JP2008275214A - Compression type heat pump device - Google Patents

Compression type heat pump device Download PDF

Info

Publication number
JP2008275214A
JP2008275214A JP2007117102A JP2007117102A JP2008275214A JP 2008275214 A JP2008275214 A JP 2008275214A JP 2007117102 A JP2007117102 A JP 2007117102A JP 2007117102 A JP2007117102 A JP 2007117102A JP 2008275214 A JP2008275214 A JP 2008275214A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
heat
air
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007117102A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimoto
洋 藤本
Tsutomu Wakabayashi
努 若林
Shinji Takasugi
真司 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007117102A priority Critical patent/JP2008275214A/en
Publication of JP2008275214A publication Critical patent/JP2008275214A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compression type heat pump device capable of reducing drilling costs to utilize underground heat while improving COP by utilizing the underground heat. <P>SOLUTION: This compression type heat pump device is provided with a refrigerant circuit 5 for allowing a refrigerant to successively circulate in a compressor 1 for compressing the refrigerant, a condenser 2 radiating heat from the refrigerant, an expansion valve 3 expanding the refrigerant, and an evaporator 4 allowing the refrigerant to absorb heat, an air heat exchanger 6 in which an object exchanging heat with the refrigerant is the aboveground air, and an underground-heat heat exchanger 7 in which an object exchanging heat with the refrigerant is the underground heat. The refrigerant circuit 5 is constituted to allow the refrigerant after compressed by the compressor 1 to successively pass through the air heat exchanger 6 and the underground-heat heat exchanger 7, and to allow the air heat exchanger 6 and the underground-heat heat exchanger 7 to function as the condenser 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷媒を圧縮する圧縮機、前記冷媒から放熱させる凝縮器、前記冷媒を膨張させる膨張部、前記冷媒に吸熱させる蒸発器の順に前記冷媒を循環する冷媒回路を設けた圧縮式ヒートポンプ装置に関する。   The present invention is a compression heat pump apparatus provided with a refrigerant circuit for circulating the refrigerant in the order of a compressor that compresses the refrigerant, a condenser that radiates heat from the refrigerant, an expansion unit that expands the refrigerant, and an evaporator that absorbs heat from the refrigerant. About.

上記のような圧縮式ヒートポンプ装置は、凝縮器において圧縮機で圧縮後の冷媒を放熱させることにより冷媒の温度を低下させ、蒸発器において膨張部で膨張後の冷媒に吸熱させることにより、蒸発器における冷媒の熱交換対象の媒体を冷却し、その冷却された媒体を用いて冷房を行うようにしている。   The compression heat pump device as described above reduces the temperature of the refrigerant by dissipating the refrigerant after being compressed by the compressor in the condenser, and absorbs the heat of the refrigerant after expansion by the expansion unit in the evaporator, thereby The medium that is the heat exchange target of the refrigerant is cooled, and the cooled medium is used for cooling.

この圧縮式ヒートポンプ装置では、圧縮機に加えられた仕事量に対する冷凍能力の比を示す成績係数(以下、「COP」と略称する(Coefficient of Performance))を向上させるために、凝縮器における冷媒の熱交換対象の媒体をより低温の媒体として、凝縮器において冷媒の温度を十分に低下させることが求められている。
凝縮器における熱交換対象の媒体を地上の空気とすると、冷房を行う夏季等では、その地上の空気が高温となっており、凝縮器において冷媒の温度を十分に低下させることができず、COPの向上を図ることができない。
In this compression heat pump apparatus, in order to improve the coefficient of performance (hereinafter, abbreviated as “COP”) indicating the ratio of the refrigeration capacity to the amount of work applied to the compressor, There is a demand for sufficiently reducing the temperature of the refrigerant in the condenser by using a medium to be heat exchanged as a lower temperature medium.
If the medium to be heat exchanged in the condenser is ground air, the ground air is at a high temperature in the summer season when cooling is performed, and the temperature of the refrigerant cannot be sufficiently reduced in the condenser. Cannot be improved.

そこで、最近、地下の地中熱を利用して、凝縮器における冷媒の熱交換対象を地中熱とすることが考えられている。地下の地中熱は、その温度が年間を通じてほぼ一定であるので、夏季等では地中熱の方が地上の空気の温度よりも低温となる。したがって、凝縮器における冷媒の熱交換対象を地中熱することにより、凝縮器において冷媒の温度を十分に低下させることができ、COPを向上することができる。   Therefore, recently, it has been considered that the heat exchange target of the refrigerant in the condenser is changed to underground heat by using underground underground heat. Since the temperature of underground geothermal heat is almost constant throughout the year, geothermal heat is lower than the temperature of air on the ground in summer and the like. Therefore, by subjecting the heat exchange target of the refrigerant in the condenser to underground heat, the temperature of the refrigerant in the condenser can be sufficiently lowered, and the COP can be improved.

従来の圧縮式ヒートポンプ装置では、冷媒の熱交換対象を地下の地中熱とする地中熱熱交換器が設けられ、冷媒回路が、圧縮機で圧縮後の冷媒を地中熱熱交換器を通過させて地中熱熱交換器を凝縮器として機能させるように構成されている(例えば、特許文献1参照。)。この従来の圧縮式ヒートポンプ装置は、地中熱との間で熱交換するU字形の配管にて形成された埋設熱交換器を地中に埋設し、地中熱熱交換器と埋設熱交換器との間で地中循環水を循環させることにより、地中熱熱交換器において冷媒と地中熱とを熱交換させるようにしている。   In a conventional compression heat pump device, an underground heat exchanger is provided in which the heat exchange target of the refrigerant is underground underground heat, and the refrigerant circuit converts the refrigerant compressed by the compressor to the underground heat exchanger. It is comprised so that it may pass and a geothermal heat exchanger may function as a condenser (for example, refer patent document 1). This conventional compression heat pump device embeds an embedded heat exchanger formed by a U-shaped pipe for exchanging heat with the underground heat into the underground, and the underground heat exchanger and the embedded heat exchanger Circulating underground circulating water between the refrigerant and the ground heat exchanger causes the refrigerant to exchange heat with the underground heat.

特開2001−289533号公報JP 2001-289533 A

上記従来の圧縮式ヒートポンプ装置では、地中熱熱交換器における冷媒と地中熱との熱交換により冷媒の温度を十分に低下させなければならないので、地中熱熱交換器における冷媒と地中熱との熱交換量として大きなものが求められる。地中熱熱交換器における冷媒と地中熱との熱交換量を増加させるためには、埋設熱交換器の設置箇所の土壌の質にもよるが、一般的には、より地下深い位置までの地中熱を利用しなければならず、そのために、埋設熱交換器を地下の深い位置(例えば、地下数十〜百数十メートル)まで配設させている。したがって、従来の圧縮式ヒートポンプ装置では、地中熱を利用するために、より地下深い位置まで掘らなければならず、掘削コストが増大することになる。   In the above conventional compression heat pump device, the temperature of the refrigerant must be sufficiently reduced by heat exchange between the refrigerant and the underground heat in the underground heat exchanger, so the refrigerant and the underground in the underground heat exchanger A large amount of heat exchange with heat is required. In order to increase the amount of heat exchange between the refrigerant and the ground heat in the underground heat exchanger, in general, depending on the quality of the soil where the buried heat exchanger is installed, Therefore, underground heat exchangers are disposed deep underground (for example, tens to hundreds of meters below the ground). Therefore, in the conventional compression heat pump device, in order to use the underground heat, it is necessary to dig to a deeper underground position, and the digging cost increases.

本発明は、かかる点に着目してなされたものであり、その目的は、地中熱を利用してCOPの向上を図りながら、地中熱を利用するための掘削コストの低減を図ることができる圧縮式ヒートポンプ装置を提供する点にある。   This invention is made paying attention to this point, and the objective is to reduce the excavation cost for using geothermal heat while improving the COP using geothermal heat. It is in providing a compression heat pump device that can be used.

この目的を達成するために、本発明に係る圧縮式ヒートポンプ装置の第1特徴構成は、冷媒を圧縮する圧縮機、前記冷媒から放熱させる凝縮器、前記冷媒を膨張させる膨張部、前記冷媒に吸熱させる蒸発器の順に前記冷媒を循環する冷媒回路を設けた圧縮式ヒートポンプ装置であって、前記冷媒の熱交換対象を地上の空気とする空気熱交換器と前記冷媒の熱交換対象を地下の地中熱とする地中熱熱交換器とが設けられ、前記冷媒回路が、前記圧縮機で圧縮後の冷媒を前記空気熱交換器と前記地中熱熱交換器との順に夫々を通過させて、前記空気熱交換器及び前記地中熱熱交換器を前記凝縮器として機能させるように構成されている点にある。   In order to achieve this object, a first feature configuration of a compression heat pump device according to the present invention includes a compressor that compresses a refrigerant, a condenser that dissipates heat from the refrigerant, an expansion unit that expands the refrigerant, and heat absorption by the refrigerant. A compression heat pump device provided with a refrigerant circuit that circulates the refrigerant in the order of the evaporators to be used, wherein the heat exchange target of the refrigerant is air on the ground and the heat exchange target of the refrigerant is on the ground A ground heat heat exchanger for medium heat is provided, and the refrigerant circuit allows the refrigerant compressed by the compressor to pass through the air heat exchanger and the ground heat heat exchanger in this order. The air heat exchanger and the underground heat exchanger are configured to function as the condenser.

すなわち、圧縮機で圧縮後の冷媒を空気熱交換器と地中熱熱交換器との順に夫々を通過させて、空気熱交換器及び地中熱熱交換器を凝縮器として機能させることができる。夏季等、地中熱の方が地上の空気の温度よりも低温となっているときには、まず、空気熱交換器において圧縮後の冷媒の顕熱部分(潜熱部分の一部を含む)の放熱により冷媒の温度を低下させることができ、さらに、地中熱熱交換器において圧縮後の冷媒の潜熱部分の放熱により冷媒の温度をさらに低下させることができる。このように、空気熱交換器と地中熱熱交換器との順に夫々において圧縮後の冷媒を2段階で放熱させることができ、冷媒の温度を十分に低下させてCOPの向上を図ることができる。
地中熱熱交換器では、空気熱交換器にて放熱された冷媒の潜熱部分を放熱させるだけでよいので、地中熱熱交換器における熱交換量はそれほど大きなものが求められない。したがって、より深い位置までの地中熱を利用しなくても、冷媒の温度を十分に低下させることができる。
以上のことから、地中熱を利用してCOPの向上を図りながら、地中熱を利用するための掘削コストの低減を図ることができる圧縮式ヒートポンプ装置を提供できるに至った。
That is, the refrigerant compressed by the compressor can be passed through the air heat exchanger and the underground heat exchanger in this order, so that the air heat exchanger and the underground heat exchanger can function as a condenser. . When the underground heat is lower than the temperature of the air on the ground, such as in summer, first, in the air heat exchanger, heat is released from the sensible heat part (including part of the latent heat part) of the compressed refrigerant. The temperature of the refrigerant can be lowered, and further, the temperature of the refrigerant can be further lowered by heat radiation of the latent heat portion of the refrigerant after compression in the underground heat exchanger. In this way, the compressed refrigerant can be dissipated in two stages in the order of the air heat exchanger and the underground heat exchanger, and the COP can be improved by sufficiently reducing the temperature of the refrigerant. it can.
In the underground heat exchanger, it is only necessary to dissipate the latent heat portion of the refrigerant radiated by the air heat exchanger, so that the heat exchange amount in the underground heat exchanger is not required to be so large. Therefore, the temperature of the refrigerant can be sufficiently lowered without using the underground heat up to a deeper position.
From the above, it has become possible to provide a compression heat pump apparatus that can reduce excavation costs for using geothermal heat while improving the COP using geothermal heat.

本発明に係る圧縮式ヒートポンプ装置の第2特徴構成は、前記地中熱熱交換器をバイパスさせて前記冷媒を循環させるバイパス状態と前記地中熱熱交換器を通過させて前記冷媒を循環させる非バイパス状態とに前記冷媒回路における冷媒の循環状態を切替自在なバイパス切替手段が設けられ、冷凍負荷が設定負荷未満或いは外気温度が設定温度未満となる場合には、前記バイパス切替手段を前記バイパス状態に切り替え、且つ、冷凍負荷が設定負荷以上或いは外気温度が設定温度以上となる場合には、前記バイパス切替手段を前記非バイパス状態に切り替えるバイパス切替制御手段が設けられている点にある。   A second characteristic configuration of the compression heat pump device according to the present invention is a bypass state in which the underground heat heat exchanger is bypassed and the refrigerant is circulated, and the refrigerant is circulated through the geothermal heat exchanger. Bypass switching means capable of switching the refrigerant circulation state in the refrigerant circuit to the non-bypass state is provided, and when the refrigeration load is less than the set load or the outside air temperature is less than the set temperature, the bypass switch is When the refrigeration load is switched to the state and the refrigeration load is equal to or higher than the set temperature or the outside air temperature is equal to or higher than the set temperature, a bypass switching control unit that switches the bypass switching unit to the non-bypass state is provided.

すなわち、蒸発器において要求される吸熱量に相当する冷凍負荷が設定負荷未満であり、地中熱熱交換器において冷媒と地中熱との熱交換を行わなくても要求されている冷凍負荷を賄えるとき、或いは外気温度が設定温度未満となるときには、バイパス切替手段がバイパス切替手段をバイパス状態に切り替えて、空気熱交換器を通過後の冷媒を地中熱熱交換器をバイパスさせて、地中熱熱交換器での冷媒と地中熱との熱交換を行わない。したがって、地中熱熱交換器における冷媒と地中熱との熱交換を無駄に行うことを防止できるので、浅く設置した熱容量の小さい地中熱熱交換器であっても、地中の温度上昇を抑制でき、地中熱を長期間に渡って利用できる。また、地中熱熱交換器における冷媒と地中熱との熱交換を行うときに作動させる循環ポンプ等の機器を無駄に作動させることなく、無駄なエネルギー消費を抑えることができる。
冷凍負荷が設定負荷以上或いは外気温度が設定温度以上となるときには、バイパス切替手段がバイパス切替手段を非バイパス状態に切り替えて、空気熱交換器を通過後の冷媒を地中熱熱交換器を通過させて、地中熱熱交換器での冷媒と地中熱との熱交換を行い、要求されている冷凍負荷を賄えることができる。
このように、バイパス切替制御手段が、要求されている冷凍負荷に応じて地中熱熱交換器における冷媒と地中熱との熱交換を行うか否かを切り替えることにより、要求されている冷凍負荷を的確に賄いながら、地中の温度変化を所定値以下に抑制でき、地中熱の長期間の利用が可能になり、無駄なエネルギー消費を抑えてエネルギー効率の向上を図ることができる。
That is, the refrigeration load corresponding to the heat absorption amount required in the evaporator is less than the set load, and the required refrigeration load is obtained without performing heat exchange between the refrigerant and the underground heat in the underground heat exchanger. When the air temperature is less than the set temperature, the bypass switching means switches the bypass switching means to the bypass state, bypasses the underground heat heat exchanger with the refrigerant after passing through the air heat exchanger, Heat exchange between the refrigerant and the ground heat in the intermediate heat exchanger is not performed. Therefore, it is possible to prevent wasteful heat exchange between the refrigerant and the ground heat in the ground heat exchanger, so that even if it is a shallow ground heat exchanger with a small heat capacity, the temperature rise in the ground Can be suppressed, and geothermal heat can be used for a long time. Further, wasteful energy consumption can be suppressed without wastefully operating equipment such as a circulation pump that is operated when heat exchange between the refrigerant and the ground heat in the ground heat exchanger is performed.
When the refrigeration load is higher than the set load or the outside air temperature is higher than the set temperature, the bypass switching means switches the bypass switching means to the non-bypass state and passes the refrigerant after passing through the air heat exchanger through the underground heat exchanger Thus, heat exchange between the refrigerant and the underground heat in the underground heat exchanger can be performed to cover the required refrigeration load.
Thus, the bypass switching control means switches whether or not to perform heat exchange between the refrigerant and the underground heat in the underground heat exchanger according to the requested refrigeration load, thereby requesting the required refrigeration. While accurately covering the load, the underground temperature change can be suppressed to a predetermined value or less, the underground heat can be used for a long period of time, and wasteful energy consumption can be suppressed to improve energy efficiency.

本発明に係る圧縮式ヒートポンプ装置の第3特徴構成は、前記冷媒の熱交換対象を空調用媒体とする空調用媒体熱交換器と、前記圧縮機で圧縮後の冷媒を前記空気熱交換器と前記地中熱熱交換器との順に夫々を通過させて前記空気熱交換器及び前記地中熱熱交換器を前記凝縮器として機能させ且つ前記膨張部で膨張後の冷媒を前記空調用媒体熱交換器を通過させて前記空調用媒体熱交換器を前記蒸発器として機能させる冷房状態と、前記圧縮機で圧縮後の冷媒を前記空調用媒体熱交換器を通過させて前記空調用媒体熱交換器を前記凝縮器として機能させ且つ前記膨張部で膨張後の冷媒を前記空気熱交換器と前記地中熱熱交換器との順に夫々を通過させて前記空気熱交換器及び前記地中熱熱交換器を前記蒸発器として機能させる暖房状態とに前記冷媒回路における冷媒の循環状態を切替自在な第1切替手段とが設けられている点にある。   A third characteristic configuration of the compression heat pump device according to the present invention is an air conditioning medium heat exchanger in which the heat exchange target of the refrigerant is an air conditioning medium, and the refrigerant compressed by the compressor is the air heat exchanger. The air heat exchanger and the geothermal heat exchanger are made to function as the condenser by passing through the geothermal heat exchanger in this order, and the refrigerant after expansion in the expansion section is used as the medium heat for air conditioning. A cooling state in which the air-conditioning medium heat exchanger functions as the evaporator through the exchanger, and the air-conditioning medium heat exchange by passing the refrigerant compressed by the compressor through the air-conditioning medium heat exchanger Functioning as a condenser and passing the refrigerant after expansion in the expansion section in the order of the air heat exchanger and the underground heat exchanger, respectively, the air heat exchanger and the underground heat Before heating the exchanger to function as the evaporator There circulation state of the refrigerant in the refrigerant circuit in that the first switching means freely switch is provided.

すなわち、夏季では、地中熱の方が地上の空気の温度よりも低温となっているので、第1切替手段を冷房状態に切り替えることにより、上記第1特徴構成で述べた如く、圧縮機で圧縮後の冷媒を空気熱交換器と地中熱熱交換器との順に夫々を通過させて、空気熱交換器及び地中熱熱交換器を凝縮器として機能させることができる。したがって、空気熱交換器と地中熱熱交換器との順に夫々において圧縮後の冷媒を放熱させることができ、冷媒の温度を十分に低下させてCOPの向上を図ることができる。
冬季では、地中熱の方が地上の空気の温度よりも高温となっているので、第1切替手段を暖房状態に切り替えることにより、膨張部で膨張後の冷媒を空気熱交換器と地中熱熱交換器との順に夫々を通過させて、空気熱交換器及び地中熱熱交換器を蒸発器として機能させる。まず、空気熱交換器において膨張後の冷媒を低温状態で吸熱させて冷媒の温度を上昇させることができ、さらに、地中熱熱交換器において膨張後の冷媒を高温状態で吸熱させて冷媒の温度をさらに上昇させることができる。このように、空気熱交換器と地中熱熱交換器との順に夫々において膨張後の冷媒を2段階で吸熱させることができ、冷媒の温度を十分に上昇させてCOPの向上を図ることができる。地中熱熱交換器では、空気熱交換器にて吸熱された冷媒を高温状態で吸熱させるだけでよいので、地中熱熱交換器における熱交換量はそれほど大きなものが求められない。したがって、より深い位置までの地中熱を利用しなくても、掘削コストの低減を図ることができる。
このようにして、冷房と暖房との両方において、地中熱を利用してCOPの向上を図りながら、地中熱を利用するための掘削コストの低減を図ることができる。
That is, since the underground heat is lower than the temperature of the air on the ground in the summer, the first switching means is switched to the cooling state, so that the compressor can be operated as described in the first characteristic configuration. The compressed refrigerant can be passed through the air heat exchanger and the underground heat exchanger in this order, and the air heat exchanger and the underground heat exchanger can function as a condenser. Therefore, the compressed refrigerant can be dissipated in the order of the air heat exchanger and the underground heat exchanger, and the COP can be improved by sufficiently reducing the temperature of the refrigerant.
In the winter season, since the underground heat is higher than the temperature of the air on the ground, switching the first switching means to the heating state allows the refrigerant after expansion in the expansion section to flow between the air heat exchanger and the ground. The air heat exchanger and the underground heat heat exchanger are caused to function as an evaporator by passing through each in the order of the heat heat exchanger. First, in the air heat exchanger, the expanded refrigerant can absorb heat at a low temperature to increase the temperature of the refrigerant, and the underground heat exchanger can absorb the expanded refrigerant in a high temperature to absorb the refrigerant. The temperature can be further increased. Thus, the expanded refrigerant can absorb heat in two stages in the order of the air heat exchanger and the underground heat exchanger, respectively, and the COP can be improved by sufficiently raising the temperature of the refrigerant. it can. In the geothermal heat exchanger, it is only necessary to absorb the heat absorbed by the air heat exchanger in a high temperature state, so that a large amount of heat exchange in the geothermal heat exchanger is not required. Therefore, the excavation cost can be reduced without using the underground heat up to a deeper position.
In this way, in both cooling and heating, the excavation cost for using the underground heat can be reduced while improving the COP using the underground heat.

本発明に係る圧縮式ヒートポンプ装置の第4特徴構成は、前記第1切替手段を前記暖房状態に切り替えているときに、前記地中熱熱交換器をバイパスさせて前記冷媒を循環させるバイパス状態と前記地中熱熱交換器を通過させて前記冷媒を循環させる非バイパス状態とに前記冷媒の循環状態を切替自在な暖房バイパス切替手段が設けられ、前記第1切替手段を前記冷房状態に切り替える冷房運転と前記第1切替手段を前記暖房状態に切り替える暖房運転とを択一的に行うとともに、前記暖房運転を行うに当り、暖房負荷が設定負荷未満或いは外気温度が設定温度以上となる場合には前記暖房バイパス切替手段を前記バイパス状態に切り替え、且つ、暖房負荷が設定負荷以上或いは外気温度が設定温度未満となる場合には前記暖房バイパス切替手段を前記非バイパス状態に切り替える運転制御手段が設けられている点にある。   According to a fourth characteristic configuration of the compression heat pump device according to the present invention, when the first switching unit is switched to the heating state, a bypass state in which the geothermal heat exchanger is bypassed and the refrigerant is circulated. Heating bypass switching means capable of switching the circulation state of the refrigerant to a non-bypass state in which the refrigerant is circulated through the underground heat exchanger is provided, and the first switching means is switched to the cooling state. When the heating operation is selectively performed between the operation and the heating operation for switching the first switching means to the heating state, and the heating load is less than the set load or the outside air temperature is equal to or higher than the set temperature, The heating bypass switching means is switched to the bypass state, and the heating bypass switching is performed when the heating load is equal to or higher than the set load or the outside air temperature is lower than the set temperature. In that the operation control means for switching the stage to the non-bypass states are provided.

すなわち、凝縮器において要求される放熱量に相当する暖房負荷が設定負荷未満であり、地中熱熱交換器において冷媒と地中熱との熱交換を行わなくても要求されている暖房負荷を賄えるとき、或いは外気温度が設定温度以上となるときには、運転制御手段が暖房バイパス切替手段をバイパス状態に切り替えて、空気熱交換器を通過後の冷媒を地中熱熱交換器をバイパスさせて、地中熱熱交換器での冷媒と地中熱との熱交換を行わない。したがって、地中熱熱交換器における冷媒と地中熱との熱交換を無駄に行うことを防止できるので、浅く設置した熱容量の小さい地中熱熱交換器であっても、地中の温度低下を抑制でき、地中熱を長期間に渡って利用できる。また、地中熱熱交換器における冷媒と地中熱との熱交換を行うときに作動させる循環ポンプ等の機器を無駄に作動させることなく、無駄なエネルギー消費を抑えることができる。
暖房負荷が設定負荷以上或いは外気温度が設定温度未満となるときには、運転制御手段が暖房バイパス切替手段を非バイパス状態に切り替えて、空気熱交換器を通過後の冷媒を地中熱熱交換器を通過させて、地中熱熱交換器での冷媒と地中熱との熱交換を行い、要求されている暖房負荷を賄えることができる。
このように、運転制御手段が、要求されている暖房負荷に応じて地中熱熱交換器における冷媒と地中熱との熱交換を行うか否かを切り替えることにより、要求されている暖房負荷を的確に賄いながら、地中の温度変化を所定値以下に抑制でき、地中熱の長期間の利用が可能になり、無駄なエネルギー消費を抑えてエネルギー効率の向上を図ることができる。
That is, the heating load corresponding to the heat radiation amount required in the condenser is less than the set load, and the required heating load is obtained without performing heat exchange between the refrigerant and the underground heat in the underground heat exchanger. When it can cover or when the outside air temperature is higher than the set temperature, the operation control means switches the heating bypass switching means to the bypass state, bypasses the underground heat heat exchanger with the refrigerant after passing through the air heat exchanger, Heat exchange between the refrigerant and the ground heat in the ground heat exchanger is not performed. Therefore, it is possible to prevent wasteful heat exchange between the refrigerant and the ground heat in the ground heat exchanger, so even if the ground heat heat exchanger is installed shallow and has a small heat capacity, the temperature of the ground decreases. Can be suppressed, and geothermal heat can be used for a long time. Further, wasteful energy consumption can be suppressed without wastefully operating equipment such as a circulation pump that is operated when heat exchange between the refrigerant and the ground heat in the ground heat exchanger is performed.
When the heating load is equal to or higher than the set load or the outside air temperature is lower than the set temperature, the operation control means switches the heating bypass switching means to the non-bypass state, and the refrigerant after passing through the air heat exchanger is changed to the underground heat heat exchanger. Passing through and exchanging heat between the refrigerant and the underground heat in the underground heat exchanger can cover the required heating load.
In this way, the operation control means switches whether or not to perform heat exchange between the refrigerant and the ground heat in the geothermal heat exchanger according to the required heating load, thereby requesting the heating load. Therefore, the underground temperature change can be suppressed to a predetermined value or less, the underground heat can be used for a long period of time, and wasteful energy consumption can be suppressed to improve energy efficiency.

本発明に係る圧縮式ヒートポンプ装置の第5特徴構成は、前記圧縮機が、エンジンにより駆動されるように構成され、前記冷媒の熱交換対象を空調用媒体とする空調用媒体熱交換器と、前記冷媒の熱交換対象を前記エンジンの排熱を回収した排熱回収流体とする排熱熱交換器と、前記圧縮機で圧縮後の冷媒を前記空気熱交換器と前記地中熱熱交換器との順に夫々を通過させて前記空気熱交換器及び前記地中熱熱交換器を前記凝縮器として機能させ且つ前記膨張部で膨張後の冷媒を前記空調用媒体熱交換器を通過させて前記空調用媒体熱交換器を前記蒸発器として機能させる冷房状態と、前記圧縮機で圧縮後の冷媒を前記空調用媒体熱交換器を通過させて前記空調用媒体熱交換器を前記凝縮器として機能させ且つ前記膨張部で膨張後の冷媒を前記地中熱熱交換器と前記排熱熱交換器との順に夫々を通過させて前記地中熱熱交換器及び前記排熱熱交換器を前記蒸発器として機能させる暖房状態とに前記冷媒回路における冷媒の循環状態を切替自在な第2切替手段とが設けられている点にある。   A fifth characteristic configuration of the compression heat pump device according to the present invention is configured such that the compressor is driven by an engine, and an air-conditioning medium heat exchanger having a heat exchange target of the refrigerant as an air-conditioning medium; An exhaust heat exchanger that uses an exhaust heat recovery fluid that recovers exhaust heat of the engine as a heat exchange target of the refrigerant, and the air heat exchanger and the underground heat heat exchanger that use the refrigerant compressed by the compressor And the air heat exchanger and the underground heat exchanger function as the condenser, and the refrigerant expanded in the expansion section passes through the air conditioning medium heat exchanger. A cooling state in which an air conditioning medium heat exchanger functions as the evaporator, and a refrigerant compressed by the compressor passes through the air conditioning medium heat exchanger and the air conditioning medium heat exchanger functions as the condenser The expanded refrigerant in the expansion section In the refrigerant circuit, the ground heat heat exchanger and the exhaust heat exchanger are sequentially passed through the heating circuit in which the underground heat heat exchanger and the exhaust heat exchanger function as the evaporator. The second switching means that can switch the circulation state of the refrigerant is provided.

すなわち、夏季では、地中熱の方が地上の空気の温度よりも低温となっているので、第2切替手段を冷房状態に切り替えることにより、上記第1特徴構成で述べた如く、圧縮機で圧縮後の冷媒を空気熱交換器と地中熱熱交換器との順に夫々を通過させて、空気熱交換器及び地中熱熱交換器を凝縮器として機能させることができる。したがって、空気熱交換器と地中熱熱交換器との順に夫々において圧縮後の冷媒を放熱させることができ、冷媒の温度を十分に低下させてCOPの向上を図ることができる。
排熱回収流体はエンジンの排熱を回収して高温であり、冬季では、排熱回収流体の方が地中熱よりも高温となっているので、第2切替手段を暖房状態に切り替えることにより、膨張部で膨張後の冷媒を地中熱熱交換器と排熱熱交換器の順に夫々を通過させて、地中熱熱交換器及び排熱熱交換器を蒸発器として機能させる。したがって、まず、地中熱熱交換器において膨張後の冷媒を吸熱させて冷媒の温度を上昇させることができ、さらに、排熱熱交換器において膨張後の冷媒を吸熱させて冷媒の温度をさらに上昇させることができる。このように、地中熱熱交換器と排熱熱交換器の順に夫々において膨張後の冷媒を2段階で吸熱させることができ、冷媒の温度を十分に上昇させてCOPの向上を図ることができる。
このようにして、冷房と暖房との両方において、地中熱を利用してCOPの向上を図ることができる。
That is, in the summer, the underground heat is lower than the temperature of the air on the ground. Therefore, by switching the second switching means to the cooling state, as described in the first feature configuration, The compressed refrigerant can be passed through the air heat exchanger and the underground heat exchanger in this order, and the air heat exchanger and the underground heat exchanger can function as a condenser. Therefore, the compressed refrigerant can be dissipated in the order of the air heat exchanger and the underground heat exchanger, and the COP can be improved by sufficiently reducing the temperature of the refrigerant.
The exhaust heat recovery fluid recovers the exhaust heat of the engine and is at a high temperature. In the winter, the exhaust heat recovery fluid is at a higher temperature than the underground heat, so the second switching means is switched to the heating state. Then, the refrigerant after expansion in the expansion section is passed through the underground heat heat exchanger and the exhaust heat exchanger in this order, so that the underground heat exchanger and the exhaust heat exchanger function as an evaporator. Therefore, first, the expanded refrigerant can absorb the expanded refrigerant to increase the temperature of the refrigerant, and the exhaust heat exchanger can absorb the expanded refrigerant to further increase the refrigerant temperature. Can be raised. In this way, the expanded refrigerant can absorb heat in two stages in the order of the underground heat exchanger and the exhaust heat exchanger, and the COP can be improved by sufficiently raising the temperature of the refrigerant. it can.
In this way, COP can be improved by using underground heat in both cooling and heating.

本発明に係る圧縮式ヒートポンプ装置の第6特徴構成は、前記冷媒回路において、前記空気熱交換器と前記排熱熱交換器とが並列状態で設けられ且つ前記空気熱交換器及び前記排熱熱交換器に対して前記地中熱熱交換器が直列状態で設けられている点にある。   According to a sixth characteristic configuration of the compression heat pump apparatus according to the present invention, in the refrigerant circuit, the air heat exchanger and the exhaust heat exchanger are provided in parallel, and the air heat exchanger and the exhaust heat are provided. It exists in the point by which the said underground heat heat exchanger is provided in series with respect to the exchanger.

すなわち、冷媒回路において、空気熱交換器と排熱熱交換器と地中熱熱交換器とが配設されている部分での冷媒の循環方向を反対とするだけで、圧縮後の冷媒を空気熱交換器と地中熱熱交換器との順に通過させる冷媒状態と、膨張後の冷媒を地中熱熱交換器と排熱熱交換器との順に通過させる暖房状態とに第2切替手段を切り替えることができる。
したがって、第2切替手段が、容易に冷房状態と暖房状態とに切り替えることができ、構成の簡素化を図ることができる。
That is, in the refrigerant circuit, the compressed refrigerant is removed from the air only by reversing the refrigerant circulation direction in the portion where the air heat exchanger, the exhaust heat exchanger, and the underground heat exchanger are disposed. The second switching means is in a refrigerant state in which the heat exchanger and the underground heat heat exchanger are passed in order and a heating state in which the expanded refrigerant is passed in the order of the underground heat exchanger and the exhaust heat exchanger. Can be switched.
Therefore, the second switching means can easily switch between the cooling state and the heating state, and the configuration can be simplified.

本発明に係る圧縮式ヒートポンプ装置の第7特徴構成は、前記第2切替手段が、前記暖房状態において、前記膨張部で膨張後の冷媒を前記空気熱交換器と前記地中熱熱交換器と前記排熱熱交換器との順に夫々を通過させ、前記空気熱交換器と前記地中熱熱交換器と前記排熱熱交換器との夫々が前記蒸発器として機能する点にある。   According to a seventh characteristic configuration of the compression heat pump device according to the present invention, the second switching unit is configured such that, in the heating state, the refrigerant after expansion in the expansion section is converted into the air heat exchanger and the underground heat heat exchanger. The exhaust heat exchanger is passed through in order, and the air heat exchanger, the underground heat exchanger, and the exhaust heat exchanger function as the evaporator.

すなわち、冬季では、地中熱の方が地上の空気の温度よりも高温となっており、さらに排熱回収流体の方が地中熱よりも高温となっている。まず、空気熱交換器において膨張後の冷媒を低温状態で吸熱させて冷媒の温度を上昇させることができ、さらに、地中熱熱交換器において膨張後の冷媒を高温状態で吸熱させて冷媒の温度をさらに上昇させることができる。しかも、排熱熱交換器においても膨張後の冷媒を吸熱させて冷媒の温度をより一層上昇させることができる。このように、空気熱交換器と地中熱熱交換器と排熱熱交換器との順に夫々において膨張後の冷媒を3段階で吸熱させることができ、冷媒の温度をより一層上昇させてCOPの向上を図ることができる。   That is, in the winter, the underground heat is higher than the temperature of the air on the ground, and the exhaust heat recovery fluid is higher than the underground heat. First, in the air heat exchanger, the expanded refrigerant can absorb heat at a low temperature to increase the temperature of the refrigerant, and the underground heat exchanger can absorb the expanded refrigerant in a high temperature to absorb the refrigerant. The temperature can be further increased. In addition, the exhaust heat exchanger can also absorb the heat of the expanded refrigerant to further increase the temperature of the refrigerant. Thus, the expanded refrigerant can absorb heat in three stages in the order of the air heat exchanger, the underground heat exchanger, and the exhaust heat exchanger, respectively, and the temperature of the refrigerant can be further increased to increase the COP. Can be improved.

本発明に係る圧縮式ヒートポンプ装置の第8特徴構成は、前記冷媒が、非共沸混合媒体である点にある。   An eighth characteristic configuration of the compression heat pump apparatus according to the present invention is that the refrigerant is a non-azeotropic mixed medium.

すなわち、冷媒が非共沸混合媒体であると、地中熱熱交換器においてその冷媒を一定圧力下で凝縮させる際に冷媒の温度が低下しつつ凝縮することになる。したがって、凝縮温度(潜熱部分)が一定である単一媒体と比較して、空気熱交換器における冷媒と空気との熱交換量を増加させることができるため、地中熱熱交換器において必要となる冷媒と地中熱との熱交換量を低減させることができる。空気熱交換器で必要となる伝熱面積は増加するものの、コスト面で大幅に高い地中熱熱交換器で必要となる伝熱面積を低減できるため、全体で考えるとコスト低減をより一層図ることができる。   That is, when the refrigerant is a non-azeotropic mixture medium, when the refrigerant is condensed at a constant pressure in the underground heat exchanger, it is condensed while the temperature of the refrigerant is lowered. Therefore, compared with a single medium having a constant condensation temperature (latent heat portion), the amount of heat exchange between the refrigerant and the air in the air heat exchanger can be increased. The amount of heat exchange between the refrigerant and the underground heat can be reduced. Although the heat transfer area required for the air heat exchanger increases, the heat transfer area required for the underground heat heat exchanger, which is significantly high in cost, can be reduced, so the cost can be further reduced when considered as a whole. be able to.

本発明に係る圧縮式ヒートポンプ装置の実施形態について図面に基づいて説明する。
〔第1実施形態〕
この第1実施形態における圧縮式ヒートポンプ装置は、図1に示すように、冷媒を圧縮する圧縮機1、冷媒から放熱させる凝縮器2、冷媒を膨張させる膨張部としての膨張弁3、冷媒に吸熱させる蒸発器4の順に冷媒を循環する冷媒回路5を設けている。
この圧縮式ヒートポンプ装置は、蒸発器4において膨張弁3で膨張後の冷媒に吸熱させることにより、蒸発器4における冷媒の熱交換対象の媒体を冷却し、その冷却された熱交換対象の媒体を用いて冷房を行うようにしている。
An embodiment of a compression heat pump device according to the present invention will be described with reference to the drawings.
[First Embodiment]
As shown in FIG. 1, the compression heat pump apparatus according to the first embodiment includes a compressor 1 that compresses a refrigerant, a condenser 2 that dissipates heat from the refrigerant, an expansion valve 3 that serves as an expansion unit that expands the refrigerant, and absorbs heat to the refrigerant. A refrigerant circuit 5 that circulates the refrigerant in the order of the evaporators 4 is provided.
This compression heat pump device cools the medium subject to heat exchange of the refrigerant in the evaporator 4 by absorbing heat to the refrigerant after expansion by the expansion valve 3 in the evaporator 4, and the cooled heat exchange target medium is cooled. It is used for cooling.

圧縮機1は、図外の駆動装置により駆動されるように構成されている。冷媒回路5には、膨張弁3の上流側に冷媒の液分を貯留させる液分貯留部9が設けられている。ただし、膨張弁3と液分貯留部9との位置関係については逆に配置することも可能である。冷媒は、非共沸混合媒体(例えば、アンモニアと水との非共沸混合媒体やメタノールと水との非共沸混合媒体)である。   The compressor 1 is configured to be driven by a driving device (not shown). The refrigerant circuit 5 is provided with a liquid reservoir 9 that stores the liquid of the refrigerant upstream of the expansion valve 3. However, the positional relationship between the expansion valve 3 and the liquid reservoir 9 can be reversed. The refrigerant is a non-azeotropic mixture medium (for example, a non-azeotropic mixture medium of ammonia and water or a non-azeotropic mixture medium of methanol and water).

冷媒の熱交換対象を地上の空気とする空気熱交換器6と冷媒の熱交換対象を地下の地中熱とする地中熱熱交換器7とが設けられている。冷媒の熱交換対象を空調用媒体(例えば水)とする空調用媒体熱交換器8が設けられている。冷媒回路5は、圧縮機1で圧縮後の冷媒を空気熱交換器6と地中熱熱交換器7との順に夫々を通過させて、空気熱交換器6及び地中熱熱交換器7を凝縮器2として機能させ、且つ、膨張弁3で膨張後の冷媒を空調用媒体熱交換器8を通過させて、空調用媒体熱交換器8を蒸発器4として機能させる。   There are provided an air heat exchanger 6 in which the heat exchange target of the refrigerant is air on the ground and a geothermal heat exchanger 7 in which the heat exchange target of the refrigerant is underground underground heat. There is provided an air conditioning medium heat exchanger 8 whose target for heat exchange of the refrigerant is an air conditioning medium (for example, water). The refrigerant circuit 5 allows the refrigerant compressed by the compressor 1 to pass through the air heat exchanger 6 and the underground heat exchanger 7 in this order, thereby allowing the air heat exchanger 6 and the underground heat exchanger 7 to pass through. The refrigerant is caused to function as the condenser 2, and the refrigerant expanded by the expansion valve 3 is passed through the air conditioning medium heat exchanger 8 so that the air conditioning medium heat exchanger 8 functions as the evaporator 4.

空気熱交換器6は、空気ファン10の作動により送風される空気と冷媒とを熱交換させるように構成されている。
地中熱熱交換器7は、地中循環水路11にて埋設熱交換器12との間で循環される地中循環水と冷媒とを熱交換させるように構成されている。地中循環水路11には地中循環水ポンプ13が設けられている。埋設熱交換器12は、地中に埋設されたU字状の配管にて構成されている。埋設熱交換器12は、地中循環水をU字状の配管にて地中を通流させることにより地中循環水と地中熱とを熱交換させるように構成されている。
The air heat exchanger 6 is configured to exchange heat between the air blown by the operation of the air fan 10 and the refrigerant.
The underground heat exchanger 7 is configured to exchange heat between the underground circulating water circulated between the underground heat exchanger 12 and the embedded heat exchanger 12 and the refrigerant. An underground circulating water pump 13 is provided in the underground circulating water channel 11. The buried heat exchanger 12 is configured by a U-shaped pipe buried in the ground. The embedded heat exchanger 12 is configured to exchange heat between the underground circulating water and the underground heat by causing the underground circulating water to flow through the ground through a U-shaped pipe.

地中熱熱交換器7をバイパスさせて冷媒を循環させるバイパス状態(図中一鎖線矢印)と地中熱熱交換器7を通過させて冷媒を循環させる非バイパス状態とに冷媒の循環状態を切替自在なバイパス切替手段14が設けられている。バイパス切替手段14は、冷媒回路5から分岐して地中熱熱交換器7をバイパスしたのち冷媒回路5に合流する第1バイパス路15、及び、冷媒回路5におけるバイパス路15の分岐箇所に配置された第1三方弁16から構成されている。バイパス切替手段14は、空気熱交換器6を通過した後の冷媒を第1バイパス路15に通流させるように第1三方弁16を切り替えてバイパス状態(図中一鎖線矢印)に切り替え、且つ、空気熱交換器6を通過した後の冷媒を地中熱熱交換器7を通過させるように第1三方弁16を切り替えて非バイパス状態に切り替えるように構成されている。   The circulation state of the refrigerant is divided into a bypass state in which the underground heat exchanger 7 is bypassed and the refrigerant is circulated (a chain line arrow in the figure) and a non-bypass state in which the refrigerant is circulated through the underground heat exchanger 7. A switchable bypass switching means 14 is provided. The bypass switching means 14 is arranged at the first bypass path 15 that branches from the refrigerant circuit 5 and bypasses the underground heat exchanger 7 and then merges with the refrigerant circuit 5, and at the branch point of the bypass path 15 in the refrigerant circuit 5. The first three-way valve 16 is configured. The bypass switching means 14 switches the first three-way valve 16 so that the refrigerant that has passed through the air heat exchanger 6 flows through the first bypass passage 15 to switch to the bypass state (a chain line arrow in the figure), and The first three-way valve 16 is switched to the non-bypass state so that the refrigerant after passing through the air heat exchanger 6 passes through the underground heat exchanger 7.

この圧縮式ヒートポンプ装置の運転を制御する運転制御装置17が設けられている。制御装置17は、図外の冷房リモコンにより冷房運転が要求されると、図外の駆動装置により圧縮機1を駆動させて、空調用媒体熱交換器8において空調用媒体(例えば水)を冷却させる冷房運転を行うように構成されている。   An operation control device 17 that controls the operation of the compression heat pump device is provided. When the cooling operation is requested by a cooling remote controller (not shown), the control device 17 drives the compressor 1 by a driving device (not shown) to cool the air conditioning medium (for example, water) in the air conditioning medium heat exchanger 8. The cooling operation is performed.

運転制御装置17は、冷房運転を行うに当り、蒸発器4において要求される吸熱量に相当する冷凍負荷が設定負荷未満となる場合には、バイパス切替手段14をバイパス状態(図中一点鎖線矢印で示す)に切り替えるとともに、地中循環水ポンプ13を作動させないように構成されている。運転制御装置17は、冷房運転を行うに当り、冷凍負荷が設定負荷以上となる場合には、バイパス切替手段14を非バイパス状態に切り替えるとともに、地中循環水ポンプ13を作動させるように構成されている。バイパス切替制御手段は、運転制御装置17にて構成されている。
このようにして、運転制御装置17は、要求されている冷凍負荷に応じて地中熱熱交換器7における冷媒と地中熱との熱交換を行うか否かを切り替えることにより、要求されている冷凍負荷を的確に賄いながら、地中の温度変化を抑え、地中循環水ポンプ13を無駄に作動させずにエネルギー効率の向上を図っている。
When performing the cooling operation, the operation control device 17 sets the bypass switching means 14 in the bypass state (a dashed line arrow in the figure) when the refrigeration load corresponding to the heat absorption amount required in the evaporator 4 is less than the set load. And the underground circulating water pump 13 is not operated. When performing the cooling operation, the operation control device 17 is configured to switch the bypass switching means 14 to the non-bypass state and to operate the underground circulating water pump 13 when the refrigeration load exceeds the set load. ing. The bypass switching control means is configured by the operation control device 17.
Thus, the operation control device 17 is requested by switching whether or not to perform heat exchange between the refrigerant and the underground heat in the underground heat exchanger 7 according to the required refrigeration load. While accurately covering the refrigeration load, the temperature change in the ground is suppressed, and energy efficiency is improved without operating the ground circulating water pump 13 wastefully.

また、運転制御装置17は、外気温度が設定温度未満となる場合に、バイパス切替手段14をバイパス状態に切り替え、且つ、外気温度が設定温度以上となる場合に、バイパス切替手段14を非バイパス状態に切り替えることもできる。   The operation control device 17 switches the bypass switching unit 14 to the bypass state when the outside air temperature is lower than the set temperature, and sets the bypass switching unit 14 to the non-bypass state when the outside air temperature is equal to or higher than the set temperature. You can also switch to

バイパス切替手段14を非バイパス状態に切り替えるとともに、地中循環水ポンプ13を作動させた冷房運転では、圧縮機1で圧縮後の冷媒が空気熱交換器6と地中熱熱交換器7との順に夫々を通過して、空気熱交換器6及び地中熱熱交換器7を凝縮器2として機能させる。冷房運転を行う夏季等では、地下の地中熱の方が地上の空気よりも低温となっている。したがって、まず、空気熱交換器6において圧縮後の冷媒の顕熱部分(潜熱部分の一部を含む)を放熱させて冷媒の温度を低下させることができ、さらに、地中熱熱交換器7において圧縮後の冷媒の潜熱部分を放熱させて冷媒の温度をさらに低下させることができる。このように、空気熱交換器6と地中熱熱交換器7との順に夫々において圧縮後の冷媒を2段階で放熱させることができ、冷媒の温度を十分に低下させてCOPの向上を図ることができる。地中熱熱交換器7では、空気熱交換器6にて放熱された冷媒の潜熱部分を放熱させるだけでよいので、地中熱熱交換器7における熱交換量はそれほど大きなものが求められない。したがって、埋設熱交換器12をより深い位置まで配設させなくても、掘削コストの低減を図ることができる。   In the cooling operation in which the bypass switching unit 14 is switched to the non-bypass state and the underground circulating water pump 13 is operated, the refrigerant compressed by the compressor 1 is exchanged between the air heat exchanger 6 and the underground heat exchanger 7. The air heat exchanger 6 and the underground heat heat exchanger 7 are made to function as the condenser 2 through each in turn. In the summer season when cooling operation is performed, underground geothermal heat is cooler than air on the ground. Therefore, first, in the air heat exchanger 6, the sensible heat portion (including a part of the latent heat portion) of the compressed refrigerant can be radiated to lower the temperature of the refrigerant, and further, the underground heat heat exchanger 7 In step 1, the latent heat portion of the compressed refrigerant can be radiated to further reduce the temperature of the refrigerant. In this way, the compressed refrigerant can be dissipated in two stages in the order of the air heat exchanger 6 and the underground heat exchanger 7, respectively, and the temperature of the refrigerant can be sufficiently lowered to improve COP. be able to. In the underground heat exchanger 7, it is only necessary to dissipate the latent heat portion of the refrigerant radiated by the air heat exchanger 6, so that the heat exchange amount in the underground heat exchanger 7 is not required to be so large. . Therefore, the excavation cost can be reduced without arranging the embedded heat exchanger 12 to a deeper position.

膨張弁3で膨張後の冷媒は、空調用媒体熱交換器8を通過して空調用媒体熱交換器8を蒸発器4として機能させる。空調用媒体熱交換器8では、膨張後の冷媒が空調用媒体(例えば水)から吸熱して空調用媒体を冷水とする。冷水とされた空調用媒体は、冷房端末等に供給されて冷房に用いられる。空調用媒体熱交換器8を通過後の冷媒は圧縮機1に戻される。   The refrigerant expanded by the expansion valve 3 passes through the air conditioning medium heat exchanger 8 and causes the air conditioning medium heat exchanger 8 to function as the evaporator 4. In the air-conditioning medium heat exchanger 8, the expanded refrigerant absorbs heat from the air-conditioning medium (for example, water) and turns the air-conditioning medium into cold water. The air conditioning medium in the form of cold water is supplied to a cooling terminal or the like and used for cooling. The refrigerant after passing through the air conditioning medium heat exchanger 8 is returned to the compressor 1.

この圧縮式ヒートポンプ装置におけるT(温度)−S(エントロピ)線図を図2に示す。
この圧縮式ヒートポンプ装置では、圧縮機1により冷媒を断熱圧縮する圧縮過程(A→B)を行ったのち、凝縮器2により冷媒を等圧冷却する凝縮過程(B→B’→C)を行う。次に、膨張弁3により冷媒を等エンタルピー膨張させる膨張過程(C→D)を行ったのち、蒸発器4により冷媒を等圧加熱する蒸発過程(D→A)を行う。
凝縮過程(B→B’→C)では、空気熱交換器6により冷媒が等圧冷却されて冷媒の温度が図中B’の付近まで低下し、地中熱熱交換器7により等圧冷却されてさらに冷媒の温度が低下される(B→B’→C)。空気熱交換器6及び地中熱熱交換器7の順に夫々で圧縮後の冷媒を2段階で放熱させる凝縮過程を行うことにより、凝縮過程において冷媒の温度を十分に低下させることができ、COPの向上を図ることができる。また、地中熱熱交換器7においては、空気熱交換器6により図中B’の付近まで温度が低下された冷媒を凝縮させてさらに温度を低下させるだけでよい。したがって、地中熱熱交換器7において要求される冷媒と地中熱との熱交換量を低減することができ、埋設熱交換器12をより深い位置まで配設させなくてもよく、掘削コストの低減を図ることができる。
また、冷媒が非共沸混合媒体であるので、凝縮過程(B’→C)において冷媒の温度が低下する。したがって、地中熱熱交換器7において要求される冷媒と地中熱との熱交換量をさらに低減することができる。
A T (temperature) -S (entropy) diagram in this compression heat pump apparatus is shown in FIG.
In this compression heat pump apparatus, after performing a compression process (A → B) in which the refrigerant is adiabatically compressed by the compressor 1, a condensation process (B → B ′ → C) in which the refrigerant is cooled at an equal pressure by the condenser 2 is performed. . Next, after performing an expansion process (C → D) in which the refrigerant is expanded in an enthalpy manner by the expansion valve 3, an evaporation process (D → A) in which the refrigerant is heated at an equal pressure by the evaporator 4 is performed.
In the condensation process (B → B ′ → C), the refrigerant is cooled at the same pressure by the air heat exchanger 6, and the temperature of the refrigerant is lowered to the vicinity of B ′ in the figure, and is cooled by the underground heat exchanger 7. Then, the temperature of the refrigerant is further lowered (B → B ′ → C). By performing a condensation process in which the compressed refrigerant releases heat in two stages in the order of the air heat exchanger 6 and the underground heat exchanger 7, the temperature of the refrigerant can be sufficiently reduced in the condensation process. Can be improved. Further, in the underground heat exchanger 7, it is only necessary to further reduce the temperature by condensing the refrigerant whose temperature has been lowered to the vicinity of B ′ in the figure by the air heat exchanger 6. Therefore, the amount of heat exchange between the refrigerant and the underground heat required in the underground heat exchanger 7 can be reduced, and the embedded heat exchanger 12 does not have to be disposed deeper, and the excavation cost is reduced. Can be reduced.
Further, since the refrigerant is a non-azeotropic mixture medium, the temperature of the refrigerant decreases in the condensation process (B ′ → C). Therefore, the amount of heat exchange between the refrigerant and the underground heat required in the underground heat heat exchanger 7 can be further reduced.

〔第2実施形態〕
この第2実施形態における圧縮式ヒートポンプ装置では、図3に示すように、冷媒回路5における冷媒の循環状態を冷房状態と暖房状態とに切替自在な第1切替手段18が設けられている。
第1切替手段18は、冷房状態において、図3(a)に示すように、圧縮機1で圧縮後の冷媒を空気熱交換器6と地中熱熱交換器7との順に夫々を通過させて、空気熱交換器6及び地中熱熱交換器7を凝縮器2として機能させ、且つ、膨張弁3で膨張後の冷媒を空調用媒体熱交換器8を通過させて、空調用媒体熱交換器8を蒸発器4として機能させる。
また、第1切替手段18は、暖房状態において、図3(b)に示すように、圧縮機1で圧縮後の冷媒を空調用媒体熱交換器8を通過させて、空調用媒体熱交換器8を凝縮器2として機能させ、且つ、膨張弁3で膨張後の冷媒を空気熱交換器6と地中熱熱交換器7との順に夫々を通過させて、空気熱交換器6及び地中熱熱交換器7を蒸発器4として機能させる。
[Second Embodiment]
In the compression heat pump apparatus according to the second embodiment, as shown in FIG. 3, first switching means 18 is provided that can switch the circulation state of the refrigerant in the refrigerant circuit 5 between a cooling state and a heating state.
As shown in FIG. 3A, the first switching means 18 allows the refrigerant compressed by the compressor 1 to pass through the air heat exchanger 6 and the underground heat heat exchanger 7 in this order in the cooling state. Then, the air heat exchanger 6 and the underground heat heat exchanger 7 function as the condenser 2 and the refrigerant expanded by the expansion valve 3 passes through the air conditioning medium heat exchanger 8 so that the air conditioning medium heat The exchanger 8 functions as the evaporator 4.
Moreover, the 1st switching means 18 passes the refrigerant | coolant after compression with the compressor 1 through the air-conditioning medium heat exchanger 8 in a heating state, as shown in FIG.3 (b), and is an air-conditioning medium heat exchanger. 8 functions as the condenser 2 and the refrigerant expanded by the expansion valve 3 is passed through the air heat exchanger 6 and the underground heat exchanger 7 in this order, and the air heat exchanger 6 and the underground The heat heat exchanger 7 is caused to function as the evaporator 4.

冷媒回路5には、4つの流路の接続状態を切替自在な第1四方弁19、及び、4つの流路の接続状態を切替自在な第2四方弁20が設けられている。第1切替手段18は、第1四方弁19及び第2四方弁20から構成されている。第1切替手段18は、第1四方弁19及び第2四方弁20を90度回転させることにより、冷房状態と暖房状態とに切り替えるように構成されている。   The refrigerant circuit 5 is provided with a first four-way valve 19 capable of switching the connection state of the four flow paths and a second four-way valve 20 capable of switching the connection state of the four flow paths. The first switching means 18 includes a first four-way valve 19 and a second four-way valve 20. The first switching means 18 is configured to switch between the cooling state and the heating state by rotating the first four-way valve 19 and the second four-way valve 20 by 90 degrees.

また、冷媒回路5には、冷媒の循環方向において、液分貯留部9と膨張弁3と逆止弁21との順に並べたものを1組として、並列状態となるように2組設けている。各組における逆止弁21は、もう1つの組の逆止弁21と冷媒の通流を許容する方向が反対側となるように設けられている。   In the refrigerant circuit 5, two sets are provided so that the liquid storage unit 9, the expansion valve 3, and the check valve 21 are arranged in this order in the refrigerant circulation direction, and are set in parallel. . The check valve 21 in each group is provided so that the direction allowing the refrigerant flow to the other check valve 21 is on the opposite side.

運転制御装置17は、第1切替手段18を冷房状態に切り替える冷房運転と、第1切替手段18を暖房状態に切り替える暖房運転とを択一的に行うように構成されている。運転制御手段が運転制御装置17にて構成されている。冷房運転(図3(a)参照)については、上記第1実施形態における冷房運転と同様であるので、以下、図3(b)に基づいて暖房運転についてのみ説明する。   The operation control device 17 is configured to selectively perform a cooling operation in which the first switching unit 18 is switched to the cooling state and a heating operation in which the first switching unit 18 is switched to the heating state. The operation control means is configured by the operation control device 17. Since the cooling operation (see FIG. 3A) is the same as the cooling operation in the first embodiment, only the heating operation will be described below based on FIG. 3B.

運転制御装置17は、暖房運転を行うに当り、凝縮器2において要求される放熱量に相当する暖房負荷が設定負荷未満となる場合には、バイパス切替手段14をバイパス状態(図中一点鎖線矢印で示す)に切り替えるとともに、地中循環水ポンプ13を作動させないように構成されている。運転制御装置17は、暖房運転を行うに当り、暖房負荷が設定負荷以上となる場合には、バイパス切替手段14を非バイパス状態に切り替えるとともに、地中循環水ポンプ13を作動させるように構成されている。
ちなみに、冷房運転を行う際にも、上記第1実施形態と同様に、運転制御装置17は、冷房負荷が設定負荷未満であるか否かによって、バイパス切替手段14をバイパス状態と非バイパス状態とに切り替えるようにしている。また、運転制御装置17は、暖房運転を行うに当り、外気温度が設定温度以上となる場合に、バイパス切替手段14をバイパス状態に切り替え、且つ、外気温度が設定温度未満となる場合に、バイパス切替手段14を非バイパス状態に切り替えることもできる。
When the heating control corresponding to the amount of heat radiation required in the condenser 2 is less than the set load when performing the heating operation, the operation control device 17 sets the bypass switching means 14 in the bypass state (the dashed line arrow in the figure). And the underground circulating water pump 13 is not operated. The operation control device 17 is configured to switch the bypass switching unit 14 to the non-bypass state and to operate the underground circulating water pump 13 when the heating load is equal to or higher than the set load when performing the heating operation. ing.
Incidentally, when performing the cooling operation, the operation control device 17 switches the bypass switching unit 14 between the bypass state and the non-bypass state depending on whether the cooling load is less than the set load, as in the first embodiment. To switch to. In addition, when performing the heating operation, the operation control device 17 switches the bypass switching unit 14 to the bypass state when the outside air temperature is equal to or higher than the set temperature, and bypasses when the outside air temperature is less than the set temperature. The switching means 14 can be switched to a non-bypass state.

バイパス切替手段14は、第1切替手段18を暖房状態に切り替えているときに、地中熱熱交換器7をバイパスさせて冷媒を循環させるバイパス状態と地中熱熱交換器7を通過させて冷媒を循環させる非バイパス状態とに冷媒の循環状態を切替自在に構成されている。このようにして、バイパス切替手段14が、第1切替手段18を暖房状態に切り替えているときにバイパス状態と非バイパス状態とに切替自在な暖房バイパス切替手段と、切替手段18を冷房状態に切り替えているときにバイパス状態と非バイパス状態とに切替自在なバイパス切替手段とを兼用するように構成されている。   When the first switching unit 18 is switched to the heating state, the bypass switching unit 14 bypasses the underground heat exchanger 7 and causes the refrigerant to circulate and the bypass heat exchanger 7 to pass through. The refrigerant circulation state can be switched to a non-bypass state in which the refrigerant is circulated. Thus, when the bypass switching means 14 is switching the first switching means 18 to the heating state, the heating bypass switching means can be switched between the bypass state and the non-bypass state, and the switching means 18 is switched to the cooling state. In this case, it is configured to also serve as a bypass switching means that can be switched between a bypass state and a non-bypass state.

バイパス切替手段14を非バイパス状態に切り替えるとともに、地中循環水ポンプ13を作動させた冷房運転では、圧縮機1で圧縮後の冷媒が空調用媒体熱交換器8を通過して空調用媒体熱交換器8を凝縮器2として機能させる。空調用媒体熱交換器8では、膨張後の冷媒が空調用媒体(例えば水)を加熱して空調用媒体を温水とする。温水とされた空調用媒体は、暖房端末等に供給されて暖房に用いられる。   In the cooling operation in which the bypass switching means 14 is switched to the non-bypass state and the underground circulating water pump 13 is operated, the refrigerant compressed in the compressor 1 passes through the air conditioning medium heat exchanger 8 and passes through the air conditioning medium heat. The exchanger 8 is caused to function as the condenser 2. In the air conditioning medium heat exchanger 8, the expanded refrigerant heats the air conditioning medium (for example, water) to make the air conditioning medium hot water. The medium for air conditioning made into warm water is supplied to a heating terminal etc. and used for heating.

膨張弁3で膨張後の冷媒は、空気熱交換器6と地中熱熱交換器7との順に夫々を通過して空気熱交換器6及び地中熱熱交換器7を蒸発器4として機能させる。暖房運転を行う冬季等では、地下の地中熱の方が地上の空気よりも高温となっている。したがって、まず、空気熱交換器6において膨張後の冷媒を低温状態で吸熱させて冷媒の温度を上昇させることができ、さらに、地中熱熱交換器7において膨張後の冷媒を高温状態で吸熱させて冷媒の温度をさらに上昇させることができる。このように、空気熱交換器6と地中熱熱交換器7との順に夫々において膨張後の冷媒を2段階で吸熱させる蒸発過程を行うことができ、冷媒の温度を十分に上昇させてCOPの向上を図ることができる。地中熱熱交換器7では、空気熱交換器6にて吸熱された冷媒を高温状態で蒸発させるだけでよいので、地中熱熱交換器7における熱交換量はそれほど大きなものが求められない。したがって、埋設熱交換器12をより深い位置まで配設させなくてもよく、掘削コストの低減を図ることができる。
また、冷媒が非共沸混合媒体であるので、図2のT−S線図に示すように、蒸発過程(D→A)において冷媒の温度が上昇する。したがって、地中熱熱交換器7において要求される冷媒と地中熱との熱交換量を低減することができる。
The refrigerant expanded by the expansion valve 3 passes through the air heat exchanger 6 and the underground heat exchanger 7 in this order, and the air heat exchanger 6 and the underground heat exchanger 7 function as the evaporator 4. Let In the winter season when heating operation is performed, underground underground heat is higher than air on the ground. Therefore, first, the expanded refrigerant can absorb heat at a low temperature in the air heat exchanger 6 to increase the temperature of the refrigerant. Further, the underground heat exchanger 7 can absorb the expanded refrigerant at a high temperature. Thus, the temperature of the refrigerant can be further increased. In this way, the evaporation process in which the expanded refrigerant absorbs heat in two stages can be performed in the order of the air heat exchanger 6 and the underground heat exchanger 7, respectively. Can be improved. In the underground heat exchanger 7, it is only necessary to evaporate the refrigerant absorbed in the air heat exchanger 6 at a high temperature, so that the heat exchange amount in the underground heat exchanger 7 is not required to be so large. . Therefore, it is not necessary to dispose the embedded heat exchanger 12 to a deeper position, and the excavation cost can be reduced.
Further, since the refrigerant is a non-azeotropic mixture medium, the temperature of the refrigerant rises in the evaporation process (D → A) as shown in the TS diagram of FIG. Therefore, the amount of heat exchange between the refrigerant and the underground heat required in the underground heat exchanger 7 can be reduced.

〔第3実施形態〕
この第3実施形態における圧縮式ヒートポンプ装置では、図4及び図5に示すように、圧縮機1がエンジン22により駆動されるように構成されている。圧縮機1は、エンジン22の駆動力がベルト22aで伝達されて回転駆動するように設けられている。
冷媒回路5には、冷媒の熱交換対象をエンジン22の排熱を回収した排熱回収流体(例えば冷却水)とする排熱熱交換器23が設けられている。排熱回収流体が、冷却水循環ポンプ27の作動により冷却水循環路28にてエンジン22と排熱熱交換器23との間で循環される。排熱回収流体は、エンジン22本体の排熱を回収することに加えて、エンジン22の燃焼排ガスとの熱交換によりエンジン22の燃焼排ガスが有する熱をも回収するように構成されている。図示は省略するが、冷却水循環路28には、放熱器(例えばラジエータ)が設けられ、この放熱器において排熱回収流体の余剰な熱を放熱させるように構成されている。
[Third Embodiment]
The compression heat pump apparatus according to the third embodiment is configured such that the compressor 1 is driven by an engine 22 as shown in FIGS. 4 and 5. The compressor 1 is provided so that the driving force of the engine 22 is transmitted by the belt 22a and is driven to rotate.
The refrigerant circuit 5 is provided with an exhaust heat exchanger 23 that uses an exhaust heat recovery fluid (for example, cooling water) from which the exhaust heat of the engine 22 is recovered as a heat exchange target of the refrigerant. The exhaust heat recovery fluid is circulated between the engine 22 and the exhaust heat exchanger 23 in the coolant circulation path 28 by the operation of the coolant circulation pump 27. The exhaust heat recovery fluid is configured to recover the heat of the combustion exhaust gas of the engine 22 through heat exchange with the combustion exhaust gas of the engine 22 in addition to recovering the exhaust heat of the main body of the engine 22. Although illustration is omitted, the cooling water circulation path 28 is provided with a radiator (for example, a radiator), and the radiator is configured to radiate excess heat of the exhaust heat recovery fluid.

冷媒回路5において、空気熱交換器6と排熱熱交換器23とが並列状態で設けられ且つ空気熱交換器6及び排熱熱交換器23に対して地中熱熱交換器7が直列状態で設けられている。
冷媒回路5における冷媒の循環状態を冷房状態と暖房状態とに切替自在な第2切替手段24が設けられている。第2切替手段24は、冷房状態において、図4に示すように、圧縮機1で圧縮後の冷媒を空気熱交換器6と地中熱熱交換器7との順に夫々を通過させて、空気熱交換器6及び地中熱熱交換器7を凝縮器2として機能させ、且つ、膨張弁3で膨張後の冷媒を空調用媒体熱交換器8を通過させて、空調用媒体熱交換器8を蒸発器4として機能させる。また、第2切替手段24は、暖房状態において、図5に示すように、圧縮機1で圧縮後の冷媒を空調用媒体熱交換器8を通過させて、空調用媒体熱交換器8を凝縮器2として機能させ、且つ、膨張弁3で膨張後の冷媒を地中熱熱交換器7と排熱熱交換器23との順に夫々を通過させて、地中熱熱交換器7及び排熱熱交換器23を蒸発器4として機能させる。
In the refrigerant circuit 5, the air heat exchanger 6 and the exhaust heat exchanger 23 are provided in parallel, and the underground heat exchanger 7 is in series with the air heat exchanger 6 and the exhaust heat exchanger 23. Is provided.
Second switching means 24 is provided that can switch the circulation state of the refrigerant in the refrigerant circuit 5 between a cooling state and a heating state. As shown in FIG. 4, the second switching unit 24 allows the refrigerant compressed by the compressor 1 to pass through the air heat exchanger 6 and the underground heat exchanger 7 in this order, as shown in FIG. The heat exchanger 6 and the underground heat heat exchanger 7 function as the condenser 2, and the refrigerant expanded by the expansion valve 3 is passed through the air conditioning medium heat exchanger 8, so that the air conditioning medium heat exchanger 8 To function as the evaporator 4. Further, in the heating state, the second switching unit 24 condenses the air-conditioning medium heat exchanger 8 by passing the refrigerant compressed by the compressor 1 through the air-conditioning medium heat exchanger 8, as shown in FIG. The refrigerant expanded in the expansion valve 3 is allowed to pass through the underground heat heat exchanger 7 and the exhaust heat exchanger 23 in this order, and the underground heat heat exchanger 7 and the exhaust heat are passed through. The heat exchanger 23 functions as the evaporator 4.

冷媒回路5には、4つの流路の接続状態を切替自在な第3四方弁25、空気熱交換器6に冷媒を供給させる状態と排熱熱交換器23に冷媒を供給させる状態とに切替自在な第2三方弁26が設けられている。
第2切替手段24は、第3四方弁25と第2三方弁26とから構成されている。第2切替手段24は、第3四方弁25と第2三方弁26との切替状態を制御することにより、冷房状態と暖房状態とに切り替えるように構成されている。
In the refrigerant circuit 5, the connection state of the four flow paths is switched between a state where the refrigerant is supplied to the third four-way valve 25, the air heat exchanger 6 and a state where the refrigerant is supplied to the exhaust heat exchanger 23. A free second three-way valve 26 is provided.
The second switching means 24 includes a third four-way valve 25 and a second three-way valve 26. The second switching means 24 is configured to switch between the cooling state and the heating state by controlling the switching state between the third four-way valve 25 and the second three-way valve 26.

運転制御装置17は、第2切替手段24を冷房状態に切り替えるとともに、地中循環水ポンプ13、冷却水循環ポンプ27の夫々を作動させる冷房運転と、第2切替手段24を暖房状態に切り替えるとともに、地中循環水ポンプ13、冷却水循環ポンプ27の夫々を作動させる暖房運転とを択一的に行うように構成されている。   The operation control device 17 switches the second switching means 24 to the cooling state, switches the cooling operation to operate each of the underground circulating water pump 13 and the cooling water circulation pump 27, and switches the second switching means 24 to the heating state. The heating operation for operating each of the underground circulating water pump 13 and the cooling water circulating pump 27 is alternatively performed.

冷房運転(図4参照)については、上記第1実施形態における冷房運転と同様であるので、以下、図5に基づいて暖房運転についてのみ説明する。
圧縮機1で圧縮後の冷媒が空調用媒体熱交換器8を通過して空調用媒体熱交換器8を凝縮器2として機能させる。空調用媒体熱交換器8では、膨張後の冷媒が空調用媒体(例えば水)を加熱して空調用媒体を温水とする。温水とされた空調用媒体は、暖房端末等に供給されて暖房に用いられる。
Since the cooling operation (see FIG. 4) is the same as the cooling operation in the first embodiment, only the heating operation will be described below based on FIG.
The refrigerant compressed by the compressor 1 passes through the air conditioning medium heat exchanger 8 and causes the air conditioning medium heat exchanger 8 to function as the condenser 2. In the air conditioning medium heat exchanger 8, the expanded refrigerant heats the air conditioning medium (for example, water) to make the air conditioning medium hot water. The medium for air conditioning made into warm water is supplied to a heating terminal etc. and used for heating.

膨張弁3で膨張後の冷媒は、空気熱交換器6と排熱熱交換器23との順に夫々を通過して空気熱交換器6及び排熱熱交換器23を蒸発器4として機能させる。排熱回収流体は、エンジン22の排熱を回収しているので、排熱回収流体の方が地下の地中熱よりも高温となっている。したがって、まず、空気熱交換器6において膨張後の冷媒を吸熱させて冷媒の温度を上昇させることができ、さらに、排熱熱交換器23において膨張後の冷媒を吸熱させて冷媒の温度をさらに上昇させることができる。このように、空気熱交換器6と排熱熱交換器23との順に夫々において膨張後の冷媒を2段階で吸熱させることができ、冷媒の温度を十分に上昇させてCOPの向上を図ることができる。しかも、地中熱熱交換器7を通過した冷媒を排熱熱交換器23においても吸熱させて温度が上昇するので、地中熱熱交換器7における熱交換量はそれほど大きなものが求められない。したがって、埋設熱交換器12をより深い位置まで配設させなくてもよく、掘削コストの低減を図ることができる。   The refrigerant expanded by the expansion valve 3 passes through the air heat exchanger 6 and the exhaust heat exchanger 23 in this order, and causes the air heat exchanger 6 and the exhaust heat exchanger 23 to function as the evaporator 4. Since the exhaust heat recovery fluid recovers the exhaust heat of the engine 22, the exhaust heat recovery fluid has a higher temperature than the underground underground heat. Therefore, first, the air heat exchanger 6 can absorb the expanded refrigerant to increase the temperature of the refrigerant, and the exhaust heat exchanger 23 can absorb the expanded refrigerant to further increase the temperature of the refrigerant. Can be raised. In this way, the expanded refrigerant can absorb heat in two stages in the order of the air heat exchanger 6 and the exhaust heat exchanger 23, and the COP can be improved by sufficiently raising the temperature of the refrigerant. Can do. Moreover, since the refrigerant that has passed through the underground heat exchanger 7 also absorbs heat in the exhaust heat exchanger 23 and the temperature rises, a large amount of heat exchange in the underground heat exchanger 7 is not required. . Therefore, it is not necessary to dispose the embedded heat exchanger 12 to a deeper position, and the excavation cost can be reduced.

〔第4実施形態〕
この第4実施形態における圧縮式ヒートポンプ装置では、図6及び図7に示すように、冷媒回路5において、冷媒が空気熱交換器6と地中熱熱交換器7と排熱熱交換器23との順に夫々を通過するように、空気熱交換器6と地中熱熱交換器7と排熱熱交換器23とが直列状態で設けられている。
[Fourth Embodiment]
In the compression heat pump device according to the fourth embodiment, as shown in FIGS. 6 and 7, in the refrigerant circuit 5, the refrigerant is the air heat exchanger 6, the underground heat exchanger 7, and the exhaust heat exchanger 23. The air heat exchanger 6, the underground heat heat exchanger 7, and the exhaust heat exchanger 23 are provided in series so as to pass through each in this order.

冷媒回路5における冷媒の循環状態を冷房状態と暖房状態とに切替自在な第2切替手段29が設けられている。
第2切替手段29は、冷房状態において、図6に示すように、圧縮機1で圧縮後の冷媒を空気熱交換器6と地中熱熱交換器7との順に夫々を通過させて、空気熱交換器6及び地中熱熱交換器7を凝縮器2として機能させ、且つ、膨張弁3で膨張後の冷媒を空調用媒体熱交換器8を通過させて、空調用媒体熱交換器8を蒸発器4として機能させる。
また、第2切替手段29は、暖房状態において、図7に示すように、圧縮機1で圧縮後の冷媒を空調用媒体熱交換器8を通過させて、空調用媒体熱交換器8を凝縮器2として機能させ、且つ、膨張弁3で膨張後の冷媒を空気熱交換器6と地中熱熱交換器7と排熱熱交換器23との順に夫々を通過させて、空気熱交換器6と地中熱熱交換器7と排熱熱交換器23との夫々を蒸発器4として機能させる。
Second switching means 29 is provided that can switch the circulation state of the refrigerant in the refrigerant circuit 5 between a cooling state and a heating state.
In the cooling state, the second switching unit 29 allows the refrigerant compressed by the compressor 1 to pass through the air heat exchanger 6 and the underground heat exchanger 7 in this order, as shown in FIG. The heat exchanger 6 and the underground heat heat exchanger 7 function as the condenser 2, and the refrigerant expanded by the expansion valve 3 is passed through the air conditioning medium heat exchanger 8, so that the air conditioning medium heat exchanger 8 To function as the evaporator 4.
In the heating state, the second switching unit 29 condenses the air-conditioning medium heat exchanger 8 by passing the refrigerant compressed by the compressor 1 through the air-conditioning medium heat exchanger 8, as shown in FIG. The air heat exchanger is made to function as an air conditioner 2 and the refrigerant expanded by the expansion valve 3 is passed through the air heat exchanger 6, the ground heat heat exchanger 7 and the exhaust heat heat exchanger 23 in this order. 6, the underground heat heat exchanger 7 and the exhaust heat exchanger 23 are caused to function as the evaporator 4.

冷媒回路5には、上記第2実施形態と同様に(図3参照)、第1四方弁19及び第2四方弁20が設けられている。また、冷媒回路5には、冷媒回路5から分岐して排熱熱交換器23をバイパスしたのち冷媒回路5に合流する第2バイパス路30、及び、冷媒回路5における第2バイパス路29の分岐箇所に配置された第3三方弁31が設けられている。
第2切替手段29は、第1四方弁19、第2四方弁20、第2バイパス路30、及び、第3三方弁31から構成されている。
As in the second embodiment (see FIG. 3), the refrigerant circuit 5 is provided with a first four-way valve 19 and a second four-way valve 20. Further, the refrigerant circuit 5 branches from the refrigerant circuit 5 and bypasses the exhaust heat exchanger 23 and then merges with the refrigerant circuit 5. The second bypass path 29 in the refrigerant circuit 5 branches. A third three-way valve 31 is provided at the location.
The second switching means 29 includes a first four-way valve 19, a second four-way valve 20, a second bypass passage 30, and a third three-way valve 31.

第2切替手段29は、冷房状態において、図6に示すように、地中熱熱交換器7を通過後の冷媒を第2バイパス路30に通流させるように第3三方弁31を切り替えることにより、圧縮機1で圧縮後の冷媒を空気熱交換器6と地中熱熱交換器7との順に夫々を通過させて空気熱交換器6及び地中熱熱交換器7を凝縮器2として機能させている。
また、第2切替手段29は、暖房状態において、図7に示すように、地中熱熱交換器7を通過後の冷媒を排熱熱交換器23を通過させるように第3三方弁31を切り替えることにより、膨張弁3で膨張後の冷媒を空気熱交換器6と地中熱熱交換器7と排熱熱交換器23との順に夫々を通過させて空気熱交換器6と地中熱熱交換器7と排熱熱交換器23との夫々を蒸発器4として機能させている。
In the cooling state, the second switching unit 29 switches the third three-way valve 31 so that the refrigerant that has passed through the underground heat exchanger 7 flows through the second bypass passage 30 as shown in FIG. Thus, the refrigerant compressed in the compressor 1 is passed through the air heat exchanger 6 and the underground heat heat exchanger 7 in this order, and the air heat exchanger 6 and the underground heat heat exchanger 7 are used as the condenser 2. It is functioning.
Further, the second switching means 29 sets the third three-way valve 31 so that the refrigerant after passing through the underground heat exchanger 7 passes through the exhaust heat exchanger 23 as shown in FIG. 7 in the heating state. By switching, the refrigerant expanded by the expansion valve 3 is passed through the air heat exchanger 6, the underground heat exchanger 7, and the exhaust heat exchanger 23 in this order, and the air heat exchanger 6 and the underground heat. Each of the heat exchanger 7 and the exhaust heat exchanger 23 functions as an evaporator 4.

〔別実施形態〕
(1)上記第1〜第4実施形態では、冷媒を非共沸混合媒体としているが、単一媒体とすることもできる。また、上記第1〜第4実施形態において、外気温度とは、乾球温度もしくは湿球温度のいずれかを意味する。
[Another embodiment]
(1) In the said 1st-4th embodiment, although the refrigerant | coolant is made into the non-azeotropic mixed medium, it can also be made into a single medium. Moreover, in the said 1st-4th embodiment, outside temperature means either dry bulb temperature or wet bulb temperature.

(2)上記第1〜第4実施形態では、地中熱熱交換器7における冷媒の熱交換対象を地中熱とするために、地中に埋設した埋設熱交換器12と地中熱熱交換器7との間で地中循環水を循環させているが、地中熱熱交換器7における冷媒の熱交換対象を地中熱とするための構成は適宜変更が可能である。
また、埋設熱交換器12については、U字状の配管にて構成するものに限らず、各種の熱交換器を適応することができる。
(2) In the first to fourth embodiments, in order to set the heat exchange target of the refrigerant in the underground heat exchanger 7 as the underground heat, the embedded heat exchanger 12 embedded in the underground and the underground heat heat The underground circulating water is circulated with the exchanger 7, but the configuration for changing the heat exchange target of the refrigerant in the underground heat exchanger 7 to the underground heat can be changed as appropriate.
Moreover, about the embedded heat exchanger 12, it is not restricted to what is comprised with a U-shaped piping, Various heat exchangers can be applied.

(3)上記第3及び第4実施形態において、排熱熱交換器23で冷媒と熱交換される冷却水で回収しないエンジン22の排熱は、暖房運転時に冷媒の加熱に利用することは当然できる。 (3) In the third and fourth embodiments, the exhaust heat of the engine 22 that is not recovered by the cooling water exchanged with the refrigerant in the exhaust heat exchanger 23 is naturally used for heating the refrigerant during the heating operation. it can.

本発明は、圧縮機、凝縮器、膨張部、蒸発器の順に冷媒を循環する冷媒回路を設け、地中熱を利用してCOPの向上を図りながら、地中熱を利用するための掘削コストの低減を図ることができる各種の圧縮式ヒートポンプ装置に適応することができる。   The present invention provides a refrigerant circuit for circulating a refrigerant in the order of a compressor, a condenser, an expansion unit, and an evaporator, and excavation costs for using geothermal heat while improving COP using geothermal heat. This can be applied to various types of compression heat pump devices that can reduce the above.

第1実施形態における圧縮式ヒートポンプ装置の概略図Schematic of the compression heat pump device in the first embodiment T−S線図TS diagram 第2実施形態における圧縮式ヒートポンプ装置の概略図Schematic of the compression heat pump device in the second embodiment 第3実施形態における圧縮式ヒートポンプ装置の概略図Schematic of the compression heat pump device in the third embodiment 第3実施形態における圧縮式ヒートポンプ装置の概略図Schematic of the compression heat pump device in the third embodiment 第4実施形態における圧縮式ヒートポンプ装置の概略図Schematic of the compression heat pump device in the fourth embodiment 第4実施形態における圧縮式ヒートポンプ装置の概略図Schematic of the compression heat pump device in the fourth embodiment

符号の説明Explanation of symbols

1 圧縮機
2 凝縮器
3 膨張部(膨張弁)
4 蒸発器
5 冷媒回路
6 空気熱交換器
7 地中熱熱交換器
8 空調用媒体熱交換器
14 バイパス切替手段(暖房バイパス切替手段)
17 運転制御手段(運転制御装置、バイパス切替手段)
18 第1切替手段
22 エンジン
23 排熱熱交換器
24,29 第2切替手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Expansion part (expansion valve)
4 Evaporator 5 Refrigerant Circuit 6 Air Heat Exchanger 7 Ground Heat Exchanger 8 Air Conditioning Medium Heat Exchanger 14 Bypass Switch (Heating Bypass Switch)
17 Operation control means (operation control device, bypass switching means)
18 First switching means 22 Engine 23 Waste heat exchanger 24, 29 Second switching means

Claims (8)

冷媒を圧縮する圧縮機、前記冷媒から放熱させる凝縮器、前記冷媒を膨張させる膨張部、前記冷媒に吸熱させる蒸発器の順に前記冷媒を循環する冷媒回路を設けた圧縮式ヒートポンプ装置であって、
前記冷媒の熱交換対象を地上の空気とする空気熱交換器と前記冷媒の熱交換対象を地下の地中熱とする地中熱熱交換器とが設けられ、
前記冷媒回路が、前記圧縮機で圧縮後の冷媒を前記空気熱交換器と前記地中熱熱交換器との順に夫々を通過させて、前記空気熱交換器及び前記地中熱熱交換器を前記凝縮器として機能させるように構成されている圧縮式ヒートポンプ装置。
A compressor type heat pump device provided with a refrigerant circuit for circulating the refrigerant in the order of a compressor for compressing the refrigerant, a condenser for releasing heat from the refrigerant, an expansion unit for expanding the refrigerant, and an evaporator for absorbing heat to the refrigerant,
An air heat exchanger that uses ground air as a heat exchange target of the refrigerant and a geothermal heat exchanger that uses underground heat as a heat exchange target of the refrigerant are provided,
The refrigerant circuit allows the refrigerant compressed by the compressor to pass through the air heat exchanger and the underground heat exchanger in this order, and the air heat exchanger and the underground heat exchanger A compression heat pump device configured to function as the condenser.
前記地中熱熱交換器をバイパスさせて前記冷媒を循環させるバイパス状態と前記地中熱熱交換器を通過させて前記冷媒を循環させる非バイパス状態とに前記冷媒回路における冷媒の循環状態を切替自在なバイパス切替手段が設けられ、
冷凍負荷が設定負荷未満或いは外気温度が設定温度未満となる場合には、前記バイパス切替手段を前記バイパス状態に切り替え、且つ、冷凍負荷が設定負荷以上或いは外気温度が設定温度以上となる場合には、前記バイパス切替手段を前記非バイパス状態に切り替えるバイパス切替制御手段が設けられている請求項1に記載の圧縮式ヒートポンプ装置。
The refrigerant circulation state in the refrigerant circuit is switched between a bypass state in which the refrigerant is circulated by bypassing the underground heat exchanger and a non-bypass state in which the refrigerant is circulated through the underground heat exchanger. Flexible bypass switching means is provided,
When the refrigeration load is less than the set load or the outside air temperature is less than the set temperature, the bypass switching means is switched to the bypass state, and the refrigeration load is greater than the set load or the outside air temperature is greater than the set temperature. The compression heat pump apparatus according to claim 1, further comprising bypass switching control means for switching the bypass switching means to the non-bypass state.
前記冷媒の熱交換対象を空調用媒体とする空調用媒体熱交換器と、
前記圧縮機で圧縮後の冷媒を前記空気熱交換器と前記地中熱熱交換器との順に夫々を通過させて前記空気熱交換器及び前記地中熱熱交換器を前記凝縮器として機能させ且つ前記膨張部で膨張後の冷媒を前記空調用媒体熱交換器を通過させて前記空調用媒体熱交換器を前記蒸発器として機能させる冷房状態と、前記圧縮機で圧縮後の冷媒を前記空調用媒体熱交換器を通過させて前記空調用媒体熱交換器を前記凝縮器として機能させ且つ前記膨張部で膨張後の冷媒を前記空気熱交換器と前記地中熱熱交換器との順に夫々を通過させて前記空気熱交換器及び前記地中熱熱交換器を前記蒸発器として機能させる暖房状態とに、前記冷媒回路における冷媒の循環状態を切替自在な第1切替手段とが設けられている請求項1又は2に記載の圧縮式ヒートポンプ装置。
An air conditioning medium heat exchanger in which the refrigerant heat exchange target is an air conditioning medium;
The refrigerant compressed by the compressor is allowed to pass through the air heat exchanger and the underground heat exchanger in this order, so that the air heat exchanger and the underground heat exchanger function as the condenser. And a cooling state in which the refrigerant after expansion in the expansion section passes through the air conditioning medium heat exchanger and the air conditioning medium heat exchanger functions as the evaporator, and the refrigerant compressed by the compressor is air-conditioned. The medium heat exchanger for air conditioning is made to function as the condenser by passing through the medium heat exchanger, and the refrigerant after being expanded in the expansion section is in the order of the air heat exchanger and the underground heat heat exchanger, respectively. And a first switching means capable of switching a refrigerant circulation state in the refrigerant circuit to a heating state in which the air heat exchanger and the underground heat exchanger function as the evaporator. The compression heat pop according to claim 1 or 2. Flop arrangement.
前記第1切替手段を前記暖房状態に切り替えているときに、前記地中熱熱交換器をバイパスさせて前記冷媒を循環させるバイパス状態と前記地中熱熱交換器を通過させて前記冷媒を循環させる非バイパス状態とに前記冷媒の循環状態を切替自在な暖房バイパス切替手段が設けられ、
前記第1切替手段を前記冷房状態に切り替える冷房運転と前記第1切替手段を前記暖房状態に切り替える暖房運転とを択一的に行うとともに、前記暖房運転を行うに当り、暖房負荷が設定負荷未満或いは外気温度が設定温度以上となる場合には前記暖房バイパス切替手段を前記バイパス状態に切り替え、且つ、暖房負荷が設定負荷以上或いは外気温度が設定温度未満となる場合には前記暖房バイパス切替手段を前記非バイパス状態に切り替える運転制御手段が設けられている請求項3に記載の圧縮式ヒートポンプ装置。
When the first switching means is switched to the heating state, the refrigerant is circulated through the bypass state in which the underground heat exchanger is bypassed and the refrigerant is circulated and the underground heat exchanger is passed. A heating bypass switching means capable of switching the circulation state of the refrigerant to a non-bypass state is provided;
The cooling operation for switching the first switching means to the cooling state and the heating operation for switching the first switching means to the heating state are performed selectively, and in performing the heating operation, the heating load is less than a set load. Alternatively, when the outside air temperature is equal to or higher than the set temperature, the heating bypass switching unit is switched to the bypass state, and when the heating load is equal to or higher than the set load or the outside air temperature is lower than the set temperature, the heating bypass switching unit is changed. The compression heat pump apparatus according to claim 3, wherein operation control means for switching to the non-bypass state is provided.
前記圧縮機が、エンジンにより駆動されるように構成され、
前記冷媒の熱交換対象を空調用媒体とする空調用媒体熱交換器と、
前記冷媒の熱交換対象を前記エンジンの排熱を回収した排熱回収流体とする排熱熱交換器と、
前記圧縮機で圧縮後の冷媒を前記空気熱交換器と前記地中熱熱交換器との順に夫々を通過させて前記空気熱交換器及び前記地中熱熱交換器を前記凝縮器として機能させ且つ前記膨張部で膨張後の冷媒を前記空調用媒体熱交換器を通過させて前記空調用媒体熱交換器を前記蒸発器として機能させる冷房状態と、前記圧縮機で圧縮後の冷媒を前記空調用媒体熱交換器を通過させて前記空調用媒体熱交換器を前記凝縮器として機能させ且つ前記膨張部で膨張後の冷媒を前記地中熱熱交換器と前記排熱熱交換器との順に夫々を通過させて前記地中熱熱交換器及び前記排熱熱交換器を前記蒸発器として機能させる暖房状態とに、前記冷媒回路における冷媒の循環状態を切替自在な第2切替手段とが設けられている請求項1又は2に記載の圧縮式ヒートポンプ装置。
The compressor is configured to be driven by an engine;
An air conditioning medium heat exchanger in which the refrigerant heat exchange target is an air conditioning medium;
An exhaust heat exchanger that uses an exhaust heat recovery fluid for recovering exhaust heat of the engine as a heat exchange target of the refrigerant;
The refrigerant compressed by the compressor is allowed to pass through the air heat exchanger and the underground heat exchanger in this order, so that the air heat exchanger and the underground heat exchanger function as the condenser. And a cooling state in which the refrigerant after expansion in the expansion section passes through the air conditioning medium heat exchanger and the air conditioning medium heat exchanger functions as the evaporator, and the refrigerant compressed by the compressor is air-conditioned. The medium heat exchanger for air conditioning is made to function as the condenser by passing through the medium heat exchanger, and the refrigerant after being expanded in the expansion section is in the order of the underground heat exchanger and the exhaust heat exchanger. There is provided a second switching means capable of switching a refrigerant circulation state in the refrigerant circuit to a heating state in which each of the underground heat exchanger and the exhaust heat exchanger functions as the evaporator. The compression heat pop according to claim 1 or 2, Flop arrangement.
前記冷媒回路において、前記空気熱交換器と前記排熱熱交換器とが並列状態で設けられ且つ前記空気熱交換器及び前記排熱熱交換器に対して前記地中熱熱交換器が直列状態で設けられている請求項5に記載の圧縮式ヒートポンプ装置。   In the refrigerant circuit, the air heat exchanger and the exhaust heat exchanger are provided in parallel and the underground heat exchanger is in series with the air heat exchanger and the exhaust heat exchanger. The compression heat pump device according to claim 5, wherein the compression heat pump device is provided. 前記第2切替手段が、前記暖房状態において、前記膨張部で膨張後の冷媒を前記空気熱交換器と前記地中熱熱交換器と前記排熱熱交換器との順に夫々を通過させ、前記空気熱交換器と前記地中熱熱交換器と前記排熱熱交換器との夫々が前記蒸発器として機能する請求項5に記載の圧縮式ヒートポンプ装置。   In the heating state, the second switching means passes the refrigerant after expansion in the expansion section in the order of the air heat exchanger, the underground heat exchanger, and the exhaust heat exchanger, The compression heat pump device according to claim 5, wherein each of an air heat exchanger, the underground heat heat exchanger, and the exhaust heat exchanger functions as the evaporator. 前記冷媒が、非共沸混合媒体である請求項1〜7の何れか1項に記載の圧縮式ヒートポンプ装置。   The compression heat pump device according to any one of claims 1 to 7, wherein the refrigerant is a non-azeotropic mixed medium.
JP2007117102A 2007-04-26 2007-04-26 Compression type heat pump device Pending JP2008275214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117102A JP2008275214A (en) 2007-04-26 2007-04-26 Compression type heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117102A JP2008275214A (en) 2007-04-26 2007-04-26 Compression type heat pump device

Publications (1)

Publication Number Publication Date
JP2008275214A true JP2008275214A (en) 2008-11-13

Family

ID=40053376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117102A Pending JP2008275214A (en) 2007-04-26 2007-04-26 Compression type heat pump device

Country Status (1)

Country Link
JP (1) JP2008275214A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260449A (en) * 2009-05-07 2010-11-18 Nippon Soken Inc Air conditioner for vehicle
WO2011038105A2 (en) 2009-09-28 2011-03-31 Carrier Corporation Liquid-cooled heat exchanger in a vapor compression refrigeration system
CN102116166A (en) * 2011-02-21 2011-07-06 武汉星田热环境控制技术有限公司 Vacuum ice-making, refrigeration and cooling system for mine shaft
JP2014187968A (en) * 2013-03-28 2014-10-06 Science Kk Production facility for farm and marine products
GB2521369A (en) * 2013-12-17 2015-06-24 Greenfield Master Ipco Ltd Controlling heat exchange from refrigeration system to geothermal system
CN105299955A (en) * 2015-11-30 2016-02-03 王全龄 Heat pump system for automatically optimizing evaporation temperature of compressor
WO2017014345A1 (en) * 2015-07-17 2017-01-26 이완호 System for recycling waste heat of hot waste water using hybrid cooling/heating device
JP2018132269A (en) * 2017-02-16 2018-08-23 国立大学法人佐賀大学 Heat pump system
CN110230864A (en) * 2019-06-03 2019-09-13 北京晶海科技有限公司 Air conditioner, its fresh air heat pump cycle pipeline and recuperation of heat control system and method
EP3608608A4 (en) * 2017-04-06 2020-04-01 Panasonic Intellectual Property Management Co., Ltd. Air conditioner
JP2020186868A (en) * 2019-05-15 2020-11-19 ダイキン工業株式会社 Unit for refrigerating device, heat source unit, utilization unit, and refrigerating device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513952Y2 (en) * 1971-07-22 1976-02-04
JPS594971U (en) * 1982-07-02 1984-01-13 ミサワホ−ム株式会社 heat pump
JPS59133965U (en) * 1983-02-28 1984-09-07 株式会社ボッシュオートモーティブ システム Condensing capacity adjustment device for automotive cooling systems
JPS6131866A (en) * 1984-07-23 1986-02-14 サンデン株式会社 Air-conditioning hot-water supply system
JPS61106875U (en) * 1984-12-18 1986-07-07
JPS6277564A (en) * 1985-10-01 1987-04-09 サンデン株式会社 Heat pump device
JPH04132370U (en) * 1991-05-28 1992-12-08 藤倉電線株式会社 Heat pump air conditioning system
JPH05164447A (en) * 1991-12-17 1993-06-29 Matsushita Refrig Co Ltd Cooling device for automatic vending machine
JPH05223283A (en) * 1992-02-13 1993-08-31 Daikin Ind Ltd Method and apparatus for air conditioning using humidifying liquid
JP2001289533A (en) * 2000-04-05 2001-10-19 Jmc Geothermal Engineering Co Ltd Heat pump in which geothermal energy is utilized
JP2002213838A (en) * 2001-01-18 2002-07-31 Kubota Corp Dual heat source corresponding type heat pump device and dual heat source method for heat pump device
JP2005265249A (en) * 2004-03-17 2005-09-29 Osaka Gas Co Ltd Hot-water supply/air conditioning system
JP2006125769A (en) * 2004-10-29 2006-05-18 Denso Corp Heat pump cycle device
JP2006284022A (en) * 2005-03-31 2006-10-19 Toa Tone Boring:Kk Geothermal heat pump device
JP2006300396A (en) * 2005-04-19 2006-11-02 Sanden Corp Air conditioner
JP2006349332A (en) * 2005-06-15 2006-12-28 Earth Resources:Kk Controller for heat pump
WO2007029802A1 (en) * 2005-09-09 2007-03-15 Daikin Industries, Ltd. Refrigeration device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513952Y2 (en) * 1971-07-22 1976-02-04
JPS594971U (en) * 1982-07-02 1984-01-13 ミサワホ−ム株式会社 heat pump
JPS59133965U (en) * 1983-02-28 1984-09-07 株式会社ボッシュオートモーティブ システム Condensing capacity adjustment device for automotive cooling systems
JPS6131866A (en) * 1984-07-23 1986-02-14 サンデン株式会社 Air-conditioning hot-water supply system
JPS61106875U (en) * 1984-12-18 1986-07-07
JPS6277564A (en) * 1985-10-01 1987-04-09 サンデン株式会社 Heat pump device
JPH04132370U (en) * 1991-05-28 1992-12-08 藤倉電線株式会社 Heat pump air conditioning system
JPH05164447A (en) * 1991-12-17 1993-06-29 Matsushita Refrig Co Ltd Cooling device for automatic vending machine
JPH05223283A (en) * 1992-02-13 1993-08-31 Daikin Ind Ltd Method and apparatus for air conditioning using humidifying liquid
JP2001289533A (en) * 2000-04-05 2001-10-19 Jmc Geothermal Engineering Co Ltd Heat pump in which geothermal energy is utilized
JP2002213838A (en) * 2001-01-18 2002-07-31 Kubota Corp Dual heat source corresponding type heat pump device and dual heat source method for heat pump device
JP2005265249A (en) * 2004-03-17 2005-09-29 Osaka Gas Co Ltd Hot-water supply/air conditioning system
JP2006125769A (en) * 2004-10-29 2006-05-18 Denso Corp Heat pump cycle device
JP2006284022A (en) * 2005-03-31 2006-10-19 Toa Tone Boring:Kk Geothermal heat pump device
JP2006300396A (en) * 2005-04-19 2006-11-02 Sanden Corp Air conditioner
JP2006349332A (en) * 2005-06-15 2006-12-28 Earth Resources:Kk Controller for heat pump
WO2007029802A1 (en) * 2005-09-09 2007-03-15 Daikin Industries, Ltd. Refrigeration device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260449A (en) * 2009-05-07 2010-11-18 Nippon Soken Inc Air conditioner for vehicle
WO2011038105A2 (en) 2009-09-28 2011-03-31 Carrier Corporation Liquid-cooled heat exchanger in a vapor compression refrigeration system
WO2011038105A3 (en) * 2009-09-28 2011-08-18 Carrier Corporation Liquid-cooled heat exchanger in a vapor compression refrigeration system
CN102510984A (en) * 2009-09-28 2012-06-20 开利公司 Liquid-cooled heat exchanger in a vapor compression refrigeration system
CN102116166A (en) * 2011-02-21 2011-07-06 武汉星田热环境控制技术有限公司 Vacuum ice-making, refrigeration and cooling system for mine shaft
JP2014187968A (en) * 2013-03-28 2014-10-06 Science Kk Production facility for farm and marine products
GB2521369B (en) * 2013-12-17 2017-11-01 Greenfield Master Ipco Ltd Controlling heat exchange from refrigeration system to geothermal system
GB2521369A (en) * 2013-12-17 2015-06-24 Greenfield Master Ipco Ltd Controlling heat exchange from refrigeration system to geothermal system
US10883746B2 (en) 2013-12-17 2021-01-05 Erda Master Ipco Limited Controlling heat exchange from refrigeration system to geothermal system
WO2017014345A1 (en) * 2015-07-17 2017-01-26 이완호 System for recycling waste heat of hot waste water using hybrid cooling/heating device
CN105299955A (en) * 2015-11-30 2016-02-03 王全龄 Heat pump system for automatically optimizing evaporation temperature of compressor
JP2018132269A (en) * 2017-02-16 2018-08-23 国立大学法人佐賀大学 Heat pump system
EP3608608A4 (en) * 2017-04-06 2020-04-01 Panasonic Intellectual Property Management Co., Ltd. Air conditioner
JP2020186868A (en) * 2019-05-15 2020-11-19 ダイキン工業株式会社 Unit for refrigerating device, heat source unit, utilization unit, and refrigerating device
WO2020230376A1 (en) * 2019-05-15 2020-11-19 ダイキン工業株式会社 Unit for refrigeration devices, heat source unit, utilization unit, and refrigeration device
JP7057509B2 (en) 2019-05-15 2022-04-20 ダイキン工業株式会社 Refrigeration unit, heat source unit, utilization unit, and refrigeration unit
CN110230864A (en) * 2019-06-03 2019-09-13 北京晶海科技有限公司 Air conditioner, its fresh air heat pump cycle pipeline and recuperation of heat control system and method

Similar Documents

Publication Publication Date Title
JP2008275214A (en) Compression type heat pump device
JP4782462B2 (en) Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device
JP5396246B2 (en) Air conditioner for vehicles
KR102470421B1 (en) thermal management system
CN104515323A (en) Heat pump system for vehicle
JP4953433B2 (en) Absorption heat pump system
JP2010216783A (en) Air conditioning system
JP2006313034A (en) Geothermal unit
WO2003021166A1 (en) Exhaust heat utilizing refrigeration system
JP5969268B2 (en) Geothermal heat pump device
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
KR100734904B1 (en) Heat pump system for cooling and heating
JP2006292313A (en) Geothermal unit
KR200411589Y1 (en) Heat pump system for cooling and heating
JP2016080310A (en) Cooling system
KR20060122037A (en) Air cycle for car air conditioning system
KR20100037445A (en) Air-conditioning system
KR102495460B1 (en) Cooling and heating system for electrical vehicle
JP4229881B2 (en) Heat pump system
KR20090102478A (en) Heat pump system for vehicles
JP5373959B2 (en) Air conditioner
JP5503167B2 (en) Air conditioning system
CN103868276A (en) Superconductive composite source heat pump system
KR100949888B1 (en) Geothermal heat pump system
JP2005098543A (en) Heat using device for air conditioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121004