熱交換器31、32に熱媒体を流入させない状態とすると共に、室外側熱交換器33に対し、流路切換用弁36、37を第一の流路接続状態として、室外側熱交換器33が凝縮器として作動するようにし、合わせて、熱交換器切換用弁81、82を第五の流路接続状態として、地中熱熱交換器38を蒸発器として作動させるようにする流路接続状態(図17参照)も選択できる。 Further, the cooling / heating switching valves 91, 92, 93, and 94 are all closed to prevent the heat medium from flowing into the indoor heat exchangers 31 and 32, and the flow path is switched with respect to the outdoor heat exchanger 33. With the valves 36 and 37 in the first flow path connection state, the outdoor heat exchanger 33 operates as a condenser, and together, the heat exchanger switching valves 81 and 82 are in the fifth flow path connection state. As a result, a flow path connection state (see FIG. 17) for operating the geothermal heat exchanger 38 as an evaporator can also be selected.

この状態では、熱媒体が圧縮機34から第一の流路接続状態として開とされた流路切換用弁36を経て室外側熱交換器33に流入し、室外側熱交換器33から膨張弁35c、共通熱媒体流路m、膨張弁35dを経て地中熱熱交換器38に向かい、地中熱熱交換器38を出た熱媒体が熱交換器切換用弁82を通って圧縮機23に還流する循環経路を生じさせる状態、すなわち、地中熱熱交換器38で地中熱により熱媒体を昇温させ、圧縮機34で熱媒体を高圧にした上で、室外側熱交換器33で熱媒体から熱を放出させて、室外側熱交換器33で除霜を実行可能な除霜用接続状態が得られることとなる。 In this state, the heat medium flows from the compressor 34 into the outdoor heat exchanger 33 via the flow path switching valve 36 opened as the first flow path connection state, and the expansion valve from the outdoor heat exchanger 33. The heat medium exiting the geothermal heat exchanger 38 goes to the geothermal heat exchanger 38 via the 35c, the common heat medium flow path m, and the expansion valve 35d, and the heat medium exiting the geothermal heat exchanger 38 passes through the heat exchanger switching valve 82 to the compressor 23. In a state where a circulation path is generated, that is, the heat medium is heated by the geothermal heat in the geothermal heat exchanger 38, the heat medium is heated to a high pressure by the compressor 34, and then the outdoor heat exchanger 33 is generated. The heat is released from the heat medium to obtain a defrosting connection state in which defrosting can be performed by the outdoor heat exchanger 33.

これら室内側熱交換器31、32、室外側熱交換器33、及び地中熱熱交換器38における一方の熱媒体流入出口には、それぞれ膨張弁35a、35b、35c、35dが接続され、各膨張弁35a、35b、35c、35dはいずれも共通熱媒体流路mに接続される。このため、室内側熱交換器31、32、室外側熱交換器33、及び地中熱熱交換器38は膨張弁を介して連通する状態となっており、各熱交換器間で熱媒体を流通可能である。 Expansion valves 35a, 35b, 35c, and 35d are connected to one of the heat medium inflow ports of the indoor heat exchangers 31, 32, the outdoor heat exchanger 33, and the geothermal heat exchanger 38, respectively. The expansion valves 35a, 35b, 35c, and 35d are all connected to the common heat medium flow path m. Therefore, the indoor heat exchangers 31 and 32, the outdoor heat exchanger 33, and the geothermal heat exchanger 38 are in a state of communicating with each other via the expansion valve, and the heat medium is transmitted between the heat exchangers. It can be distributed.

次に、本実施形態に係るヒートポンプシステムの作動状態について説明する。
まず、ヒートポンプシステムを作動させて、室内空間に対し冷房及び暖房を行う状態について説明する。
Next, the operating state of the heat pump system according to the present embodiment will be described.
First, a state in which the heat pump system is operated to cool and heat the indoor space will be described.

冷房や暖房を行うにあたっては、熱源を室外の空気熱のみ、地中熱のみ、あるいは、空気熱と地中熱の両方、とする状態を、室内や室外、地中の状況等に応じて切り換えることができる。
例えば、冷房又は暖房運転の開始時などは、空気調和機の室内機側の負荷が大きくなることから、熱源として室外の空気熱と地中熱の両方を用いるようにするのが好ましい。そして、室内温度が所望の温度に達して安定状態に移行し、空気調和機がオンオフ繰り返しや出力を抑えるような低負荷運転状態となった場合には、熱源として地中熱のみを用いる状態に切り換えるようにすれば、効率のよい運転状態を継続でき、好ましい。
When cooling or heating, the state where the heat source is only outdoor air heat, only underground heat, or both air heat and underground heat is switched according to the indoor, outdoor, and underground conditions. be able to.
For example, at the start of cooling or heating operation, the load on the indoor unit side of the air conditioner becomes large, so it is preferable to use both outdoor air heat and geothermal heat as the heat source. Then, when the room temperature reaches a desired temperature and shifts to a stable state, and the air conditioner becomes a low-load operation state in which on / off repetition and output are suppressed, only geothermal heat is used as a heat source. If the switching is performed, an efficient operating state can be maintained, which is preferable.

この他、熱媒体の温度が室外空気温度から離れた状況では、主に熱源として室外の空気熱と地中熱を用いる状態として冷房又は暖房運転を実行する一方、熱媒体の温度が室外空気温度に近い値となり、地中の温度が著しく変化するなど地中に過大な熱負荷が加わっていることが予想される場合には、熱源を室外の空気熱のみとする運転状態に移行し、地中熱熱交換器38と熱交換用媒体を通じた地中との熱交換を停止して、地中温度の回復を図るようにするのが好ましい。 In addition, when the temperature of the heat medium is different from the outdoor air temperature, the cooling or heating operation is performed mainly using the outdoor air heat and the geothermal heat as heat sources, while the heat medium temperature is the outdoor air temperature. If it is expected that an excessive heat load is applied to the ground, such as when the value is close to, and the temperature in the ground changes significantly, the system shifts to an operating state in which only outdoor air heat is used as the heat source. It is preferable to stop the heat exchange between the medium heat heat exchanger 38 and the ground through the heat exchange medium so that the ground temperature can be recovered.

(熱源が空気熱のみの場合)
各室内空間に対し冷房又は暖房を行う際に、熱源として室外の空気熱のみを用いる場合、すなわち、室外側の凝縮器又は蒸発器として室外側熱交換器33のみを用いる場合には、図15に示すように、熱交換器切換用弁の弁81、82をいずれも閉として、地中熱熱交換器38に熱媒体が流通しないようにする一方、室外側熱交換器33が膨張弁35cや各流路切換用弁36、37を通じて室内側熱交換器31、32に連通する状態としておく。また、流路切換用弁36、37を第一の流路接続状態又は第二の流路接続状態として、室外側熱交換器33と圧縮機34出口又は入口とを連通させる状態とする。
(When the heat source is only air heat)
When cooling or heating each indoor space, when only outdoor air heat is used as a heat source, that is, when only outdoor heat exchanger 33 is used as an outdoor condenser or evaporator, FIG. As shown in the above, both the valves 81 and 82 of the heat exchanger switching valves are closed to prevent the heat medium from flowing to the geothermal heat exchanger 38, while the outdoor heat exchanger 33 is the expansion valve 35c. And the indoor heat exchangers 31 and 32 are communicated with each other through the flow path switching valves 36 and 37. Further, the flow path switching valves 36 and 37 are set to the first flow path connection state or the second flow path connection state so that the outdoor heat exchanger 33 and the compressor 34 outlet or inlet are communicated with each other.

例えば、一方の室内側熱交換器31を冷房に使用し、他方の室内側熱交換器32を暖房に使用し、暖房負荷が冷房負荷を上回る状態の場合、ヒートポンプシステムを作動させると、室内側熱交換器31が、蒸発器として、ファン(図示を省略)で送風されて導入される室内空気と液相の熱媒体とを熱交換させる。この室内側熱交換器31での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室内側熱交換器31の他方の熱媒体流入出口から出て、冷暖切換用弁92を経て圧縮機34に向う。一方、室内側熱交換器31での熱交換で室内空気は冷却され、温度を下げた状態で室内空間に放出され、室内温度を所望の温度まで低下させる(室内空間を冷却する)。 For example, when one indoor heat exchanger 31 is used for cooling and the other indoor heat exchanger 32 is used for heating and the heating load exceeds the cooling load, when the heat pump system is operated, the indoor side As an evaporator, the heat exchanger 31 exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the liquid phase. The heat medium that is heated by heat exchange in the indoor heat exchanger 31 and evaporates as the temperature rises to become a vapor phase exits from the other heat medium inflow outlet of the indoor heat exchanger 31 to cool and heat. It goes to the compressor 34 via the switching valve 92. On the other hand, the indoor air is cooled by the heat exchange in the indoor heat exchanger 31 and released into the indoor space in a state where the temperature is lowered, and the indoor temperature is lowered to a desired temperature (cooling the indoor space).

また、別の室内空間で、室内側熱交換器32が、凝縮器として、ファン(図示を省略)で送風されて導入される室内空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、室内側熱交換器32での熱交換で室内空気は加熱され、温度を上げた状態で室内空間に放出され、室内温度を所望の温度まで上昇させる(室内空間を暖める)。 Further, in another indoor space, the indoor heat exchanger 32 exchanges heat between the indoor air introduced by being blown by a fan (not shown) as a condenser and the heat medium of the gas phase. The heat medium of the gas phase cooled by this heat exchange condenses and changes into a liquid phase. On the other hand, the indoor air is heated by the heat exchange in the indoor heat exchanger 32 and released into the indoor space in a state where the temperature is raised, and the indoor temperature is raised to a desired temperature (warming the indoor space).

室内側熱交換器32で凝縮して得られた液相の熱媒体は、室内側熱交換器32の一方の熱媒体流入出口から排出され、膨張弁35bに達する。膨張弁35bで液相の熱媒体は膨張し、圧力及び温度を低減させた状態となる。 The liquid phase heat medium obtained by condensing in the indoor heat exchanger 32 is discharged from one of the heat medium inflow outlets of the indoor heat exchanger 32 and reaches the expansion valve 35b. The heat medium of the liquid phase is expanded by the expansion valve 35b, and the pressure and temperature are reduced.

この膨張弁35bで圧力や温度を低下させた液相の熱媒体は、膨張弁35bを出て、共通熱媒体流路mを通り、その一部が膨張弁35cを経て、室外側熱交換器33の一方の熱媒体流入出口に達し、他部が膨張弁35aを経て、室内側熱交換器31の一方の熱媒体流入出口に達する。 The liquid phase heat medium whose pressure and temperature are lowered by the expansion valve 35b exits the expansion valve 35b, passes through the common heat medium flow path m, and a part of the heat medium passes through the expansion valve 35c to the outdoor heat exchanger. It reaches one heat medium inflow port of 33, and the other part reaches one heat medium inflow port of the indoor heat exchanger 31 via the expansion valve 35a.

室外側熱交換器33は、蒸発器として、ファン(図示を省略)で送風されて導入される室外空気と液相の熱媒体とを熱交換させる。この室外側熱交換器33での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室外側熱交換器33外へ出て、流路切換用弁37を経て圧縮機34に向う。一方、室外側熱交換器33での熱交換で室外空気は冷却され、温度を下げた状態で外気中に排出される。 The outdoor heat exchanger 33, as an evaporator, exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the liquid phase. The heat medium that is heated by heat exchange in the outdoor heat exchanger 33 and evaporates as the temperature rises to become a vapor phase goes out of the outdoor heat exchanger 33 and presses the flow path switching valve 37. After that, it goes to the compressor 34. On the other hand, the outdoor air is cooled by the heat exchange in the outdoor heat exchanger 33, and is discharged into the outside air in a state where the temperature is lowered.

室内側熱交換器31や室外側熱交換器33を出て圧縮機34に達した高温気相の熱媒体は、この圧縮機34により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機34を出た気相の熱媒体は、冷暖切換用弁93を経て、室内側熱交換器32の他方の熱媒体流入出口へ向け進むこととなる。 The heat medium of the high temperature gas phase that has left the indoor heat exchanger 31 and the outdoor heat exchanger 33 and reached the compressor 34 is pressurized by the compressor 34. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, the heat medium of the gas phase exiting the compressor 34 goes through the cooling / heating switching valve 93 toward the other heat medium inflow outlet of the indoor heat exchanger 32.

この後、熱媒体は室内側熱交換器32内に戻り、前記同様に室内側熱交換器32から室内側熱交換器31と室外側熱交換器33にそれぞれ至り、さらに圧縮機34に達する各過程を繰返して、室内側熱交換器32での暖房と室内側熱交換器31での冷房を継続実行することとなる。 After that, the heat medium returns to the inside of the indoor side heat exchanger 32, reaches the indoor side heat exchanger 31 and the outdoor side heat exchanger 33, respectively, and further reaches the compressor 34 in the same manner as described above. By repeating the process, heating by the indoor heat exchanger 32 and cooling by the indoor heat exchanger 31 are continuously executed.

(熱源が空気熱と地中熱の場合)
室内空間に対し冷房又は暖房を行う際に、熱源として室外の空気熱と地中熱を用いる場合、すなわち、室外側の凝縮器又は蒸発器として室外側熱交換器33と地中熱熱交換器38を共に用いる場合には、図16に示すように、室外側熱交換器33が膨張弁35cや各流路切換用弁36、37を通じて室内側熱交換器31、32に連通可能とされるのと同様に、地中熱熱交換器38も、膨張弁35dや各熱交換器切換用弁81、82を通じて、室内側熱交換器31、32に連通可能な状態に切り換える。
(When the heat source is air heat and geothermal heat)
When outdoor air heat and geothermal heat are used as heat sources when cooling or heating the indoor space, that is, the outdoor heat exchanger 33 and the geothermal heat exchanger as the outdoor condenser or evaporator. When 38 is used together, as shown in FIG. 16, the outdoor heat exchanger 33 can communicate with the indoor heat exchangers 31 and 32 through the expansion valve 35c and the flow path switching valves 36 and 37. Similarly to the above, the geothermal heat exchanger 38 is also switched to a state in which it can communicate with the indoor heat exchangers 31 and 32 through the expansion valve 35d and the heat exchanger switching valves 81 and 82.

例えば、一方の室内側熱交換器31を冷房に使用し、他方の室内側熱交換器32を暖房に使用し、冷房負荷が暖房負荷を上回る状態の場合、ヒートポンプシステムを作動させると、室内側熱交換器31が、蒸発器として、ファン(図示を省略)で送風されて導入される室内空気と液相の熱媒体とを熱交換させる。この室内側熱交換器31での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室内側熱交換器31の他方の熱媒体流入出口から出て、冷暖切換用弁92を経て圧縮機34に向う。一方、室内側熱交換器31での熱交換で室内空気は冷却され、温度を下げた状態で室内空間に放出され、室内温度を所望の温度まで低下させる(室内空間を冷却する)。 For example, when one indoor heat exchanger 31 is used for cooling and the other indoor heat exchanger 32 is used for heating and the cooling load exceeds the heating load, when the heat pump system is operated, the indoor side As an evaporator, the heat exchanger 31 exchanges heat between the indoor air introduced by being blown by a fan (not shown) and the heat medium of the liquid phase. The heat medium that is heated by heat exchange in the indoor heat exchanger 31 and evaporates as the temperature rises to become a vapor phase exits from the other heat medium inflow outlet of the indoor heat exchanger 31 to cool and heat. It goes to the compressor 34 via the switching valve 92. On the other hand, the indoor air is cooled by the heat exchange in the indoor heat exchanger 31 and released into the indoor space in a state where the temperature is lowered, and the indoor temperature is lowered to a desired temperature (cooling the indoor space).

また、別の室内空間で、室内側熱交換器32が、凝縮器として、ファン(図示を省略)で送風されて導入される室内空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、室内側熱交換器32での熱交換で室内空気は加熱され、温度を上げた状態で室内空間に放出され、室内温度を所望の温度まで上昇させる(室内空間を暖める)。 Further, in another indoor space, the indoor heat exchanger 32 exchanges heat between the indoor air introduced by being blown by a fan (not shown) as a condenser and the heat medium of the gas phase. The heat medium of the gas phase cooled by this heat exchange condenses and changes into a liquid phase. On the other hand, the indoor air is heated by the heat exchange in the indoor heat exchanger 32 and released into the indoor space in a state where the temperature is raised, and the indoor temperature is raised to a desired temperature (warming the indoor space).

室内側熱交換器32で凝縮して得られた液相の熱媒体は、室内側熱交換器32の一方の熱媒体流入出口から排出され、膨張弁35bに達する。膨張弁35bで液相の熱媒体は膨張し、圧力及び温度を低減させた状態となる。 The liquid phase heat medium obtained by condensing in the indoor heat exchanger 32 is discharged from one of the heat medium inflow outlets of the indoor heat exchanger 32 and reaches the expansion valve 35b. The heat medium of the liquid phase is expanded by the expansion valve 35b, and the pressure and temperature are reduced.

この膨張弁35bで圧力や温度を低下させた液相の熱媒体は、膨張弁35bを出て、共通熱媒体流路mを通り、膨張弁35aを経てさらに圧力や温度を低下させた上で、室内側熱交換器31の一方の熱媒体流入出口に達する。 The liquid phase heat medium whose pressure and temperature have been lowered by the expansion valve 35b exits the expansion valve 35b, passes through the common heat medium flow path m, passes through the expansion valve 35a, and further lowers the pressure and temperature. , Reach one of the heat medium inflow outlets of the indoor heat exchanger 31.

室内側熱交換器31を出て圧縮機34に達した高温気相の熱媒体は、この圧縮機34により加圧される。加圧された気相の熱媒体は、圧力及び温度を増大させた状態となる。そして、圧縮機34を出た気相の熱媒体は、その一部が流路切換用弁36を経て室外側熱交換器22に導入され、別の一部が熱交換器切換用弁81を経て地中熱熱交換器38に導入される。また、熱媒体の残りが、冷暖切換用弁93を経て、室内側熱交換器32の他方の熱媒体流入出口へ向け進むこととなる。 The heat medium of the high temperature gas phase that has left the indoor heat exchanger 31 and reached the compressor 34 is pressurized by the compressor 34. The heat medium of the pressurized gas phase is in a state of increasing pressure and temperature. Then, a part of the heat medium of the gas phase that has left the compressor 34 is introduced into the outdoor heat exchanger 22 via the flow path switching valve 36, and another part of the heat exchanger switching valve 81 is introduced. After that, it is introduced into the geothermal heat exchanger 38. Further, the rest of the heat medium goes through the cooling / heating switching valve 93 toward the other heat medium inflow port of the indoor heat exchanger 32.

室外側熱交換器33は、凝縮器として、ファン(図示を省略)で送風されて導入された室外空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体はその温度を低下させ、一部は凝縮して液相に変化する。一方、室外側熱交換器33での熱交換で室外空気は加熱され、温度を上げた状態で外気中に排出される。 The outdoor heat exchanger 33, as a condenser, exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase. The heat medium of the gas phase cooled by this heat exchange lowers its temperature, and a part of it condenses and changes into a liquid phase. On the other hand, the outdoor air is heated by the heat exchange in the outdoor heat exchanger 33, and is discharged into the outside air in a state where the temperature is raised.

室外側熱交換器33で温度を低下させた熱媒体は、室外側熱交換器33外に排出され、膨張弁35cに達する。この膨張弁35cで、熱媒体は膨張し、圧力及び温度を低減させた状態となった上で、膨張弁35cを出て、共通熱媒体流路mを通り、膨張弁35aを経てさらに圧力や温度を低下させた上で、室内側熱交換器31の一方の熱媒体流入出口へ向け進むこととなる。 The heat medium whose temperature has been lowered by the outdoor heat exchanger 33 is discharged to the outside of the outdoor heat exchanger 33 and reaches the expansion valve 35c. In this expansion valve 35c, the heat medium expands to reduce the pressure and temperature, then exits the expansion valve 35c, passes through the common heat medium flow path m, passes through the expansion valve 35a, and further increases the pressure. After lowering the temperature, the process proceeds toward one of the heat medium inflow outlets of the indoor heat exchanger 31.

この他、地中熱熱交換器38でも、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で冷却された気相の熱媒体は凝縮して液相に変化することとなる。一方、地中熱熱交換器38での熱交換で熱交換用媒体は加熱され、温度を上げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中に熱を放出して温度を下げた上で、あらためて地中熱熱交換器38に還流する。こうした熱交換用媒体の地中熱熱交換器38と地中熱交換部50との間での循環は、地中熱熱交換器38における熱交換が継続される間、繰り返される。 In addition, also in the geothermal heat exchanger 38, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the gas phase cooled by this heat exchange The heat medium will condense and change into a liquid phase. On the other hand, the heat exchange medium is heated by the heat exchange in the geothermal heat exchanger 38, and heads for the geothermal heat exchange unit 50 in a state where the temperature is raised. Then, the heat exchange medium releases heat into the ground at the geothermal heat exchange unit 50 to lower the temperature, and then returns to the geothermal heat exchanger 38 again. The circulation of the heat exchange medium between the geothermal heat exchanger 38 and the geothermal heat exchanger 50 is repeated as long as the heat exchange in the geothermal heat exchanger 38 is continued.

地中熱熱交換器38で凝縮して得られた液相の熱媒体は、地中熱熱交換器38の一方の熱媒体流入出口から排出され、膨張弁35dに達する。膨張弁35dで液相の熱媒体は膨張し、圧力及び温度を低減させた状態となる。 The liquid phase heat medium obtained by condensing in the geothermal heat exchanger 38 is discharged from one of the heat medium inflow outlets of the geothermal heat exchanger 38 and reaches the expansion valve 35d. The heat medium of the liquid phase is expanded by the expansion valve 35d, and the pressure and temperature are reduced.

この膨張弁35dで圧力や温度を低下させた液相の熱媒体は、膨張弁35dを出て、共通熱媒体流路mを通り、膨張弁35aを経てさらに圧力や温度を低下させた上で、室内側熱交換器31の一方の熱媒体流入出口へ向け進むこととなる。 The liquid phase heat medium whose pressure and temperature are lowered by the expansion valve 35d exits the expansion valve 35d, passes through the common heat medium flow path m, passes through the expansion valve 35a, and further lowers the pressure and temperature. , It will proceed toward one of the heat medium inflow outlets of the indoor heat exchanger 31.

この後、熱媒体は室内側熱交換器31内に戻り、前記同様に室内側熱交換器31から圧縮機34に至り、さらに圧縮機34から室内側熱交換器32、室外側熱交換器33、及び地中熱熱交換器38にそれぞれ達する各過程を繰返して、室内側熱交換器32での暖房と室内側熱交換器31での冷房を継続実行することとなる。 After that, the heat medium returns to the inside of the indoor heat exchanger 31, and similarly from the indoor heat exchanger 31 to the compressor 34, and further from the compressor 34 to the indoor heat exchanger 32 and the outdoor heat exchanger 33. , And each process of reaching the geothermal heat exchanger 38 is repeated, and heating by the indoor heat exchanger 32 and cooling by the indoor heat exchanger 31 are continuously executed.

(熱源を地中熱として除霜を行う場合)
室内側熱交換器31、32における暖房負荷が高く、室外側熱交換器33を蒸発器として作動させている場合において、室外の温度が低い場合、室外側熱交換器33の空気と熱交換する外面部分に着霜が生じることがある。こうした着霜時に対応する除霜運転状態について説明する。
(When defrosting is performed using the heat source as geothermal heat)
When the heating load in the indoor heat exchangers 31 and 32 is high and the outdoor heat exchanger 33 is operated as an evaporator and the outdoor temperature is low, heat is exchanged with the air in the outdoor heat exchanger 33. Frost formation may occur on the outer surface. The defrosting operation state corresponding to such frost formation will be described.

室外側熱交換器33において着霜を検出し、除霜を行う場合には、いったんヒートポンプを停止し、除霜運転状態に移行する。除霜を行うためには、図17に示すように、冷暖切換用弁91、92、93、94をいずれも閉とし、室内側熱交換器31、32を熱媒体が流通しない状態に切り換えると共に、流路切換用弁36、37を第一の流路接続状態、すなわち、弁36を開、弁37を閉として、室外側熱交換器33の他方の熱媒体流入出口を圧縮機34出口と連通させる状態に切り換え、室外側熱交換器33が凝縮器として作動するようにする。さらに、熱交換器切換用弁81、82を第五の流路接続状態、すなわち、弁81を閉、弁82を開として、地中熱熱交換器38の他方の熱媒体流入出口を圧縮機34入口と連通させる状態に切り換え、地中熱熱交換器38が蒸発器として作動するようにする。 When frost formation is detected in the outdoor heat exchanger 33 and defrosting is performed, the heat pump is temporarily stopped to shift to the defrosting operation state. In order to defrost, as shown in FIG. 17, the cooling / heating switching valves 91, 92, 93, 94 are all closed, and the indoor heat exchangers 31 and 32 are switched to a state in which the heat medium does not flow. , The flow path switching valves 36 and 37 are connected to the first flow path, that is, the valve 36 is opened and the valve 37 is closed, and the other heat medium inflow outlet of the outdoor heat exchanger 33 is connected to the compressor 34 outlet. The state of communication is switched so that the outdoor heat exchanger 33 operates as a condenser. Further, the heat exchanger switching valves 81 and 82 are connected to the fifth flow path, that is, the valve 81 is closed and the valve 82 is opened, and the other heat medium inflow outlet of the geothermal heat exchanger 38 is compressed. The state is switched to communicate with the 34 inlet so that the geothermal heat exchanger 38 operates as an evaporator.

除霜運転を実行すると、地中熱熱交換器38では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で加熱された液相の熱媒体は昇温し、蒸発して気相に変化することとなる。一方、地中熱熱交換器38での熱交換で熱交換用媒体は冷却され、温度を下げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中から熱を吸収して温度を上げた上で、あらためて地中熱熱交換器38に還流する。こうした熱交換用媒体の地中熱熱交換器38と地中熱交換部50との間での循環は、地中熱熱交換器38における熱交換が継続される間、繰り返される。 When the defrosting operation is executed, in the underground heat exchanger 38, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the heat is heated by this heat exchange. The heat medium of the liquid phase heats up and evaporates to change into a gas phase. On the other hand, the heat exchange medium is cooled by the heat exchange in the geothermal heat exchanger 38, and heads for the geothermal heat exchange unit 50 in a state where the temperature is lowered. Then, the heat exchange medium absorbs heat from the ground by the geothermal heat exchange unit 50 to raise the temperature, and then returns to the geothermal heat exchanger 38 again. The circulation of the heat exchange medium between the geothermal heat exchanger 38 and the geothermal heat exchanger 50 is repeated as long as the heat exchange in the geothermal heat exchanger 38 is continued.

地中熱熱交換器38で蒸発して得られた気相の熱媒体は、地中熱熱交換器38を出た後、熱交換器切換用弁82、及び熱媒体流路nを経て圧縮機34に向かう。
圧縮機34に達した高温気相の熱媒体は、圧縮機34により加圧され、圧力及び温度を増大させた状態となる。そして、圧縮機34を出た気相の熱媒体は、熱媒体流路o、流路切換用弁36を経て室外側熱交換器33に導入される。
The gas phase heat medium obtained by evaporating in the geothermal heat exchanger 38 is compressed through the heat exchanger switching valve 82 and the heat medium flow path n after leaving the geothermal heat exchanger 38. Head to machine 34.
The heat medium of the high temperature gas phase that has reached the compressor 34 is pressurized by the compressor 34, and the pressure and temperature are increased. Then, the heat medium of the gas phase exiting the compressor 34 is introduced into the outdoor heat exchanger 33 via the heat medium flow path o and the flow path switching valve 36.

室外側熱交換器33は、凝縮器として、ファン(図示を省略)で送風されて導入された室外空気と、気相の熱媒体とを熱交換させる。この熱交換で冷却された気相の熱媒体はその温度を低下させ、凝縮して液相に変化する。一方、室外側熱交換器33での熱交換で室外空気は加熱され、温度を上げた状態で室外側熱交換器を出ようとすることから、室外側熱交換器33表面の着霜部分は、この温度を上昇させた空気と接触して温められる。こうして温められる着霜部分では、最終的に霜が溶けて除霜状態となる。着霜部分を温めた後の空気は、外気中に排出される。 The outdoor heat exchanger 33, as a condenser, exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium of the gas phase. The heat medium of the gas phase cooled by this heat exchange lowers its temperature and condenses into a liquid phase. On the other hand, since the outdoor air is heated by the heat exchange in the outdoor heat exchanger 33 and tries to exit the outdoor heat exchanger in a state where the temperature is raised, the frosted portion on the surface of the outdoor heat exchanger 33 is present. , It is warmed by contact with the air that raised this temperature. In the frosted portion that is warmed in this way, the frost finally melts and becomes a defrosted state. The air after warming the frosted portion is discharged into the outside air.

室外側熱交換器33で凝縮した熱媒体は、室外側熱交換器33外に排出され、膨張弁35cに達する。この膨張弁35cで、熱媒体は膨張し、圧力及び温度を低減させた状態となる。そして、膨張弁35cを出た熱媒体は、共通熱媒体流路mを通り、膨張弁35dを経てさらに圧力や温度を低下させた上で、地中熱熱交換器38の一方の熱媒体流入出口へ向け進むこととなる。 The heat medium condensed by the outdoor heat exchanger 33 is discharged to the outside of the outdoor heat exchanger 33 and reaches the expansion valve 35c. With this expansion valve 35c, the heat medium expands and the pressure and temperature are reduced. Then, the heat medium exiting the expansion valve 35c passes through the common heat medium flow path m, further lowers the pressure and temperature through the expansion valve 35d, and then flows into one of the heat mediums of the geothermal heat exchanger 38. You will proceed toward the exit.

この後、熱媒体は地中熱熱交換器38内に戻り、前記同様に地中熱熱交換器38での熱交換以降の各過程を繰返して、除霜を継続実行することとなる。
室外側熱交換器33における全ての着霜箇所で霜が溶け、除霜が完了したら、除霜運転状態から以前の室外側熱交換器33を蒸発器として用いる運転状態に復帰することができる。
After that, the heat medium returns to the inside of the geothermal heat exchanger 38, and each process after the heat exchange in the geothermal heat exchanger 38 is repeated in the same manner as described above to continuously execute defrosting.
When the frost has melted at all the frosted points in the outdoor heat exchanger 33 and the defrosting is completed, the operation state in which the previous outdoor heat exchanger 33 is used as an evaporator can be returned from the defrosting operation state.

なお、上記のような熱源に地中熱を用いる場合に対応して、夜間や室内に人がいない間など、冷房や暖房運転を要しない時間帯に、地中から熱を奪うと共にその熱を室外空気に放出するサイクルとして運転を実行し、地中熱熱交換器38を凝縮器として作動させる運転に伴う熱放出で上昇した地中温度の回復や地中への冷熱の蓄熱を積極的に図るようにすることもできる。 In response to the case where geothermal heat is used as the heat source as described above, heat is taken from the ground and the heat is removed during times when cooling or heating operation is not required, such as at night or when there are no people in the room. The operation is executed as a cycle of releasing to the outdoor air, and the underground heat exchanger 38 is operated as a condenser. The recovery of the underground temperature increased by the heat release accompanying the operation and the storage of cold heat in the ground are positively performed. It can also be planned.

この地中温度の回復等のための運転は、前記除霜運転状態と同様に行えばよく、図17に示すように、冷暖切換用弁91、92、93、94をいずれも閉とし、室内側熱交換器31、32を熱媒体が流通しない状態に切り換えると共に、流路切換用弁36、37を第一の流路接続状態、すなわち、弁36を開、弁37を閉として、室外側熱交換器33の他方の熱媒体流入出口を圧縮機34出口と連通させる状態に切り換え、室外側熱交換器33が凝縮器として作動するようにする。さらに、熱交換器切換用弁81、82を第五の流路接続状態、すなわち、弁81を閉、弁82を開として、地中熱熱交換器38の他方の熱媒体流入出口を圧縮機34入口と連通させる状態に切り換え、地中熱熱交換器38が蒸発器として作動するようにする。 The operation for recovering the underground temperature or the like may be performed in the same manner as in the defrosting operation state, and as shown in FIG. 17, all of the cooling / heating switching valves 91, 92, 93, 94 are closed, and the chamber The inner heat exchangers 31 and 32 are switched to a state in which the heat medium does not flow, and the flow path switching valves 36 and 37 are connected to the first flow path, that is, the valve 36 is opened and the valve 37 is closed to open the outdoor side. The other heat medium inflow outlet of the heat exchanger 33 is switched to a state of communicating with the compressor 34 outlet so that the outdoor heat exchanger 33 operates as a condenser. Further, the heat exchanger switching valves 81 and 82 are connected to the fifth flow path, that is, the valve 81 is closed and the valve 82 is opened, and the other heat medium inflow outlet of the geothermal heat exchanger 38 is compressed. The state is switched to communicate with the 34 inlet so that the geothermal heat exchanger 38 operates as an evaporator.

運転を実行すると、地中熱熱交換器38では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で加熱された液相の熱媒体は昇温し、蒸発して気相に変化する。一方、地中熱熱交換器38での熱交換で熱交換用媒体は冷却され、温度を下げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中から熱を吸収して温度を上げた上で、あらためて地中熱熱交換器38に還流する。こうした熱交換用媒体の地中熱熱交換器38と地中熱交換部50との間での循環は、運転継続の間繰り返され、熱交換用媒体が地中から熱を吸収することで、地中の温度を低下させることができる。 When the operation is executed, in the underground heat exchanger 38, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the liquid heated by this heat exchange. The heat medium of the phase heats up and evaporates to change into a gas phase. On the other hand, the heat exchange medium is cooled by the heat exchange in the geothermal heat exchanger 38, and heads for the geothermal heat exchange unit 50 in a state where the temperature is lowered. Then, the heat exchange medium absorbs heat from the ground by the geothermal heat exchange unit 50 to raise the temperature, and then returns to the geothermal heat exchanger 38 again. The circulation of the heat exchange medium between the geothermal heat exchanger 38 and the geothermal heat exchange unit 50 is repeated for the duration of the operation, and the heat exchange medium absorbs heat from the ground. The temperature in the ground can be lowered.

地中熱熱交換器38で蒸発して得られた気相の熱媒体は、地中熱熱交換器38を出た後、熱交換器切換用弁82、及び熱媒体流路nを経て圧縮機34に向かう。
圧縮機34に達した高温気相の熱媒体は、圧縮機34により加圧され、圧力及び温度を増大させた状態となる。そして、圧縮機34を出た気相の熱媒体は、熱媒体流路o、流路切換用弁36を経て室外側熱交換器33に導入される。
The gas phase heat medium obtained by evaporating in the geothermal heat exchanger 38 is compressed through the heat exchanger switching valve 82 and the heat medium flow path n after leaving the geothermal heat exchanger 38. Head to machine 34.
The heat medium of the high temperature gas phase that has reached the compressor 34 is pressurized by the compressor 34, and the pressure and temperature are increased. Then, the heat medium of the gas phase exiting the compressor 34 is introduced into the outdoor heat exchanger 33 via the heat medium flow path o and the flow path switching valve 36.

室外側熱交換器33では、ファン(図示を省略)で送風されて導入された室外空気と、気相の熱媒体とが熱交換し、この熱交換で冷却された気相の熱媒体はその温度を低下させ、凝縮して液相に変化する。一方、室外側熱交換器33での熱交換で室外空気は加熱され、温度を上げた状態で外気中に排出される。 In the outdoor heat exchanger 33, the outdoor air introduced by being blown by a fan (not shown) exchanges heat with the heat medium of the gas phase, and the heat medium of the gas phase cooled by this heat exchange is the heat medium. It lowers the temperature and condenses into a liquid phase. On the other hand, the outdoor air is heated by the heat exchange in the outdoor heat exchanger 33, and is discharged into the outside air in a state where the temperature is raised.

室外側熱交換器33で凝縮した熱媒体は、室外側熱交換器33外に排出され、膨張弁35cに達する。この膨張弁35cで、熱媒体は膨張し、圧力及び温度を低減させた状態となる。そして、膨張弁35cを出た熱媒体は、共通熱媒体流路mを通り、膨張弁35dを経てさらに圧力や温度を低下させた上で、地中熱熱交換器38の一方の熱媒体流入出口へ向け進むこととなる。 The heat medium condensed by the outdoor heat exchanger 33 is discharged to the outside of the outdoor heat exchanger 33 and reaches the expansion valve 35c. With this expansion valve 35c, the heat medium expands and the pressure and temperature are reduced. Then, the heat medium exiting the expansion valve 35c passes through the common heat medium flow path m, further lowers the pressure and temperature through the expansion valve 35d, and then flows into one of the heat mediums of the geothermal heat exchanger 38. You will proceed toward the exit.

この後、熱媒体は地中熱熱交換器38内に戻り、前記同様に地中熱熱交換器38での熱交換以降の各過程を繰返すこととなる。
地中温度が適切な温度まで低下したり、各室内空間に冷房又は暖房を行う時間帯に至った場合には、この地中温度の回復等に係る運転を停止し、必要に応じて地中熱熱交換器38を凝縮器として用いる冷房又は暖房運転に移行する。
After that, the heat medium returns to the inside of the geothermal heat exchanger 38, and each process after the heat exchange in the geothermal heat exchanger 38 is repeated in the same manner as described above.
When the underground temperature drops to an appropriate temperature, or when it is time to cool or heat each indoor space, the operation related to the recovery of the underground temperature is stopped, and if necessary, the underground is stopped. Shift to cooling or heating operation using the heat exchanger 38 as a condenser.

また、同じく熱源に地中熱を用いる場合に対応して、夜間や室内に人がいない間など、冷房や暖房運転を要しない時間帯に、室外空気から熱を吸収すると共に、その熱を地中に放出するサイクルとして運転を実行し、地中熱熱交換器38を蒸発器として作動させる運転に伴う吸熱で低下した地中温度の回復や地中への蓄熱を積極的に図るようにすることもできる。 Also, in response to the case where geothermal heat is used as the heat source, heat is absorbed from the outdoor air and the heat is used as the ground during times when cooling or heating operation is not required, such as at night or when there are no people in the room. The operation is executed as a cycle of releasing into the ground, and the underground heat exchanger 38 is operated as an evaporator. The underground temperature lowered by the heat absorption associated with the operation is recovered and the heat is stored in the ground positively. You can also do it.

この地中温度の回復等のための運転を行うためには、図18に示すように、冷暖切換用弁91、92、93、94をいずれも閉とし、室内側熱交換器31、32を熱媒体が流通しない状態に切り換えると共に、流路切換用弁36、37を第二の流路接続状態、すなわち、弁36を閉、弁37を開として、室外側熱交換器33の他方の熱媒体流入出口を圧縮機34入口と連通させる状態に切り換え、室外側熱交換器33が蒸発器として作動するようにする。さらに、熱交換器切換用弁81、82を第四の流路接続状態、すなわち、弁81を開、弁82を閉として、地中熱熱交換器38の他方の熱媒体流入出口を圧縮機34出口と連通させる状態に切り換え、地中熱熱交換器38が凝縮器として作動するようにする。 In order to perform the operation for recovering the underground temperature, etc., as shown in FIG. 18, the cooling / heating switching valves 91, 92, 93, 94 are all closed, and the indoor heat exchangers 31 and 32 are closed. While switching to a state in which the heat medium does not flow, the flow path switching valves 36 and 37 are connected to the second flow path, that is, the valve 36 is closed and the valve 37 is opened to heat the other of the outdoor heat exchanger 33. The medium inflow port is switched to a state in which it communicates with the compressor 34 inlet so that the outdoor heat exchanger 33 operates as an evaporator. Further, the heat exchanger switching valves 81 and 82 are connected to the fourth flow path, that is, the valve 81 is opened and the valve 82 is closed, and the other heat medium inflow outlet of the geothermal heat exchanger 38 is compressed. Switch to a state where it communicates with the 34 outlet so that the geothermal heat exchanger 38 operates as a condenser.

運転を実行すると、地中熱熱交換器38では、ポンプ(図示を省略)で加圧されて導入された熱交換用媒体と、熱媒体とが熱交換し、この熱交換で冷却された気相の熱媒体は温度を低下させ、一部は凝縮して液相に変化することとなる。一方、地中熱熱交換器38での熱交換で熱交換用媒体は加熱され、温度を上げた状態で地中熱交換部50に向かう。そして、熱交換用媒体は、地中熱交換部50で地中に熱を放出して温度を下げた上で、あらためて地中熱熱交換器38に還流する。こうした熱交換用媒体の地中熱熱交換器38と地中熱交換部50との間での循環は、運転継続の間繰り返され、熱交換用媒体が地中に熱を放出することで、地中の温度を上昇させることができる。 When the operation is executed, in the geothermal heat exchanger 38, the heat exchange medium introduced by being pressurized by a pump (not shown) and the heat medium exchange heat, and the air cooled by this heat exchange is exchanged. The heat medium of the phase lowers the temperature, and part of it condenses and changes to a liquid phase. On the other hand, the heat exchange medium is heated by the heat exchange in the geothermal heat exchanger 38, and heads for the geothermal heat exchange unit 50 in a state where the temperature is raised. Then, the heat exchange medium releases heat into the ground at the geothermal heat exchange unit 50 to lower the temperature, and then returns to the geothermal heat exchanger 38 again. The circulation of the heat exchange medium between the geothermal heat exchanger 38 and the geothermal heat exchange unit 50 is repeated for the duration of the operation, and the heat exchange medium releases heat into the ground. The temperature in the ground can be raised.

地中熱熱交換器38で温度を低下させた熱媒体は、地中熱熱交換器26を出た後、膨張弁35dに達する。この膨張弁35dで、熱媒体は膨張し、圧力及び温度を低減させた状態となる。そして、膨張弁35dを出た熱媒体は、共通熱媒体流路mを通り、膨張弁35cを経てさらに圧力や温度を低下させた上で、室外側熱交換器33の一方の熱媒体流入出口に達する。 The heat medium whose temperature has been lowered by the geothermal heat exchanger 38 reaches the expansion valve 35d after exiting the geothermal heat exchanger 26. With this expansion valve 35d, the heat medium expands and the pressure and temperature are reduced. Then, the heat medium exiting the expansion valve 35d passes through the common heat medium flow path m, further lowers the pressure and temperature through the expansion valve 35c, and then one of the heat medium inflow outlets of the outdoor heat exchanger 33. To reach.

室外側熱交換器33は、ファン(図示を省略)で送風されて導入される室外空気と熱媒体とを熱交換させる。この室外側熱交換器33での熱交換で加熱され、昇温に伴い蒸発して気相となった熱媒体は、この室外側熱交換器33外へ出て、流路切換用弁37を経て圧縮機34に向う。一方、室外側熱交換器33での熱交換で室外空気は冷却され、温度を下げた状態で外気中に排出される。 The outdoor heat exchanger 33 exchanges heat between the outdoor air introduced by being blown by a fan (not shown) and the heat medium. The heat medium that is heated by heat exchange in the outdoor heat exchanger 33 and evaporates as the temperature rises to become a vapor phase goes out of the outdoor heat exchanger 33 and presses the flow path switching valve 37. After that, it goes to the compressor 34. On the other hand, the outdoor air is cooled by the heat exchange in the outdoor heat exchanger 33, and is discharged into the outside air in a state where the temperature is lowered.

室外側熱交換器33を出て圧縮機34に達した高温気相の熱媒体は、この圧縮機34により加圧され、圧力及び温度を増大させた状態となる。そして、圧縮機34を出た気相の熱媒体は、熱交換器切換用弁81を経て地中熱熱交換器38へ向け進むこととなる。 The heat medium of the high temperature gas phase that has left the outdoor heat exchanger 33 and reached the compressor 34 is pressurized by the compressor 34, and the pressure and temperature are increased. Then, the heat medium of the gas phase that has exited the compressor 34 travels toward the geothermal heat exchanger 38 via the heat exchanger switching valve 81.

この後、熱媒体は地中熱熱交換器38内に戻り、前記同様に地中熱熱交換器38での熱交換以降の各過程を繰返すこととなる。
地中温度が適切な温度まで上昇したり、各室内空間に冷房又は暖房を行う時間帯に至った場合には、この地中温度の回復等に係る運転を停止し、必要に応じて地中熱熱交換器38を蒸発器として用いる冷房又は暖房運転に移行する。
After that, the heat medium returns to the inside of the geothermal heat exchanger 38, and each process after the heat exchange in the geothermal heat exchanger 38 is repeated in the same manner as described above.
When the underground temperature rises to an appropriate temperature, or when it is time to cool or heat each indoor space, the operation related to the recovery of the underground temperature is stopped, and if necessary, the underground is stopped. Shift to cooling or heating operation using the heat exchanger 38 as an evaporator.

このように、本実施形態に係るヒートポンプシステムにおいては、複数配設された室内側熱交換器31、32が冷房や暖房に係る熱交換に用いられる場合に、各切換用弁を用いて、各室内側熱交換器31、32や圧縮機34に対し、室外側熱交換器33のみを連通させ、熱源として空気熱のみを用いる状態と、室外側熱交換器33と地中熱熱交換器38をそれぞれ連通させて、熱源として空気熱と地中熱を用いる状態と、地中熱熱交換器38のみを連通させて、熱源として地中熱のみを用いる状態とを切り換えられることから、室内側熱交換器を複数用いるいわゆるマルチエアコン構成の場合でも、無理なく室外側熱交換器33と地中熱熱交換器38の一方又は両方を利用して冷凍サイクルやヒートポンプサイクルを構築して、効率よく冷房や暖房を行える状態が得られる。また、各切換用弁による流路接続調整で、熱媒体が室内側熱交換器31、32を通らずに圧縮機34、室外側熱交換器33、及び地中熱熱交換器38を循環する状態を生じさせることができ、室外側熱交換器33において熱交換器周囲への着霜状態に至った場合に、地中熱熱交換器38で熱媒体に取り入れた地中熱を室外側熱交換器33のみに導入するようにして除霜が実行可能となり、地中熱を利用して効率よく除霜を行って熱交換性能低下を回避できる。 As described above, in the heat pump system according to the present embodiment, when a plurality of indoor heat exchangers 31 and 32 arranged are used for heat exchange related to cooling and heating, each switching valve is used. A state in which only the outdoor heat exchanger 33 is communicated with the indoor heat exchangers 31 and 32 and the compressor 34 and only air heat is used as the heat source, and the outdoor heat exchanger 33 and the underground heat exchanger 38 are used. Can be switched between a state in which air heat and underground heat are used as heat sources and a state in which only the underground heat exchanger 38 is communicated and only underground heat is used as a heat source. Even in the case of a so-called multi-air conditioner configuration using a plurality of heat exchangers, a refrigeration cycle or a heat pump cycle can be constructed efficiently by using one or both of the outdoor heat exchanger 33 and the underground heat exchanger 38 without difficulty. You can get a state where you can cool and heat. Further, by adjusting the flow path connection by each switching valve, the heat medium circulates in the compressor 34, the outdoor heat exchanger 33, and the geothermal heat exchanger 38 without passing through the indoor heat exchangers 31 and 32. A state can be generated, and when the outdoor heat exchanger 33 reaches a frosted state around the heat exchanger, the geothermal heat taken into the heat medium by the geothermal heat exchanger 38 is used as outdoor heat. Defrosting can be performed by introducing it only to the exchanger 33, and it is possible to efficiently perform defrosting by utilizing geothermal heat and avoid deterioration of heat exchange performance.

さらに、複数の室内側熱交換器31、32が室内に配設されるシステムにおける、室外にあらわれた熱媒体流路に対し、地中熱熱交換器38が熱交換機切換用弁81、82を介して連通状態を切換可能として接続されることから、システムの室外部分に地中熱熱交換器38を利用するための熱媒体回路を無理なく適切に組み込んで、地中熱熱交換器38に熱媒体を流通させて地中熱を熱源として利用できる状態が、システムを構成する既存の室内外の各機器の構成を変えることなく得られることとなり、地中熱を利用可能とする構成部分を低コストで設置可能となり、地中熱を利用するシステムをより容易に導入できる。 Further, in a system in which a plurality of indoor heat exchangers 31 and 32 are arranged indoors, the geothermal heat exchanger 38 provides heat exchanger switching valves 81 and 82 to the heat medium flow path appearing outdoors. Since the communication state is switched and connected via the system, a heat medium circuit for using the geothermal heat exchanger 38 is reasonably and appropriately incorporated in the outdoor part of the system, and the geothermal heat exchanger 38 is connected. A state in which the heat medium can be circulated and the geothermal heat can be used as a heat source can be obtained without changing the configuration of each of the existing indoor and outdoor devices constituting the system. It can be installed at low cost, and a system that uses geothermal heat can be introduced more easily.

なお、前記第1ないし第3の各実施形態に係るヒートポンプシステムにおいて、熱交換器切換用弁やバイパス切換用弁、冷暖切換用弁、一部の流路切換用弁(36、37)としては、弁の開閉で熱媒体の流通状態と流通停止状態とを切り換える単純な弁装置を用い、こうした弁装置を複数組み合わせて配置することで、複数流路間の接続関係を切り換えられるようにしているが、これに限られるものではなく、前記各切換用弁として、三方弁や四方弁等の切換弁を用いるようにすることもでき、複数の弁が担っていた機能を一つの弁に集約して、弁設置数低減や、熱媒体流路配置の単純化が図れることとなる。 In the heat pump system according to each of the first to third embodiments, the heat exchanger switching valve, the bypass switching valve, the cooling / heating switching valve, and some of the flow path switching valves (36, 37) are used. , A simple valve device that switches between the flow state and the flow stop state of the heat medium by opening and closing the valve is used, and by arranging a plurality of such valve devices in combination, the connection relationship between the multiple flow paths can be switched. However, the present invention is not limited to this, and it is possible to use a switching valve such as a three-way valve or a four-way valve as each of the switching valves, and the functions of a plurality of valves are integrated into one valve. Therefore, the number of valves installed can be reduced and the arrangement of heat medium flow paths can be simplified.

1、2、3 ヒートポンプシステム
11、21、31、32 室内側熱交換器
12、22、33 室外側熱交換器
13、23、34 圧縮機
14、24 膨張弁
15、25、36、37 流路切換用弁
16、26、38 地中熱熱交換器
17、27 バイパス流路
28 補助膨張弁
50 地中熱交換部
61、62、63、64 熱交換器切換用弁
65、66、67、68 熱交換器切換用弁
71、72、73、74 バイパス切換用弁
75、76、77 バイパス切換用弁
81、82 熱交換器切換用弁
91、92、93、94 冷暖切換用弁
1, 2, 3 Heat pump system 11, 21, 31, 32 Indoor heat exchanger 12, 22, 33 Outdoor heat exchanger 13, 23, 34 Compressor 14, 24 Expansion valve 15, 25, 36, 37 Flow path Switching valve 16, 26, 38 Geothermal heat exchanger 17, 27 Bypass flow path 28 Auxiliary expansion valve 50 Geothermal heat exchanger 61, 62, 63, 64 Heat exchanger switching valve 65, 66, 67, 68 Heat exchanger switching valve 71, 72, 73, 74 Bypass switching valve 75, 76, 77 Bypass switching valve 81, 82 Heat exchanger switching valve 91, 92, 93, 94 Cooling / heating switching valve

Claims (3)

相変化可能な熱媒体を室内空気と熱交換させる室内側熱交換器と、
前記熱媒体を室外空気と熱交換させる室外側熱交換器と、
気相の前記熱媒体を圧縮して熱媒体の温度及び圧力を高める圧縮機と、
液相の前記熱媒体を膨張させて圧力を低下させる膨張器と、
前記室外側熱交換器と圧縮機との熱媒体流路接続関係を変えて、圧縮機を出た熱媒体が室外側熱交換器に向かうようにする第一の流路接続状態と、室外側熱交換器を出た熱媒体が圧縮機に向かうようにする第二の流路接続状態とを、少なくとも切換可能とする一又は複数の流路切換用弁とを備えるヒートポンプシステムにおいて、
室外に配設され、地下の地中熱を採熱した所定の熱交換用媒体と前記熱媒体とを熱交換させる地中熱熱交換器と、
当該地中熱熱交換器への熱媒体の流通と非流通とを切換可能とする一又は複数の熱交換器切換用弁と
前記地中熱熱交換器に一端が接続可能とされると共に、他端が圧縮機入口側に接続可能とされて、必要に応じて熱媒体を流通させるバイパス流路と、
当該バイパス流路の他端を圧縮機入口に連通させない状態と、バイパス流路の他端を圧縮機入口に連通可能とする状態とを、切換可能とする一又は複数のバイパス切換用弁とを備え、
前記地中熱熱交換器が、熱媒体を流通させる状態では、前記流路切換用弁が第一の流路接続状態にされると、熱媒体を凝縮させるか熱媒体の温度を低下させる熱交換を行い、前記第二の流路接続状態にされると、熱媒体を蒸発させるか熱媒体の温度を上昇させる熱交換を行うようにされ
前記熱交換器切換用弁が、前記室外側熱交換器と膨張器との間の熱媒体流路に、前記地中熱熱交換器が熱媒体を流通可能に介在する状態と介在しない状態とを切換可能とするものとされ、
前記熱交換器切換用弁が、前記地中熱熱交換器と室外側熱交換器との間での熱媒体の流通を許容する一方、地中熱熱交換器及び室外側熱交換器と室内側熱交換器との間での熱媒体の流通は許容しない流路接続状態に、さらに切換可能とされ、且つ、前記バイパス流路の一端を地中熱熱交換器に連通させて、室外側熱交換器から地中熱熱交換器を経てバイパス流路に熱媒体が流通可能となる状態と、バイパス流路の一端を地中熱熱交換器に連通させない状態とを別途切換可能とされてなることを
特徴とするヒートポンプシステム。
An indoor heat exchanger that exchanges heat with indoor air for a phase-changeable heat medium,
An outdoor heat exchanger that exchanges heat with the outdoor air,
A compressor that compresses the heat medium of the gas phase to increase the temperature and pressure of the heat medium.
An expander that expands the heat medium of the liquid phase to reduce the pressure, and
The first flow path connection state in which the heat medium flow path connection relationship between the outdoor heat exchanger and the compressor is changed so that the heat medium exiting the compressor faces the outdoor heat exchanger, and the outdoor side. In a heat pump system including at least one or more flow path switching valves that can switch between a second flow path connection state that allows the heat medium exiting the heat exchanger to go toward the compressor.
An underground heat exchanger that is arranged outdoors and exchanges heat between a predetermined heat exchange medium that collects underground underground heat and the heat medium.
One or more heat exchanger switching valves that can switch between circulation and non-distribution of the heat medium to the geothermal heat exchanger ,
A bypass flow path in which one end can be connected to the geothermal heat exchanger and the other end can be connected to the compressor inlet side to circulate a heat medium as needed.
One or a plurality of bypass switching valves that can switch between a state in which the other end of the bypass flow path is not communicated with the compressor inlet and a state in which the other end of the bypass flow path can be communicated with the compressor inlet. Prepare,
In a state where the underground heat exchanger circulates a heat medium, when the flow path switching valve is connected to the first flow path, heat that condenses the heat medium or lowers the temperature of the heat medium. When the exchange is performed and the second flow path is connected, heat exchange is performed to evaporate the heat medium or raise the temperature of the heat medium .
A state in which the heat exchanger switching valve intervenes in the heat medium flow path between the outdoor heat exchanger and the expander so that the geothermal heat exchanger can flow through the heat medium, and a state in which the heat exchanger does not intervene. Is supposed to be switchable,
The heat exchanger switching valve allows the flow of heat medium between the underground heat exchanger and the outdoor heat exchanger, while the underground heat exchanger and the outdoor heat exchanger and the chamber. It is possible to further switch to a flow path connection state that does not allow the flow of heat medium to and from the inner heat exchanger, and one end of the bypass flow path is communicated with the underground heat exchanger to communicate the outdoor side. It is possible to separately switch between a state in which the heat medium can flow from the heat exchanger to the bypass flow path via the underground heat exchanger and a state in which one end of the bypass flow path is not communicated with the underground heat heat exchanger. A heat pump system characterized by becoming.
前記請求項1に記載のヒートポンプシステムにおいて、
前記バイパス切換用弁が、前記バイパス流路の他端を前記室外側熱交換器の一方の熱媒体流入出口のみに連通可能とする状態に、さらに切換可能とされてなることを
特徴とするヒートポンプシステム。
In the heat pump system according to claim 1,
The heat pump is characterized in that the bypass switching valve is further switchable so that the other end of the bypass flow path can communicate with only one heat medium inflow port of the outdoor heat exchanger. system.
前記請求項に記載のヒートポンプシステムにおいて、
前記バイパス切換用弁が、前記バイパス流路の他端が前記流路切換用弁と室外側熱交換器との間の熱媒体流路に対し、流路切換用弁側には連通する一方で室外側熱交換器側には連通しないように接続される状態に、さらに切換可能とされ、
前記熱交換器切換用弁が、前記地中熱熱交換器と室内側熱交換器との間での熱媒体の流通を許容する一方、地中熱熱交換器及び室内側熱交換器と室外側熱交換器との間での熱媒体の流通は許容せず、且つ、前記バイパス流路の一端を地中熱熱交換器に連通させて、地中熱熱交換器を通じて室内側熱交換器とバイパス流路との間で熱媒体が流通可能となる流路接続状態に、さらに切換可能とされてなることを
特徴とするヒートポンプシステム。
In the heat pump system according to claim 1,
While the other end of the bypass flow path communicates with the heat medium flow path between the flow path switching valve and the outdoor heat exchanger on the flow path switching valve side of the bypass switching valve. It is possible to switch to a state where it is connected so that it does not communicate with the outdoor heat exchanger side.
The heat exchanger switching valve allows the flow of heat medium between the underground heat exchanger and the indoor heat exchanger, while the underground heat exchanger and the indoor heat exchanger and the chamber. The flow of heat medium to and from the outer heat exchanger is not allowed, and one end of the bypass flow path is communicated with the underground heat exchanger, and the indoor heat exchanger is passed through the underground heat exchanger. A heat pump system characterized in that it can be further switched to a flow path connection state in which a heat medium can flow between the bypass flow path and the bypass flow path.
JP2017027348A 2017-02-16 2017-02-16 Heat pump system Active JP6883186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017027348A JP6883186B2 (en) 2017-02-16 2017-02-16 Heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017027348A JP6883186B2 (en) 2017-02-16 2017-02-16 Heat pump system

Publications (2)

Publication Number Publication Date
JP2018132269A JP2018132269A (en) 2018-08-23
JP6883186B2 true JP6883186B2 (en) 2021-06-09

Family

ID=63249547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027348A Active JP6883186B2 (en) 2017-02-16 2017-02-16 Heat pump system

Country Status (1)

Country Link
JP (1) JP6883186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946669B1 (en) * 2021-09-28 2024-04-02 Garen Noel Ewbank Polymodal heat pump

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110712478B (en) 2018-07-12 2022-11-04 住友橡胶工业株式会社 Pneumatic tire
KR102286805B1 (en) * 2021-03-08 2021-08-05 서복상 An underground heat source heat pump system using ethanol having an intermediate heat exchanger
KR102286806B1 (en) * 2021-03-08 2021-08-06 서복상 Multiple heat source heat pump system using ethanol or brine having an intermediate heat exchanger
KR102308687B1 (en) * 2021-04-29 2021-10-06 (주)대성냉열 High efficient heat pump system using waste air heat
KR102484462B1 (en) * 2022-04-15 2023-01-05 주식회사 원냉동기 Hybrid air-conditioning system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493193A (en) * 1982-03-05 1985-01-15 Rutherford C. Lake, Jr. Reversible cycle heating and cooling system
JPS6277564A (en) * 1985-10-01 1987-04-09 サンデン株式会社 Heat pump device
US5461876A (en) * 1994-06-29 1995-10-31 Dressler; William E. Combined ambient-air and earth exchange heat pump system
US6615602B2 (en) * 2001-05-22 2003-09-09 Ken Wilkinson Heat pump with supplemental heat source
JP2003194431A (en) * 2001-12-27 2003-07-09 Kubota Corp Compression type heat pump
JP2006284022A (en) * 2005-03-31 2006-10-19 Toa Tone Boring:Kk Geothermal heat pump device
CA2510701C (en) * 2005-06-27 2008-12-16 Geofurnace Development Inc. Hybrid heating and cooling system
US7757508B2 (en) * 2005-08-31 2010-07-20 Ut-Battelle, Llc Super energy saver heat pump with dynamic hybrid phase change material
JP2008275214A (en) * 2007-04-26 2008-11-13 Osaka Gas Co Ltd Compression type heat pump device
JP6528078B2 (en) * 2015-03-23 2019-06-12 パナソニックIpマネジメント株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946669B1 (en) * 2021-09-28 2024-04-02 Garen Noel Ewbank Polymodal heat pump

Also Published As

Publication number Publication date
JP2018132269A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6883186B2 (en) Heat pump system
JP5183804B2 (en) Refrigeration cycle equipment, air conditioning equipment
KR101190492B1 (en) Hot water supply device associated with heat pump
US20090282854A1 (en) Air conditioning system
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
US20140116072A1 (en) Heat pump apparatus
WO2011045976A1 (en) Air-conditioning hot-water supply system
KR20190105219A (en) Heat pump system
JP2006292313A (en) Geothermal unit
KR20110072250A (en) Heat pump apparatus and outdoor unit thereof
JP2005299935A (en) Air conditioner
JP4556453B2 (en) Heat pump hot water supply air conditioner
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP5145026B2 (en) Air conditioner
JP2005249319A (en) Heat pump hot water supply air-conditioner
JP6433422B2 (en) Refrigeration cycle equipment
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JP2015124910A (en) Hot water supply air conditioning system
KR101653567B1 (en) A Duality Cold Cycle Heatpump System Recovering Heat
KR101658021B1 (en) A Heatpump System Using Duality Cold Cycle
KR101524862B1 (en) Heat pump system for preventing adhere and improving evaporation
JP4429960B2 (en) Vending machine with cooling and heating system
JP2005283058A (en) Reheating dehumidifying type air conditioner
KR100648300B1 (en) Heat pump type cooling and heating apparatus
JP3284582B2 (en) Heat storage type air conditioner and cool storage device for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6883186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250