JP6528078B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6528078B2
JP6528078B2 JP2015059008A JP2015059008A JP6528078B2 JP 6528078 B2 JP6528078 B2 JP 6528078B2 JP 2015059008 A JP2015059008 A JP 2015059008A JP 2015059008 A JP2015059008 A JP 2015059008A JP 6528078 B2 JP6528078 B2 JP 6528078B2
Authority
JP
Japan
Prior art keywords
heat exchanger
control valve
heat source
valve
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015059008A
Other languages
Japanese (ja)
Other versions
JP2016176672A (en
Inventor
川邉 義和
義和 川邉
桂司 佐藤
桂司 佐藤
広田 正宣
正宣 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015059008A priority Critical patent/JP6528078B2/en
Publication of JP2016176672A publication Critical patent/JP2016176672A/en
Application granted granted Critical
Publication of JP6528078B2 publication Critical patent/JP6528078B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷媒を用いて冷凍サイクルを構成して冷房あるいは暖房を行う空気調和機において、外気を熱源とすると共にその他の熱源を利用して性能向上を図る技術に関するものである。   The present invention relates to an air conditioner that uses a refrigerant to form a refrigeration cycle to perform cooling or heating, and uses outside air as a heat source and technology that uses other heat sources to improve performance.

近年は、地球温暖化防止の観点から空気調和機の運転効率が重要視されている。その結果、圧縮機や送風機の効率向上や熱交換器の高性能化が図られている。   In recent years, the operating efficiency of air conditioners has been emphasized from the viewpoint of preventing global warming. As a result, the efficiency of the compressor and the blower and the performance of the heat exchanger are improved.

圧縮機や送風機においては、インバータ化や、モータのロータに高価な希土類の磁石を採用したり、モータ駆動方式の改良により高速運転が困難であった巻数が多い仕様のステータも使いこなすことで、期間消費電力の低減を実現してきた。   In compressors and blowers, it is possible to use an inverter, adopt expensive rare earth magnets for the rotor of the motor, or use a stator with a specification with many turns whose high-speed operation was difficult due to improvement of the motor drive system. We have achieved a reduction in power consumption.

熱交換器については、性能向上のため投入量が年々増加する傾向にあり、空気調和機の大きさも大型化する傾向にある。その一方で、フィンの切起しや曲げ形状に工夫を凝らし熱交換性能に優れたフィンの開発や、冷媒配管の細管化や管径変化の最適化により高性能化を図る技術も開発されている。   With regard to heat exchangers, the amount of input tends to increase year by year to improve performance, and the size of air conditioners also tends to increase. On the other hand, development of fins with excellent heat exchange performance has been developed by devising the fin shape and bending shape, and technology to achieve high performance by optimizing the capillary tube diameter of the refrigerant pipe and tube diameter change has also been developed. There is.

こうした各要素の高性能化の一方で、太陽熱や地中熱など従来利用されていなかった熱源を利用することで、空気調和機の運転効率向上や電力消費量の削減の取り組みもなされている。   While improving the performance of each of these elements, efforts are also being made to improve the operating efficiency of the air conditioner and reduce the power consumption by using heat sources that have not been used conventionally, such as solar heat and ground heat.

太陽熱は冷房に利用することはできないが、暖房に用いる場合、装置の設計によっては直接用いるのに十分な温度を得ることができる。また、暖房に直接利用できる温度より低い温度しか得られなくても、蒸発器(吸熱)に用いれば効率の良い暖房を行なうことができる。   Solar heat can not be used for cooling, but when it is used for heating, depending on the design of the device, a temperature sufficient for direct use can be obtained. Moreover, even if only a temperature lower than the temperature that can be directly used for heating can be obtained, efficient heating can be performed if it is used for the evaporator (heat absorption).

太陽熱を暖房に利用する場合では、採熱可能な時間帯と利用したい時間帯が必ずしも一致しないので蓄熱を行なうのが望ましい。   In the case where solar heat is used for heating, it is desirable to perform heat storage since the heat collection available time zone and the time zone to be used do not necessarily coincide.

地下10mの地中温度は年間を通して安定(15℃前後)している。また、地中温度は1〜2mの深さでも、冬は10℃、夏は25℃程度の温度を維持している。このため、地中熱は、夏は冷房、冬は暖房に利用することが可能である。   The underground temperature of 10m underground is stable (around 15 ° C) throughout the year. In addition, even if the underground temperature is 1 to 2 m deep, the temperature is maintained at about 10 ° C in winter and about 25 ° C in summer. Therefore, geothermal heat can be used for cooling in summer and for heating in winter.

例えば地中熱を利用している装置について従来例をあげると、特許文献1に記載の装置では、室外熱交換器と並列に第2熱交換器を設けている。第2熱交換器は、地中に埋設され不凍液で満たされた容器の中に収納されている。外気と地中熱を併用することで、安定した暖房および冷房能力を得るとしている。   For example, if a conventional example is given about an apparatus using underground heat, in the apparatus of patent document 1, the 2nd heat exchanger is provided in parallel with the outdoor heat exchanger. The second heat exchanger is housed in a container buried in the ground and filled with antifreeze liquid. Stable heating and cooling capacity is to be obtained by combining ambient air and ground heat.

つまり、暖房運転時には、圧縮機から吐出された冷媒ガスは室内側熱交換器で凝縮(放熱)し、減圧装置を経たのち、室外側熱交換器および第2熱交換器で蒸発(吸熱)し、再び圧縮機へ吸入される。このように2つの蒸発(吸熱)器を持つことになり、吸熱量が増大し、室内ユニツトからの放熱量(暖房能力)も増大するとしている。一方、冷房運転時は、真夏の外気温よりも地中の温度は低く放熱効果が高いこと、また2つの凝縮器を持つことにより、真夏の外気温が高いときでも大きな冷房能力を得ることができるとしている。   That is, during heating operation, the refrigerant gas discharged from the compressor is condensed (radiated) in the indoor heat exchanger, passed through the pressure reducing device, and then evaporated (heat absorbed) in the outdoor heat exchanger and the second heat exchanger. , Is again sucked into the compressor. As described above, two evaporators (endothermic) are provided, and the heat absorption amount is increased, and the heat radiation amount (heating capacity) from the indoor unit is also increased. On the other hand, during cooling operation, the underground temperature is lower than the midsummer outside air temperature, and the heat radiation effect is high, and by having two condensers, a large cooling capacity can be obtained even when the midsummer outside air temperature is high. It is supposed to be possible.

さらに、特許文献2記載の装置は、圧縮機、室内熱交換器、減圧装置、室外熱交換器を環状に接続してなるヒ−トポンプ回路を備えた空気調和機であって、採熱部が地中に埋設され、地上に設けられた放熱部が室外熱交換器の風上に位置するように設けられたヒ−トパイプを備えている。室外熱交換器と、地中から採熱を行うヒ−トパイプを組み合わせることにより、外気及び地中から熱を汲み上げ、寒冷地での暖房能力の低下を防止することができるとしている。   Furthermore, the device described in Patent Document 2 is an air conditioner provided with a heat pump circuit including a compressor, an indoor heat exchanger, a pressure reducing device, and a heat pump circuit formed by annularly connecting an outdoor heat exchanger, A heat pipe which is buried in the ground and provided on the ground so as to be located on the windward side of the outdoor heat exchanger is provided. By combining an outdoor heat exchanger and a heat pipe for collecting heat from the ground, it is possible to draw up heat from the outside air and the ground and to prevent a decrease in heating capacity in a cold area.

この空気調和機では、室外熱交換器に当てる空気の予熱に地中熱を利用しており、冷媒回路を変更する必要がないのが特徴で、ヒートパイプをブライン循環型の地中熱利用方式に変えれば、冷房運転時にも利用することができる。   In this air conditioner, underground heat is used to preheat air that is applied to the outdoor heat exchanger, and there is no need to change the refrigerant circuit, and the heat pipe is a brine circulation type underground heat utilization method Can be used during cooling operation.

特開平1−189465号公報Unexamined-Japanese-Patent No. 1-189465 特開平6−241611号公報Unexamined-Japanese-Patent No. 6-241611

しかしながら、地中温度と外気温との関係は常に一定ではなく、地中熱を利用するよりも外気のみと熱交換するほうが有効な場合も存在する。例えば、好天に恵まれた冬の日中に、気温が上昇して地中温度よりも高くなったり、夏の夜間に気温が低下し、地中温度よりも低くなったりすることがある。また、空調負荷と、地中からの採熱量の関係も一定ではない。このため、室外熱交換器と地中熱を利用する熱交換器の理想的な関係は常に同じではない。   However, the relationship between the ground temperature and the outside temperature is not always constant, and there are cases where heat exchange with only the outside air is more effective than using the ground heat. For example, during a sunny winter day, the temperature may rise above the ground temperature, or may fall below the ground temperature during the summer night. In addition, the relationship between the air conditioning load and the heat output from the ground is not constant. For this reason, the ideal relationship between the outdoor heat exchanger and the heat exchanger using ground heat is not always the same.

太陽熱を蓄熱して利用する場合においても、天候などにより蓄熱量の変化は避けられないし、蓄熱温度も変化していく。このため、室外熱交換器と蓄熱を利用する熱交換器の理想的な関係は常に同じではない。   Even when solar heat is stored and used, change in the amount of stored heat can not be avoided due to the weather, etc., and the temperature of stored heat also changes. For this reason, the ideal relationship between the outdoor heat exchanger and the heat exchanger utilizing heat storage is not always the same.

つまり、従来の技術のように、空気調和機を任意の運転条件に特化して室外熱交換器と地中熱や太陽熱などの他熱源を利用する第2熱交換器の関係を固定すると、特化した条件と異なる運転条件下では他熱源を有効に利用できないという課題があった。   That is, as in the prior art, when the air conditioner is specialized for an arbitrary operating condition and the relationship between the outdoor heat exchanger and the second heat exchanger using other heat sources such as ground heat and solar heat is fixed, There is a problem that other heat sources can not be effectively used under operating conditions different from the ones that have been developed.

従って本発明は、こうした課題を解決し、外気と他熱源から望ましい採熱あるいは放熱を行なって、使用電力量を低減することのできる空気調和機を提供するものである。   Therefore, the present invention solves these problems, and provides an air conditioner capable of reducing power consumption by performing desirable heat collection or heat release from the outside air and other heat sources.

上記従来の課題を解決するために、本発明の空気調和機は、外気と熱交換を行なう室外熱交換器と、前記外気以外の熱源から得た冷熱あるいは温熱を利用する他熱源利用熱交換器と、前記室外熱交換器と前記他熱源利用熱交換器の接続関係を切り替える切り替え手段とを備え、前記室外熱交換器と前記他熱源利用熱交換器の接続関係を切り替え可能にするものである。   In order to solve the above-mentioned conventional problems, the air conditioner of the present invention is an outdoor heat exchanger that exchanges heat with outside air, and another heat source utilizing heat exchanger that utilizes cold or warm heat obtained from a heat source other than the outside air. And switching means for switching the connection relationship between the outdoor heat exchanger and the other heat source utilization heat exchanger, wherein the connection relationship between the outdoor heat exchanger and the other heat source utilization heat exchanger can be switched. .

これにより、運転条件に応じて、運転効率の良い室外熱交換器と他熱源利用熱交換器の接続関係を選択することができる。   Thus, the connection relationship between the outdoor heat exchanger with good operation efficiency and the other heat source utilization heat exchanger can be selected according to the operation condition.

本発明の空気調和機は、前記運転条件に応じて、運転効率の良い室外熱交換器と他熱源利用熱交換器の接続関係を選択することができる。従って、本発明の空気調和機の消費電力を低減し、省エネ性に優れる装置を提供することができる。   The air conditioner according to the present invention can select the connection relationship between the outdoor heat exchanger with good operation efficiency and the other heat source utilization heat exchanger according to the operating conditions. Therefore, the power consumption of the air conditioner of this invention can be reduced, and the apparatus excellent in energy saving property can be provided.

本発明の実施の形態1における空気調和機のシステム構成図System configuration of the air conditioner according to the first embodiment of the present invention 本発明の実施の形態2における空気調和機のシステム構成図System configuration diagram of an air conditioner according to Embodiment 2 of the present invention 本発明の実施の形態3における空気調和機のシステム構成図System configuration diagram of an air conditioner according to Embodiment 3 of the present invention

第1の発明は、冷媒を圧縮する圧縮機と、外気と熱交換を行なう室外熱交換器と、前記室外熱交換器の低エンタルピー側に接続された第1の調整弁と、前記外気以外の熱源から得た冷熱あるいは温熱を利用する他熱源利用熱交換器と、前記他熱源利用熱交換器の低エンタルピー側に接続された第2の調整弁と、前記室外熱交換器と前記他熱源利用熱交換器の接続関係を切り替える切り替え手段と、室内の空気と熱交換する室内熱交換器と、前記外気の温度を検知する外気温検知手段と、前記熱源から搬送された熱媒体の温度を検知する熱媒体温度検知手段と、前記外気温検知手段の出力と前記熱媒体温度検知手段の出力の少なくともいずれか一方に応じて前記切り替え手段を制御する制御手段とを備え、前記室外熱交換器と前記他熱源利用熱交換器の接続関係を切り替え可能にするものである。   According to a first aspect of the present invention, there is provided a compressor for compressing a refrigerant, an outdoor heat exchanger for exchanging heat with outside air, a first adjusting valve connected to a low enthalpy side of the outdoor heat exchanger, and the outside air. Another heat source utilization heat exchanger that utilizes cold or warm heat obtained from a heat source, a second regulating valve connected to the low enthalpy side of the other heat source utilization heat exchanger, the outdoor heat exchanger and the other heat source utilization Switching means for switching the connection of heat exchangers, indoor heat exchanger for exchanging heat with indoor air, outside air temperature detection means for detecting the temperature of the outside air, and temperature of the heat medium conveyed from the heat source The outdoor heat exchanger, the control means for controlling the switching means in accordance with at least one of the output of the outside air temperature detection means and the output of the heat medium temperature detection means; Said other heat source utilization heat It is one which allows switching the connection relationship exchanger.

これにより、前記運転条件に応じて、運転効率の良い前記室外熱交換器と前記他熱源利用熱交換器の接続関係を選択することができる。従って、本発明の空気調和機の消費電力を低減し、省エネ性に優れる装置を提供することができる。   Thereby, according to the said driving | running condition, the connection relation of the said outdoor heat exchanger with sufficient driving efficiency and the said other heat source utilization heat exchanger can be selected. Therefore, the power consumption of the air conditioner of this invention can be reduced, and the apparatus excellent in energy saving property can be provided.

第2の発明は、第1の発明において、前記第1の調整弁に接続された配管であって前記室外熱交換器と反対側の配管と前記第2の調整弁に接続された配管であって前記他熱源利用熱交換器と反対側の配管とが合流して、前記室内熱交換器に接続され、前記室外熱交換器のガス側配管と前記他熱源利用熱交換器の高エンタルピー側配管とが合流して、前記圧縮機の吐出口あるいは吸入口へ接続され、前記切り替え手段として、前記室外熱交換器のガス側配管に配置され開閉を行なう第1の制御弁と、前記他熱源利用熱交換器の高エンタルピー側配管に配置され開閉を行なう第2の制御弁と、前記室外熱交換器と前記第1の制御弁の間と前記他熱源利用熱交換器と前記第2の調整弁の間を結ぶガス側低エンタルピー側接続配管と、前記ガス側低エンタルピー側接続配管に配置され開閉を行なう第3の制御弁を備え、前記第1の調整弁と前記第2の調整弁と第1の制御弁と第2の制御弁と第3の制御弁の動作を前記制御手段で制御するものである。   2nd invention is piping connected to said 1st control valve in 1st invention, Comprising: It is piping connected to said outdoor heat exchanger, and piping connected to said 2nd control valve. The other heat source utilization heat exchanger and the piping on the opposite side are joined and connected to the indoor heat exchanger, and the gas side piping of the outdoor heat exchanger and the high enthalpy side piping of the other heat source utilization heat exchanger Are connected to the discharge port or suction port of the compressor, and the first control valve disposed in the gas side pipe of the outdoor heat exchanger to open and close as the switching means, and the other heat source utilization A second control valve disposed in the high enthalpy side piping of the heat exchanger and performing opening and closing, between the outdoor heat exchanger and the first control valve, and the other heat source utilization heat exchanger and the second regulating valve Gas side low enthalpy side connection piping connecting the A third control valve disposed in the connection pipe on the side of the thalpy side for opening and closing, the first control valve, the second control valve, the first control valve, the second control valve, and the third control valve The operation is controlled by the control means.

これにより、前記室外熱交換器と前記他熱源利用熱交換器の接続関係を各々単独か、並列かに加えて、前記他熱源利用熱交換器が前記室外熱交換器のガス側に直列に接続配置することができる。従って、前記室外熱交換器と前記他熱源利用熱交換器の接続関係の選択肢が増え、特に暖房運転において本発明の空気調和機のさらに消費電力を低減し、より省エネ性に優れる装置を提供することができる。   Thereby, the connection relationship between the outdoor heat exchanger and the other heat source utilization heat exchanger is added alone or in parallel, and the other heat source utilization heat exchanger is connected in series to the gas side of the outdoor heat exchanger It can be arranged. Therefore, the choice of the connection relation between the outdoor heat exchanger and the other heat source utilization heat exchanger is increased, and the power consumption of the air conditioner of the present invention is further reduced particularly in heating operation, and a device having more energy saving performance is provided. be able to.

第3の発明は、第1の発明において、前記第1の調整弁に接続された配管であって前記室外熱交換器と反対側の配管と前記第2の調整弁に接続された配管であって前記他熱源利用熱交換器と反対側の配管とが合流して、前記室内熱交換器に接続され、前記室外熱交換器のガス側配管と前記他熱源利用熱交換器の高エンタルピー側配管とが合流して、前記圧縮機の吐出口あるいは吸入口へ接続され、前記切り替え手段として、前記室外熱交換器のガス側配管に配置され開閉を行なう第1の制御弁と、前記他熱源利用熱交換器の高エンタルピー側配管に配置され開閉を行なう第2の制御弁と、前記室外熱交換器と前記第1の調整弁の間と前記他熱源利用熱交換器と前記第2の制御弁の間を結ぶ液側高エンタルピー側接続配管と、前記液側高エンタルピー側接続配管に配置され開閉を行なう第4の制御弁を備え、前記第1の調整弁と前記第2の調整弁と第1の制御弁と第2の制御弁と第4の制御弁の動作を前記制御手段で制御するものである。   3rd invention is piping connected to said 1st control valve in 1st invention, Comprising: It is piping connected to said outdoor heat exchanger, and piping connected to said 2nd control valve. The other heat source utilization heat exchanger and the piping on the opposite side are joined and connected to the indoor heat exchanger, and the gas side piping of the outdoor heat exchanger and the high enthalpy side piping of the other heat source utilization heat exchanger Are connected to the discharge port or suction port of the compressor, and the first control valve disposed in the gas side pipe of the outdoor heat exchanger to open and close as the switching means, and the other heat source utilization A second control valve disposed on the high enthalpy side piping of the heat exchanger and performing opening and closing, between the outdoor heat exchanger and the first control valve, and the other heat source utilization heat exchanger and the second control valve Liquid side high enthalpy side connecting pipe connecting between A fourth control valve disposed in the P-side connection pipe for opening and closing, the first control valve, the second control valve, the first control valve, the second control valve, and the fourth control valve The operation is controlled by the control means.

これにより、前記室外熱交換器と前記他熱源利用熱交換器の接続関係を各々単独か、並列かに加えて、前記他熱源利用熱交換器が前記室外熱交換器の液側に直列に接続配置することができる。従って、前記室外熱交換器と前記他熱源利用熱交換器の接続関係の選択肢が増え、特に冷房運転において、本発明の空気調和機のさらに消費電力を低減し、より省エネ性に優れる装置を提供することができる。   Thereby, the connection relationship between the outdoor heat exchanger and the other heat source utilization heat exchanger is added alone or in parallel, and the other heat source utilization heat exchanger is connected in series to the liquid side of the outdoor heat exchanger It can be arranged. Therefore, the choice of the connection relation between the outdoor heat exchanger and the other heat source utilization heat exchanger is increased, and the power consumption of the air conditioner of the present invention is further reduced, particularly in the cooling operation, to provide a device more excellent in energy saving performance. can do.

第4の発明は、第2の発明あるいは第3の発明において、前記熱媒体温度検知手段の出力値から前記外気温検知手段の出力値を引いた差分値が、冷房運転時であれば第1の冷房閾値よりも大きな場合に、暖房運転であれば第1の暖房閾値よりも小さな場合に、前記第1の制御弁を開き、前記第2の制御弁または前記第2の調整弁を閉じ、前記第3の制御弁または前記第4の制御弁を閉じ、前記第1の調整弁を調整して、前記他熱源利用熱交換器は使用せずに前記室外熱交換器のみを使用し運転するものである。   A fourth invention according to the second invention or the third invention, wherein a difference value obtained by subtracting the output value of the outside air temperature detection means from the output value of the heat medium temperature detection means is the first value if the cooling operation is performed. If the heating operation is larger than the first cooling threshold, the first control valve is opened and the second control valve or the second adjusting valve is closed. Close the third control valve or the fourth control valve, adjust the first adjustment valve, and operate using only the outdoor heat exchanger without using the other heat source utilization heat exchanger It is a thing.

これにより、該当運転条件時に適した熱源利用を行なうことができる。従って、該当運転条件時に最も省エネ性に優れた運転を行なうことができる。   As a result, it is possible to use a heat source suitable for the corresponding operating condition. Therefore, the most energy-saving operation can be performed at the corresponding operating conditions.

第5の発明は、第2の発明の発明において、前記熱媒体温度検知手段の出力値から前記外気温検知手段の出力値を引いた前記差分値が、冷房運転であれば前記第1の冷房閾値以下で第2の冷房閾値より大きな場合に、暖房運転であれば前記第1の暖房閾値以上で第2の暖房閾値より小さな場合に、前記第2の制御弁および第3の制御弁を開き、前記第1の制御弁および前記第2の調整弁を閉じて、前記第1の調整弁を調整し、前記室外熱交換器のガス側に前記他熱源利用熱交換器を直列に接続して運転するものである。   A fifth invention according to the second invention is that, if the difference value obtained by subtracting the output value of the outside air temperature detection means from the output value of the heat medium temperature detection means is the cooling operation, the first cooling The second control valve and the third control valve are opened when the heating operation is greater than the first heating threshold and smaller than the second heating threshold if the heating operation is larger than the second cooling threshold and smaller than the threshold. Closing the first control valve and the second control valve, adjusting the first control valve, and connecting the other heat source utilization heat exchanger in series to the gas side of the outdoor heat exchanger It is something to drive.

これにより、該当運転条件時に適した熱源利用を行なうことができる。従って、該当運転条件時に最も省エネ性に優れた装置を提供することができる。   As a result, it is possible to use a heat source suitable for the corresponding operating condition. Therefore, it is possible to provide a device having the most energy saving performance under the corresponding operating conditions.

第6の発明は、第2の発明あるいは第3の発明において、前記熱媒体温度検知手段の出力値から前記外気温検知手段の出力値を引いた前記差分値が、冷房運転時であれば前記第1の冷房閾値または前記第2の冷房閾値以下で第3の冷房閾値または第4の冷房閾値よりも大きな場合に、暖房運転であれば前記第1の暖房閾値または前記第2の暖房閾値以上で第3の暖房閾値または第4の暖房閾値よりも小さな場合に、前記第1の制御弁、前記第2の制御弁を開き、前記第3の制御弁または前記第4の制御弁を閉じ、前記第1の調整弁、前記第2の調整弁を調整し、前記室外熱交換器と前記他熱源利用熱交換器を並列に接続して運転するものである。   A sixth invention according to the second invention or the third invention, wherein the difference value obtained by subtracting the output value of the outside air temperature detection means from the output value of the heat medium temperature detection means is the time of the cooling operation. If the heating operation is performed when the first cooling threshold or the second cooling threshold is less than the third cooling threshold or the fourth cooling threshold, the first heating threshold or the second heating threshold Open the first control valve and the second control valve and close the third control valve or the fourth control valve if the third heating threshold or the fourth heating threshold is smaller than the third heating threshold or the fourth heating threshold; The first adjustment valve and the second adjustment valve are adjusted, and the outdoor heat exchanger and the other heat source utilization heat exchanger are connected in parallel and operated.

これにより、該当運転条件時に適した熱源利用を行なうことができる。従って、該当運転条件時に最も省エネ性に優れた装置を提供することができる。   As a result, it is possible to use a heat source suitable for the corresponding operating condition. Therefore, it is possible to provide a device having the most energy saving performance under the corresponding operating conditions.

第7の発明は、第3の発明の発明において、前記熱媒体温度検知手段の出力値から前記外気温検知手段の出力値を引いた前記差分値が、冷房運転時であれば前記第3の冷房閾値以下で前記第4の冷房閾値よりも大きい場合に、暖房運転時であれば前記第3の暖房閾値以上で前記第4の暖房閾値よりも小さい場合に、前記第1の制御弁および第4の制御弁を開き、前記第2の制御弁および前記第1の調整弁を閉じて、前記第2の調整弁を調整し、前記室外熱交換器の液側に前記他熱源利用熱交換器を直列に接続して運転するものである。   The seventh invention is the invention according to the third invention, wherein the difference value obtained by subtracting the output value of the outside air temperature detection means from the output value of the heat medium temperature detection means is the third value when the cooling operation is performed. The first control valve and the first control valve in the case of heating operation when the temperature is lower than the cooling threshold and larger than the fourth cooling threshold and smaller than the third heating threshold in the heating operation. 4. Open the control valve 4 and close the second control valve and the first control valve to adjust the second control valve, and the other heat source utilization heat exchanger on the liquid side of the outdoor heat exchanger Are connected in series.

これにより、該当運転条件時に適した熱源利用を行なうことができる。従って、該当運転条件時に最も省エネ性に優れた装置を提供することができる。   As a result, it is possible to use a heat source suitable for the corresponding operating condition. Therefore, it is possible to provide a device having the most energy saving performance under the corresponding operating conditions.

第8の発明は、第2の発明あるいは第3の発明において、前記熱媒体温度検知手段の出力値から前記外気温検知手段の出力値を引いた前記差分値が、冷房運転時であれば前記第4の冷房閾値以下の場合に、暖房運転であれば前記第4の暖房閾値以上の場合に、前記第1の制御弁または第1の調整弁を閉じ、前記第2の制御弁を開き、前記第3の制御弁または前記第4の制御弁を閉じ、前記第2の調整弁を調整し、前記室外熱交換器は使用せずに前記他熱源利用熱交換器のみを使用し運転するものである。   In an eighth aspect based on the second aspect or the third aspect, the difference value obtained by subtracting the output value of the outside air temperature detection means from the output value of the heat medium temperature detection means is the cooling operation as long as it is in a cooling operation. In the case of heating operation when the temperature is equal to or lower than the fourth cooling threshold, the first control valve or the first adjustment valve is closed and the second control valve is opened if the fourth heating threshold is exceeded. Close the third control valve or the fourth control valve, adjust the second control valve, and operate using only the other heat source utilization heat exchanger without using the outdoor heat exchanger It is.

これにより、該当運転条件時に適した熱源利用を行なうことができる。従って、該当運転条件時に最も省エネ性に優れた運転を行なうことができる。   As a result, it is possible to use a heat source suitable for the corresponding operating condition. Therefore, the most energy-saving operation can be performed at the corresponding operating conditions.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における空気調和機の構成図を示すものである。なお、図1では、四方弁6は冷房運転の場合の状態を示している。
Embodiment 1
FIG. 1 shows a configuration diagram of an air conditioner according to Embodiment 1 of the present invention. Note that FIG. 1 shows the four-way valve 6 in the cooling operation mode.

図1に示すように、本実施の形態1における空気調和機は、室内熱交換器2、室内送風機3などを備えた室内機1と、圧縮機5、四方弁6、室外熱交換器7、室外ファン8、第1の調整弁である第1膨張弁10などを備えた室外機4が配管、通信線などで接続されている。そして、圧縮機5、四方弁6、室外熱交換器7、第1膨張弁10、室内熱交換器2を順に配管で接続し、冷凍サイクル回路を構成している。この冷凍サイクル回路を、冷凍サイクルあるいはヒートポンプサイクルとして作用させ、空気調和機は冷房運転あるいは暖房運転を行なうことができる。   As shown in FIG. 1, the air conditioner according to the first embodiment includes an indoor unit 1 including an indoor heat exchanger 2 and an indoor blower 3, a compressor 5, a four-way valve 6, and an outdoor heat exchanger 7. An outdoor unit 4 including an outdoor fan 8 and a first expansion valve 10 which is a first adjustment valve is connected by piping, a communication line or the like. Then, the compressor 5, the four-way valve 6, the outdoor heat exchanger 7, the first expansion valve 10, and the indoor heat exchanger 2 are connected in order by piping to constitute a refrigeration cycle circuit. The refrigeration cycle circuit functions as a refrigeration cycle or a heat pump cycle, and the air conditioner can perform cooling operation or heating operation.

冷房運転の場合には、図1に示すように、四方弁6は、圧縮機5の吐出側と室外熱交換器7とを連通させるとともに、圧縮機5の吸入側と室内熱交換器2とを連通されるように切替えられる。つまり、冷房運転の場合には、冷媒は圧縮機5から吐出されると、四方弁6、室外熱交換器7、第1膨張弁10、室内熱交換器2と流れ、四方弁6を経て圧縮機5に戻る。   In the case of the cooling operation, as shown in FIG. 1, the four-way valve 6 causes the discharge side of the compressor 5 to communicate with the outdoor heat exchanger 7, and the suction side of the compressor 5 and the indoor heat exchanger 2. To be communicated. That is, in the case of the cooling operation, when the refrigerant is discharged from the compressor 5, the refrigerant flows with the four-way valve 6, the outdoor heat exchanger 7, the first expansion valve 10, the indoor heat exchanger 2, and is compressed via the four-way valve 6. Return to Machine 5.

一方、暖房運転の場合には、四方弁6は、圧縮機5の吸入側と室外熱交換器7とを連通させるとともに、圧縮機5の吐出側と室内熱交換器2とを連通されるように切替えられる。つまり、暖房運転の場合には、冷媒は圧縮機5から吐出されると、四方弁6、室内熱交換器2、第1膨張弁10、室外熱交換器7と流れ、四方弁6を経て圧縮機5に戻る。   On the other hand, in the case of the heating operation, the four-way valve 6 causes the suction side of the compressor 5 to communicate with the outdoor heat exchanger 7 and causes the discharge side of the compressor 5 to communicate with the indoor heat exchanger 2 Is switched to That is, in the case of the heating operation, when the refrigerant is discharged from the compressor 5, the refrigerant flows with the four-way valve 6, the indoor heat exchanger 2, the first expansion valve 10, the outdoor heat exchanger 7, and is compressed via the four-way valve 6. Return to Machine 5.

冷凍サイクル回路において、第1膨張弁10は、室外熱交換器7の液側配管側(低エンタルピー側)、つまり、冷房運転時には出口側、暖房運転時には入口側となる側に設けられている。   In the refrigeration cycle circuit, the first expansion valve 10 is provided on the liquid side piping side (low enthalpy side) of the outdoor heat exchanger 7, that is, on the outlet side during cooling operation and on the inlet side during heating operation.

さらに、外気以外の熱源(例えば、地中熱)から得た冷熱あるいは温熱を利用するため室外機4には、他熱源利用熱交換器9と、第2の調整弁である第2膨張弁11を備えている。冷凍サイクル回路において、他熱源利用熱交換器9の一端は、四方弁6と室外熱交換器7との間に接続されており、他端は、第1膨張弁10と室内熱交換器2との間に接続されている。他熱源利用熱交換器9には、ポンプ17によって熱媒体であるブラインが地中熱熱源18へ送られ地熱を回収して運ばれてくる。   Furthermore, in order to use cold energy or heat energy obtained from a heat source other than the outside air (for example, underground heat), the outdoor unit 4 includes another heat source utilization heat exchanger 9 and a second expansion valve 11 which is a second adjusting valve. Is equipped. In the refrigeration cycle circuit, one end of the other heat source utilization heat exchanger 9 is connected between the four-way valve 6 and the outdoor heat exchanger 7, and the other end is the first expansion valve 10 and the indoor heat exchanger 2. Connected between. In the other heat source utilization heat exchanger 9, the brine which is a heat medium is sent to the underground heat source 18 by the pump 17, and the geothermal heat is recovered and carried.

第2膨張弁11は、他熱源利用熱交換器9の低エンタルピー側、つまり、冷房運転時には出口側、暖房運転時には入口側となる側に設けられている。   The second expansion valve 11 is provided on the low enthalpy side of the other heat source utilization heat exchanger 9, that is, the outlet side in the cooling operation and the inlet side in the heating operation.

本実施の形態1における空気調和機は、室外熱交換器7に流入する空気の温度を検知する外気温センサ16と、他熱源利用熱交換器9に流入する熱媒体の温度を検知する熱媒体温度センサ19とを備えている。   In the air conditioner according to the first embodiment, the outside air temperature sensor 16 for detecting the temperature of air flowing into the outdoor heat exchanger 7 and the heat medium for detecting the temperature of the heat medium flowing into the other heat source utilization heat exchanger 9 A temperature sensor 19 is provided.

さらに、冷凍サイクル回路は、室外熱交換器7と他熱源利用熱交換器9の接続関係を切り替える切り替え手段を備えている。切り替え手段として、室外熱交換器7のガス側配管(四方弁6が接続された側の配管)に配置され開閉を行なう第1の制御弁である外熱交開閉弁12と、他熱源利用熱交換器9の高エンタルピー側(四方弁6が接続された側)に配置され開閉を行なう第2の制御弁である他熱源熱交開閉弁13と、室外熱交換器7と第1膨張弁10の間と、他熱源利用熱交換器9と他熱源熱交開閉弁13の間とを接続する液側高エンタルピー側接続配管20と、液側高エンタルピー側接続配管20に配置され開閉を行なう第4の制御弁である液ガス開閉弁14とが備えられている。   Furthermore, the refrigeration cycle circuit includes switching means for switching the connection relationship between the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9. As switching means, the heat exchange valve 12 which is the first control valve disposed in the gas side pipe (pipe on the side to which the four-way valve 6 is connected) of the outdoor heat exchanger 7 and which opens and closes The other heat source heat switching valve 13 which is a second control valve disposed on the high enthalpy side (the side to which the four-way valve 6 is connected) of the exchanger 9 and which opens and closes, the outdoor heat exchanger 7 and the first expansion valve 10 The liquid side high enthalpy side connecting pipe 20 connecting between the other heat source utilization heat exchanger 9 and the other heat source heat exchange on-off valve 13 and the liquid side high enthalpy side connecting pipe 20 A liquid gas on-off valve 14 which is a control valve of No. 4 is provided.

また、本実施の形態1における空気調和機は、外気温センサ16、熱媒体温度センサ19の出力などに応じて、圧縮機5の回転数、四方弁6の切り替え、室内送風機3の回転数、室外ファン8の回転数、第1膨張弁10や第2膨張弁11の開度、外熱交開閉弁12、他熱源熱交開閉弁13、液ガス開閉弁14の開閉状態などを調整する制御装置15を備えている。   In the air conditioner according to the first embodiment, the number of rotations of the compressor 5, switching of the four-way valve 6, and the number of rotations of the indoor fan 3 according to the output of the outside air temperature sensor 16 and the heat medium temperature sensor 19, etc. Control to adjust the rotational speed of the outdoor fan 8, the opening degree of the first expansion valve 10 and the second expansion valve 11, the external heat exchange valve 12, the other heat source heat exchange valve 13, and the open / close state of the liquid gas on-off valve 14 An apparatus 15 is provided.

第1膨張弁10、第2膨張弁11、外熱交開閉弁12、他熱源熱交開閉弁13、液ガス開閉弁14は、外気温センサ16および熱媒体温度センサ19の出力と、圧縮機5の回転数などの運転条件に応じて制御装置15により制御され、室外熱交換器7と他熱源利用熱交換器9の接続状態を最適に設定する。   The first expansion valve 10, the second expansion valve 11, the external heat exchange valve 12, the other heat source heat exchange valve 13, the liquid gas on-off valve 14 have the output of the outside air temperature sensor 16 and the heat medium temperature sensor 19, and the compressor It is controlled by the control device 15 according to the operating conditions such as the number of revolutions of 5, and the connection state of the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 is set optimally.

つまり、本実施の形態1の空気調和機は、外気温センサ16および熱媒体温度センサ19の出力と圧縮機5の回転数などの運転条件に応じて、室外熱交換器7と他熱源利用熱交換器9の接続状態を適切に切り替えることで、他熱源を有効に利用することができ、消費電力を低減し、省エネ性に優れる装置となっている。   That is, in the air conditioner according to the first embodiment, the outdoor heat exchanger 7 and heat from other heat sources are utilized according to operating conditions such as the output of the outside air temperature sensor 16 and the heat medium temperature sensor 19 and the rotational speed of the compressor 5. By switching the connection state of the exchanger 9 appropriately, other heat sources can be effectively used, power consumption is reduced, and the apparatus is excellent in energy saving performance.

本実施の形態1においては、第1膨張弁10、第2膨張弁11、外熱交開閉弁12、他熱源熱交開閉弁13、液ガス開閉弁14の開閉は、熱媒体温度センサ19の出力値Ttと外気温センサ16の出力値Taの差分ΔTに応じて、(表1)、(表2)の様に動作し、室外熱交換器7と他熱源利用熱交換器9の接続状態を最適に設定する。   In the first embodiment, opening and closing of the first expansion valve 10, the second expansion valve 11, the external heat exchange valve 12, the other heat source heat exchange valve 13, and the liquid gas on-off valve 14 are performed by the heat medium temperature sensor 19. According to the difference ΔT between the output value Tt and the output value Ta of the outside air temperature sensor 16, it operates as in (Table 1) and (Table 2), and the connection state of the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 Set the best.

(表1)は冷房運転時の各弁の開閉を「○」、「×」で示している。「○」は最左欄に示した弁を開状態とすることを示す、「×」は当該弁を閉状態とすることを示している。なお、第1膨張弁10、第2膨張弁11については、「○」で示す開状態に、全開状態以外に、減圧するのに適切な開度である状態を含むものとする。   (Table 1) indicates the opening and closing of each valve at the time of the cooling operation by “o” and “x”. "O" indicates that the valve shown in the leftmost column is in the open state, and "x" indicates that the valve is in the closed state. In addition, about the 1st expansion valve 10 and the 2nd expansion valve 11, the open state shown by "(circle)" shall include the state which is an opening degree suitable for pressure-reducing other than a full open state.

(表1)において、第1の冷房閾値であるΔTc1は冷房運転時に室外熱交換器7を単独で使用するか否かを判断する閾値、第3の冷房閾値であるΔTc3は室外熱交換器7と他熱源利用熱交換器9を並列に使用するか、他熱源利用熱交換器9を液側に直列に使用するかを判断する閾値、第4の冷房閾値であるΔTc4は他熱源利用熱交換器9を単独で使用するか否かを判断する閾値である。なお、ΔTc4<ΔTc3<ΔTc1である。   In Table 1, the first cooling threshold ΔTc1 is a threshold for determining whether or not the outdoor heat exchanger 7 is used alone during the cooling operation, and the third cooling threshold ΔTc3 is the outdoor heat exchanger 7 The fourth cooling threshold ΔTc4, which is the fourth cooling threshold, is used to determine whether to use the other heat source utilization heat exchanger 9 in parallel or to use the other heat source utilization heat exchanger 9 in series on the liquid side. It is a threshold value for determining whether to use the device 9 alone. Note that ΔTc4 <ΔTc3 <ΔTc1.

本実施の形態1では、ΔTがΔTc3を境に、室外熱交換器7と他熱源利用熱交換器9が並列接続か、他熱源利用熱交換器9が下流となる直列接続かを切換える。   In the first embodiment, it is switched whether the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 are connected in parallel or the other heat source utilization heat exchanger 9 is connected downstream as ΔT becomes ΔTc3.

まず、冷房運転の場合で、ΔTc1≦ΔTの場合には、第1膨張弁10、外熱交開閉弁12を開状態とし、液ガス開閉弁14、第2膨張弁11、他熱源熱交開閉弁13を閉状態とする。第1膨張弁10は冷媒を減圧するのに適切な開度に調整される。これによって、圧縮機5から吐出された冷媒は、室外熱交換器7には流れ、他熱源利用熱交換器9には流れることがない。室外熱交換器7を出た冷媒は第1膨張弁10によって、減圧される。なお、第2膨張弁11は弁を流れる冷媒を完全に閉止できる膨張弁であることが望ましい。   First, in the case of cooling operation, in the case of ΔTc1 ≦ ΔT, the first expansion valve 10 and the external heat exchange valve 12 are opened, and the liquid gas on-off valve 14, the second expansion valve 11, other heat source heat exchange on-off The valve 13 is closed. The first expansion valve 10 is adjusted to an opening degree suitable for depressurizing the refrigerant. As a result, the refrigerant discharged from the compressor 5 flows to the outdoor heat exchanger 7 and does not flow to the other heat source utilization heat exchanger 9. The refrigerant leaving the outdoor heat exchanger 7 is depressurized by the first expansion valve 10. The second expansion valve 11 is preferably an expansion valve capable of completely closing the refrigerant flowing through the valve.

一般的に、冷房運転の場合、地中熱熱源18から送られてきたブラインの温度が、外気温よりも高ければ地中熱を利用することに大きなメリットはない。しかし、実際のところ室外熱交換器7のみ使用すれば凝縮温度は必然的に外気温Taよりも高くなる。ここで、ブライン温度が外気温Taよりは高いが、室外熱交換器7のみ使用時の凝縮温度よりも低ければ、他熱源利用熱交換器9を利用することに一定の価値がある。   In general, in the case of cooling operation, there is no great advantage in utilizing the ground heat if the temperature of the brine sent from the ground heat source 18 is higher than the outside air temperature. However, the condensation temperature inevitably becomes higher than the outside air temperature Ta if only the outdoor heat exchanger 7 is used. Here, if the brine temperature is higher than the outside air temperature Ta but lower than the condensation temperature when only the outdoor heat exchanger 7 is used, there is a certain value in using the other heat source utilization heat exchanger 9.

従って、ΔTc1は0よりも大きな値が妥当であり、圧縮機5の回転数が高いほど大きくなる傾向がある。逆に、室外熱交換器7と他熱源利用熱交換器9の能力比率を見た場合、室外熱交換器7が優位であれば、ΔTc1は小さくなる傾向がある。   Therefore, a value larger than 0 is appropriate for .DELTA.Tc1, and the higher the rotational speed of the compressor 5, the larger the tendency tends to be. Conversely, when looking at the capacity ratio of the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9, if the outdoor heat exchanger 7 is dominant, ΔTc 1 tends to decrease.

ΔTc3≦ΔT<ΔTc1の場合には、第1膨張弁10、第2膨張弁11、外熱交開閉弁12、他熱源熱交開閉弁13を開状態とし、液ガス開閉弁14を閉状態とする。第1膨張弁10、第2膨張弁11は、それぞれを通過する冷媒を減圧するのに適切な開度に調整される。これによって、圧縮機5から吐出された冷媒は、室外熱交換器7と他熱源利用熱
交換器9とに、並列に流れる。室外熱交換器7を出た冷媒は第1膨張弁10によって、他熱源利用熱交換器9を出た冷媒は第2膨張弁11によって、それぞれ減圧される。
In the case of ΔTc3 ≦ ΔT <ΔTc1, the first expansion valve 10, the second expansion valve 11, the external heat exchange valve 12, the other heat source heat exchange valve 13 are opened, and the liquid gas on-off valve 14 is closed. Do. The first expansion valve 10 and the second expansion valve 11 are adjusted to an opening degree appropriate for reducing the pressure of the refrigerant passing therethrough. Thereby, the refrigerant discharged from the compressor 5 flows in parallel to the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9. The refrigerant leaving the outdoor heat exchanger 7 is depressurized by the first expansion valve 10, and the refrigerant exiting the other heat source utilization heat exchanger 9 is depressurized by the second expansion valve 11.

地中熱熱源18から送られてきたブラインの温度が、外気温と同様の温度(つまりΔTがΔTc1以下)であれば、室外熱交換器7と他熱源利用熱交換器9は並列に使用するのが望ましい。外気温とブラインに温度差が無いため、凝縮出口の到達温度(凝縮後の温度)は大きく変わらないためである。   If the temperature of the brine sent from the underground heat source 18 is the same temperature as the outside air temperature (that is, ΔT is ΔTc1 or less), the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 are used in parallel Is desirable. This is because there is no temperature difference between the outside air temperature and the brine, so the ultimate temperature of the condensation outlet (the temperature after condensation) does not change significantly.

次に、ΔTc4≦ΔT<ΔTc3の場合には、第2膨張弁11、外熱交開閉弁12、液ガス開閉弁14を開状態とし、第1膨張弁10、他熱源熱交開閉弁13を閉状態とする。第2膨張弁11は冷媒を減圧するのに適切な開度に調整される。これによって、圧縮機5から吐出された冷媒は、室外熱交換器7を流れた後、他熱源利用熱交換器9に流れる。他熱源利用熱交換器9を出た冷媒は第2膨張弁11によって減圧される。なお、第1膨張弁10は弁を流れる冷媒を完全に閉止できる膨張弁であることが望ましい。   Next, in the case of ΔTc4 ≦ ΔT <ΔTc3, the second expansion valve 11, the external heat exchange valve 12, the liquid gas on-off valve 14 are opened, and the first expansion valve 10 and the other heat source heat exchange valve 13 are opened. It is closed. The second expansion valve 11 is adjusted to an opening degree suitable for reducing the pressure of the refrigerant. Thus, the refrigerant discharged from the compressor 5 flows through the outdoor heat exchanger 7 and then flows into the other heat source utilization heat exchanger 9. The refrigerant leaving the other heat source utilization heat exchanger 9 is depressurized by the second expansion valve 11. The first expansion valve 10 is preferably an expansion valve capable of completely closing the refrigerant flowing through the valve.

ブライン温度が外気温よりも低くなると、凝縮出口の到達温度を下げることができるので、他熱源利用熱交換器9を下流に配置するのが望ましい。特に、熱交換能力に余力があり、室外熱交換器7と他熱源利用熱交換器9は並列に使用する効果が減じてくる圧縮機5の回転数が低い場合、直列にしたほうが凝縮出口の到達温度を下げることができ、効果的である。   When the brine temperature is lower than the ambient temperature, it is desirable to place the other heat source utilizing heat exchanger 9 downstream because the ultimate temperature of the condensation outlet can be lowered. In particular, when the capacity of heat exchange is sufficient and the outdoor heat exchanger 7 and the other heat source utilizing heat exchanger 9 have a low rotational speed of the compressor 5 where the effect of using in parallel is reduced, it is better to connect in series It is possible to lower the temperature reached and it is effective.

従って、圧縮機5の回転数が低くなるほど早めに切換える、つまり閾値ΔTc3は大きめになるよう設定するのが良い。逆に、圧縮機5の回転数が高い場合は、凝縮温度を下げる効果が大きくなるので、ΔTc3は小さめにして凝縮温度を下げる効果を狙うのが良い。さらに、室外熱交換器7と他熱源利用熱交換器9の能力比率が、室外熱交換器7優位であれば他熱源利用熱交換器9による凝縮温度を下げる効果が少なくなるので、凝縮出口温度の低下を狙ってΔTc3は大きくするのが良い。   Therefore, the lower the rotational speed of the compressor 5 is, the earlier the switching is performed, that is, the threshold value ΔTc3 may be set to be larger. On the contrary, when the rotation speed of the compressor 5 is high, the effect of lowering the condensation temperature is large, so it is preferable to aim at the effect of lowering the condensation temperature by making ΔTc 3 smaller. Furthermore, if the capacity ratio between the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 is superior to the outdoor heat exchanger 7, the effect of lowering the condensation temperature by the other heat source utilization heat exchanger 9 is reduced. It is desirable to increase ΔTc3 in order to reduce the

そして、ΔT<ΔTc4の場合には、第2膨張弁11、他熱源熱交開閉弁13を開状態とし、第1膨張弁10、外熱交開閉弁12、液ガス開閉弁14を閉状態とする。第2膨張弁11は冷媒を減圧するのに適切な開度に調整される。これによって、圧縮機5から吐出された冷媒は、他熱源利用熱交換器9には流れ、室外熱交換器7には流れることがない。他熱源利用熱交換器9を出た冷媒は第2膨張弁11によって、減圧される。   When ΔT <ΔTc4, the second expansion valve 11 and the other heat source heat exchange valve 13 are opened, and the first expansion valve 10, the external heat exchange valve 12 and the liquid gas on-off valve 14 are closed. Do. The second expansion valve 11 is adjusted to an opening degree suitable for reducing the pressure of the refrigerant. Accordingly, the refrigerant discharged from the compressor 5 flows to the other heat source utilization heat exchanger 9 and does not flow to the outdoor heat exchanger 7. The refrigerant leaving the other heat source utilization heat exchanger 9 is depressurized by the second expansion valve 11.

ブライン温度がさらに低下して、ΔTがΔTc4よりも小さくなると地中熱熱源18だけを使用するのが望ましくなる。このとき、圧縮機5の回転数が高くなるほど大きな温度差が必要となり、ΔTc4は小さくなる。また、室外熱交換器7と他熱源利用熱交換器9の能力比率が、室外熱交換器7優位であるほど、他熱源利用熱交換器9の能力を上げるためΔTc4は小さくしなければならない。   It is desirable to use only the underground heat source 18 when the brine temperature is further lowered and ΔT becomes smaller than ΔTc4. At this time, as the rotation speed of the compressor 5 increases, a large temperature difference is required, and ΔTc4 decreases. Also, as the capacity ratio between the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 is superior to the outdoor heat exchanger 7, ΔTc4 must be smaller in order to increase the capacity of the other heat source utilization heat exchanger 9.

(表2)は暖房運転時の各弁の開閉を示している。(表1)と同様に、第1の暖房閾値であるΔTh1は暖房運転時に室外熱交換器7を単独で使用するか否かを判断する閾値、第3の暖房閾値であるΔTh3は室外熱交換器7と他熱源利用熱交換器9を並列に使用するか、他熱源利用熱交換器9を液側に直列に使用するかを判断する閾値、第4の暖房閾値であるΔTh4は他熱源利用熱交換器9を単独で使用するか否かを判断する閾値である。なお、ΔTh1<ΔTh3<ΔTh4である。   Table 2 shows the opening and closing of each valve during the heating operation. As in (Table 1), the first heating threshold ΔTh1 is a threshold for determining whether the outdoor heat exchanger 7 is used alone during heating operation, and the third heating threshold ΔTh3 is an outdoor heat exchange The threshold for determining whether to use the heat exchanger 7 and the other heat source utilization heat exchanger 9 in parallel or to use the other heat source utilization heat exchanger 9 in series on the liquid side The threshold value is used to determine whether the heat exchanger 9 is used alone. Note that ΔTh1 <ΔTh3 <ΔTh4.

まず、暖房運転の場合で、ΔT<ΔTh1の場合には、第1膨張弁10、外熱交開閉弁12を開状態とし、液ガス開閉弁14、第2膨張弁11、他熱源熱交開閉弁13を閉状態とする。第1膨張弁10は冷媒を減圧するのに適切な開度に調整される。これによって、
室内熱交換器2を出た冷媒は、第1膨張弁10で減圧された後、室外熱交換器7には流れ、他熱源利用熱交換器9には流れることがない。
First, in the case of heating operation, in the case of ΔT <ΔTh1, the first expansion valve 10 and the external heat exchange valve 12 are opened, and the liquid gas on-off valve 14, the second expansion valve 11, other heat source heat exchange open and close The valve 13 is closed. The first expansion valve 10 is adjusted to an opening degree suitable for depressurizing the refrigerant. by this,
The refrigerant that has left the indoor heat exchanger 2 is reduced in pressure by the first expansion valve 10, and then flows to the outdoor heat exchanger 7 and does not flow to the other heat source utilization heat exchanger 9.

一般的に、暖房運転の場合、地中熱熱源18から送られてきたブラインの温度が、外気温よりも低ければ地中熱を利用することに大きなメリットはない。しかし、実際のところ室外熱交換器7のみ使用すれば蒸発温度は必然的に外気温Taよりも低くなる。ここで、ブライン温度が外気温Taよりは低いが、室外熱交換器7のみ使用時の蒸発温度よりも高ければ、他熱源利用熱交換器9を利用することに一定の価値がある。   In general, in the case of heating operation, if the temperature of the brine sent from the ground heat source 18 is lower than the outside temperature, there is no great advantage in utilizing the ground heat. However, in practice, if only the outdoor heat exchanger 7 is used, the evaporation temperature inevitably becomes lower than the outside air temperature Ta. Here, if the brine temperature is lower than the outside air temperature Ta but higher than the evaporation temperature when only the outdoor heat exchanger 7 is used, there is a certain value in using the other heat source utilization heat exchanger 9.

従って、ΔTh1は0よりも小さな値が妥当であり、圧縮機5の回転数が高いほど小さくなる傾向がある。逆に、室外熱交換器7と他熱源利用熱交換器9の能力比率が、室外熱交換器7優位であれば、地中熱熱源18の熱が多く利用できる条件になってから他熱源利用熱交換器9を利用することになり、ΔTh1は大きくなる傾向がある。   Accordingly, a value smaller than 0 is appropriate for ΔTh1, and the higher the rotational speed of the compressor 5, the smaller the tendency. Conversely, if the capacity ratio between the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 is superior to the outdoor heat exchanger 7, then the heat of the underground heat source 18 can be used in a large amount of heat. Since the heat exchanger 9 is used, ΔTh1 tends to be large.

ΔTh1≦ΔT<ΔTh3の場合には、第1膨張弁10、第2膨張弁11、外熱交開閉弁12、他熱源熱交開閉弁13を開状態とし、液ガス開閉弁14を閉状態とする。第1膨張弁10、第2膨張弁11は、それぞれを通過する冷媒を減圧するのに適切な開度に調整される。これによって、室内熱交換器2を出た冷媒は、第1膨張弁10で減圧された後、室外熱交換器7に流入する流れと、第1膨張弁10で減圧された後、他熱源利用熱交換器9に流入する流れとに、並列に流れる。   When ΔTh1 ≦ ΔT <ΔTh3, the first expansion valve 10, the second expansion valve 11, the external heat exchange valve 12, and the other heat source heat exchange valve 13 are opened, and the liquid gas on-off valve 14 is closed. Do. The first expansion valve 10 and the second expansion valve 11 are adjusted to an opening degree appropriate for reducing the pressure of the refrigerant passing therethrough. As a result, the refrigerant leaving the indoor heat exchanger 2 is reduced in pressure by the first expansion valve 10, and then flows into the outdoor heat exchanger 7, and after being reduced in pressure by the first expansion valve 10, other heat sources are used It flows in parallel with the flow flowing into the heat exchanger 9.

地中熱熱源18から送られてきたブラインの温度が、外気温と同様の温度(つまりΔTがΔTh1以下)であれば、室外熱交換器7と他熱源利用熱交換器9は並列に使用するのが望ましい。外気温とブラインに温度差が無く、蒸発の到達温度は変わらないためである。   If the temperature of the brine sent from the underground heat source 18 is the same temperature as the outside air temperature (that is, ΔT is ΔTh1 or less), the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 are used in parallel Is desirable. There is no temperature difference between the outside air temperature and the brine, and the end temperature of evaporation does not change.

次に、ΔTh3≦ΔT<ΔTh4の場合には、第2膨張弁11、外熱交開閉弁12、液ガス開閉弁14を開状態とし、第1膨張弁10、他熱源熱交開閉弁13を閉状態とする。第2膨張弁11は冷媒を減圧するのに適切な開度に調整される。これによって、室内熱交換器2を出た冷媒は、第2膨張弁11によって減圧された後、他熱源利用熱交換器9を流れた後、室外熱交換器7に流れる。   Next, in the case of ΔTh3 ≦ ΔT <ΔTh4, the second expansion valve 11, the external heat exchange valve 12, and the liquid gas on-off valve 14 are opened, and the first expansion valve 10 and the other heat source heat exchange valve 13 are opened. It is closed. The second expansion valve 11 is adjusted to an opening degree suitable for reducing the pressure of the refrigerant. As a result, the refrigerant leaving the indoor heat exchanger 2 is reduced in pressure by the second expansion valve 11, and then flows through the other heat source utilization heat exchanger 9, and then flows into the outdoor heat exchanger 7.

本実施の形態1では、暖房運転時、室外熱交換器7と他熱源利用熱交換器9は並列に使用するか他熱源利用熱交換器9を上流に配置した直列での使用となる。   In the first embodiment, during the heating operation, the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 are used in parallel or in a series use where the other heat source utilization heat exchanger 9 is disposed upstream.

他熱源利用熱交換器9を上流に配置した直列で効果が出るのは、ブライン温度が外気温よりも高くなってからで、このとき膨張弁は、第2膨張弁11の1つを制御することになり、絞りの調整が容易となり最適な絞り設定で運転できる。並列の場合には、第1膨張弁10と第2膨張弁11の両方を調整することになり、それぞれが最適となるよう制御することは難度が高い。   The effect is obtained in series in which the other heat source utilizing heat exchanger 9 is disposed upstream, when the brine temperature becomes higher than the ambient temperature, and at this time the expansion valve controls one of the second expansion valves 11 As a result, it is easy to adjust the aperture and it is possible to operate at the optimal aperture setting. In the case of parallel, both the first expansion valve 10 and the second expansion valve 11 are adjusted, and it is difficult to control each of them to be optimal.

そしてこのとき、圧縮機5の回転数が高いほど蒸発温度は低下するので、ΔTが小さくても効果が得られるようになるので閾値ΔTh3は小さくなり、室外熱交換器7と他熱源利用熱交換器9の能力比率が、室外熱交換器7優位であれば他熱源利用熱交換器9での蒸発温度上昇による能力低下の影響が小さく、閾値ΔTh3は大きくなる。   At this time, the higher the rotational speed of the compressor 5, the lower the evaporation temperature. Therefore, even if ΔT is small, the effect is obtained, so the threshold ΔTh3 becomes small, and heat exchange between the outdoor heat exchanger 7 and the other heat source is performed. If the capacity ratio of the unit 9 is superior to the outdoor heat exchanger 7, the influence of the capacity decrease due to the evaporation temperature increase in the other heat source utilization heat exchanger 9 is small, and the threshold ΔTh3 becomes large.

そして、ΔTh4≦ΔTの場合には、第2膨張弁11、他熱源熱交開閉弁13を開状態とし、第1膨張弁10、外熱交開閉弁12、液ガス開閉弁14を閉状態とする。第2膨張弁11は冷媒を減圧するのに適切な開度に調整される。これによって、室内熱交換器2を出た冷媒は、第2膨張弁11によって減圧された後、他熱源利用熱交換器9に流れ、室外
熱交換器7に流れることはない。
Then, in the case of ΔTh4 ≦ ΔT, the second expansion valve 11 and the other heat source heat exchange valve 13 are opened, and the first expansion valve 10, the external heat exchange valve 12 and the liquid gas on-off valve 14 are closed. Do. The second expansion valve 11 is adjusted to an opening degree suitable for reducing the pressure of the refrigerant. As a result, the refrigerant leaving the indoor heat exchanger 2 is reduced in pressure by the second expansion valve 11, and then flows to the other heat source utilization heat exchanger 9 and does not flow to the outdoor heat exchanger 7.

ブライン温度がさらに上昇して、ΔTがΔTh4よりも大きくなると地中熱熱源18だけを使用するのが望ましくなる。圧縮機5の回転数が高くなるほど大きな能力が必要となりΔTh4は大きくなる。また、室外熱交換器7と他熱源利用熱交換器9の能力比率が、室外熱交換器7優位であるほど他熱源利用熱交換器9の能力増が必要となり、ΔTc4は大きくなる傾向を有している。   It is desirable to use only the ground heat source 18 when the brine temperature is further raised and ΔT becomes larger than ΔTh4. As the rotation speed of the compressor 5 becomes higher, a larger capacity is required, and ΔTh4 becomes larger. In addition, as the capacity ratio of the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 is superior to the outdoor heat exchanger 7, the capacity increase of the other heat source utilization heat exchanger 9 is required, and ΔTc 4 tends to increase doing.

本実施の形態1においては、切り替え手段は、室外熱交換器7のガス側配管に配置され開閉を行なう外熱交開閉弁12と、他熱源利用熱交換器9の高エンタルピー側に配置され開閉を行なう他熱源熱交開閉弁13と、室外熱交換器7と第1膨張弁10の間と、他熱源利用熱交換器9と他熱源熱交開閉弁13の間とを結ぶ液側高エンタルピー側接続配管20に配置され開閉を行なう液ガス開閉弁14で構成されている。この切り替え手段によって、室外熱交換器7と他熱源利用熱交換器9をそれぞれ単独で使用するか、並列で使用するか、室外熱交換器7の液側に他熱源利用熱交換器9が直列に配置されるかを選択することができる。   In the first embodiment, the switching means is disposed on the gas side pipe of the outdoor heat exchanger 7 to perform opening and closing, and is disposed on the high enthalpy side of the other heat source utilization heat exchanger 9 and opened and closed. Liquid-side high enthalpy connecting the other heat source heat exchange on-off valve 13, the space between the outdoor heat exchanger 7 and the first expansion valve 10, and the other heat source utilization heat exchanger 9 and the other heat source heat exchange on-off valve 13 It is comprised by the liquid gas on-off valve 14 arrange | positioned in the side connection piping 20, and opening and closing. Depending on the switching means, the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 may be used alone or in parallel, or the other heat source utilization heat exchanger 9 may be connected in series to the liquid side of the outdoor heat exchanger 7 You can choose to be placed in

そして、室外熱交換器7の液側に他熱源利用熱交換器9が直列に配置された際、特に冷房運転時に大きな効果を発揮し、本発明の空気調和機の消費電力を低減し、省エネ性に優れた装置を提供することができる。   And, when the other heat source utilization heat exchanger 9 is arranged in series on the liquid side of the outdoor heat exchanger 7, it exerts a great effect especially in the cooling operation, reducing the power consumption of the air conditioner of the present invention, saving energy. It is possible to provide an excellent device.

さらに、本実施の形態1は、(表1)、(表2)に従い制御を行なうことで、該当運転条件時に適した熱源利用を行ない、省エネ性に優れた装置を適切に運転することができる。   Furthermore, according to the first embodiment, by performing control according to (Table 1) and (Table 2), it is possible to use a heat source suitable for the corresponding operating condition, and appropriately operate the device excellent in energy saving performance. .

なお、本実施の形態1の空気調和機においては他熱源として地中熱を使用したが、河川水や、太陽熱、雪室などの蓄熱、冷凍機やヒートポンプの排熱などを利用してもかまわない。また、冷凍サイクル回路に封入する冷媒は特に種類を問わず効果を得ることができる。   In the air conditioner of the first embodiment, ground heat is used as the other heat source, but river water, solar heat, thermal storage such as a snow room, exhaust heat of a refrigerator or heat pump, etc. may be used. Absent. Further, the refrigerant sealed in the refrigeration cycle circuit can obtain an effect regardless of the type.

(実施の形態2)
図1は、本発明の実施の形態2における空気調和機の構成図を示すものである。なお、図2では、四方弁6は暖房運転の場合の状態を示している。
Second Embodiment
FIG. 1 shows a configuration diagram of an air conditioner according to Embodiment 2 of the present invention. In addition, in FIG. 2, the four-way valve 6 has shown the state in the case of heating operation.

本実施の形態2の空気調和機は、図2に示すように、実施の形態1と同様、室内熱交換器2、室内送風機3を備えた室内機1と、圧縮機5、四方弁6、室外熱交換器7、室外ファン8、第1の調整弁である第1膨張弁10を備えた室外機4を接続し、冷凍サイクルあるいはヒートポンプサイクルを構成し、冷房運転あるいは暖房運転を行なう。   The air conditioner according to the second embodiment, as shown in FIG. 2, is the indoor unit 1 including the indoor heat exchanger 2 and the indoor blower 3, the compressor 5, the four-way valve 6, as in the first embodiment. An outdoor heat exchanger 7, an outdoor fan 8, and an outdoor unit 4 provided with a first expansion valve 10, which is a first adjustment valve, are connected to form a refrigeration cycle or a heat pump cycle, and a cooling operation or a heating operation is performed.

図2においては、四方弁6は暖房運転の状態となっており、圧縮機5から吐出された冷媒は、四方弁6を経て室内熱交換器2へ流れ放熱した後、室外機4へ戻ってくる。   In FIG. 2, the four-way valve 6 is in the heating operation state, and the refrigerant discharged from the compressor 5 flows through the four-way valve 6 to the indoor heat exchanger 2 and radiates heat, and then returns to the outdoor unit 4. come.

さらに、外気以外の熱源から得た冷熱あるいは温熱を利用するため室外機4には、他熱源利用熱交換器9と、第2の調整弁である第2膨張弁11とを備えており、他熱源利用熱交換器9には、ポンプ17によって熱媒体であるブラインが地中熱熱源18へ送られ地熱を回収して運ばれてくる。   Furthermore, the outdoor unit 4 is provided with the other heat source utilization heat exchanger 9 and the second expansion valve 11 which is a second adjusting valve, in order to use cold heat or heat obtained from a heat source other than the outside air. In the heat source utilization heat exchanger 9, the brine which is a heat medium is sent to the underground heat source 18 by the pump 17, and the geothermal heat is recovered and carried.

制御装置21は、外気温センサ16および熱媒体温度センサ19の出力と圧縮機5の回転数などの運転条件に応じて切り替え手段を制御し、室外熱交換器7と他熱源利用熱交換器9を、運転状況に応じて適した接続状態にする。   The control device 21 controls the switching means in accordance with the operating conditions such as the output of the outside air temperature sensor 16 and the heat medium temperature sensor 19 and the rotational speed of the compressor 5, and the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9. In a suitable connection according to the driving situation.

従って、本発明の空気調和機は、他熱源を有効に利用することができるので、消費電力を低減し、省エネ性に優れる装置を提供できる。   Therefore, the air conditioner of the present invention can effectively utilize other heat sources, so it can reduce power consumption and provide an apparatus excellent in energy saving performance.

本実施の形態2の空気調和機においては、切り替え手段は、室外熱交換器7のガス側配管に配置され開閉を行なう第1の制御弁である外熱交開閉弁12と、他熱源利用熱交換器9の高エンタルピー側に配置され開閉を行なう第2の制御弁である他熱源熱交開閉弁13と、室外熱交換器7と外熱交開閉弁12の間と、他熱源利用熱交換器9と第2膨張弁11の間とを結ぶガス側低エンタルピー側接続配管23と、ガス側低エンタルピー側接続配管23に配置され開閉を行なう第3の制御弁であるガス液開閉弁22で構成されている。   In the air conditioner according to the second embodiment, the switching means is the first heat exchange valve 12 which is a first control valve disposed in the gas side pipe of the outdoor heat exchanger 7 and which opens and closes, and heat from other heat sources. The other heat source heat exchange on-off valve 13 which is a second control valve disposed on the high enthalpy side of the exchanger 9 for opening and closing, between the outdoor heat exchanger 7 and the external heat exchange on-off valve 12, and other heat source utilization heat exchange The gas-side low enthalpy-side connecting pipe 23 connecting the valve 9 and the second expansion valve 11, and the gas liquid on-off valve 22 which is a third control valve disposed in the gas-side low enthalpy-side connecting pipe 23 for opening and closing It is configured.

第1膨張弁10、第2膨張弁11、外熱交開閉弁12、他熱源熱交開閉弁13、ガス液開閉弁22は、制御装置21によって制御され、室外熱交換器7と他熱源利用熱交換器9の使用状態を最適に設定する。   The first expansion valve 10, the second expansion valve 11, the external heat exchange valve 12, the other heat source heat exchange valve 13, and the gas liquid on-off valve 22 are controlled by the control device 21, and the outdoor heat exchanger 7 and other heat sources are used. The use state of the heat exchanger 9 is set optimally.

本実施の形態2においては、第1膨張弁10、第2膨張弁11、外熱交開閉弁12、他熱源熱交開閉弁13、ガス液開閉弁22の開閉は、熱媒体温度センサ19の出力値Ttと外気温センサ16の出力値Taの差分ΔTに応じて、(表3)、(表4)の様に動作し、室外熱交換器7と他熱源利用熱交換器9の使用状態を最適に設定する。   In the second embodiment, opening and closing of the first expansion valve 10, the second expansion valve 11, the external heat exchange valve 12, the other heat source heat exchange valve 13, and the gas liquid on-off valve 22 are performed by the heat medium temperature sensor 19. According to the difference ΔT between the output value Tt and the output value Ta of the outside air temperature sensor 16, it operates as in (Table 3) and (Table 4), and the use state of the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 Set the best.

(表3)は暖房運転時、(表4)は冷房運転時における各弁の開閉を示している。   Table 3 shows the opening and closing of each valve during heating operation and Table 4 during cooling operation.

(表3)において、第2の暖房閾値であるΔTh2は室外熱交換器7と他熱源利用熱交換器9を並列に使用するか、他熱源利用熱交換器9をガス側に直列に配置するかを判断する閾値であり、(表4)において、第2の冷房閾値であるΔTc2は室外熱交換器7と他熱源利用熱交換器9を並列に使用するか、他熱源利用熱交換器9をガス側に直列に配置するかを判断する閾値である。   In Table 3, the second heating threshold ΔTh2 uses the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 in parallel, or arranges the other heat source utilization heat exchanger 9 in series on the gas side The second cooling threshold ΔTc2 in (Table 4) indicates whether the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 are used in parallel or the other heat source utilization heat exchanger 9 Is a threshold value for determining whether to be disposed in series on the gas side.

その他のΔTc1、ΔTc4、ΔTh1、ΔTh4など、室外熱交換器7、他熱源利用熱交換器9を単独で用いる場合の判断条件は、実施の形態1と同様である。   The determination conditions in the case of using the outdoor heat exchanger 7 and the other heat source utilizing heat exchanger 9 alone, such as ΔTc1, ΔTc4, ΔTh1 and ΔTh4, are the same as in the first embodiment.

まず、暖房運転の場合で、ΔT<ΔTh1の場合には、第1膨張弁10、外熱交開閉弁12を開状態とし、第2膨張弁11、他熱源熱交開閉弁13、ガス液開閉弁22を閉状態とする。第1膨張弁10は冷媒を減圧するのに適切な開度に調整される。これによって、室内熱交換器2を出た冷媒は、第1膨張弁10で減圧された後、室外熱交換器7には流れ、他熱源利用熱交換器9には流れることがない。   First, in the case of heating operation, in the case of ΔT <ΔTh1, the first expansion valve 10 and the external heat exchange on-off valve 12 are opened, and the second expansion valve 11, other heat source heat exchange on-off valve 13, gas liquid on-off The valve 22 is closed. The first expansion valve 10 is adjusted to an opening degree suitable for depressurizing the refrigerant. As a result, the refrigerant leaving the indoor heat exchanger 2 is reduced in pressure by the first expansion valve 10, and then flows to the outdoor heat exchanger 7 and does not flow to the other heat source utilization heat exchanger 9.

つまり、暖房運転において、地中熱熱源18から得られるブライン温度Ttが冷媒の蒸発温度がよりも小さな状態では、室外熱交換器7を単独で使用する。   That is, in the heating operation, when the brine temperature Tt obtained from the underground heat source 18 is smaller than the evaporation temperature of the refrigerant, the outdoor heat exchanger 7 is used alone.

ブライン温度Ttと冷媒の蒸発温度の差が、その状態から大きくなっていって、ΔTがΔTh1以上となると室外熱交換器7の下流に配置されても冷媒を過熱することが可能になる。   The difference between the brine temperature Tt and the evaporation temperature of the refrigerant increases from that state, and when ΔT becomes ΔTh1 or more, the refrigerant can be overheated even if it is disposed downstream of the outdoor heat exchanger 7.

通常、室外熱交換器7は、性能向上の観点からガス側が多パスになるよう設計されている。要求能力が大きく、圧縮機5の回転数が高くて冷媒循環量が多い状態では、各パスのバランスを取ることが容易であるが、圧縮機5の回転数が低く冷媒循環量が少ない状態では重力の影響などを受け、各パスのバランスを取ることが難しくなってくる。   In general, the outdoor heat exchanger 7 is designed such that the gas side has multiple paths from the viewpoint of performance improvement. In a state where the required capacity is large, the number of rotations of the compressor 5 is high, and the amount of refrigerant circulation is large, it is easy to balance each path, but in the state where the number of rotations of the compressor 5 is low and the amount of refrigerant circulation is small It becomes difficult to balance each path under the influence of gravity.

圧縮機5の性能を最適にするためには、吸入冷媒の乾き具合を適切に調整しなければならないが、パスのバランスが悪い状態で吸入冷媒の乾き具合を適切に調整すると、性能の悪いパスに合わせて絞りが設定されてしまうので、性能の良いパスは本来の性能を発揮することができず、全体として室外熱交換器7は性能を悪化させてしまうことになる。   In order to optimize the performance of the compressor 5, it is necessary to adjust the dryness of the suction refrigerant appropriately. However, if the dryness of the suction refrigerant is adjusted appropriately in a state where the path balance is poor, the path of poor performance Since the throttling is set in accordance with the above, a path with good performance can not exhibit its original performance, and the performance of the outdoor heat exchanger 7 as a whole will deteriorate.

そこで、ブライン温度Ttが冷媒の蒸発温度がよりも高くなったときに、他熱源利用熱交換器9を室外熱交換器7の下流に配置し、他熱源利用熱交換器9で吸入冷媒の乾き具合を適切に調整するよう制御を行なうと、室外熱交換器7を十分に活用することができるようになり、空気調和機の運転性能が向上する。   Therefore, when the brine temperature Tt becomes higher than the evaporation temperature of the refrigerant, the other heat source utilization heat exchanger 9 is disposed downstream of the outdoor heat exchanger 7, and the other heat source utilization heat exchanger 9 dries the intake refrigerant. If control is performed to adjust the condition appropriately, the outdoor heat exchanger 7 can be fully utilized, and the operation performance of the air conditioner is improved.

つまり、ΔTh1≦ΔT<ΔTh2の場合には、第1膨張弁10、他熱源熱交開閉弁13、ガス液開閉弁22を開状態とし、第2膨張弁11、外熱交開閉弁12を閉状態とする。第1膨張弁10は冷媒を減圧するのに適切な開度に調整される。これによって、室内熱交換器2を出た冷媒は、第1膨張弁10によって減圧された後、室外熱交換器7を流れた後、他熱源利用熱交換器9に流れる。   That is, in the case of ΔTh1 ≦ ΔT <ΔTh2, the first expansion valve 10, the other heat source heat exchange valve 13, and the gas liquid on-off valve 22 are opened, and the second expansion valve 11 and the external heat exchange valve 12 are closed. It will be in the state. The first expansion valve 10 is adjusted to an opening degree suitable for depressurizing the refrigerant. As a result, the refrigerant leaving the indoor heat exchanger 2 is reduced in pressure by the first expansion valve 10 and then flows through the outdoor heat exchanger 7 and then flows into the other heat source utilization heat exchanger 9.

この配置では、他熱源利用熱交換器9の能力比率が小さくても大きな効果を挙げることが可能である。   In this arrangement, even if the capacity ratio of the other heat source utilization heat exchanger 9 is small, a great effect can be obtained.

ΔTがさらに大きくなってΔTh2以上となると、他熱源利用熱交換器9で大きな能力を賄えるようになってくると、室外熱交換器7と他熱源利用熱交換器9を並列に用い、蒸
発温度を上昇させるのが効果的である。
When ΔT is further increased to become ΔTh2 or more, when the other heat source utilization heat exchanger 9 comes to have a large capacity, the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 are used in parallel, and the evaporation temperature is increased. It is effective to raise the

つまり、ΔTh2≦ΔT<ΔTh4の場合には、第1膨張弁10、第2膨張弁11、外熱交開閉弁12、他熱源熱交開閉弁13を開状態とし、ガス液開閉弁22を閉状態とする。第1膨張弁10、第2膨張弁11は、それぞれを通過する冷媒を減圧するのに適切な開度に調整される。これによって、室内熱交換器2を出た冷媒は、第1膨張弁10で減圧された後、室外熱交換器7に流入する流れと、第1膨張弁10で減圧された後、他熱源利用熱交換器9に流入する流れとに、並列に流れる。   That is, in the case of ΔTh2 ≦ ΔT <ΔTh4, the first expansion valve 10, the second expansion valve 11, the external heat exchange valve 12, the other heat source heat exchange valve 13 are opened, and the gas liquid on-off valve 22 is closed. It will be in the state. The first expansion valve 10 and the second expansion valve 11 are adjusted to an opening degree appropriate for reducing the pressure of the refrigerant passing therethrough. As a result, the refrigerant leaving the indoor heat exchanger 2 is reduced in pressure by the first expansion valve 10, and then flows into the outdoor heat exchanger 7, and after being reduced in pressure by the first expansion valve 10, other heat sources are used It flows in parallel with the flow flowing into the heat exchanger 9.

さらにまたΔTが大きくなってΔTh4以上となると、他熱源利用熱交換器9の能力が大きくなって、他熱源利用熱交換器9のみ使用するのが望ましくなる。   Furthermore, when ΔT becomes large and becomes ΔTh 4 or more, the capacity of the other heat source utilization heat exchanger 9 becomes larger, and it becomes desirable to use only the other heat source utilization heat exchanger 9.

つまり、ΔTh4≦ΔTの場合には、第2膨張弁11、外熱交開閉弁12を開状態とし、第1膨張弁10、他熱源熱交開閉弁13、ガス液開閉弁22を閉状態とする。第2膨張弁11は冷媒を減圧するのに適切な開度に調整される。これによって、室内熱交換器2を出た冷媒は、第2膨張弁11によって減圧された後、他熱源利用熱交換器9に流れ、室外熱交換器7に流れることはない。   That is, in the case of ΔTh4 ≦ ΔT, the second expansion valve 11 and the external heat exchange valve 12 are opened, and the first expansion valve 10, the other heat source heat exchange valve 13, and the gas liquid on-off valve 22 are closed. Do. The second expansion valve 11 is adjusted to an opening degree suitable for reducing the pressure of the refrigerant. As a result, the refrigerant leaving the indoor heat exchanger 2 is reduced in pressure by the second expansion valve 11, and then flows to the other heat source utilization heat exchanger 9 and does not flow to the outdoor heat exchanger 7.

以上説明したように、本実施の形態2では、(表3)に有るように、ΔTがΔTh1以上ΔTh2未満の時には、ガス液開閉弁22、他熱源熱交開閉弁13を開き、第2膨張弁11、外熱交開閉弁12を閉じて、他熱源利用熱交換器9が室外熱交換器7の下流になるよう直列に接続する。ΔTがΔTh2以上ΔTh4未満の時には、ガス液開閉弁22を閉じて、室外熱交換器7並列と他熱源利用熱交換器が9を並列に接続する。ΔTh4以上の場合には、外熱交開閉弁12、第1膨張弁10、ガス液開閉弁22を閉じ、他熱源利用熱交換器9のみ使用する。   As described above, in the second embodiment, as shown in (Table 3), when ΔT is not less than ΔTh1 and less than ΔTh2, the gas liquid on-off valve 22 and the other heat source heat exchange on-off valve 13 are opened and the second expansion is performed. The valve 11 and the external heat exchange on-off valve 12 are closed, and the other heat source utilization heat exchanger 9 is connected in series so as to be downstream of the outdoor heat exchanger 7. When ΔT is equal to or larger than ΔTh2 and smaller than ΔTh4, the gas liquid on-off valve 22 is closed, and the outdoor heat exchanger 7 parallel and the other heat source utilization heat exchanger 9 are connected in parallel. In the case of ΔTh4 or more, the external heat exchange valve 12, the first expansion valve 10, and the gas liquid on-off valve 22 are closed, and only the other heat source utilization heat exchanger 9 is used.

冷房運転においては(表4)に示すように、ΔTc2以上ΔTc1未満のときに、ガス液開閉弁22、他熱源熱交開閉弁13を開き、第2膨張弁11、外熱交開閉弁12を閉じて、他熱源利用熱交換器9が室外熱交換器7の上流になるよう直列に接続する。第1膨張弁10は冷媒を減圧するのに適切な開度に調整される。このとき、他熱源利用熱交換器9は冷媒の過熱領域の熱を放熱するために使用される。   In the cooling operation (Table 4), when ΔTc2 or more and less than ΔTc1, the gas liquid on-off valve 22 and the other heat source heat exchange on-off valve 13 are opened, and the second expansion valve 11 and the external heat exchange on-off valve 12 It closes and it connects in series so that the other-heat-source utilization heat exchanger 9 may become an upstream of the outdoor heat exchanger 7. FIG. The first expansion valve 10 is adjusted to an opening degree suitable for depressurizing the refrigerant. At this time, the other heat source utilizing heat exchanger 9 is used to dissipate heat in the overheated region of the refrigerant.

ΔTがΔTc4以上ΔTc2未満のときに、外熱交開閉弁12、他熱源熱交開閉弁13を開き、ガス液開閉弁22を閉じ、室外熱交換器7並列と他熱源利用熱交換器が9を並列に接続する。第1膨張弁10、第2膨張弁11は、それぞれを通過する冷媒を減圧するのに適切な開度に調整する。   When ΔT is more than ΔTc4 and less than ΔTc2, open the external heat exchange valve 12 and the other heat source heat exchange valve 13, close the gas liquid on-off valve 22, and connect the outdoor heat exchanger 7 parallel and the other heat source utilization heat exchanger Connect in parallel. The first expansion valve 10 and the second expansion valve 11 adjust the opening degree appropriate for reducing the pressure of the refrigerant passing therethrough.

ΔTがΔTc4未満のときに、他熱源熱交開閉弁13を開き、第1膨張弁10、外熱交開閉弁12、ガス液開閉弁22を閉じ、第2膨張弁11を冷媒を減圧するのに適切な開度に調整し、他熱源利用熱交換器9のみ使用する。   When ΔT is less than ΔTc4, the other heat source heat exchange valve 13 is opened, the first expansion valve 10, the external heat exchange valve 12, the gas liquid on-off valve 22 are closed, and the second expansion valve 11 is used to depressurize the refrigerant. Adjust to an appropriate degree of opening, and use only the other heat source utilization heat exchanger 9.

実施の形態1と本実施の形態2の違いは、室外熱交換器7と他熱源利用熱交換器9が直列接続となった場合の位置関係が逆になる点である。実施の形態1では、室外熱交換器7と他熱源利用熱交換器9が直列なった場合、他熱源利用熱交換器9が液側になり、冷房運転では他熱源利用熱交換器9が下流に、暖房運転では他熱源利用熱交換器9が上流になる。一方、本実施の形態2では、室外熱交換器7と他熱源利用熱交換器9が直列なった場合、他熱源利用熱交換器9がガス側になり、冷房運転では他熱源利用熱交換器9が上流に、暖房運転では他熱源利用熱交換器9が下流になる。   The difference between the first embodiment and the second embodiment is that the positional relationship when the outdoor heat exchanger 7 and the other heat source utilizing heat exchanger 9 are connected in series is reversed. In Embodiment 1, when the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 are in series, the other heat source utilization heat exchanger 9 is on the liquid side, and the other heat source utilization heat exchanger 9 is downstream in the cooling operation. In the heating operation, the other heat source utilization heat exchanger 9 is upstream. On the other hand, in the second embodiment, when the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 are in series, the other heat source utilization heat exchanger 9 is on the gas side, and the other heat source utilization heat exchanger in the cooling operation. In the heating operation, the other heat source utilization heat exchanger 9 is downstream.

そしてその際に、実施の形態1では冷房運転時の直列配置の効果が大きくのに対し、本
実施の形態2では、暖房運転時の直列配置の効果が大きい。その他の運転時ではサイクルの構成がまったく同じとなるので、効果についても同じである。
At that time, while the effect of the series arrangement at the time of the cooling operation is large in the first embodiment, the effect of the series arrangement at the time of the heating operation is large in the second embodiment. Since the configuration of the cycle is exactly the same during other operation, the same applies to the effect.

本実施の形態2においては、切り替え手段は、室外熱交換器7のガス側配管に配置され開閉を行なう外熱交開閉弁12と、他熱源利用熱交換器9の高エンタルピー側に配置され開閉を行なう他熱源熱交開閉弁13と、室外熱交換器7と外熱交開閉弁12の間と、他熱源利用熱交換器9と第2膨張弁11の間とを結ぶガス側低エンタルピー側接続配管23に配置され開閉を行なうガス液開閉弁22で構成されている。この切り替え手段によって、室外熱交換器7と他熱源利用熱交換器9をそれぞれ単独で使用するか、並列で使用するか、室外熱交換器7のガス側に他熱源利用熱交換器9が直列に配置されるかを選択することができる。   In the second embodiment, the switching means is disposed on the gas side pipe of the outdoor heat exchanger 7 and performs opening and closing, and is disposed on the high enthalpy side of the other heat source utilization heat exchanger 9 and opened and closed. Other heat source heat exchange on-off valve 13 performing the heat exchange between the outdoor heat exchanger 7 and the external heat exchange on-off valve 12 and between the other heat source utilization heat exchanger 9 and the second expansion valve 11 on the gas side low enthalpy side It is comprised by the gas liquid on-off valve 22 arrange | positioned in the connection piping 23, and opening and closing. Either the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 are used alone or in parallel by this switching means, or the other heat source utilization heat exchanger 9 is connected in series to the gas side of the outdoor heat exchanger 7 You can choose to be placed in

そして、特に暖房運転時に大きな効果を発揮し、本発明の空気調和機の消費電力を低減し、省エネ性に優れた装置を提供することができる。   And a big effect is exhibited especially at the time of heating operation, power consumption of an air conditioner of the present invention can be reduced, and a device excellent in energy saving performance can be provided.

さらに、実施の形態2は、(表3)、(表4)に従い制御を行なうことで、該当運転条件時に適した熱源利用を行ない、省エネ性に優れた装置を適切に運転することができる。   Further, in the second embodiment, by performing control according to (Table 3) and (Table 4), it is possible to use a heat source suitable for the corresponding operating condition, and appropriately operate the device excellent in energy saving property.

なお、本実施の形態2の空気調和機においては、他熱源として地中熱を使用したが、河川水や、太陽熱、雪室などの蓄熱、冷凍機やヒートポンプの排熱などを利用してもかまわない。また、冷凍サイクル回路に封入する冷媒は特に種類を問わず効果を得ることができる。   In the air conditioner of the second embodiment, ground heat is used as another heat source, but river water, solar heat, thermal storage such as snow room, exhaust heat of a refrigerator or heat pump, etc. I do not mind. Further, the refrigerant sealed in the refrigeration cycle circuit can obtain an effect regardless of the type.

(実施の形態3)
図3は、本発明の実施の形態3における空気調和機の構成図を示すものである。なお、図3では、四方弁6は冷房運転の場合の状態を示している。
Third Embodiment
FIG. 3 shows a configuration diagram of an air conditioner according to Embodiment 3 of the present invention. Note that FIG. 3 shows the four-way valve 6 in the cooling operation mode.

本実施の形態3は、図3に示すように、実施の形態1、実施の形態2の両方の構成を備えている。   The third embodiment, as shown in FIG. 3, has the configurations of both the first embodiment and the second embodiment.

本実施の形態3の空気調和機において切り替え手段は、室外熱交換器7のガス側配管に配置され開閉を行なう第1の制御弁である外熱交開閉弁12と、他熱源利用熱交換器9の高エンタルピー側に配置され開閉を行なう第2の制御弁である他熱源熱交開閉弁13と、室外熱交換器7と第1膨張弁10の間と、他熱源利用熱交換器9と他熱源熱交開閉弁13の間とを結ぶ液側高エンタルピー側接続配管20と、液側高エンタルピー側接続配管20に配置され開閉を行なう第4の制御弁である液ガス開閉弁14、室外熱交換器7と外熱交開閉弁12の間と、他熱源利用熱交換器9と第2膨張弁11の間とを結ぶガス側低エンタルピー側接続配管23と、ガス側低エンタルピー側接続配管23に配置され開閉を行なう第4の制御弁であるガス液開閉弁22で構成されている。   In the air conditioner according to the third embodiment, the switching means is a first control valve disposed on the gas side piping of the outdoor heat exchanger 7 and performing opening and closing. The other heat source heat exchange on-off valve 13 which is a second control valve disposed on the high enthalpy side of 9 and opens and closes, between the outdoor heat exchanger 7 and the first expansion valve 10, and the other heat source utilization heat exchanger 9 A liquid gas on-off valve 14 which is a fourth control valve disposed on the liquid side high enthalpy side connecting pipe 20 connecting between the other heat source heat exchange on-off valves 13 and the liquid side high enthalpy side connecting pipe 20 for opening and closing Gas side low enthalpy side connection piping 23 connecting between the heat exchanger 7 and the external heat exchange on-off valve 12 and between the other heat source utilization heat exchanger 9 and the second expansion valve 11, and gas side low enthalpy side connection piping Gas liquid on-off, which is a fourth control valve arranged at 23 for opening and closing It is composed of 22.

第1膨張弁10、第2膨張弁11、外熱交開閉弁12、他熱源熱交開閉弁13、液ガス開閉弁14、ガス液開閉弁22は、制御装置24によって制御され、室外熱交換器7と他熱源利用熱交換器9の使用状態を最適に設定する。   The first expansion valve 10, the second expansion valve 11, the external heat exchange valve 12, the other heat source heat exchange valve 13, the liquid gas on-off valve 14 and the gas liquid on-off valve 22 are controlled by the control device 24 to perform outdoor heat exchange The use condition of the heat exchanger 7 and the other heat source utilization heat exchanger 9 is set optimally.

本実施の形態3においては、実施の形態1、実施の形態2と同様に、第1膨張弁10、第2膨張弁11、外熱交開閉弁12、他熱源熱交開閉弁13、液ガス開閉弁14、ガス液開閉弁22の開閉は、熱媒体温度センサ19の出力値Ttと外気温センサ16の出力値Taの差分ΔTに応じて、(表5)、(表6)の様に動作し、室外熱交換器7と他熱源利用熱交換器9の使用状態を最適に設定する。   In the third embodiment, as in the first and second embodiments, the first expansion valve 10, the second expansion valve 11, the external heat exchange valve 12, the other heat source heat exchange valve 13, the liquid gas The opening and closing of the on-off valve 14 and the gas liquid on-off valve 22 are as shown in Table 5 and Table 6 according to the difference ΔT between the output value Tt of the heat medium temperature sensor 19 and the output value Ta of the outside air temperature sensor 16. It operates and the use condition of the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 is set optimally.

ΔTc1、ΔTc2、ΔTc3、ΔTc4、ΔTh1、ΔTh2、ΔTh3、ΔTh4などの条件は、実施の形態1、実施の形態2と同様である。   Conditions such as ΔTc 1, ΔTc 2, ΔTc 3, ΔTc 4, ΔTh 1, ΔTh 2, ΔTh 3, ΔTh 4 are the same as in the first and second embodiments.

本実施の形態3では、室外熱交換器7と他熱源利用熱交換器9が直列となる場合、室外熱交換器7に対して他熱源利用熱交換器9が上流にも下流にも(ガス側にも液側にも)配置できるので、冷房運転であっても暖房運転であっても効果の大きな配置を実現することができる。   In the third embodiment, when the outdoor heat exchanger 7 and the other heat source utilization heat exchanger 9 are in series, the other heat source utilization heat exchanger 9 is also upstream and downstream with respect to the outdoor heat exchanger 7 (gas Since the arrangement can be made on the side and the liquid side, a great arrangement can be realized whether in the cooling operation or the heating operation.

以上のように、本発明にかかる空気調和機は、外気とは異なる熱源を適切かつ有効に利用して、効率のよい装置を提供するもので、その技術は空気調和機だけに止まらず、セパレート型のショーケース、冷蔵庫などに広く適用することができ、効果をもたらすものである。   As described above, the air conditioner according to the present invention appropriately and effectively uses a heat source different from the outside air to provide an efficient device, and the technology is not limited to the air conditioner, and it is a separate It can be widely applied to type showcases, refrigerators, etc., and brings about an effect.

1 室内機
2 室内熱交換器
3 室内送風機
4 室外機
5 圧縮機
6 四方弁
7 室外熱交換器
8 室外ファン
9 他熱源利用熱交換器
10 第1膨張弁
11 第2膨張弁
12 外熱交開閉弁
13 他熱源熱交開閉弁
14 液ガス開閉弁
15、21、24 制御装置
16 外気温センサ
17 ポンプ
18 地中熱熱源
19 熱媒体温度センサ
20 液側高エンタルピー側接続配管
22 ガス液開閉弁
23 ガス側低エンタルピー側接続配管
DESCRIPTION OF SYMBOLS 1 indoor unit 2 indoor heat exchanger 3 indoor blower 4 outdoor unit 5 compressor 6 four-way valve 7 outdoor heat exchanger 8 outdoor fan 9 other heat source utilization heat exchanger 10 1st expansion valve 11 2nd expansion valve 12 outside heat exchange opening and closing Valve 13 Other heat source heat exchange on-off valve 14 Liquid gas on-off valve 15, 21, 24 Control device 16 Outside air temperature sensor 17 Pump 18 Ground heat source 19 Heat medium temperature sensor 20 Liquid side high enthalpy side connection piping 22 Gas liquid on-off valve 23 Gas side low enthalpy side connection piping

Claims (8)

冷媒を圧縮する圧縮機と、外気と熱交換を行なう室外熱交換器と、前記室外熱交換器の低エンタルピー側に接続された第1の調整弁と、前記外気以外の熱源から得た冷熱あるいは温熱を利用する他熱源利用熱交換器と、前記他熱源利用熱交換器の低エンタルピー側に接続された第2の調整弁と、前記室外熱交換器と前記他熱源利用熱交換器の接続関係を切り替える切り替え手段と、室内の空気と熱交換する室内熱交換器と、前記外気の温度を検知する外気温検知手段と、前記熱源から搬送された熱媒体の温度を検知する熱媒体温度検知手段と、前記外気温検知手段の出力と前記熱媒体温度検知手段の出力の少なくともいずれか一方に応じて前記切り替え手段を制御する制御手段とを備え、前記室外熱交換器を単体で利用する接続関係と、前記室外熱交換器と前記他熱源利用熱交換器を並列に接続して運転する接続関係と、前記室外熱交換器と前記他熱源利用熱交換器を直列に接続して運転する接続関係と、前記他熱源利用熱交換器を単体で利用する接続関係と、を含む、前記室外熱交換器と前記他熱源利用熱交換器の接続関係を切り替え可能にすることを特徴とする空気調和機。 A compressor for compressing a refrigerant, an outdoor heat exchanger for exchanging heat with the outside air, a first adjusting valve connected to the low enthalpy side of the outdoor heat exchanger, cold heat obtained from a heat source other than the outside air The connection relationship between the other heat source utilization heat exchanger that utilizes heat, the second adjustment valve connected to the low enthalpy side of the other heat source utilization heat exchanger, the outdoor heat exchanger, and the other heat source utilization heat exchanger Switching means for switching the temperature, an indoor heat exchanger for exchanging heat with indoor air, an outside air temperature detecting means for detecting the temperature of the outside air, and a heat medium temperature detecting means for detecting the temperature of the heat medium conveyed from the heat source And a control unit that controls the switching unit according to at least one of the output of the outside air temperature detection unit and the output of the heat medium temperature detection unit, and a connection relationship in which the outdoor heat exchanger is used alone And the above A connection relationship in which an external heat exchanger and the other heat source utilization heat exchanger are connected in parallel and operated, a connection relationship in which the outdoor heat exchanger and the other heat source utilization heat exchanger are connected in series and operated, An air conditioner characterized in that it is possible to switch the connection relationship between the outdoor heat exchanger and the other heat source utilization heat exchanger, including a connection relationship using the other heat source utilization heat exchanger as a single body. 前記第1の調整弁に接続された配管であって前記室外熱交換器と反対側の配管と前記第2の調整弁に接続された配管であって前記他熱源利用熱交換器と反対側の配管とが合流して、前記室内熱交換器に接続され、
前記室外熱交換器のガス側配管と前記他熱源利用熱交換器の高エンタルピー側配管とが合流して、前記圧縮機の吐出口あるいは吸入口へ接続され、
前記切り替え手段として、前記室外熱交換器のガス側配管に配置され開閉を行なう第1の制御弁と、前記他熱源利用熱交換器の高エンタルピー側配管に配置され開閉を行なう第2の制御弁と、前記室外熱交換器と前記第1の制御弁の間と前記他熱源利用熱交換器と前記第2の調整弁の間を結ぶガス側低エンタルピー側接続配管と、前記ガス側低エンタルピー側接続配管に配置され開閉を行なう第3の制御弁を備え、
前記第1の調整弁と前記第2の調整弁と第1の制御弁と第2の制御弁と第3の制御弁の動作を前記制御手段で制御することを特徴とする請求項1に記載の空気調和機。
It is a pipe connected to the first control valve, and a pipe on the opposite side to the outdoor heat exchanger and a pipe connected to the second control valve, on the opposite side to the other heat source utilization heat exchanger The piping joins together and is connected to the indoor heat exchanger,
The gas side piping of the outdoor heat exchanger and the high enthalpy side piping of the other heat source utilization heat exchanger join together and are connected to the discharge port or suction port of the compressor,
As the switching means, a first control valve disposed in the gas side pipe of the outdoor heat exchanger for opening and closing, and a second control valve disposed in the high enthalpy side pipe of the other heat source utilization heat exchanger for opening and closing A gas side low enthalpy side connecting pipe connecting between the outdoor heat exchanger and the first control valve and between the other heat source utilizing heat exchanger and the second control valve; and the gas side low enthalpy side Equipped with a third control valve located in the connection piping and opening and closing,
The operation of the first control valve, the second control valve, the first control valve, the second control valve, and the third control valve are controlled by the control means. Air conditioner.
前記第1の調整弁に接続された配管であって前記室外熱交換器と反対側の配管と前記第2の調整弁に接続された配管であって前記他熱源利用熱交換器と反対側の配管とが合流して、前記室内熱交換器に接続され、
前記室外熱交換器のガス側配管と前記他熱源利用熱交換器の高エンタルピー側配管とが合流して、前記圧縮機の吐出口あるいは吸入口へ接続され、
前記切り替え手段として、前記室外熱交換器のガス側配管に配置され開閉を行なう第1の制御弁と、前記他熱源利用熱交換器の高エンタルピー側配管に配置され開閉を行なう第2の制御弁と、前記室外熱交換器と前記第1の調整弁の間と前記他熱源利用熱交換器と前記第2の制御弁の間を結ぶ液側高エンタルピー側接続配管と、前記液側高エンタルピー側接続配管に配置され開閉を行なう第4の制御弁を備え、
前記第1の調整弁と前記第2の調整弁と第1の制御弁と第2の制御弁と第4の制御弁の動作を前記制御手段で制御することを特徴とする請求項1に記載の空気調和機。
It is a pipe connected to the first control valve, and a pipe on the opposite side to the outdoor heat exchanger and a pipe connected to the second control valve, on the opposite side to the other heat source utilization heat exchanger The piping joins together and is connected to the indoor heat exchanger,
The gas side piping of the outdoor heat exchanger and the high enthalpy side piping of the other heat source utilization heat exchanger join together and are connected to the discharge port or suction port of the compressor,
As the switching means, a first control valve disposed in the gas side pipe of the outdoor heat exchanger for opening and closing, and a second control valve disposed in the high enthalpy side pipe of the other heat source utilization heat exchanger for opening and closing A liquid side high enthalpy side connecting pipe connecting between the outdoor heat exchanger and the first control valve and between the other heat source utilizing heat exchanger and the second control valve; and the liquid side high enthalpy side It has a fourth control valve that is arranged in the connection piping and that opens and closes,
The operation of the first control valve, the second control valve, the first control valve, the second control valve, and the fourth control valve are controlled by the control means. Air conditioner.
前記熱媒体温度検知手段の出力値から前記外気温検知手段の出力値を引いた差分値が、冷房運転時であれば第1の冷房閾値よりも大きな場合に、暖房運転であれば第1の暖房閾値よりも小さな場合に、前記第1の制御弁を開き、前記第2の制御弁または前記第2の調整弁を閉じ、前記第3の制御弁または前記第4の制御弁を閉じ、前記第1の調整弁を調整して、前記他熱源利用熱交換器は使用せずに前記室外熱交換器のみを使用し運転することを特徴とする請求項2または請求項3に記載の空気調和機。 If the difference value obtained by subtracting the output value of the outside air temperature detection means from the output value of the heat medium temperature detection means is greater than the first cooling threshold value during cooling operation, the first value for heating operation When it is smaller than the heating threshold value, the first control valve is opened, the second control valve or the second adjustment valve is closed, and the third control valve or the fourth control valve is closed. The air conditioning according to claim 2 or 3, wherein the first adjustment valve is adjusted to operate using only the outdoor heat exchanger without using the other heat source utilization heat exchanger. Machine. 前記熱媒体温度検知手段の出力値から前記外気温検知手段の出力値を引いた前記差分値が、冷房運転であれば前記第1の冷房閾値以下で第2の冷房閾値より大きな場合に、暖房運転であれば前記第1の暖房閾値以上で第2の暖房閾値より小さな場合に、前記第2の制御弁および第3の制御弁を開き、前記第1の制御弁および前記第2の調整弁を閉じて、前記第1の調整弁を調整し、前記室外熱交換器のガス側に前記他熱源利用熱交換器を直列に接続して運転することを特徴とする請求項2に記載の空気調和機。 Heating is performed when the difference value obtained by subtracting the output value of the outside air temperature detection means from the output value of the heat medium temperature detection means is greater than or equal to the first cooling threshold and greater than the second cooling threshold in the case of cooling operation If the operation is the first heating threshold or more and smaller than the second heating threshold, the second control valve and the third control valve are opened, and the first control valve and the second adjustment valve are opened. 3. The air according to claim 2, characterized in that the first control valve is adjusted, and the other heat source utilization heat exchanger is connected in series to the gas side of the outdoor heat exchanger to operate. Harmonizer. 前記熱媒体温度検知手段の出力値から前記外気温検知手段の出力値を引いた前記差分値が、冷房運転時であれば前記第1の冷房閾値または前記第2の冷房閾値以下で第3の冷房閾値または第4の冷房閾値よりも大きな場合に、暖房運転であれば前記第1の暖房閾値または前記第2の暖房閾値以上で第3の暖房閾値または第4の暖房閾値よりも小さな場合に、前記第1の制御弁、前記第2の制御弁を開き、前記第3の制御弁または前記第4の制御弁を閉じ、前記第1の調整弁、前記第2の調整弁を調整し、前記室外熱交換器と前記他熱源利用熱交換器を並列に接続して運転することを特徴とする請求項2または請求項3に記載の空気調和機。 If the difference value obtained by subtracting the output value of the outside air temperature detection means from the output value of the heat medium temperature detection means is third during a cooling operation or less than the first cooling threshold or the second cooling threshold If it is larger than the cooling threshold or the fourth cooling threshold, if it is heating operation, it is the first heating threshold or the second heating threshold or more and smaller than the third heating threshold or the fourth heating threshold. Opening the first control valve and the second control valve, closing the third control valve or the fourth control valve, and adjusting the first control valve and the second control valve; The air conditioner according to claim 2 or 3, wherein the outdoor heat exchanger and the other heat source utilization heat exchanger are connected in parallel and operated. 前記熱媒体温度検知手段の出力値から前記外気温検知手段の出力値を引いた前記差分値が、冷房運転時であれば前記第3の冷房閾値以下で前記第4の冷房閾値よりも大きい場合に、暖房運転時であれば前記第3の暖房閾値以上で前記第4の暖房閾値よりも小さい場合に、前記第1の制御弁および第4の制御弁を開き、前記第2の制御弁および前記第1の調整弁を閉じて、前記第2の調整弁を調整し、前記室外熱交換器の液側に前記他熱源利用熱交換器を直列に接続して運転することを特徴とする請求項3に記載の空気調和機。 When the difference value obtained by subtracting the output value of the outside air temperature detection means from the output value of the heat medium temperature detection means is smaller than the third cooling threshold value and larger than the fourth cooling threshold value during cooling operation When the heating operation is performed, the first control valve and the fourth control valve are opened when the temperature is equal to or higher than the third heating threshold and smaller than the fourth heating threshold, and the second control valve and the second control valve are The first adjustment valve is closed, the second adjustment valve is adjusted, and the other heat source utilization heat exchanger is connected in series to the liquid side of the outdoor heat exchanger and operated. The air conditioner according to Item 3. 前記熱媒体温度検知手段の出力値から前記外気温検知手段の出力値を引いた前記差分値が、冷房運転時であれば前記第4の冷房閾値以下の場合に、暖房運転であれば前記第4の暖房閾値以上の場合に、前記第1の制御弁または第1の調整弁を閉じ、前記第2の制御弁を開き、前記第3の制御弁または前記第4の制御弁を閉じ、前記第2の調整弁を調整し、前記室外熱交換器は使用せずに前記他熱源利用熱交換器のみを使用し運転することを特徴とする請求項2または請求項3に記載の空気調和機。 If the difference value obtained by subtracting the output value of the outside air temperature detection means from the output value of the heat medium temperature detection means is equal to or less than the fourth cooling threshold during cooling operation, the difference is the heating operation When the heating threshold value is 4 or more, the first control valve or the first control valve is closed, the second control valve is opened, and the third control valve or the fourth control valve is closed, The air conditioner according to claim 2 or 3, wherein a second control valve is adjusted, and the outdoor heat exchanger is not used and operated using only the other heat source utilization heat exchanger. .
JP2015059008A 2015-03-23 2015-03-23 Air conditioner Expired - Fee Related JP6528078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059008A JP6528078B2 (en) 2015-03-23 2015-03-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059008A JP6528078B2 (en) 2015-03-23 2015-03-23 Air conditioner

Publications (2)

Publication Number Publication Date
JP2016176672A JP2016176672A (en) 2016-10-06
JP6528078B2 true JP6528078B2 (en) 2019-06-12

Family

ID=57069813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059008A Expired - Fee Related JP6528078B2 (en) 2015-03-23 2015-03-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP6528078B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6664503B2 (en) * 2016-09-23 2020-03-13 三菱電機株式会社 Air conditioner
JP6883186B2 (en) * 2017-02-16 2021-06-09 国立大学法人佐賀大学 Heat pump system
JPWO2018186250A1 (en) * 2017-04-06 2020-02-13 パナソニックIpマネジメント株式会社 Air conditioner
JP7228444B2 (en) * 2019-03-29 2023-02-24 三菱重工サーマルシステムズ株式会社 non-azeotropic refrigerant circuit
CN112902474A (en) * 2021-03-25 2021-06-04 珠海格力电器股份有限公司 Air conditioner heat exchange structure, air conditioner system, control method of air conditioner system and air conditioner indoor unit
JP7316686B2 (en) * 2021-04-12 2023-07-28 株式会社リビエラ Heat utilization device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3300197B2 (en) * 1995-05-12 2002-07-08 株式会社クボタ Compression heat pump
JP3140331B2 (en) * 1995-06-15 2001-03-05 株式会社クボタ Multiple heat source heat pump device
JP2006125769A (en) * 2004-10-29 2006-05-18 Denso Corp Heat pump cycle device
US8701432B1 (en) * 2011-03-21 2014-04-22 Gaylord Olson System and method of operation and control for a multi-source heat pump
WO2014054178A1 (en) * 2012-10-05 2014-04-10 三菱電機株式会社 Heat pump device

Also Published As

Publication number Publication date
JP2016176672A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6528078B2 (en) Air conditioner
JP6685409B2 (en) Air conditioner
JP5868498B2 (en) Heat pump equipment
CN102927715B (en) Multiple-on-line heat pump air-conditioning system and method for controlling multiple-on-line heat pump air-conditioning system
JP5615381B2 (en) Hot water supply and air conditioning complex equipment
JP5380226B2 (en) Air conditioning and hot water supply system and heat pump unit
JP4771721B2 (en) Air conditioner
JP5373964B2 (en) Air conditioning and hot water supply system
CN102753914B (en) Air conditioner and air-conditioning hot-water-supplying system
JP5297968B2 (en) Air conditioner
WO2014054178A1 (en) Heat pump device
JP5455521B2 (en) Air conditioning and hot water supply system
CN106225280A (en) A kind of refrigeration or heat pump and a kind of Condensing units
EP2541170A1 (en) Air-conditioning hot-water-supply system
WO2013061473A1 (en) Hot-water supply and air-conditioning device
JP5693990B2 (en) Air source heat pump air conditioner
CN108119953A (en) Splitting heat pump air conditioner device
KR20100059176A (en) Storage system
JP2015117902A (en) Refrigeration cycle device
JP2017089950A (en) Air Conditioning System
JP2006010137A (en) Heat pump system
CN102753896A (en) Air conditioner
CN204593946U (en) Air-conditioning hot water system
JP2005016881A (en) Air conditioning system
JP2018096575A (en) Freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R151 Written notification of patent or utility model registration

Ref document number: 6528078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees