WO2013061473A1 - Hot-water supply and air-conditioning device - Google Patents

Hot-water supply and air-conditioning device Download PDF

Info

Publication number
WO2013061473A1
WO2013061473A1 PCT/JP2011/075003 JP2011075003W WO2013061473A1 WO 2013061473 A1 WO2013061473 A1 WO 2013061473A1 JP 2011075003 W JP2011075003 W JP 2011075003W WO 2013061473 A1 WO2013061473 A1 WO 2013061473A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
water supply
hot water
heat transfer
air conditioning
Prior art date
Application number
PCT/JP2011/075003
Other languages
French (fr)
Japanese (ja)
Inventor
陽子 國眼
小谷 正直
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/075003 priority Critical patent/WO2013061473A1/en
Priority to JP2013540604A priority patent/JP5775596B2/en
Publication of WO2013061473A1 publication Critical patent/WO2013061473A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Definitions

  • the present invention relates to a hot water supply air conditioning apparatus that performs hot water supply and air conditioning.
  • Patent Document 1 As a hot water supply air conditioning apparatus which performs hot water supply and air conditioning, for example, a technology shown in Patent Document 1 is disclosed. That is, in Patent Document 1, a cascade heat exchanger is used as a second heat exchanger of the refrigerant circuit for hot water supply, and the cascade heat exchanger is connected to the refrigerant circuit for air conditioning to perform dual heat pump cycle operation. The system (hot water supply air conditioner) is described. In addition, according to Patent Document 1, when frost formation occurs in the outdoor heat exchanger (hot water supply heat source side heat exchanger) during the hot water storage operation, the circulation of the refrigerant in the air conditioning refrigerant circuit is reverse cycle (that is, The technology of performing the defrosting operation by setting the cycle of the cooling operation) is described.
  • frost formation occurs in the outdoor heat exchanger (hot water supply heat source side heat exchanger) during the hot water storage operation
  • the circulation of the refrigerant in the air conditioning refrigerant circuit is reverse cycle (that is, The technology of performing the defro
  • Patent Document 2 describes an air conditioner having a plurality of refrigerant circuits (air conditioning refrigerant circuits) and integrally mounting indoor heat exchangers of the respective refrigerant circuits in an indoor unit. Further, according to Patent Document 2, when any one frost detection means detects frost during the heating operation, the operation of the refrigerant circuit that detected frost formation is stopped, and the four-way valve is switched to perform the defrosting operation. It describes about the technique which raises the compression capability of the other refrigerant
  • Patent Document 1 it is premised that the hot water supply operation is performed in the late-night time zone when the air conditioning operation is unnecessary, and the defrost operation when the hot water supply operation and the air conditioning operation are simultaneously performed. There is a problem that is not considered. Moreover, in the technique described in Patent Document 1, the heating operation is stopped during the defrosting operation. Therefore, the efficiency of the entire air conditioning and hot water supply system is lowered, and the comfort in the room (air conditioned space) may be impaired.
  • a compressor air conditioning compressor
  • a four-way valve an outdoor heat exchanger (air conditioning heat source side heat exchanger), and an expansion valve (air conditioning expansion valve)
  • the installation volume may increase and the manufacturing cost may increase.
  • the defrosting operation the operation of one refrigerant circuit is stopped and the heating operation is performed by the other refrigerant circuit, so when the air conditioning load is large, the room (air conditioned space) may be sufficiently warmed. It may not be possible, and there is a possibility that the comfort in the room may be impaired.
  • this invention makes it a subject to provide the hot-water supply air conditioning apparatus which improved the efficiency of the whole system by easy structure.
  • the present invention is configured by annularly connecting a hot water supply compressor, a hot water supply use side heat exchanger, a hot water supply pressure reduction device, and a hot water supply heat source side heat exchanger, A hot water supply refrigerant circuit through which the refrigerant circulates is provided, and an air conditioning compressor, a flow path switching means, an air conditioning utilization side heat exchanger, an air conditioning pressure reduction device, and an air conditioning heat source side heat exchanger are annularly connected.
  • thermoelectric circuit for air conditioning in which a second refrigerant circulates, wherein the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are each capable of exchanging heat with outdoor air And the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are in thermal contact with each other.
  • FIG. 1 is a block diagram of a hot water supply air conditioner according to a first embodiment of the present invention.
  • the hot water supply air conditioner S1 includes an outdoor unit 100 installed outside the room (outside the air conditioned space), an indoor unit 200 installed indoors (in the air conditioned space), and a control device 60. Is equipped.
  • the hot water supply air-conditioning apparatus S1 heats a liquid to be heated (for example, water) and supplies a high temperature heated liquid to the hot water storage tank 42.
  • a “hot water supply operation” cools the room in which the indoor unit 200 is installed "Doing heating operation” which heats the room where indoor unit 200 was installed, "hot-water supply cooling operation” which performs hot-water supply operation and cooling operation, "hot-water supply heating operation” which performs hot-water supply operation and heating operation It has a function.
  • the hot water supply air conditioning apparatus S1 includes a hot water supply refrigerant circuit 20 in which a first refrigerant circulates, an air conditioning refrigerant circuit 30 in which a second refrigerant circulates, a hot water supply circuit 40 through which a liquid to be heated flows, and a heat transfer medium. And a circulating heat transfer medium circulation circuit 50.
  • the hot water supply refrigerant circuit 20 provided in the outdoor unit 100 includes a hot water supply compressor 21, a primary heat transfer pipe 22 a for the hot water use side heat exchanger 22, an expansion valve 23 for hot water supply, and the heat source side heat exchanger 11.
  • the hot water supply heat transfer pipe 21a is connected in an annular manner by piping.
  • the hot water supply compressor 21 is a compressor that compresses the first refrigerant to be a high-temperature and high-pressure refrigerant.
  • a piston type, a rotary type, a scroll type, a screw type, a centrifugal type or the like can be used as the hot water supply compressor 21, a piston type, a rotary type, a scroll type, a screw type, a centrifugal type or the like.
  • the hot water use side heat exchanger 22 is a heat exchanger that performs heat exchange between the first refrigerant flowing through the primary heat transfer pipe 22a and the liquid to be heated flowing through the secondary heat transfer pipe 22b.
  • the hot water supply expansion valve 23 functions as a pressure reducing device that reduces the pressure of the first refrigerant.
  • the heat source side heat exchanger 11 exchanges heat between the first refrigerant flowing through the heat transfer pipe 21a and the air (outdoor air) sent from the hot water supply fan 24, and flows through the heat transfer pipe 21a.
  • the heat exchanger performs heat exchange between the first refrigerant and the second refrigerant flowing through the air conditioning heat transfer pipe 31a.
  • the heat source side heat exchanger 11 also exchanges heat between the second refrigerant flowing through the heat transfer pipe 31 a and the air (outdoor air) sent from the air conditioning fan 35. The details of the heat source side heat exchanger 11 will be described later.
  • HFC, HFO-1234yf, HFO-1234ze, a natural refrigerant (for example, a CO 2 refrigerant) or the like can be used as the first refrigerant.
  • a natural refrigerant for example, a CO 2 refrigerant
  • the air conditioning refrigerant circuit 30 provided in the outdoor unit 100 includes an air conditioning compressor 31, a four-way valve 32, a primary heat transfer pipe 33a for air conditioning utilization side heat exchanger 33, an air conditioning expansion valve 34, and a heat source side.
  • the air-conditioning heat transfer pipe 31 a of the heat exchanger 11 is annularly connected by piping.
  • the air conditioning compressor 31 is a compressor that compresses the second refrigerant into a high-temperature and high-pressure refrigerant.
  • a piston type, a rotary type, a scroll type, a screw type, a centrifugal type or the like can be used as the air conditioning compressor 31, a piston type, a rotary type, a scroll type, a screw type, a centrifugal type or the like.
  • the four-way valve 32 is a four-way valve that switches the direction of the second refrigerant flowing through the primary heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33 between the cooling operation and the heating operation. That is, the low-temperature low-pressure second refrigerant expanded by the air conditioning expansion valve 34 during cooling operation flows into the primary heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33 by switching the four-way valve 32. Further, during the heating operation, the high temperature and high pressure second refrigerant compressed by the air conditioning compressor 31 flows into the primary side heat transfer pipe 33
  • the air conditioning utilization side heat exchanger 33 is a heat exchanger that performs heat exchange between the second refrigerant flowing through the primary heat transfer pipe 33a and the heat transport medium flowing through the secondary heat transfer pipe 33b.
  • the air conditioning expansion valve 34 functions as a pressure reducing device that reduces the pressure of the second refrigerant. Further, as described above, the heat source side heat exchanger 11 performs heat exchange between the air (outdoor air) sent from the air conditioning fan 35 and the second refrigerant flowing through the air conditioning heat transfer pipe 31a.
  • a natural refrigerant for example, a CO 2 refrigerant
  • a natural refrigerant for example, a CO 2 refrigerant
  • FIG. 2 is a schematic configuration diagram of the heat source side heat exchanger.
  • the heat transfer pipe 21a for hot water supply is shown by hatching.
  • the heat source side heat exchanger 11 is provided for each of the plurality of plate-like fins 11 f stacked substantially in parallel at predetermined intervals, more than the pipe diameter of the heat transfer pipe (heat transfer pipe 21 a for hot water supply and heat transfer pipe 31 a for air conditioning).
  • a plurality of circular holes (not shown) of slightly smaller diameter are provided, and the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning are made to penetrate through the circular holes.
  • Each plate-like fin 11 f is installed such that the heat transfer surface thereof is substantially in the vertical direction (vertical direction).
  • the plate-like fins 11 f are thin metal plates, and stainless steel fins, aluminum fins, copper fins, galvanized fins, etc. can be used, but the present invention is not limited to these.
  • the heat transfer pipe 21a for hot water supply is a linear heat transfer pipe 21s 1 , 21s 2 ,..., 21s k (hereinafter referred to as “linear first heat transfer pipe 21s”), and a heat transferable transfer pipe for connection. comprising heat pipes 21c 1, 21c 2, ⁇ ⁇ ⁇ , 21c h (hereinafter. referred to as "first heat exchanger tube 21c for connection”) and, the.
  • the air-conditioning heat exchanger tube 31a is linear air-conditioning heat-transfer tubes 31s 1, 31s 2, ⁇ ⁇ ⁇ , 31s m (hereinafter, referred to as "straight second heat exchanger tube 31s".) And air conditioning for connection comprising use heat transfer tube 31c 1, 31c 2, ⁇ ⁇ ⁇ , 31c n (hereinafter. referred to as "the second heat exchanger tube 31c for connection”) and, the.
  • the linear first heat transfer pipes 21s and the linear second heat transfer pipes 31s penetrate the plate-like fins 11f so as to be substantially perpendicular to the heat transfer surfaces (vertical direction) of the plurality of plate-like fins 11f. That is, the linear first heat transfer pipe 21s and the linear second heat transfer pipe 31s are installed substantially horizontally.
  • first heat exchanger tube 21s 1 and 21s 2, 21s 2 and 21s 3, ⁇ , 21s k- 1 and 21s k is first heat exchanger tube 21c 1, 21c for connection 2,..., it is connected by 21c h.
  • the heat transfer pipe 21a forms a flow path (flow path of the first refrigerant) that meanders through the plurality of plate-like fins 11f.
  • the air conditioning heat transfer pipe 31a forms a flow path (flow path of the second refrigerant) that meanders through the plurality of plate-like fins 11f.
  • the hot water supply fan 24 (see FIG. 1) is installed corresponding to the installation position of the hot water supply heat transfer pipe 21a. Further, the hot water supply fan 24 is installed such that the flow direction of the air blown from the hot water supply fan 24 is substantially parallel to the heat transfer surface of each plate-like fin 11 f.
  • the air conditioning fan 35 (see FIG. 1) is installed corresponding to the installation position of the air conditioning heat transfer pipe 31a. Further, the air conditioning fan 35 is installed such that the flow direction of the air blown from the air conditioning fan 35 is substantially parallel to the heat transfer surface of each plate-like fin 11 f.
  • the heat transfer pipe 21 a for hot water supply is installed above the heat transfer pipe 31 a for air conditioning.
  • said "installing above” does not mean that all the linear 1st heat-transfer tubes 21s are installed above the linear 2nd heat-transfer tubes 31s.
  • FIG. 3 is a side view showing an example of the heat source side heat exchanger in the case where the heat transfer pipe for hot water supply and the heat transfer pipe for air conditioning have a two-stage configuration.
  • the solid line indicates that the heat transfer pipe (heat transfer pipe 21a for hot water supply or heat transfer pipe 31a for air conditioning) turns to the near side of the drawing, and the dotted line indicates that the heat transfer pipe turns on the back side of the drawing Is shown.
  • a plurality of plate-like fins 11f stacked in parallel are arranged in two rows.
  • the heat transfer pipe 21a meanders downward while penetrating the plurality of plate-like fins 11f in the first row (left side), turns from position A to position B, and turns the plurality of plates in the second row (right side) It is configured to meander upward while penetrating the fin 11f.
  • the heat transfer pipes 31a for air conditioning meander downward from the position C at the first row (left side) while penetrating the plurality of plate fins 11f, and further penetrate the plate fins 11f of the second row (right side) It is configured to meander upward and to come out of the hole at position D.
  • the height of the position B of the lowermost part of the heat transfer pipe 21a for hot water is the position C of the uppermost part of the heat transfer pipe 31a for air conditioning. It is lower than the height of the In this embodiment, this case is also included when the heat transfer pipe 21a for hot water supply is installed above the heat transfer pipe 31a for air conditioning. That is, in the heat source side heat exchanger 11 (11A), the entire body of the heat transfer pipe 21a for hot water supply is installed above the overall body of the heat transfer pipe 31a for air conditioning.
  • the hot water supply circuit 40 provided in the outdoor unit 100 includes a first pump 41, a secondary heat transfer pipe 22b of the hot water use side heat exchanger 22, a three-way valve 45, a hot water storage tank 42, and a three-way valve 43. It is connected by piping in a loop.
  • the first pump 41 is a pump that pumps up the liquid to be heated from the hot water storage tank 42 and pumps it toward the secondary heat transfer pipe 22 b of the hot water use side heat exchanger 22.
  • the hot water storage tank 42 stores the liquid to be heated, and is covered with a heat insulating material (not shown).
  • the three-way valves 43 and 45 are three-way valves configured to be able to adjust the flow rate ratio of the heated liquid flowing therethrough.
  • the outdoor unit 100 also includes three-way valves 44 and 46, a water supply fitting 101, and a hot water supply fitting 102.
  • One end of the water supply fitting 101 is connected to the three-way valve 46, and the other end is connected to a water supply terminal (not shown).
  • the hot water supply terminal not shown
  • the heated fluid flows into the lower part of the hot water storage tank 42 through the water supply fitting 101 by the pressure from the water supply source. ing.
  • the three-way valves 44 and 46 are three-way valves configured to be able to adjust the flow rate ratio of the heated liquid flowing therethrough, and are mutually connected via a pipe 47 a. Then, the heated liquid (water) having a flow rate corresponding to the opening degree of each of the three-way valves 44 and 46 flows in via the pipe 47a, so that the high-temperature heated liquid supplied from the hot water storage tank 42 becomes an appropriate temperature. It is supposed to be adjusted.
  • One end of the hot water supply fitting 102 is connected to the three-way valve 44, and the other end is connected to a hot water supply terminal (not shown). When the user opens the hot water supply terminal, the liquid to be heated (hot water) whose temperature has been adjusted is supplied to the hot water supply terminal via the hot water supply fitting 102.
  • the heat transfer medium circulation circuit 50 for air conditioning provided from the outdoor unit 100 to the indoor unit 200 includes the second pump 51, the secondary heat transfer pipe 33 b of the air conditioning use side heat exchanger 33, and the indoor heat exchanger 52. And are annularly connected by piping.
  • the first pump 51 is a pump that pumps the heat transfer medium flowing from the indoor heat exchanger 52 toward the secondary heat transfer pipe 33 b of the air conditioning utilization side heat exchanger 33.
  • the indoor heat exchanger 52 is a heat exchanger that exchanges heat between the air (room air) sent from the indoor fan 53 and the heat transfer medium.
  • brine (antifreeze) such as ethylene glycol or water can be used.
  • the hot water supply air conditioning device S1 includes a control device 60.
  • Control device 60 determines the operation mode of hot water supply air conditioning device S1, and according to the determined operation mode, the state (open of expansion valves 23, four-way valve 32, air conditioning expansion valve 34, three-way valves 43 to 46) for hot water supply Degrees, rotational speed of compressor (hot water supply compressor 21, air conditioning compressor 31), rotational speed of fans of each heat exchanger (hot water supply fan 24, air conditioning fan 35, indoor fan 53), pump It has a function of controlling the rotational speed of the first pump 41 and the second pump 51) to control various operations of the hot water supply air conditioning system S1.
  • the hot water supply operation mode is an operation mode for heating a liquid to be heated (for example, water) and supplying a high temperature liquid to the hot water storage tank 42.
  • the air conditioning refrigerant circuit 30 and the air conditioning heat transfer medium circulation circuit 50 are stopped.
  • the hot water supply refrigerant circuit 20 will be described.
  • the control device 60 controls the opening degree (throttle) of the hot water supply expansion valve 23 and controls the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24.
  • the high-temperature and high-pressure first refrigerant discharged from the hot water supply compressor 21 flows into the primary-side heat transfer pipe 22 a of the hot water use side heat exchanger 22 functioning as a condenser.
  • the first refrigerant flowing through the primary side heat transfer pipe 22a of the hot water use side heat exchanger 22 dissipates heat by heat exchange with the liquid to be heated flowing through the secondary side heat transfer pipe 22b, and the medium temperature high pressure first It becomes a refrigerant.
  • the medium-temperature and high-pressure first refrigerant flowing out of the primary-side heat transfer pipe 22a of the hot-water supply utilization side heat exchanger 22 is decompressed by the hot-water supply expansion valve 23, and becomes a low-temperature and low-pressure first refrigerant.
  • the low-temperature low-pressure first refrigerant flows into the hot water heat transfer heat transfer pipe 21 a of the heat source side heat exchanger 11 functioning as an evaporator.
  • the first refrigerant flowing through the heat transfer pipe 21a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the hot water supply fan 24, thereby drawing heat from the air (heat absorption (heat absorption) To do).
  • the first refrigerant that has absorbed heat is sent from the heat source side heat exchanger 11 to the hot water supply compressor 21 and circulates through the hot water supply refrigerant circuit 20.
  • the hot water supply circuit 40 is similar to a general hot water storage type hot water supply device, and hence the description is simplified below.
  • the control device 4 controls the rotational speed of the first pump 41.
  • the liquid to be heated drawn from the hot water storage tank 42 flows into the secondary heat transfer pipe 22b of the hot water use side heat exchanger 22.
  • the heated liquid flowing through the secondary heat transfer pipe 22b of the hot water use side heat exchanger 22 absorbs heat by exchanging heat with the first refrigerant flowing through the primary heat transfer pipe 22a, and is heated with a high temperature heated liquid Become.
  • the high-temperature liquid to be heated is returned from the secondary heat transfer pipe 22b of the hot water supply utilization side heat exchanger 22 to the hot water storage tank 42 and stored.
  • the heat transfer tube 21a for hot water supply Heat exchange is possible not only in the plate-like fins 11f in the portion where the heat sink is installed, but also in the plate-like fins 11f in the portion where the heat transfer pipe 31a for air conditioning is installed. This is because, as shown in FIG. 2, the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning are penetrated by the common plate-like fins 11f, so that the heat source side heat exchanger for hot water supply and the heat source side heat for air conditioning This is because the exchange unit is integrated.
  • the heat transfer area in the heat source side heat exchanger 11 is larger than in the case where the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning are separated, and the heat transfer performance is improved.
  • the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24 can be reduced, and the efficiency of the entire system can be improved.
  • the heat source side heat exchanger 11 two heat exchangers (that is, the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning) are integrated. That is, the plate-like fins 11f of the portion where the heat transfer tubes 21a are installed and the plate-like fins 11f of the portions where the heat transfer tubes 31a for air conditioning are installed are continuous (see FIG. 2). Therefore, the heat from the high temperature second refrigerant passing through the air conditioning heat transfer pipe 31a is transmitted through the plate-like fins 11f to melt the frost adhering to the plate-like fins 11f of the portion where the heat transfer heat transfer tube 21a is installed. Can.
  • the heat transfer pipe 21a for hot water supply is installed above the heat transfer pipe 31a for air conditioning.
  • the heat from the second refrigerant is released at the portion where the heat transfer pipe 31a for air conditioning is installed, and the heat rises, and the ambient temperature of the hot water supply fan 24 is raised. Therefore, the frost adhering to the plate-like fins 11f of the portion where the heat transfer pipe 21a is disposed can be rapidly melted by heating it with the heat from the second refrigerant and the outdoor air that has become hotter. it can.
  • control device 60 operates the air conditioning refrigerant circuit 30 in the same manner as the cooling operation during the defrosting operation, the operation of the air conditioning heat transfer medium circulation circuit 50 may be stopped. Because, the heat transfer medium in the secondary side heat transfer pipe 33b of the air conditioning use side heat exchanger 33 has a certain amount of heat, and flows through the primary side heat transfer pipe 33a of the air conditioning use side heat exchanger 33. This is because the two refrigerants absorb the heat.
  • the controller 60 controls the second pump 51. Drive.
  • the heat transfer medium circulates through the air conditioning heat transfer medium circulation circuit 50 by the second pump 51. Therefore, the heat of the heat transfer medium flowing through the secondary side heat transfer pipe 33b of the air conditioning utilization side heat exchanger 33 is transferred to the second refrigerant flowing through the primary side heat transfer pipe 33a to promote the defrosting operation. be able to.
  • the control device 60 when performing the defrosting operation, when the second refrigerant can not be sufficiently evaporated only by the driving of the second pump 51 as described above, the control device 60 further performs the air conditioning fan 53 at a predetermined rotation speed. Rotate. In this case, the heat of the indoor air can be pumped up by the indoor heat exchanger 52 by the rotation of the air conditioning fan 53. Therefore, the heat of the heat transfer medium flowing through the secondary side heat transfer pipe 33b of the air conditioning utilization side heat exchanger 33 is transferred to the second refrigerant flowing through the primary side heat transfer pipe 33a to further promote the defrosting operation It can be done.
  • the cooling operation mode is an operation mode for cooling the room (air conditioned space) in which the indoor unit 200 is installed. In this mode, the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 are stopped. The air conditioning refrigerant circuit 30 will be described.
  • the control device 60 controls the switching means (not shown) of the four-way valve 32 to be at the position of the cooling operation. Further, the control device 60 controls the opening degree (throttle) of the air conditioning expansion valve 34 and controls the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35.
  • the high temperature and high pressure second refrigerant discharged from the air conditioning compressor 31 flows into the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11 functioning as a condenser via the four-way valve 32.
  • the second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 releases heat (exhaust heat) by heat exchange with the air (outdoor air) sent by the air conditioning fan 35, and the medium temperature high pressure It becomes the second refrigerant of The medium-temperature high-pressure second refrigerant that has flowed out from the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11 flows into the air conditioning expansion valve 34.
  • the medium-temperature high-pressure second refrigerant is decompressed by the air conditioning expansion valve 34 and becomes a low-temperature low-pressure second refrigerant, and flows into the primary heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33 functioning as an evaporator.
  • the second refrigerant flowing through the primary side heat transfer pipe 33a of the air conditioning usage side heat exchanger 33 exchanges heat with the heat transfer medium flowing through the secondary side heat transfer pipe 33b, thereby drawing up heat from the heat transfer medium ( Heat absorption).
  • the second refrigerant that has absorbed heat is sent from the primary side heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33 to the air conditioning compressor 31 via the four-way valve 32, and circulates through the air conditioning refrigerant circuit 30.
  • the controller 60 controls the rotational speeds of the second pump 51 and the indoor fan 53.
  • the heat transfer medium flows into the secondary heat transfer pipe 33 b of the air conditioning utilization side heat exchanger 33.
  • the heat transfer medium flowing through the secondary side heat transfer pipe 33b of the air conditioning utilization side heat exchanger 33 dissipates heat (exhaust heat) by heat exchange with the second refrigerant flowing through the primary side heat transfer pipe 33a. Heat transfer medium.
  • the low temperature heat transfer medium flows into the indoor heat exchanger 52 of the indoor unit 200.
  • the heat transfer medium flowing through the indoor heat exchanger 52 absorbs heat by heat exchange with the air (indoor air) sent by the indoor fan 53.
  • the heat transfer medium that has absorbed heat is sent from the indoor heat exchanger 52 to the second pump 51 and circulates through the air transfer heat transfer medium circulation circuit 50.
  • the heat transfer medium absorbs heat by the indoor heat exchanger 52 of the indoor unit 2
  • the indoor air is cooled, and the room (air conditioned space) is cooled.
  • the heating operation mode is an operation mode for heating the room (air conditioned space) in which the indoor unit 200 is installed. In this mode, the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 are stopped. The air conditioning refrigerant circuit 30 will be described.
  • the control device 60 controls the switching means (not shown) of the four-way valve 32 to be at the position of the heating operation. Further, the control device 60 controls the opening degree (throttle) of the air conditioning expansion valve 34 and controls the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35.
  • the high temperature and high pressure second refrigerant discharged from the air conditioning compressor 31 flows into the primary heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33 functioning as a condenser via the four-way valve 32.
  • the second refrigerant flowing through the primary side heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33 dissipates heat (exhaust heat) by heat exchange with the heat transfer medium flowing through the secondary side heat transfer pipe 33b, and the medium temperature high pressure It becomes the second refrigerant of The medium-temperature high-pressure second refrigerant flowing out from the primary-side heat transfer pipe 33 a of the air-conditioning use side heat exchanger flows into the air-conditioning expansion valve 34.
  • the medium-temperature high-pressure second refrigerant is decompressed by the air conditioning expansion valve 34, becomes a low-temperature low-pressure second refrigerant, and flows into the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 functioning as an evaporator.
  • the low-temperature low-pressure second refrigerant flowing through the air-conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the air-conditioning fan 35, thereby converting heat from the air Pump up (heat absorption).
  • the second refrigerant that has absorbed heat is sent from the heat transfer pipe 31 a for air conditioning of the heat source side heat exchanger 11 to the air conditioning compressor 31 via the four-way valve 32, and circulates through the air conditioning refrigerant circuit 30.
  • the control device 4 controls the rotational speed of the second pump 51 and the indoor fan 53.
  • the heat transfer medium flows into the secondary heat transfer pipe 33 b of the air conditioning utilization side heat exchanger 33.
  • the heat transfer medium flowing through the secondary side heat transfer pipe 33b of the air conditioning utilization side heat exchanger 33 absorbs heat by exchanging heat with the second refrigerant flowing through the primary side heat transfer pipe 33a, and a high temperature heat transfer medium It becomes.
  • the high-temperature heat transfer medium flows into the indoor heat exchanger 52 of the indoor unit 200.
  • the heat transfer medium flowing through the indoor heat exchanger 52 dissipates heat by heat exchange with the air (indoor air) sent by the indoor fan 53.
  • the heat transfer medium that has dissipated heat is sent from the indoor heat exchanger 52 to the first pump 51 and circulates through the heat transfer medium circulation circuit 50 for air conditioning.
  • the heat transfer medium releases heat by the indoor heat exchanger 52 of the indoor unit 2 to heat the indoor air and heat the indoor space (air conditioned space).
  • the control device 60 sends the high temperature first refrigerant to the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11 using the hot water supply refrigerant circuit 20.
  • control device 60 starts the hot water supply compressor 21 with the hot water supply expansion valve 23 fully opened, and sends the high temperature first refrigerant to the hot water supply heat transfer pipe 21 a.
  • the hot water supply air-conditioning apparatus S1 continues the heating operation while the defrosting operation is being performed.
  • the plate-like fins 11f of the portion where the heat transfer tube 21a for hot water supply is installed and the plate-like fins 11f of the portion where the heat transfer tube 31a for air conditioning are installed are continuous. . Therefore, the heat of the high temperature first refrigerant flowing through the heat transfer pipe 21a is transmitted to the plate-like fins 11f, and as a result, it is possible to melt the frost in the portion where the air conditioning heat transfer pipe 31a is installed. While the defrosting operation is being performed, the hot water supply fan 24 of the hot water supply refrigerant circuit 20 is stopped. This is because when the hot water supply fan 24 is rotated, the first refrigerant flowing through the hot water supply heat transfer pipe 21 a dissipates heat by heat exchange with low temperature outdoor air.
  • the hot water supply and cooling operation mode is an operation mode in which a hot water supply operation and a cooling operation are performed.
  • the operations in the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 in the hot water supply and cooling operation mode are the same as those in the hot water supply operation mode described above, and the operations in the air conditioning refrigerant circuit 30 and the air conditioning heat transfer medium circulation circuit 50 are Since this is the same as the case of the cooling operation mode described above, the description will be omitted.
  • heat exchange in the heat source side heat exchanger 11 will be described in detail.
  • the portion of the heat source side heat exchanger 11 where the heat transfer pipe 21a is installed functions as an evaporator of the first refrigerant
  • the portion where the air conditioning heat transfer pipe 31a is installed is It functions as a two-refrigerant condenser.
  • the first refrigerant reduced in pressure by the hot water supply expansion valve 23 to a low temperature and low pressure flows into the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11.
  • the high temperature second refrigerant discharged from the air conditioning compressor 31 flows through the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11.
  • the heat of the second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 is transferred to the first refrigerant flowing through the hot water supply heat transfer pipe 21a via the plate-like fins 11f. Further, since the air heated by heat exchange with the second refrigerant flowing through the air conditioning heat transfer pipe 31a rises, the ambient temperature of the hot water supply fan 24 installed above becomes high. As a result, high temperature air is fed from the hot water supply fan 24 to the hot water supply heat transfer pipe 21a.
  • the first refrigerant flowing through the heat transfer pipe 21a of the heat source side heat exchanger 11 exchanges heat with the high temperature second refrigerant flowing through the heat transfer pipe 31a for air conditioning via the plate-like fins 11f, and It also exchanges heat with the high temperature air fed from the fan 24. Therefore, the heat transfer performance of the heat transfer pipe 21a for hot water supply is improved, and the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24 can be reduced, so that the efficiency of the entire system can be improved.
  • the high temperature and high pressure second refrigerant compressed by the air conditioning compressor flows into the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11.
  • the low temperature first refrigerant pressure-reduced by the hot water supply expansion valve 23 flows through the hot water supply heat transfer pipe 21 a of the heat source side heat exchanger 11. Therefore, the cold heat of the first refrigerant flowing through the heat transfer pipe 21a of the heat source side heat exchanger 11 is transferred to the second refrigerant flowing through the air conditioning heat transfer pipe 31a via the plate-like fins 11f.
  • the second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 exchanges heat with the low temperature first refrigerant flowing through the hot water supply heat transfer pipe 21a via the plate-like fins 11f, and the air conditioning It also exchanges heat with the low temperature air fed from the fan 35. Therefore, the heat transfer performance of the air conditioning heat transfer pipe 31a is also improved, and the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35 can be reduced, so that the efficiency of the entire system can be improved.
  • the high temperature second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 is the low temperature first refrigerant flowing through the hot water supply heat transfer pipe 31a, and the outdoor air whose temperature has become lower. And the latent heat of vaporization by the drain water. Therefore, the heat transfer performance of the air conditioning heat transfer pipe 31a is improved, and the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35 can be further reduced, so that the efficiency of the entire system can be improved.
  • the heat source side heat exchanger 11 is provided with a drain pan 12 below the plate-like fins 11f. Therefore, the drain water reached to the lowest point of the plate-like fins 11 f is discharged from the drain pan 12 to the ground.
  • the heat source side heat exchanger 11 integrates the heat exchanger on the heat source side for hot water supply and the side heat exchanger for the air conditioning heat source, there is no need to provide a drain pan for each refrigerant circuit. And simplification of the component parts.
  • the hot water supply heating operation mode is an operation mode in which the hot water supply operation and the heating operation are performed.
  • the operations in the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 in the hot water supply heating operation mode are the same as those in the hot water supply operation mode described above, and the operations in the air conditioning refrigerant circuit 30 and the air conditioning heat transfer medium circulation circuit 50 are Since this is the same as the case of the heating operation mode described above, the description is omitted.
  • heat exchange in the heat source side heat exchanger 11 will be described in detail.
  • the portion of the heat source side heat exchanger 11 where the heat transfer pipe 21a is installed functions as an evaporator of the first refrigerant, and the portion where the air conditioning heat transfer pipe 31a is installed is It functions as an evaporator for two refrigerants. That is, in the hot water supply heating operation mode, the heat source side heat exchanger 11 functions as an evaporator of the first refrigerant and the second refrigerant, and draws heat from the outdoor air.
  • the first refrigerant reduced in pressure by the hot water supply expansion valve 23 to a low temperature and low pressure flows into the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11. Then, the first refrigerant flowing through the heat transfer pipe 21a of the heat source side heat exchanger 11 exchanges heat with the outdoor air fed from the hot water supply fan 24 to absorb heat and evaporate. Then, the first refrigerant flowing out of the heat transfer pipe 21 a of the heat source side heat exchanger 11 flows into the hot water supply compressor 21.
  • the low temperature and low pressure second refrigerant which has been decompressed by the air conditioning expansion valve 34, flows into the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11. Then, the second refrigerant flowing through the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11 exchanges heat with the outdoor air fed from the air conditioning fan 35 to absorb heat and evaporate. Then, the second refrigerant flowing out of the heat transfer pipe 31 a for air conditioning of the heat source side heat exchanger 11 flows into the air conditioning compressor 31.
  • the control device 60 sets the heat transfer pipe 21 a of the heat source side heat exchanger 11 to a high temperature Control is made to flow a high pressure first refrigerant. Further, the control device 60 stops the first pump 41. Thereby, it is possible to melt the frost attached to the plate-like fins 11 f while continuing the heating operation. Incidentally, since the first pump 41 is stopped during the defrosting operation, the liquid to be heated is not cooled.
  • the control device 60 stops the driving of the first pump 41 of the hot water supply circuit 40.
  • the hot water supply expansion valve 23 of the hot water supply refrigerant circuit 20 fully opened, the hot water supply compressor 21 is activated to send the high temperature and high pressure first refrigerant to the hot water supply heat transfer pipe 21a.
  • the defrosting operation is the same as the defrosting operation in the heating operation mode, and thus the description thereof is omitted.
  • control device 60 It is prioritized to send the high temperature and high pressure first refrigerant to the heat transfer tube 21a. This is to maintain the comfort in the conditioned space by not interrupting the heating operation.
  • the processing of the control device 60 in this case is the same as the case where the plate-like fins 11 f of the portion of the heat source side heat exchanger 11 where the heat transfer pipe 31 a for air conditioning is installed in the heating operation mode. , I omit the explanation.
  • both the plate-like fins 11f in the portion where the heat transfer tubes 21a are installed and the plate-like fins 11f in the portions where the heat transfer tubes 31a for air conditioning are installed are frosted.
  • the control device 60 performs air conditioning in combination with causing the hot water heat transfer pipe 21a to flow the high temperature first refrigerant.
  • the high temperature second refrigerant is caused to flow through the heat transfer pipe 31a.
  • the defrosting operation time using the hot water supply refrigerant circuit 20 and the defrosting operation time using the air conditioning refrigerant circuit 30 do not have to be the same.
  • the heating operation is stopped, so it is preferable that the defrosting operation time using the air conditioning refrigerant circuit 30 be shorter.
  • the hot water supply air-conditioning system S1 it is possible to execute the hot water supply operation, the cooling operation, the heating operation, the hot water supply cooling operation, and the hot water supply heating operation according to the user's request.
  • the plate-like fins 11f of the portion where the heat transfer pipe 31a for air conditioning is installed can also be used for heat transfer with the outdoor air. That is, the heat transfer area at the time of heat exchange with the outdoor air can be increased, and the heat transfer performance can be improved. Therefore, the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24 can be reduced, and the efficiency of the entire system can be improved.
  • the plate-like fins 11f of the portion where the heat transfer pipe 21a is installed can also be used for heat transfer with outdoor air. Therefore, it is possible to increase the heat transfer area when exchanging heat with outdoor air, to reduce the rotational speed of the air conditioning compressor 31 and the air conditioning fan 35, and to improve the efficiency of the entire system. Can.
  • the heat source side heat exchanger 11 has a configuration in which the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning are integrated. Therefore, heat exchange can be performed between the first refrigerant circulating through the plate-like fins 11 f and the second refrigerant circulating through the air conditioning refrigerant circuit 30. That is, the heat source side heat exchanger 11 also functions as an intermediate heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant. Therefore, since the heat source side heat exchanger 11 also functions as a heat source side heat exchanger for hot water supply, a heat source side heat exchanger for air conditioning, and an intermediate heat exchanger, the hot water supply air conditioner S1 can be simplified. The construction can be made and the manufacturing cost can be reduced.
  • exhaust heat from the second refrigerant circulating in the air conditioning refrigerant circuit 30 is supplied to the first refrigerant circulating in the hot water supply refrigerant circuit 20 through the plate-like fins 11 f. Can. Therefore, the efficiency of the entire system can be improved.
  • defrosting can be performed by sending a high temperature refrigerant using the circuit (the hot water supply refrigerant circuit 20 or the air conditioning refrigerant circuit 30) that is not frosted. Therefore, for example, even when the plate-like fins 11f of the portion where the heat transfer pipe 31a for air conditioning is installed is frosted while performing the heating operation, the defrosting operation can be performed while continuing the heating operation. The comfort in the room (in the air conditioned space) can be improved.
  • the heat transfer pipe 21a for hot water supply is installed above the heat transfer pipe 31a for air conditioning. Therefore, when the plate-like fins 11f of the portion where the heat transfer pipe 21a is installed condenses and drain water is generated while performing the hot-water supply cooling operation, the drain water causes the plate-like fins 11f by gravity. It descends. And since the said drain water is evaporated by the heat transfer pipe 31a for an air conditioning, it can absorb heat from the 2nd refrigerant
  • the hot water supply air-conditioning apparatus S1 according to the present embodiment, the heat of the hot water supply and the air conditioning can be effectively used each other, and the efficiency of the entire system can be improved. In addition, since the system configuration is simple, the manufacturing cost can be reduced.
  • FIG. 4 is a schematic configuration diagram of a heat source side heat exchanger of the hot water supply air conditioner according to the second embodiment.
  • the heat transfer pipe 21a for hot water supply is shown by hatching.
  • the linear first heat transfer pipe 21 s and the linear second heat transfer pipe 31 s penetrate the plurality of plate-like fins 11 f perpendicularly to the heat transfer surface. Then, the linear first heat transfer pipe 21s is connected to the heat transfer pipe for connection so that the first refrigerant flowing into the heat transfer pipe 21a for hot water supply splits as shown by the arrow in FIG. 4 and then merges. Further, the linear second heat transfer pipe 31s is connected to the heat transfer pipe for connection so that the second refrigerant flowing into the heat transfer pipe 31a for air conditioning flows through the heat transfer pipe 31a for air conditioning as shown by the arrow in FIG. ing.
  • a linear first heat exchanger tube 21s 1, 21s 2, ⁇ , 21s k is a linear second heat exchanger tube 31s 1, 31s 2, ⁇ ⁇ ⁇ , than 31s m above It is installed to be located in Further, the linear first heat transfer tubes 21s k + 1 and 21s k + 2 are disposed below the linear second heat transfer tubes 31s 1 , 31s 2 ,..., 31s m . Furthermore, the number (10 in FIG. 4) of straight heat transfer tubes 21s located above the straight heat transfer tubes 31s among the straight heat transfer tubes 21s is lower than the straight heat transfer tubes. This number is larger than the number of located ones (two in FIG. 4).
  • the heat transfer pipe 21s for hot water supply installed above the linear air conditioning heat transfer pipe 31s is larger than the heat transfer pipe 21s for hot water supply installed at the lower part, in the hot water supply cooling operation mode, the heat transfer pipe 21a for hot water supply Cooling of the second refrigerant using the latent heat of vaporization of the generated drain water can be promoted.
  • FIG. 5 is a schematic block diagram of the heat-source side heat exchanger of the hot-water supply air conditioning apparatus which concerns on 3rd Embodiment.
  • the heat transfer pipe 21a for hot water supply is shown by hatching.
  • the hot water supply air conditioner according to the third embodiment differs from the hot water supply air conditioner S1 according to the first embodiment in the configuration of the heat source side heat exchanger 11.
  • the other points are the same as those of the hot water supply air-conditioning system S1 according to the first embodiment, so the description will be omitted.
  • the linear first heat transfer pipe 21s and the linear second heat transfer pipe 31s penetrate the plurality of plate-like fins 11f perpendicularly to the heat transfer surface. Then, the linear first heat transfer pipe 21s is connected to the heat transfer pipe 21c for connection so that the first refrigerant flowing into the heat transfer pipe 21a for hot water supply splits as shown in FIG. 5 and then merges. Further, as the second refrigerant flowing into the air conditioning heat transfer pipe 31a is branched as shown in FIG. 5, the straight second heat transfer pipe 31s is connected to the connection heat transfer pipe 31c so as to merge.
  • the linear first heat exchanger tube 21s 1, 21s 2, ⁇ , 21s k is a linear second heat exchanger tube 31s 1, 31s 2, ⁇ ⁇ ⁇ , are installed vertically alternately 31s m.
  • “installed alternately in the upper and lower directions” means two or more linear first heat transfer tubes 21s continuous in the upper and lower direction and two or more continuous in the upper and lower directions, in addition to the case of installing the upper and lower sides alternately one by one. It also includes the case where the linear second heat transfer pipes 31s are alternately installed. Further, “installed alternately in the vertical direction” is not limited to the case where the number of continuous linear first heat transfer tubes 21s is equal to the number of continuous linear second heat transfer tubes 31s.
  • FIG. 5 shows a case where two straight first heat transfer tubes 21s continuous in the upper and lower direction and two straight second heat transfer tubes continuous in the upper and lower direction are alternately installed. Moreover, it is preferable that the thing of the uppermost end among the heat transfer tubes installed in the heat source side heat exchanger 11 is the linear 1st heat transfer tube 21s. This is to promote the cooling of the second refrigerant flowing through the heat transfer pipe 31a for air conditioning by the drain water falling down by gravity through the plate-like fins 11f in the hot water supply and cooling operation mode.
  • the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning are respectively dispersed and installed in the plate-like fins 11f. Therefore, the whole plate-like fin 11f can be made into the heat transfer area in the case of heat exchange, and heat transfer performance can be improved.
  • the cooling operation, and the heating operation by improving the heat transfer performance as described above, it is possible to reduce the number of rotations of the compressor and the fan, and to improve the efficiency of the entire system. it can.
  • the effect of suppressing frost formation is also enhanced by the improvement of the heat transfer performance, and the comfort and the energy saving performance can be improved.
  • FIG. 6 is a block diagram of the hot water supply air conditioner according to the fourth embodiment.
  • the hot water supply air-conditioning system S2 according to the fourth embodiment has a hot water supply heat source side heat exchanger (in the heat source side heat exchanger 11, the heat transfer pipe 21a for hot water supply is installed, compared to the hot water supply air conditioner S1 according to the first embodiment.
  • the air conditioning heat source side heat exchanger the part of the heat source side heat exchanger 11 where the air conditioning heat transfer pipe 31a is installed
  • the exhaust heat from the second refrigerant is The difference is that the exhaust heat recovery heat exchanger 70 for recovering the refrigerant is provided.
  • the other points are the same as those of the hot water supply air-conditioning system S1 according to the first embodiment, so the description will be omitted.
  • an exhaust heat recovery heat exchanger 70 that exchanges heat between the first refrigerant and the second refrigerant, and two that flow or block the first refrigerant by opening and closing.
  • the directional valves 25, 26, 27, 28 are installed.
  • One end of the primary side heat transfer pipe 70 a of the exhaust heat recovery heat exchanger 70 is connected to the pipe 23 a via the two-way valve 25, and the other end is connected to the pipe 28 a via the two-way valve 26.
  • one end of the two-way valve 27 is connected to the hot water supply expansion valve 23 through a pipe 23 a, and the other end is connected to the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11.
  • one end of the two-way valve 28 is connected to the hot water supply compressor 21 through a pipe 28 a, and the other end is connected to the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11.
  • two-way valves 36, 37, 38, 39 are provided which flow or shut off the second refrigerant by opening and closing.
  • One end of the secondary side heat transfer pipe 70 b of the exhaust heat recovery heat exchanger 70 is connected to the pipe 32 a via the two-way valve 36, and the other end is connected to the pipe 34 a via the two-way valve 37.
  • one end of the two-way valve 38 is connected to the four-way valve 32 via the pipe 32 a, and the other end is connected to the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11.
  • one end of the two-way valve 39 is connected to the air conditioning expansion valve 34 via the pipe 34 a, and the other end is connected to the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11.
  • the hot water supply air-conditioning system S2 performs operations corresponding to various operation modes, similarly to the hot water supply air-conditioning apparatus S1 according to the first embodiment.
  • the exhaust heat recovery heat exchanger 70 is used when performing the hot-water supply cooling operation, and is not used otherwise. That is, when performing the hot water supply operation, the cooling operation, the heating operation, or the heating hot water supply operation, the control device 60 closes the two-way valves 25, 26, 36, 37 and opens the two-way valves 27, 28, 38, 39 Do.
  • the operations in the hot water supply refrigerant circuit 20, the air conditioning refrigerant circuit 30, the hot water supply circuit 40, and the air conditioning heat transfer medium circulation circuit 50 when the exhaust heat recovery heat exchanger 70 is not used are the same as in the first embodiment. The description is omitted because it is similar.
  • FIG. 7 is a flowchart showing the flow of the mode determination process in the hot water supply and cooling operation.
  • the control device 60 estimates the hot-water heat absorption amount Qec_ex and the air-conditioning exhaust heat amount Qac_ex.
  • the hot water supply heat absorption amount Qec_ex is the heat absorption amount from the heat source required for the hot water supply operation when the hot water supply refrigerant circuit 20 and the air conditioning refrigerant circuit 30 are operated independently.
  • the air conditioning exhaust heat quantity Qac_ex is an exhaust heat quantity to the heat source required for the cooling operation when the hot water supply refrigerant circuit 20 and the air conditioning refrigerant circuit 30 are operated independently.
  • step S102 the control device 60 determines whether the hot water supply endothermic heat amount Qec_ex is larger than the air conditioning exhaust heat amount Qac_ex.
  • the process of the control device 60 proceeds to step S103.
  • the hot water supply heat absorption amount Qec_ex is equal to or less than the air conditioning exhaust heat amount Qac_ex (S102 ⁇ No)
  • the process of the control device 60 proceeds to step S104.
  • step S103 the control device 60 determines the operation mode of the hot water supply air conditioning device S2 as the "cooling and hot water supply operation (exhaust heat recovery A) mode". The operation of the hot water supply air conditioning system S2 in the operation mode will be described later with reference to FIG.
  • step S104 the control device 60 determines whether the hot water supply heat absorption amount Qec_ex is equal to the air conditioning exhaust heat amount Qac_ex. When the hot water supply heat absorption amount Qec_ex is equal to the air conditioning exhaust heat amount Qac_ex (S104 ⁇ Yes), the process of the control device 60 proceeds to step S105. When the hot water supply endothermic heat amount Qec_ex is not equal to the air conditioning waste heat amount Qac_ex (S104 ⁇ No), the process of the control device 60 proceeds to step S106.
  • step S105 the control device 60 determines the operation mode of the hot water supply air conditioning device S2 as the "cooling and hot water supply operation (exhaust heat recovery B) mode". The operation of the hot water supply air conditioning system S2 in the operation mode will be described later with reference to FIG.
  • step S106 the control device 60 determines the operation mode of the hot water supply air conditioning device S2 as the "cooling and hot water supply operation (exhaust heat recovery C) mode". The operation of the hot water supply air conditioner S2 in the operation mode will be described later with reference to FIG.
  • FIG. 8 is a configuration diagram showing the flows of the refrigerant, the heat transfer medium, and the liquid to be heated of the hot water supply air conditioning system in the hot water supply cooling operation (exhaust heat recovery A) mode.
  • exhaust heat recovery A is in the case of “hot water supply heat absorption> air conditioning exhaust heat”
  • the exhaust heat of the air conditioning refrigerant circuit 30 is recovered by the hot water supply refrigerant circuit 20 through the exhaust heat recovery heat exchanger 70, The heat deficiency necessary for hot water supply is absorbed from the outdoor air.
  • the operation of the hot water supply circuit 40 in the operation mode is the same as that of the hot water supply operation mode of the first embodiment, and the operation of the heat transfer medium circulation circuit 50 for air conditioning is the same as the operation in the cooling operation mode of the first embodiment. Therefore, the description is omitted.
  • the hot water supply refrigerant circuit 20 will be described.
  • the controller 60 opens the two-way valves 25, 26, 27, 28 so that the first refrigerant flows through the heat source side heat exchanger 11 and the exhaust heat recovery heat exchanger 70. Further, the control device 60 controls the opening degree (throttle) of the hot water supply expansion valve 23 and controls the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24.
  • the high-temperature and high-pressure first refrigerant discharged from the hot water supply compressor 21 flows into the primary-side heat transfer pipe 22 a of the hot water use side heat exchanger 22 functioning as a condenser.
  • the first refrigerant flowing through the primary side heat transfer pipe 22a of the hot water use side heat exchanger 22 dissipates heat by heat exchange with the liquid to be heated flowing through the secondary side heat transfer pipe 22b of the hot water use side heat exchanger 22. (Exhaust heat) to become a medium temperature high pressure first refrigerant.
  • the medium-temperature and high-pressure first refrigerant flowing out of the primary-side heat transfer pipe 22a of the hot-water supply utilization side heat exchanger 22 is decompressed by the hot-water supply expansion valve 23, and becomes a low-temperature and low-pressure first refrigerant.
  • the low temperature and low pressure first refrigerant flows into the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11 via the two-way valve 27, and the exhaust heat recovery heat exchanger 70 via the two-way valve 25. It divides into the flow which flows in into the primary side electric heat pipe.
  • the first refrigerant flowing through the heat transfer pipe 21a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the hot water supply fan 24, thereby drawing heat from the air (heat absorption (heat absorption) To do).
  • the first refrigerant flowing out of the heat transfer pipe 21 a flows into the hot water supply compressor 21 through the two-way valve 28.
  • the first refrigerant flowing through the primary heat transfer pipe 70a of the exhaust heat recovery heat exchanger 70 exchanges heat with the high temperature second refrigerant flowing through the secondary heat transfer pipe 70b, thereby generating a second refrigerant.
  • Pump up heat from (endothermic) Then, the first refrigerant flowing out from the primary heat transfer pipe 70 a of the exhaust heat recovery heat exchanger 70 flows into the hot water supply compressor 21 through the two-way valve 26.
  • the first refrigerant circulates through the hot water supply refrigerant circuit 20.
  • the air conditioning refrigerant circuit 30 will be described.
  • the control device 60 opens the two-way valves 36 and 37 so that the first refrigerant does not flow through the heat exchanger 70 for exhaust heat recovery and the heat source side heat exchanger 11, The valves 38, 39 are closed. Further, the control device 60 controls the opening degree (throttle) of the air conditioning expansion valve 34, stops the air conditioning fan 35, and controls the rotational speed of the air conditioning compressor 31.
  • the high-temperature and high-pressure second refrigerant discharged from the air conditioning compressor 31 flows into the secondary heat transfer pipe 70b of the exhaust heat recovery heat exchanger 70 via the four-way valve 32 and the two-way valve 36.
  • the second refrigerant flowing through the secondary side heat transfer pipe 70b of the exhaust heat recovery heat exchanger 70 dissipates heat (exhaust heat) by heat exchange with the low temperature first refrigerant flowing through the primary side heat transfer pipe 70a. It becomes a medium temperature high pressure second refrigerant.
  • the second refrigerant flowing through the primary side heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33 absorbs heat by exchanging heat with the heat transfer medium flowing through the secondary side heat transfer pipe 33 b, and via the four-way valve 32 It flows into the air conditioning compressor 31. Thus, the second refrigerant circulates through the air conditioning refrigerant circuit 30.
  • FIG. 9 is a configuration diagram showing the flows of the refrigerant, the heat transfer medium, and the liquid to be heated of the hot water supply air conditioning system in the hot water supply cooling operation (exhaust heat recovery B) mode.
  • the exhaust heat of the air conditioning refrigerant circuit 30 is recovered by the hot water supply refrigerant circuit 20 via the exhaust heat recovery heat exchanger 70. ing.
  • the operation of the hot water supply circuit 40 in the operation mode is the same as that of the hot water supply operation mode of the first embodiment, and the operation of the heat transfer medium circulation circuit 50 for air conditioning is the same as the operation in the cooling operation mode of the first embodiment. Description is omitted because there is. Moreover, since the operation of the air conditioning refrigerant circuit 40 in the operation mode is the same as the operation of the cooling and hot water supply operation (exhaust heat recovery A) mode (see FIG. 8), the description will be omitted.
  • the hot water supply refrigerant circuit 20 will be described.
  • the control device 60 opens the two-way valves 27 and 28 in the cooling and hot-water supply operation (exhaust heat recovery A) mode
  • the two-way valves 27 and 28 are closed in the cooling and hot-water supply operation (exhaust heat recovery B) mode. is there.
  • the other control is the same as the hot water supply refrigerant circuit 20 in the cooling and hot water supply operation (exhaust heat recovery A) mode, and therefore the description thereof is omitted.
  • the high-temperature and high-pressure first refrigerant discharged from the hot water supply compressor 21 flows into the primary-side heat transfer pipe 22 a of the hot water use side heat exchanger 22 functioning as a condenser.
  • the first refrigerant flowing through the primary side heat transfer pipe 22a of the hot water use side heat exchanger 22 dissipates heat by heat exchange with the liquid to be heated flowing through the secondary side heat transfer pipe 22b of the hot water use side heat exchanger 22. (Exhaust heat) to become a medium temperature high pressure first refrigerant.
  • the medium-temperature and high-pressure first refrigerant flowing out of the primary-side heat transfer pipe 22a of the hot-water supply utilization side heat exchanger 22 is decompressed by the hot-water supply expansion valve 23, and becomes a low-temperature and low-pressure first refrigerant.
  • the low temperature and low pressure first refrigerant flows into the primary heat transfer pipe 70 a of the exhaust heat recovery heat exchanger 70 via the two-way valve 25.
  • the first refrigerant flowing through the primary heat transfer tube 70a of the exhaust heat recovery heat exchanger 70 exchanges heat with the high temperature second refrigerant flowing through the secondary heat transfer tube 70b, thereby generating heat from the second refrigerant Pump up (heat absorption).
  • the first refrigerant flowing out of the primary heat transfer tube 70 a of the exhaust heat recovery heat exchanger 70 flows into the hot water supply compressor 21 through the two-way valve 26.
  • the first refrigerant circulates through the hot water supply refrigerant circuit 20.
  • FIG. 10 is a configuration diagram showing the flows of the refrigerant, the heat transfer medium, and the liquid to be heated of the hot water supply air conditioning system in the hot water supply cooling operation (exhaust heat recovery C) mode.
  • the exhaust heat recovery C is in the case of "hot water supply heat absorption ⁇ air conditioning exhaust heat"
  • the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30 via the exhaust heat recovery heat exchanger 70, Excess air conditioning exhaust heat is exhausted to outdoor air.
  • the operation of the hot water supply circuit 40 in the operation mode is the same as that of the hot water supply operation mode of the first embodiment, and the operation of the heat transfer medium circulation circuit 50 for air conditioning is the same as the operation in the cooling operation mode of the first embodiment. Description is omitted because there is. Moreover, since the operation of the hot water supply refrigerant circuit 20 in the operation mode is the same as the operation of the cooling / hot water supply operation (exhaust heat recovery B) mode (see FIG. 10), the description will be omitted.
  • the air conditioning refrigerant circuit 30 will be described.
  • the controller 60 closes the two-way valves 38 and 39 in the cooling / hot-water supply operation (exhaust heat recovery A) mode
  • the two-way valves 38 and 39 are opened in the cooling / hot-water supply operation (exhaust heat recovery C) mode. is there.
  • the other control is the same as that of the air conditioning refrigerant circuit 30 in the cooling / hot water supply operation (exhaust heat recovery A) mode, and therefore the description thereof is omitted.
  • the high temperature and high pressure second refrigerant discharged from the air conditioning compressor 31 flows into the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11 through the two-way valve 38, and is discharged through the two-way valve 36. It divides into the flow which flows in into the secondary side heat exchanger tube 70b of the heat exchanger 70 for heat recovery.
  • the second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the air conditioning fan 35 to release heat (exhaust heat) to the air. It becomes a medium temperature high pressure second refrigerant.
  • the second refrigerant flowing out of the heat transfer pipe 31 a for air conditioning of the heat source side heat exchanger 11 flows into the expansion valve 34 for air conditioning via the two-way valve 39.
  • the second refrigerant flowing through the secondary side heat transfer pipe 70b of the exhaust heat recovery heat exchanger 70 exchanges heat with the low temperature first refrigerant flowing through the primary side heat transfer pipe 70a. Heat dissipation (exhaust heat). Then, the second refrigerant that has flowed out from the secondary side heat transfer pipe 70 b of the exhaust heat recovery heat exchanger 70 flows into the air conditioning expansion valve 34 via the two-way valve 37. Further, the second refrigerant is decompressed by the air conditioning expansion valve 34, and becomes a low temperature and low pressure second refrigerant, and flows into the primary heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33.
  • the second refrigerant flowing through the primary side heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33 absorbs heat by exchanging heat with the air conditioning heat transfer medium flowing through the secondary side heat transfer pipe 33b, and the four-way valve 32
  • the air flows into the air conditioning compressor 31 via the air conditioner.
  • the second refrigerant circulates through the air conditioning refrigerant circuit 30.
  • the hot water supply air conditioning apparatus S2 circulates the heat exhaust heat of the second refrigerant circulating in the air conditioning refrigerant circuit 30 in the exhaust heat recovery heat exchanger 70 during the hot water supply cooling operation, and circulates the hot water supply refrigerant circuit 20 By supplying one coolant, it is possible to effectively use the exhaust heat that has been released to the outside air so far, and it is possible to improve the efficiency of the entire system.
  • the hot water supply air conditioner S2 uses the heat source side heat exchanger 11 only for heat exchange between the first refrigerant circulating in the hot water supply refrigerant circuit 20 and the outdoor air when executing the hot water supply cooling operation mode. Or, it is used only for heat exchange between the second refrigerant circulating in the air conditioning refrigerant circuit 30 and the outdoor air (see FIG. 10). That is, when heat exchange between the first refrigerant and the outdoor air or heat exchange between the second refrigerant and the outdoor air is performed, the entire plate-like fins 11f of the heat source side heat exchanger 11 are used for heat exchange, Heat transfer performance can be improved. As a result, the number of rotations of the compressor or fan can be reduced, and the efficiency of the entire system can be improved.
  • FIG. 11 is a block diagram of the hot water supply air conditioner according to the fifth embodiment.
  • the hot water supply air-conditioning apparatus S3 according to the fifth embodiment differs from the hot water supply air-conditioning apparatus S1 according to the first embodiment in that a solar heat collecting unit 300 is included.
  • the other points are the same as those of the hot water supply air-conditioning system S1 according to the first embodiment, so the description will be omitted.
  • the solar heat collecting unit 300 includes a solar heat collecting circuit 80, a heat storage tank 82, and three-way valves 85 and 86.
  • the solar heat collecting circuit 80 is configured by annularly connecting a solar heat collector 84, a circulation pump 81, and an in-tank heat exchanger 83 with a pipe.
  • the solar heat collector 84 is for collecting solar heat to heat the third refrigerant, and may be a flat plate collector, a vacuum tube collector, or the like.
  • the circulation pump 81 pumps the third refrigerant in the solar heat collecting circuit 80. By driving the circulation pump 81, the third refrigerant heated by the solar heat collector 80 can be pressure-fed to the in-tank heat exchanger 83.
  • the in-tank heat exchanger 83 performs heat exchange between the third refrigerant and the liquid to be heated stored in the heat storage tank 82.
  • the in-tank heat exchanger 83 is installed in the heat storage tank 83, and the pipes connected to both ends thereof respectively penetrate the heat storage tank 82, one is connected to the discharge port of the circulation pump 81, and the other is the solar heat collecting It is connected to the vessel 84.
  • the third refrigerant for example, brine (antifreeze) can be used.
  • the liquid to be heated is stored inside the heat storage tank 82, and the heat exchange between the third refrigerant flowing through the in-tank heat exchanger 83 and the liquid to be heated is possible in the heat storage tank 82.
  • the three-way valves 85 and 86 are three-way valves configured to be capable of adjusting the flow rate ratio of the heated liquid flowing therethrough. Each port of the three-way valve 85 is connected to the three-way valve 44, the heat storage tank 82, and the water heater 102, respectively. Each port of the three-way valve 86 is connected to the three-way valve 46, the heat storage tank 82, and the water supply fitting 101, respectively.
  • the low temperature third refrigerant pressure-fed from the in-tank heat exchanger 83 to the solar heat collector 84 by the circulation pump 81 is heated by the solar heat to rise in temperature, and becomes an intermediate temperature third refrigerant.
  • the medium-temperature third refrigerant is sent to the in-tank heat exchanger 83 by the circulation pump 81, and is cooled by heat exchange with the liquid to be heated in the heat storage tank 82 to become a low-temperature third refrigerant.
  • the liquid to be heated in the heat storage tank 82 is heated by heat exchange with the intermediate temperature third refrigerant flowing through the in-tank heat exchanger 83, and becomes an intermediate temperature heated liquid.
  • the medium-temperature liquid to be heated in the heat storage tank 82 is adjusted to a desired temperature similarly to the liquid to be heated in the hot water storage tank 42, and then the hot water supply 102 is used. Supplied. With regard to whether to use the liquid to be heated in the hot water storage tank 42 or the liquid to be heated in the thermal storage tank 82 in response to the hot water request from the user, the liquid to be heated in the hot water storage tank 42 at that time is used. It is determined by the temperature, the temperature of the liquid to be heated in the heat storage tank 72, the temperature required by the user, and the like.
  • the solar heat collecting unit 300 can be used throughout the year because it can be used together with any of the hot water supply operation, the cooling operation, the heating operation, the hot water supply cooling operation, and the hot water supply heating operation.
  • the thermal energy obtained by the solar heat collector 84 can be used as a heat source for hot water supply, so that the efficiency of the entire system can be significantly improved.
  • the power consumption can be reduced by about 40% in a year.
  • the hot water supply air-conditioning system S3 since the liquid to be heated can be heated by the solar heat, when performing the cooling and hot water supply operation, the heat transfer of the heat source side heat exchanger 11 is performed.
  • the frequency of using the heat pipe 21a is reduced. That is, when heat exchange is performed between the second refrigerant flowing through the air conditioning heat transfer pipe 31a and the outdoor air, the frequency of using the entire plate-like fins 11f increases. As a result, the rotational speed of the compressor or fan can be reduced, and the efficiency of the entire system can be further improved.
  • the configuration of the heat source side heat exchanger 11 is not limited to this.
  • the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning may be installed on the plate-like fin 11f so as to overlap in parallel with the air flow direction. Even in this case, the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning are integrated through the plate-like fins 11 f, thereby improving the efficiency of the entire system with a simple configuration. Can.
  • the heat transfer medium is heated (or cooled) by the air conditioning utilization side heat exchanger 33, supplied to the indoor unit 200, and heated (or cooled) by the indoor heat exchanger 52.
  • the invention is not limited to this. That is, the heat transfer medium circulation circuit 50 for air conditioning is omitted, the air conditioning utilization side heat exchanger 33 is installed in the indoor unit 2, and the second air flowing through the air conditioning utilization side heat exchanger 33 flows between the indoor air and the second refrigerant. It is good also as composition which heats (or air conditioning) by exchanging heat with.
  • the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning are respectively penetrated through the plurality of fins 11f stacked substantially in parallel at predetermined intervals.
  • the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger can respectively exchange heat with the outdoor air, and the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are in thermal contact.
  • the configuration may be in physical contact.
  • the first refrigerant flowing through the heat transfer heat transfer pipe of the hot water supply heat source side heat exchanger and the second refrigerant flowing through the air conditioning heat transfer pipe of the air conditioning heat source side heat exchanger mutually exchange heat with each other. it can.
  • Heat source side heat exchanger hot water supply heat source side heat exchanger, air conditioning heat source side heat exchanger
  • Reference Signs List 20 refrigerant circuit for hot water supply 21a heat transfer pipe for hot water supply 21s linear first heat transfer pipe 21c first heat transfer pipe for connection 21 hot water supply compressor 22 hot water use side heat exchanger 23 expansion valve for hot water supply (pressure reduction device for hot water supply) 25, 26, 27, 28 Two-way valve (opening and closing means for hot water supply) 30 Air-Conditioning Refrigerant Circuit 31a Air-Conditioning Heat Transfer Tube 31s Straight Second Heat-Transfer Tube 31c Connection Second Heat-Transfer Tube 31 Air-Conditioning Compressor 32 Four-way Valve (Flow Path Switching Means) 33 Air conditioning user side heat exchanger 34 Air conditioning expansion valve (air conditioning pressure reducing device) 36, 37, 38, 39 Two-way valve (switching means for air conditioning)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Provided is a hot-water supply and air-conditioning device with which the overall system efficiency is improved with a simple configuration. The present invention is equipped with: a hot-water supply refrigerant circuit (20), in which a first refrigerant circulates, and which is formed by connecting in a loop a hot-water supply compressor (21), a hot-water supply usage-side heat exchanger (22), a hot-water supply decompression device (23), and a hot-water supply heat-source-side heat exchanger (11); and an air-conditioning refrigerant circuit (30), in which a second refrigerant circulates, and which is formed by connecting in a loop an air-conditioning compressor (31), a flow path switching means (32), an air-conditioning usage-side heat exchanger (33), an air-conditioning decompression device (34), and an air-conditioning heat-source-side heat exchanger (11). The hot-water supply heat-source side heat exchanger (11) and the air-conditioning heat-source-side heat exchanger (11) are integrated by inserting a hot-water supply heat transfer pipe (21a) of the hot-water supply heat-source side heat exchanger (11) and an air-conditioning heat transfer pipe (31a) of the air-conditioning heat-source-side heat exchanger (11) through multiple fins, which are stacked in an approximately parallel manner with prescribed intervals therebetween.

Description

給湯空調装置Hot water supply air conditioner
 本発明は、給湯と空調を行う給湯空調装置に関する。 The present invention relates to a hot water supply air conditioning apparatus that performs hot water supply and air conditioning.
 給湯と空調を行う給湯空調装置として、例えば、特許文献1に示す技術が開示されている。すなわち、特許文献1には、給湯用冷媒回路の第2熱交換器としてカスケード熱交換器を用い、該カスケード熱交換器を空調用冷媒回路に接続して二元のヒートポンプサイクル動作を行う空調給湯システム(給湯空調装置)について記載されている。また、特許文献1には、貯湯運転を行っている際に室外熱交換器(給湯熱源側熱交換器)で着霜が生じた場合、空調用冷媒回路の冷媒の循環を逆サイクル(つまり、冷房運転のサイクル)とすることによって除霜運転を行う技術について記載されている。 As a hot water supply air conditioning apparatus which performs hot water supply and air conditioning, for example, a technology shown in Patent Document 1 is disclosed. That is, in Patent Document 1, a cascade heat exchanger is used as a second heat exchanger of the refrigerant circuit for hot water supply, and the cascade heat exchanger is connected to the refrigerant circuit for air conditioning to perform dual heat pump cycle operation. The system (hot water supply air conditioner) is described. In addition, according to Patent Document 1, when frost formation occurs in the outdoor heat exchanger (hot water supply heat source side heat exchanger) during the hot water storage operation, the circulation of the refrigerant in the air conditioning refrigerant circuit is reverse cycle (that is, The technology of performing the defrosting operation by setting the cycle of the cooling operation) is described.
 また、特許文献2には、複数系統の冷媒回路(空調用冷媒回路)を有し、それぞれの冷媒回路の室内熱交換器を一体にして室内機に搭載した空気調和装置について記載されている。また、特許文献2には、暖房運転中にいずれか1つの着霜検知手段が着霜を検知すると、着霜を検知した方の冷媒回路の運転を停止し、四方弁を切り換えて除霜運転を行うとともに他方の冷媒回路の圧縮機能力を上昇させ、暖房能力の低下を防止する技術について記載されている。 Further, Patent Document 2 describes an air conditioner having a plurality of refrigerant circuits (air conditioning refrigerant circuits) and integrally mounting indoor heat exchangers of the respective refrigerant circuits in an indoor unit. Further, according to Patent Document 2, when any one frost detection means detects frost during the heating operation, the operation of the refrigerant circuit that detected frost formation is stopped, and the four-way valve is switched to perform the defrosting operation. It describes about the technique which raises the compression capability of the other refrigerant | coolant circuit, and prevents the fall of heating capacity.
特開2004-132647号公報Unexamined-Japanese-Patent No. 2004-132647 特開2003-106712号公報JP 2003-106712
 しかしながら、特許文献1に記載の技術では、空調運転が不要となる深夜の時間帯に給湯運転を行うことが前提となっており、給湯運転と空調運転を同時に行っている際の除霜運転については考慮されていないという問題がある。また、特許文献1に記載の技術では、除霜運転中において暖房運転を停止させている。したがって、空調給湯システム全体の効率が低くなってしまうとともに、室内(被空調空間)での快適性を損なう虞がある。 However, in the technology described in Patent Document 1, it is premised that the hot water supply operation is performed in the late-night time zone when the air conditioning operation is unnecessary, and the defrost operation when the hot water supply operation and the air conditioning operation are simultaneously performed. There is a problem that is not considered. Moreover, in the technique described in Patent Document 1, the heating operation is stopped during the defrosting operation. Therefore, the efficiency of the entire air conditioning and hot water supply system is lowered, and the comfort in the room (air conditioned space) may be impaired.
 また、特許文献2に記載の技術では、圧縮機(空調用圧縮機)と、四方弁と、室外熱交換器(空調熱源側熱交換器)と、膨張弁(空調用膨張弁)と、からなる室外ユニットを複数備えるため、設置体積の増加や、製造コストの増加につながる虞がある。また、除霜運転を行う際に、一方の冷媒回路の運転を停止させ、他方の冷媒回路で暖房運転を行うため、空調負荷が大きい場合には室内(被空調空間)を十分に暖めることができず、室内での快適性を損なう虞がある。 In the technology described in Patent Document 2, a compressor (air conditioning compressor), a four-way valve, an outdoor heat exchanger (air conditioning heat source side heat exchanger), and an expansion valve (air conditioning expansion valve) In order to provide a plurality of outdoor units, the installation volume may increase and the manufacturing cost may increase. In addition, when performing the defrosting operation, the operation of one refrigerant circuit is stopped and the heating operation is performed by the other refrigerant circuit, so when the air conditioning load is large, the room (air conditioned space) may be sufficiently warmed. It may not be possible, and there is a possibility that the comfort in the room may be impaired.
 そこで、本発明は、簡単な構成でシステム全体の効率を向上させた給湯空調装置を提供することを課題とする。 Then, this invention makes it a subject to provide the hot-water supply air conditioning apparatus which improved the efficiency of the whole system by easy structure.
 前記課題を解決するために、本発明は、給湯用圧縮機と、給湯利用側熱交換器と、給湯用減圧装置と、給湯熱源側熱交換器とを環状に接続して構成され、第一冷媒が循環する給湯用冷媒回路を備えるとともに、空調用圧縮機と、流路切替手段と、空調利用側熱交換器と、空調用減圧装置と、空調熱源側熱交換器とを環状に接続して構成され、第二冷媒が循環する空調用冷媒回路と、を備える給湯空調装置であって、前記給湯熱源側熱交換器及び前記空調熱源側熱交換器はそれぞれ、室外空気と熱交換可能であり、前記給湯熱源側熱交換器と前記空調熱源側熱交換器とが熱的に接触していることを特徴とする。 In order to solve the above problems, the present invention is configured by annularly connecting a hot water supply compressor, a hot water supply use side heat exchanger, a hot water supply pressure reduction device, and a hot water supply heat source side heat exchanger, A hot water supply refrigerant circuit through which the refrigerant circulates is provided, and an air conditioning compressor, a flow path switching means, an air conditioning utilization side heat exchanger, an air conditioning pressure reduction device, and an air conditioning heat source side heat exchanger are annularly connected. And a refrigerant circuit for air conditioning in which a second refrigerant circulates, wherein the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are each capable of exchanging heat with outdoor air And the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are in thermal contact with each other.
 本発明により、簡単な構成でシステム全体の効率を向上させた給湯空調装置を提供することができる。 According to the present invention, it is possible to provide a hot water supply air conditioning apparatus in which the efficiency of the entire system is improved with a simple configuration.
本発明の第1実施形態に係る給湯空調装置の構成図である。It is a block diagram of the hot-water supply air conditioner which concerns on 1st Embodiment of this invention. 熱源側熱交換器の概略構成図である。It is a schematic block diagram of a heat source side heat exchanger. 給湯用伝熱管及び空調用伝熱管を2段構成とした場合の熱源側熱交換器の例を示す側面図である。It is a side view which shows the example of the heat source side heat exchanger at the time of making the heat transfer pipe for hot water supply and the heat transfer pipe for air conditioning into a 2 step | paragraph structure. 本発明の第2実施形態に係る給湯空調装置の熱源側熱交換器の概略構成図である。It is a schematic block diagram of the heat-source side heat exchanger of the hot-water supply air conditioning apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る給湯空調装置の熱源側熱交換器の概略構成図である。It is a schematic block diagram of the heat-source side heat exchanger of the hot-water supply air conditioning apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る給湯空調装置の構成図である。It is a block diagram of the hot-water supply air conditioner which concerns on 4th Embodiment of this invention. 給湯冷房運転におけるモード判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the mode determination process in hot-water-supply cooling operation. 給湯冷房運転(排熱回収A)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。It is a block diagram which shows the flow of the refrigerant | coolant of the hot-water supply air conditioning apparatus in heat-supply / cooling operation (exhaust heat recovery A) mode, a heat transport medium, and to-be-heated liquid. 給湯冷房運転(排熱回収B)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。It is a block diagram which shows the flow of the refrigerant | coolant of the hot-water supply air conditioning apparatus in a hot-water-supply cooling operation (exhaust-heat collection | recovery B) mode, a heat transport medium, and a to-be-heated liquid. 給湯冷房運転(排熱回収C)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。It is a block diagram which shows the flow of the refrigerant | coolant of the hot-water supply air conditioning apparatus in heat-supply / cooling operation (exhaust-heat collection | recovery C) mode, a heat transport medium, and to-be-heated liquid. 本発明の第5実施形態に係る給湯空調装置の構成図である。It is a block diagram of the hot-water supply air conditioner which concerns on 5th Embodiment of this invention.
 以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the part which is common in each figure, and the duplicate description is abbreviate | omitted.
≪第1実施形態≫
<給湯空調装置の構成>
 図1は、本発明の第1実施形態に係る給湯空調装置の構成図である。図1に示すように、給湯空調装置S1は、室外(被空調空間外)に設置される室外ユニット100と、室内(被空調空間内)に設置される室内ユニット200と、制御装置60と、を備えている。
First Embodiment
<Configuration of hot water supply air conditioner>
FIG. 1 is a block diagram of a hot water supply air conditioner according to a first embodiment of the present invention. As shown in FIG. 1, the hot water supply air conditioner S1 includes an outdoor unit 100 installed outside the room (outside the air conditioned space), an indoor unit 200 installed indoors (in the air conditioned space), and a control device 60. Is equipped.
 給湯空調装置S1は、被加熱液体(例えば、水)を加熱して貯湯タンク42に高温の被加熱液体を供給する「給湯運転」と、室内ユニット200が設置された室内を冷房する「冷房運転」と、室内ユニット200が設置された室内を暖房する「暖房運転」と、給湯運転及び冷房運転を行う「給湯冷房運転」と、給湯運転及び暖房運転を行う「給湯暖房運転」と、を行う機能を有している。 The hot water supply air-conditioning apparatus S1 heats a liquid to be heated (for example, water) and supplies a high temperature heated liquid to the hot water storage tank 42. A “hot water supply operation” cools the room in which the indoor unit 200 is installed "Doing heating operation" which heats the room where indoor unit 200 was installed, "hot-water supply cooling operation" which performs hot-water supply operation and cooling operation, "hot-water supply heating operation" which performs hot-water supply operation and heating operation It has a function.
 また、給湯空調装置S1は、第一冷媒が循環する給湯用冷媒回路20と、第二冷媒が循環する空調用冷媒回路30と、被加熱液体が通流する給湯回路40と、熱搬送媒体が循環する空調用熱搬送媒体循環回路50と、を備えている。 Further, the hot water supply air conditioning apparatus S1 includes a hot water supply refrigerant circuit 20 in which a first refrigerant circulates, an air conditioning refrigerant circuit 30 in which a second refrigerant circulates, a hot water supply circuit 40 through which a liquid to be heated flows, and a heat transfer medium. And a circulating heat transfer medium circulation circuit 50.
<給湯用冷媒回路>
 室外ユニット100に設けられた給湯用冷媒回路20は、給湯用圧縮機21と、給湯利用側熱交換器22の一次側伝熱管22aと、給湯用膨張弁23と、熱源側熱交換器11の給湯用伝熱管21aと、が環状に配管で接続されている。
<Refrigerant circuit for hot water supply>
The hot water supply refrigerant circuit 20 provided in the outdoor unit 100 includes a hot water supply compressor 21, a primary heat transfer pipe 22 a for the hot water use side heat exchanger 22, an expansion valve 23 for hot water supply, and the heat source side heat exchanger 11. The hot water supply heat transfer pipe 21a is connected in an annular manner by piping.
 給湯用圧縮機21は、第一冷媒を圧縮して高温高圧の冷媒とする圧縮機である。ちなみに、給湯用圧縮機21として、ピストン式、ロータリー式、スクロール式、スクリュー式、遠心式のものなどを使用することができる。
 給湯利用側熱交換器22は、一次側伝熱管22aを通流する第一冷媒と、二次側伝熱管22bを通流する被加熱液体との熱交換を行う熱交換器である。
 給湯用膨張弁23は、第一冷媒を減圧する減圧装置として機能する。
The hot water supply compressor 21 is a compressor that compresses the first refrigerant to be a high-temperature and high-pressure refrigerant. Incidentally, as the hot water supply compressor 21, a piston type, a rotary type, a scroll type, a screw type, a centrifugal type or the like can be used.
The hot water use side heat exchanger 22 is a heat exchanger that performs heat exchange between the first refrigerant flowing through the primary heat transfer pipe 22a and the liquid to be heated flowing through the secondary heat transfer pipe 22b.
The hot water supply expansion valve 23 functions as a pressure reducing device that reduces the pressure of the first refrigerant.
 熱源側熱交換器11は、給湯用伝熱管21aを通流する第一冷媒と、給湯用ファン24から送られてくる空気(室外空気)との熱交換や、給湯用伝熱管21aを通流する第一冷媒と、空調用伝熱管31aを通流する第二冷媒との熱交換などを行う熱交換器である。
 また、熱源側熱交換器11は、給湯用伝熱管31aを通流する第二冷媒と、空調用ファン35から送られてくる空気(室外空気)との熱交換も行う。
 なお、熱源側熱交換器11の詳細については後記する。
The heat source side heat exchanger 11 exchanges heat between the first refrigerant flowing through the heat transfer pipe 21a and the air (outdoor air) sent from the hot water supply fan 24, and flows through the heat transfer pipe 21a. The heat exchanger performs heat exchange between the first refrigerant and the second refrigerant flowing through the air conditioning heat transfer pipe 31a.
The heat source side heat exchanger 11 also exchanges heat between the second refrigerant flowing through the heat transfer pipe 31 a and the air (outdoor air) sent from the air conditioning fan 35.
The details of the heat source side heat exchanger 11 will be described later.
 ちなみに、第一冷媒として、HFC、HFO-1234yf、HFO-1234ze、自然冷媒(例えば、CO冷媒)などを用いることができる。 By the way, HFC, HFO-1234yf, HFO-1234ze, a natural refrigerant (for example, a CO 2 refrigerant) or the like can be used as the first refrigerant.
<空調用冷媒回路>
 室外ユニット100に設けられた空調用冷媒回路30は、空調用圧縮機31と、四方弁32と、空調利用側熱交換器33の一次側伝熱管33aと、空調用膨張弁34と、熱源側熱交換器11の空調用伝熱管31aと、が環状に配管で接続されている。
<Air conditioning refrigerant circuit>
The air conditioning refrigerant circuit 30 provided in the outdoor unit 100 includes an air conditioning compressor 31, a four-way valve 32, a primary heat transfer pipe 33a for air conditioning utilization side heat exchanger 33, an air conditioning expansion valve 34, and a heat source side. The air-conditioning heat transfer pipe 31 a of the heat exchanger 11 is annularly connected by piping.
 空調用圧縮機31は、第二冷媒を圧縮して高温高圧の冷媒にする圧縮機である。ちなみに、空調用圧縮機31として、ピストン式、ロータリー式、スクロール式、スクリュー式、遠心式のものなどを使用することができる。
 四方弁32は、冷房運転と暖房運転とで空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒の向きを切り替える四方弁である。
 すなわち、四方弁32の切り替えによって、冷房運転時には空調用膨張弁34で膨張した低温低圧の第二冷媒が、空調利用側熱交換器33の一次側伝熱管33aに流入するようになっている。また、暖房運転時には、空調用圧縮機31で圧縮された高温高圧の第二冷媒が、空調利用側熱交換器33の一次側伝熱管33aに流入するようになっている。
The air conditioning compressor 31 is a compressor that compresses the second refrigerant into a high-temperature and high-pressure refrigerant. Incidentally, as the air conditioning compressor 31, a piston type, a rotary type, a scroll type, a screw type, a centrifugal type or the like can be used.
The four-way valve 32 is a four-way valve that switches the direction of the second refrigerant flowing through the primary heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33 between the cooling operation and the heating operation.
That is, the low-temperature low-pressure second refrigerant expanded by the air conditioning expansion valve 34 during cooling operation flows into the primary heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33 by switching the four-way valve 32. Further, during the heating operation, the high temperature and high pressure second refrigerant compressed by the air conditioning compressor 31 flows into the primary side heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33.
 空調利用側熱交換器33は、一次側伝熱管33aを通流する第二冷媒と、二次側伝熱管33bを通流する熱搬送媒体との熱交換を行う熱交換器である。
 空調用膨張弁34は、第二冷媒を減圧する減圧装置として機能する。
 また、熱源側熱交換器11は、前記したように、空調用ファン35から送られてくる空気(室外空気)と空調用伝熱管31aを通流する第二冷媒との熱交換などを行う。
The air conditioning utilization side heat exchanger 33 is a heat exchanger that performs heat exchange between the second refrigerant flowing through the primary heat transfer pipe 33a and the heat transport medium flowing through the secondary heat transfer pipe 33b.
The air conditioning expansion valve 34 functions as a pressure reducing device that reduces the pressure of the second refrigerant.
Further, as described above, the heat source side heat exchanger 11 performs heat exchange between the air (outdoor air) sent from the air conditioning fan 35 and the second refrigerant flowing through the air conditioning heat transfer pipe 31a.
 なお、第二冷媒として、R410A、HFC、HFO-1234yf、HFO-1234ze、自然冷媒(例えば、CO冷媒)などを用いることができる。 As the second refrigerant, R410A, HFC, HFO-1234yf, HFO-1234ze, a natural refrigerant (for example, a CO 2 refrigerant) or the like can be used.
(熱源側熱交換器)
 ここで、熱源側熱交換器11について詳細に説明する。図2は、熱源側熱交換器の概略構成図である。なお、図2において、給湯用伝熱管21aを網掛けで示した。
 熱源側熱交換器11は、所定の間隔を空けて略平行に積層された複数の板状フィン11fのそれぞれに、伝熱管(給湯用伝熱管21a及び空調用伝熱管31a)の管径よりもわずかに小さい直径の円形孔(図示せず)を複数空け、当該円形孔に給湯用伝熱管21a及び空調用伝熱管31aを貫通させた構成となっている。
 なお、各板状フィン11fは、その伝熱面が略上下方向(鉛直方向)となるように設置されている。
(Heat source side heat exchanger)
Here, the heat source side heat exchanger 11 will be described in detail. FIG. 2 is a schematic configuration diagram of the heat source side heat exchanger. In FIG. 2, the heat transfer pipe 21a for hot water supply is shown by hatching.
The heat source side heat exchanger 11 is provided for each of the plurality of plate-like fins 11 f stacked substantially in parallel at predetermined intervals, more than the pipe diameter of the heat transfer pipe (heat transfer pipe 21 a for hot water supply and heat transfer pipe 31 a for air conditioning). A plurality of circular holes (not shown) of slightly smaller diameter are provided, and the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning are made to penetrate through the circular holes.
Each plate-like fin 11 f is installed such that the heat transfer surface thereof is substantially in the vertical direction (vertical direction).
 熱源側熱交換器11では、給湯用伝熱管21aを通流する第一冷媒と室外空気との熱交換、給湯用伝熱管21aを通流する第一冷媒と空調用伝熱管31aを通流する第二冷媒との熱交換、空調用伝熱管31aを通流する第二冷媒と室外空気との熱交換が行われる。
 ちなみに、板状フィン11fは薄い金属板であり、ステンレスフィン、アルミフィン、銅フィン、亜鉛メッキフィンなどを用いることができるが、これらに限定されるものではない。
In the heat source side heat exchanger 11, heat exchange between the first refrigerant flowing through the heat transfer pipe 21a for hot water supply and the outdoor air, the first refrigerant flowing through the heat transfer pipe 21a for hot water supply, and the heat transfer pipe 31a for air conditioning Heat exchange with the second refrigerant and heat exchange between the second refrigerant flowing through the heat transfer pipe 31a for air conditioning and the outdoor air are performed.
Incidentally, the plate-like fins 11 f are thin metal plates, and stainless steel fins, aluminum fins, copper fins, galvanized fins, etc. can be used, but the present invention is not limited to these.
 給湯用伝熱管21aは、直線状の給湯用伝熱管21s,21s,・・・,21s(以下、「直線状第一伝熱管21s」と記す。)と、接続用の給湯用伝熱管21c,21c,・・・,21c(以下、「接続用第一伝熱管21c」と記す。)と、を備える。
 また、空調用伝熱管31aは、直線状の空調用伝熱管31s,31s,・・・,31s(以下、「直線状第二伝熱管31s」と記す。)と、接続用の空調用伝熱管31c,31c,・・・,31c(以下、「接続用第二伝熱管31c」と記す。)と、を備える。
The heat transfer pipe 21a for hot water supply is a linear heat transfer pipe 21s 1 , 21s 2 ,..., 21s k (hereinafter referred to as “linear first heat transfer pipe 21s”), and a heat transferable transfer pipe for connection. comprising heat pipes 21c 1, 21c 2, · · ·, 21c h (hereinafter. referred to as "first heat exchanger tube 21c for connection") and, the.
Further, the air-conditioning heat exchanger tube 31a is linear air-conditioning heat-transfer tubes 31s 1, 31s 2, · · ·, 31s m (hereinafter, referred to as "straight second heat exchanger tube 31s".) And air conditioning for connection comprising use heat transfer tube 31c 1, 31c 2, · · ·, 31c n (hereinafter. referred to as "the second heat exchanger tube 31c for connection") and, the.
 直線状第一伝熱管21s及び直線状第二伝熱管31sは、複数の板状フィン11fの伝熱面(鉛直方向)と略垂直となるように、各板状フィン11fを貫通している。つまり、直線状第一伝熱管21s及び直線状第二伝熱管31sは、略水平方向に設置されている。 The linear first heat transfer pipes 21s and the linear second heat transfer pipes 31s penetrate the plate-like fins 11f so as to be substantially perpendicular to the heat transfer surfaces (vertical direction) of the plurality of plate-like fins 11f. That is, the linear first heat transfer pipe 21s and the linear second heat transfer pipe 31s are installed substantially horizontally.
 そして、図2に示すように、直線状第一伝熱管21sと21s、21sと21s、・・・,21sk-1と21sは、接続用第一伝熱管21c,21c,・・・,21cで接続されている。これによって、給湯用伝熱管21aは、複数の板状フィン11fを貫通しつつ蛇行する流路(第一冷媒の流路)を形成している。
 また、直線状第二伝熱管31sと31s、31sと31s、・・・,31sm-1と31sは、接続用第二伝熱管31c,31c,・・・,31cで接続されている。これによって、空調用伝熱管31aは、複数の板状フィン11fを貫通しつつ蛇行する流路(第二冷媒の流路)を形成している。
Then, as shown in FIG. 2, straight first heat exchanger tube 21s 1 and 21s 2, 21s 2 and 21s 3, ···, 21s k- 1 and 21s k is first heat exchanger tube 21c 1, 21c for connection 2,..., it is connected by 21c h. Thus, the heat transfer pipe 21a forms a flow path (flow path of the first refrigerant) that meanders through the plurality of plate-like fins 11f.
Also, the linear second heat exchanger tube 31s 1 and 31s 2, 31s 2 and 31s 3, ···, 31s m- 1 and 31s m, the second heat exchanger tube 31c for connection 1, 31c 2, · · ·, 31c It is connected by n . Thus, the air conditioning heat transfer pipe 31a forms a flow path (flow path of the second refrigerant) that meanders through the plurality of plate-like fins 11f.
 なお、図2では、直線状第一伝熱管21sの本数が12本(k=12)、直線状第二伝熱管31sの本数が12本(m=12)の場合を示したが、これに限定されるものではない。また、後記する第2実施形態、第3実施形態に係る給湯空調装置の熱源側熱交換器11B,11Cについても前記と同様のことがいえる。 FIG. 2 shows the case where the number of linear first heat transfer tubes 21s is 12 (k = 12) and the number of linear second heat transfer tubes 31s is 12 (m = 12). It is not limited. The same applies to the heat source side heat exchangers 11B and 11C of the hot water supply air conditioner according to the second embodiment and the third embodiment described later.
 給湯用ファン24(図1参照)は、給湯用伝熱管21aの設置位置に対応して設置されている。また、給湯用ファン24は、当該給湯用ファン24から送風される空気の通流方向が、各板状フィン11fの伝熱面と略平行になるように設置されている。
 空調用ファン35(図1参照)は、空調用伝熱管31aの設置位置に対応して設置されている。また、空調用ファン35は、当該空調用ファン35から送風される空気の通流方向が、各板状フィン11fの伝熱面と略平行になるように設置されている。
The hot water supply fan 24 (see FIG. 1) is installed corresponding to the installation position of the hot water supply heat transfer pipe 21a. Further, the hot water supply fan 24 is installed such that the flow direction of the air blown from the hot water supply fan 24 is substantially parallel to the heat transfer surface of each plate-like fin 11 f.
The air conditioning fan 35 (see FIG. 1) is installed corresponding to the installation position of the air conditioning heat transfer pipe 31a. Further, the air conditioning fan 35 is installed such that the flow direction of the air blown from the air conditioning fan 35 is substantially parallel to the heat transfer surface of each plate-like fin 11 f.
 また、図2に示すように、熱源側熱交換器11において、給湯用伝熱管21aは空調用伝熱管31aよりも上方に設置されている。
 なお、前記の「上方に設置」とは、全ての直線状第一伝熱管21sが、直線状第二伝熱管31sよりも上方に設置されていることを意味するものではない。
Further, as shown in FIG. 2, in the heat source side heat exchanger 11, the heat transfer pipe 21 a for hot water supply is installed above the heat transfer pipe 31 a for air conditioning.
In addition, said "installing above" does not mean that all the linear 1st heat-transfer tubes 21s are installed above the linear 2nd heat-transfer tubes 31s.
 図3は、給湯用伝熱管及び空調用伝熱管を2段構成とした場合の熱源側熱交換器の例を示す側面図である。図3において、実線は伝熱管(給湯用伝熱管21a又は空調用伝熱管31a)が紙面の手前側にターンしていることを示し、点線は伝熱管が紙面の背面側でターンしていることを示している。 FIG. 3 is a side view showing an example of the heat source side heat exchanger in the case where the heat transfer pipe for hot water supply and the heat transfer pipe for air conditioning have a two-stage configuration. In FIG. 3, the solid line indicates that the heat transfer pipe (heat transfer pipe 21a for hot water supply or heat transfer pipe 31a for air conditioning) turns to the near side of the drawing, and the dotted line indicates that the heat transfer pipe turns on the back side of the drawing Is shown.
 図3に示す熱源側熱交換器11Aでは、複数平行に積層された板状フィン11fが二列に配置されている。そして、給湯用伝熱管21aが一列目(左側)の複数の板状フィン11fを貫通しつつ下方に向かって蛇行し、位置Aから位置Bにターンして二列目(右側)の複数の板状フィン11fを貫通しつつ上方に向かって蛇行する構成となっている。
 また、空調用伝熱管31aが一列目(左側)の位置Cから複数の板状フィン11fを貫通しつつ下方に向かって蛇行し、さらに二列目(右側)の板状フィン11fを貫通しつつ上方に向かって蛇行して位置Dの孔から出る構成となっている。
In the heat source side heat exchanger 11A shown in FIG. 3, a plurality of plate-like fins 11f stacked in parallel are arranged in two rows. Then, the heat transfer pipe 21a meanders downward while penetrating the plurality of plate-like fins 11f in the first row (left side), turns from position A to position B, and turns the plurality of plates in the second row (right side) It is configured to meander upward while penetrating the fin 11f.
Further, the heat transfer pipes 31a for air conditioning meander downward from the position C at the first row (left side) while penetrating the plurality of plate fins 11f, and further penetrate the plate fins 11f of the second row (right side) It is configured to meander upward and to come out of the hole at position D.
 給湯用伝熱管21a及び空調用伝熱管31aのパスを図3に示す配置とした場合、給湯用伝熱管21aの最下部の位置Bの高さは、空調用伝熱管31aの最上部の位置Cの高さよりも低くなっている。
 本実施形態ではこのような場合も、給湯用伝熱管21aが空調用伝熱管31aの上方に設置されている場合に含める。つまり、熱源側熱交換器11(11A)において、給湯用伝熱管21aの総体が、空調用伝熱管31aの総体に対して上方に設置されている。
When the paths of the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning are arranged as shown in FIG. 3, the height of the position B of the lowermost part of the heat transfer pipe 21a for hot water is the position C of the uppermost part of the heat transfer pipe 31a for air conditioning. It is lower than the height of the
In this embodiment, this case is also included when the heat transfer pipe 21a for hot water supply is installed above the heat transfer pipe 31a for air conditioning. That is, in the heat source side heat exchanger 11 (11A), the entire body of the heat transfer pipe 21a for hot water supply is installed above the overall body of the heat transfer pipe 31a for air conditioning.
 <給湯回路>
 再び図1に戻って、給湯空調装置S1についての説明を続ける。室外ユニット100に設けられた給湯回路40は、第一ポンプ41と、給湯利用側熱交換器22の二次側伝熱管22bと、三方弁45と、貯湯タンク42と、三方弁43と、が環状に配管で接続されている。
<Hot water supply circuit>
Returning to FIG. 1 again, the description of the hot water supply air conditioner S1 will be continued. The hot water supply circuit 40 provided in the outdoor unit 100 includes a first pump 41, a secondary heat transfer pipe 22b of the hot water use side heat exchanger 22, a three-way valve 45, a hot water storage tank 42, and a three-way valve 43. It is connected by piping in a loop.
 第一ポンプ41は、貯湯タンク42から被加熱液体を汲み上げ、給湯利用側熱交換器22の二次側伝熱管22bに向けて圧送するポンプである。
 貯湯タンク42は、被加熱液体を貯留するものであり、断熱材(図示せず)で覆われている。
 三方弁43,45は、通流する被加熱液体の流量比率を調整可能に構成された三方弁である。
The first pump 41 is a pump that pumps up the liquid to be heated from the hot water storage tank 42 and pumps it toward the secondary heat transfer pipe 22 b of the hot water use side heat exchanger 22.
The hot water storage tank 42 stores the liquid to be heated, and is covered with a heat insulating material (not shown).
The three- way valves 43 and 45 are three-way valves configured to be able to adjust the flow rate ratio of the heated liquid flowing therethrough.
 また、室外ユニット100は、三方弁44,46と、給水金具101と、給湯金具102と、を備えている。
 給水金具101は、一端が三方弁46に接続され、他端が給水端末(図示せず)に接続されている。そして、使用者が給湯端末(図示せず)を開操作した場合に、給水源からの圧力によって、給水金具101を介して貯湯タンク42の下部に被加熱液体(水)が流入するようになっている。
The outdoor unit 100 also includes three- way valves 44 and 46, a water supply fitting 101, and a hot water supply fitting 102.
One end of the water supply fitting 101 is connected to the three-way valve 46, and the other end is connected to a water supply terminal (not shown). When the user opens the hot water supply terminal (not shown), the heated fluid (water) flows into the lower part of the hot water storage tank 42 through the water supply fitting 101 by the pressure from the water supply source. ing.
 三方弁44,46は、通流する被加熱液体の流量比率を調整可能に構成された三方弁であり、配管47aを介して相互に接続されている。そして、各三方弁44,46の開度に応じた流量の被加熱液体(水)が配管47aを介して流入することにより、貯湯タンク42から供給される高温の被加熱液体を適度な温度に調整するようになっている。
 給湯金具102は、一端が三方弁44に接続され、他端が給湯端末(図示せず)に接続されている。そして、使用者が給湯端末を開操作することにより、温度調整がされた被加熱液体(湯)が給湯金具102を介して給湯端末に供給されるようになっている。
The three- way valves 44 and 46 are three-way valves configured to be able to adjust the flow rate ratio of the heated liquid flowing therethrough, and are mutually connected via a pipe 47 a. Then, the heated liquid (water) having a flow rate corresponding to the opening degree of each of the three- way valves 44 and 46 flows in via the pipe 47a, so that the high-temperature heated liquid supplied from the hot water storage tank 42 becomes an appropriate temperature. It is supposed to be adjusted.
One end of the hot water supply fitting 102 is connected to the three-way valve 44, and the other end is connected to a hot water supply terminal (not shown). When the user opens the hot water supply terminal, the liquid to be heated (hot water) whose temperature has been adjusted is supplied to the hot water supply terminal via the hot water supply fitting 102.
<空調用熱搬送媒体循環回路>
 室外ユニット100から室内ユニット200に亘って設けられた空調用熱搬送媒体循環回路50は、第二ポンプ51と、空調利用側熱交換器33の二次側伝熱管33bと、室内熱交換器52と、が環状に配管で接続して構成されている。
<Heat transfer medium circulation circuit for air conditioning>
The heat transfer medium circulation circuit 50 for air conditioning provided from the outdoor unit 100 to the indoor unit 200 includes the second pump 51, the secondary heat transfer pipe 33 b of the air conditioning use side heat exchanger 33, and the indoor heat exchanger 52. And are annularly connected by piping.
 第一ポンプ51は、室内熱交換器52から流入する熱搬送媒体を、空調利用側熱交換器33の二次側伝熱管33bに向けて圧送するポンプである。
 室内熱交換器52は、室内ファン53から送られてくる空気(室内空気)と熱搬送媒体との熱交換を行う熱交換器である。
 なお、熱搬送媒体として、エチレングリコールなどのブライン(不凍液)や、水などを用いることができる。
The first pump 51 is a pump that pumps the heat transfer medium flowing from the indoor heat exchanger 52 toward the secondary heat transfer pipe 33 b of the air conditioning utilization side heat exchanger 33.
The indoor heat exchanger 52 is a heat exchanger that exchanges heat between the air (room air) sent from the indoor fan 53 and the heat transfer medium.
As the heat transfer medium, brine (antifreeze) such as ethylene glycol or water can be used.
<制御装置>
 また、給湯空調装置S1は、制御装置60を備えている。
 制御装置60は、給湯空調装置S1の運転モードを決定し、決定した運転モードに従って各種弁(給湯用膨張弁23、四方弁32、空調用膨張弁34、三方弁43~46)の状態(開度)、圧縮機(給湯用圧縮機21、空調用圧縮機31)の回転速度、各熱交換器のファン(給湯用ファン24、空調用ファン35、室内ファン53)の回転速度、ポンプ(第一ポンプ41、第二ポンプ51)の回転速度、を制御して、給湯空調装置S1の各種運転を制御する機能を有している。
<Control device>
In addition, the hot water supply air conditioning device S1 includes a control device 60.
Control device 60 determines the operation mode of hot water supply air conditioning device S1, and according to the determined operation mode, the state (open of expansion valves 23, four-way valve 32, air conditioning expansion valve 34, three-way valves 43 to 46) for hot water supply Degrees, rotational speed of compressor (hot water supply compressor 21, air conditioning compressor 31), rotational speed of fans of each heat exchanger (hot water supply fan 24, air conditioning fan 35, indoor fan 53), pump It has a function of controlling the rotational speed of the first pump 41 and the second pump 51) to control various operations of the hot water supply air conditioning system S1.
(1.給湯運転モード)
 次に、給湯空調装置S1の各運転モードにおける動作について説明する。
 給湯運転モードは、被加熱液体(例えば、水)を加熱して貯湯タンク42に高温の被加熱液体を供給する運転モードである。このモードにおいて、空調用冷媒回路30及び空調用熱搬送媒体循環回路50は停止している。
 給湯用冷媒回路20について説明する。制御装置60は、給湯用膨張弁23の開度(絞り)を制御し、給湯用圧縮機21及び給湯用ファン24の回転速度を制御する。
(1. Hot water supply operation mode)
Next, the operation in each operation mode of the hot water supply air conditioner S1 will be described.
The hot water supply operation mode is an operation mode for heating a liquid to be heated (for example, water) and supplying a high temperature liquid to the hot water storage tank 42. In this mode, the air conditioning refrigerant circuit 30 and the air conditioning heat transfer medium circulation circuit 50 are stopped.
The hot water supply refrigerant circuit 20 will be described. The control device 60 controls the opening degree (throttle) of the hot water supply expansion valve 23 and controls the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24.
 給湯用圧縮機21から吐出された高温高圧の第一冷媒は、凝縮器として機能する給湯利用側熱交換器22の一次側伝熱管22aに流入する。給湯利用側熱交換器22の一次側伝熱管22aを通流する第一冷媒は、二次側伝熱管22bを通流する被加熱液体と熱交換することにより放熱して、中温高圧の第一冷媒となる。
 給湯利用側熱交換器22の一次側伝熱管22aから流出した中温高圧の第一冷媒は、給湯用膨張弁23で減圧され、低温低圧の第一冷媒となる。
The high-temperature and high-pressure first refrigerant discharged from the hot water supply compressor 21 flows into the primary-side heat transfer pipe 22 a of the hot water use side heat exchanger 22 functioning as a condenser. The first refrigerant flowing through the primary side heat transfer pipe 22a of the hot water use side heat exchanger 22 dissipates heat by heat exchange with the liquid to be heated flowing through the secondary side heat transfer pipe 22b, and the medium temperature high pressure first It becomes a refrigerant.
The medium-temperature and high-pressure first refrigerant flowing out of the primary-side heat transfer pipe 22a of the hot-water supply utilization side heat exchanger 22 is decompressed by the hot-water supply expansion valve 23, and becomes a low-temperature and low-pressure first refrigerant.
 そして、低温低圧の第一冷媒は、蒸発器として機能する熱源側熱交換器11の給湯用伝熱管21aに流入する。熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒は、給湯用ファン24により送られてくる空気(室外空気)と熱交換することにより、前記空気から熱を汲み上げる(吸熱する)。そして、吸熱した第一冷媒は、熱源側熱交換器11から給湯用圧縮機21へと送られ、給湯用冷媒回路20を循環する。 Then, the low-temperature low-pressure first refrigerant flows into the hot water heat transfer heat transfer pipe 21 a of the heat source side heat exchanger 11 functioning as an evaporator. The first refrigerant flowing through the heat transfer pipe 21a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the hot water supply fan 24, thereby drawing heat from the air (heat absorption (heat absorption) To do). Then, the first refrigerant that has absorbed heat is sent from the heat source side heat exchanger 11 to the hot water supply compressor 21 and circulates through the hot water supply refrigerant circuit 20.
 次に、給湯回路40について説明する。なお、給湯回路40については、一般的な貯湯式の給湯器と同様であるから、以下では説明を簡略化している。
 制御装置4は、第一ポンプ41の回転速度を制御する。
 第一ポンプ41を駆動させることにより、貯湯タンク42から吸入された被加熱液体は、給湯利用側熱交換器22の二次側伝熱管22bに流入する。給湯利用側熱交換器22の二次側伝熱管22bを通流する被加熱液体は、一次側伝熱管22aを通流する第一冷媒と熱交換することにより吸熱し、高温の被加熱液体となる。そして、高温の被加熱液体は、給湯利用側熱交換器22の二次側伝熱管22bから貯湯タンク42に戻され、貯留される。
Next, the hot water supply circuit 40 will be described. The hot water supply circuit 40 is similar to a general hot water storage type hot water supply device, and hence the description is simplified below.
The control device 4 controls the rotational speed of the first pump 41.
By driving the first pump 41, the liquid to be heated drawn from the hot water storage tank 42 flows into the secondary heat transfer pipe 22b of the hot water use side heat exchanger 22. The heated liquid flowing through the secondary heat transfer pipe 22b of the hot water use side heat exchanger 22 absorbs heat by exchanging heat with the first refrigerant flowing through the primary heat transfer pipe 22a, and is heated with a high temperature heated liquid Become. Then, the high-temperature liquid to be heated is returned from the secondary heat transfer pipe 22b of the hot water supply utilization side heat exchanger 22 to the hot water storage tank 42 and stored.
 なお、熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒が、給湯用ファン24により送られてくる空気(室外空気)と熱交換する際には、給湯用伝熱管21aが設置されている部分の板状フィン11fだけでなく、空調用伝熱管31aが設置されている部分の板状フィン11fにおいても熱交換が可能である。これは、図2に示すように、給湯用伝熱管21a及び空調用伝熱管31aを、共通の板状フィン11fに貫通させることによって、給湯用の熱源側熱交換器と空調用の熱源側熱交換器とが一体化されているためである。 When the first refrigerant flowing through the heat transfer tube 21a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the hot water supply fan 24, the heat transfer tube 21a for hot water supply Heat exchange is possible not only in the plate-like fins 11f in the portion where the heat sink is installed, but also in the plate-like fins 11f in the portion where the heat transfer pipe 31a for air conditioning is installed. This is because, as shown in FIG. 2, the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning are penetrated by the common plate-like fins 11f, so that the heat source side heat exchanger for hot water supply and the heat source side heat for air conditioning This is because the exchange unit is integrated.
 したがって、給湯用の熱源側熱交換器と、空調用の熱源側熱交換器とを分離した場合に比べて熱源側熱交換器11における伝熱面積が大きくなり、伝熱性能が向上する。これによって、給湯用圧縮機21及び給湯用ファン24の回転速度を低減させることが可能となり、システム全体の効率を向上させることができる。 Therefore, the heat transfer area in the heat source side heat exchanger 11 is larger than in the case where the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning are separated, and the heat transfer performance is improved. As a result, the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24 can be reduced, and the efficiency of the entire system can be improved.
(1-1.除霜運転について)
 冬期などにおいて室外空気が低温高湿の場合には、低温の第一冷媒が熱源側熱交換器11の給湯用伝熱管21aを通流することにより、給湯用伝熱管12aが設置されている部分の板状フィン11fが着霜する。この場合、制御装置60は、室外ユニット100に設置された着霜検知手段(温度センサなど:図示せず)から入力される信号に応じて、空調用冷媒回路30を後記する冷房運転と同様に動作させ、熱源側熱交換器11内の空調用伝熱管31aに高温の第二冷媒を送る。
 ちなみに、除霜運転を行っている間も給湯空調装置S1は給湯運転を継続している。
(1-1. Defrosting operation)
When outdoor air is at low temperature and high humidity in winter, etc., the portion where the heat transfer pipe 12a for hot water supply is installed by causing the first low temperature refrigerant to flow through the heat transfer pipe 21a of the heat source side heat exchanger 11 The plate-like fins 11 f of the In this case, the control device 60 operates in the same manner as the cooling operation described later for the air conditioning refrigerant circuit 30 according to a signal input from the frost detection means (temperature sensor etc .: not shown) installed in the outdoor unit 100. The operation is performed, and the high temperature second refrigerant is sent to the air conditioning heat transfer pipe 31 a in the heat source side heat exchanger 11.
Incidentally, the hot water supply air-conditioning apparatus S1 continues the hot water supply operation while performing the defrosting operation.
 前記したように、熱源側熱交換器11では、2つの熱交換器(つまり、給湯用の熱源側熱交換器と、空調用の熱源側熱交換器)が一体化されている。すなわち、給湯用伝熱管21aが設置されている部分の板状フィン11fと空調用伝熱管31aが設置されている部分の板状フィン11fとが連続している(図2参照)。
 したがって、空調用伝熱管31a内を通過する高温の第二冷媒からの温熱が板状フィン11fを伝わり、給湯用伝熱管21aが設置されている部分の板状フィン11fに付着した霜を溶かすことができる。
As described above, in the heat source side heat exchanger 11, two heat exchangers (that is, the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning) are integrated. That is, the plate-like fins 11f of the portion where the heat transfer tubes 21a are installed and the plate-like fins 11f of the portions where the heat transfer tubes 31a for air conditioning are installed are continuous (see FIG. 2).
Therefore, the heat from the high temperature second refrigerant passing through the air conditioning heat transfer pipe 31a is transmitted through the plate-like fins 11f to melt the frost adhering to the plate-like fins 11f of the portion where the heat transfer heat transfer tube 21a is installed. Can.
 また、図2に示すように、熱源側熱交換器11において、給湯用伝熱管21aが空調用伝熱管31aよりも上方に設置されている。空調用伝熱管31aが設置されている部分では第二冷媒からの温熱が放出されており、この温熱が上昇して給湯用ファン24の周囲温度を上昇させることとなる。したがって、給湯用伝熱管21aが配置されている部分の板状フィン11fに付着した霜を、第二冷媒からの温熱と、より高温になった室外空気とにより加熱することで速やかに溶かすことができる。 Further, as shown in FIG. 2, in the heat source side heat exchanger 11, the heat transfer pipe 21a for hot water supply is installed above the heat transfer pipe 31a for air conditioning. The heat from the second refrigerant is released at the portion where the heat transfer pipe 31a for air conditioning is installed, and the heat rises, and the ambient temperature of the hot water supply fan 24 is raised. Therefore, the frost adhering to the plate-like fins 11f of the portion where the heat transfer pipe 21a is disposed can be rapidly melted by heating it with the heat from the second refrigerant and the outdoor air that has become hotter. it can.
 ちなみに、制御装置60は除霜運転の際、空調用冷媒回路30を冷房運転と同様に動作させるが、空調用熱搬送媒体循環回路50の動作を停止させておいてもよい。なぜなら、空調利用側熱交換器33の二次側伝熱管33b内の熱搬送媒体が、ある程度の熱を有しており、空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒が前記熱を吸熱するからである。 Incidentally, although the control device 60 operates the air conditioning refrigerant circuit 30 in the same manner as the cooling operation during the defrosting operation, the operation of the air conditioning heat transfer medium circulation circuit 50 may be stopped. Because, the heat transfer medium in the secondary side heat transfer pipe 33b of the air conditioning use side heat exchanger 33 has a certain amount of heat, and flows through the primary side heat transfer pipe 33a of the air conditioning use side heat exchanger 33. This is because the two refrigerants absorb the heat.
 なお、除霜運転を行う際に、前記のように空調用熱搬送媒体循環回路50の動作を停止させると第二冷媒を十分に蒸発させることができない場合、制御装置60は第二ポンプ51を駆動させる。この場合、第二ポンプ51によって、空調用熱搬送媒体循環回路50内を熱搬送媒体が循環する。したがって、空調利用側熱交換器33の二次側伝熱管33bを通流する熱搬送媒体の温熱が、一次側伝熱管33aを通流する第二冷媒に伝熱され、除霜運転を促進させることができる。 If the second refrigerant can not be sufficiently evaporated by stopping the operation of the heat transfer medium circulation circuit 50 for air conditioning as described above when performing the defrosting operation, the controller 60 controls the second pump 51. Drive. In this case, the heat transfer medium circulates through the air conditioning heat transfer medium circulation circuit 50 by the second pump 51. Therefore, the heat of the heat transfer medium flowing through the secondary side heat transfer pipe 33b of the air conditioning utilization side heat exchanger 33 is transferred to the second refrigerant flowing through the primary side heat transfer pipe 33a to promote the defrosting operation. be able to.
 また、除霜運転を行う際に、前記のような第二ポンプ51の駆動のみでは第二冷媒を十分に蒸発させることができない場合、制御装置60はさらに所定の回転速度で空調用ファン53を回転させる。この場合、空調用ファン53の回転によって、室内熱交換器52で室内空気の熱を汲み上げることができる。したがって、空調利用側熱交換器33の二次側伝熱管33bを通流する熱搬送媒体の温熱が、一次側伝熱管33aを通流する第二冷媒に伝熱され、除霜運転をさらに促進させることができる。 In addition, when performing the defrosting operation, when the second refrigerant can not be sufficiently evaporated only by the driving of the second pump 51 as described above, the control device 60 further performs the air conditioning fan 53 at a predetermined rotation speed. Rotate. In this case, the heat of the indoor air can be pumped up by the indoor heat exchanger 52 by the rotation of the air conditioning fan 53. Therefore, the heat of the heat transfer medium flowing through the secondary side heat transfer pipe 33b of the air conditioning utilization side heat exchanger 33 is transferred to the second refrigerant flowing through the primary side heat transfer pipe 33a to further promote the defrosting operation It can be done.
(2.冷房運転モード)
 冷房運転モードは、室内ユニット200が設置された室内(被空調空間)を冷房する運転モードである。このモードにおいて、給湯用冷媒回路20及び給湯回路40は停止している。
 空調用冷媒回路30について説明する。制御装置60は、四方弁32の切替手段(図示せず)が、冷房運転の位置となるように制御する。また、制御装置60は、空調用膨張弁34の開度(絞り)を制御し、空調用圧縮機31及び空調用ファン35の回転速度を制御する。
(2. Cooling operation mode)
The cooling operation mode is an operation mode for cooling the room (air conditioned space) in which the indoor unit 200 is installed. In this mode, the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 are stopped.
The air conditioning refrigerant circuit 30 will be described. The control device 60 controls the switching means (not shown) of the four-way valve 32 to be at the position of the cooling operation. Further, the control device 60 controls the opening degree (throttle) of the air conditioning expansion valve 34 and controls the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35.
 空調用圧縮機31から吐出された高温高圧の第二冷媒は、四方弁32を介して、凝縮器として機能する熱源側熱交換器11の空調用伝熱管31aに流入する。
 熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒は、空調用ファン35により送られてくる空気(室外空気)と熱交換することにより放熱(排熱)し、中温高圧の第二冷媒となる。熱源側熱交換器11の空調用伝熱管31aから流出した中温高圧の第二冷媒は、空調用膨張弁34に流入する。
The high temperature and high pressure second refrigerant discharged from the air conditioning compressor 31 flows into the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11 functioning as a condenser via the four-way valve 32.
The second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 releases heat (exhaust heat) by heat exchange with the air (outdoor air) sent by the air conditioning fan 35, and the medium temperature high pressure It becomes the second refrigerant of The medium-temperature high-pressure second refrigerant that has flowed out from the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11 flows into the air conditioning expansion valve 34.
 そして、中温高圧の第二冷媒は空調用膨張弁34で減圧され、低温低圧の第二冷媒となり、蒸発器として機能する空調利用側熱交換器33の一次側伝熱管33aに流入する。空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒は、二次側伝熱管33bを通流する熱搬送媒体と熱交換することにより、熱搬送媒体から熱を汲み上げる(吸熱する)。そして、吸熱した第二冷媒は、空調利用側熱交換器33の一次側伝熱管33aから四方弁32を介して空調用圧縮機31へと送られ、空調用冷媒回路30を循環する。 Then, the medium-temperature high-pressure second refrigerant is decompressed by the air conditioning expansion valve 34 and becomes a low-temperature low-pressure second refrigerant, and flows into the primary heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33 functioning as an evaporator. The second refrigerant flowing through the primary side heat transfer pipe 33a of the air conditioning usage side heat exchanger 33 exchanges heat with the heat transfer medium flowing through the secondary side heat transfer pipe 33b, thereby drawing up heat from the heat transfer medium ( Heat absorption). Then, the second refrigerant that has absorbed heat is sent from the primary side heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33 to the air conditioning compressor 31 via the four-way valve 32, and circulates through the air conditioning refrigerant circuit 30.
 次に、空調用熱搬送媒体循環回路50について説明する。制御装置60は、第二ポンプ51及び室内ファン53の回転速度を制御する。
 第二ポンプ51を駆動させることにより、熱搬送媒体は空調利用側熱交換器33の二次側伝熱管33bに流入する。空調利用側熱交換器33の二次側伝熱管33bを通流する熱搬送媒体は、一次側伝熱管33aを通流する第二冷媒と熱交換することにより放熱(排熱)して、低温の熱搬送媒体となる。
Next, the heat transfer medium circulation circuit 50 for air conditioning will be described. The controller 60 controls the rotational speeds of the second pump 51 and the indoor fan 53.
By driving the second pump 51, the heat transfer medium flows into the secondary heat transfer pipe 33 b of the air conditioning utilization side heat exchanger 33. The heat transfer medium flowing through the secondary side heat transfer pipe 33b of the air conditioning utilization side heat exchanger 33 dissipates heat (exhaust heat) by heat exchange with the second refrigerant flowing through the primary side heat transfer pipe 33a. Heat transfer medium.
 そして、低温の熱搬送媒体は、室内ユニット200の室内熱交換器52に流入する。室内熱交換器52を通流する熱搬送媒体は、室内ファン53により送られてくる空気(室内空気)と熱交換することにより吸熱する。そして、吸熱した熱搬送媒体は、室内熱交換器52から第二ポンプ51へと送られ、空調用熱搬送媒体循環回路50を循環する。
 このように、室内ユニット2の室内熱交換器52で熱搬送媒体が吸熱することにより、室内空気が冷却され、室内(被空調空間)が冷房される。
Then, the low temperature heat transfer medium flows into the indoor heat exchanger 52 of the indoor unit 200. The heat transfer medium flowing through the indoor heat exchanger 52 absorbs heat by heat exchange with the air (indoor air) sent by the indoor fan 53. The heat transfer medium that has absorbed heat is sent from the indoor heat exchanger 52 to the second pump 51 and circulates through the air transfer heat transfer medium circulation circuit 50.
As described above, when the heat transfer medium absorbs heat by the indoor heat exchanger 52 of the indoor unit 2, the indoor air is cooled, and the room (air conditioned space) is cooled.
 なお、熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒が、空調用ファン35により送られてくる空気(室外空気)と熱交換する際には、空調用伝熱管31aが設置されている部分の板状フィン11fだけでなく、給湯用伝熱管21aが設置されている部分の板状フィン11fにおいても熱交換が可能である。
 したがって、給湯用の熱源側熱交換器と、空調用の熱源側熱交換器を分離した場合に比べて熱源側熱交換器11における伝熱面積が大きくなり、伝熱性能が向上する。これによって、空調用圧縮機31及び空調用ファン35の回転速度を低減させることが可能となり、システム全体の効率を向上させることができる。
When the second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the air conditioning fan 35, the air conditioning heat transfer pipe 31a Heat exchange is possible not only in the plate-like fins 11f in the portion where the heat sink is installed, but also in the plate-like fins 11f in the portion where the heat transfer pipe 21a is installed.
Therefore, compared with the case where the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning are separated, the heat transfer area in the heat source side heat exchanger 11 becomes larger, and the heat transfer performance is improved. As a result, the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35 can be reduced, and the efficiency of the entire system can be improved.
(3.暖房運転モード)
 暖房運転モードは、室内ユニット200が設置された室内(被空調空間)を暖房する運転モードである。このモードにおいて、給湯用冷媒回路20及び給湯回路40は停止している。
 空調用冷媒回路30について説明する。制御装置60は、四方弁32の切替手段(図示せず)が、暖房運転の位置となるように制御する。また、制御装置60は、空調用膨張弁34の開度(絞り)を制御し、空調用圧縮機31及び空調用ファン35の回転速度を制御する。
(3. heating operation mode)
The heating operation mode is an operation mode for heating the room (air conditioned space) in which the indoor unit 200 is installed. In this mode, the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 are stopped.
The air conditioning refrigerant circuit 30 will be described. The control device 60 controls the switching means (not shown) of the four-way valve 32 to be at the position of the heating operation. Further, the control device 60 controls the opening degree (throttle) of the air conditioning expansion valve 34 and controls the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35.
 空調用圧縮機31から吐出された高温高圧の第二冷媒は、四方弁32を介して、凝縮器として機能する空調利用側熱交換器33の一次側伝熱管33aに流入する。
 空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒は、二次側伝熱管33bを通流する熱搬送媒体と熱交換することにより放熱(排熱)し、中温高圧の第二冷媒となる。空調利用側熱交換器の一次側伝熱管33aから流出した中温高圧の第二冷媒は空調用膨張弁34に流入する。
The high temperature and high pressure second refrigerant discharged from the air conditioning compressor 31 flows into the primary heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33 functioning as a condenser via the four-way valve 32.
The second refrigerant flowing through the primary side heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33 dissipates heat (exhaust heat) by heat exchange with the heat transfer medium flowing through the secondary side heat transfer pipe 33b, and the medium temperature high pressure It becomes the second refrigerant of The medium-temperature high-pressure second refrigerant flowing out from the primary-side heat transfer pipe 33 a of the air-conditioning use side heat exchanger flows into the air-conditioning expansion valve 34.
 そして、中温高圧の第二冷媒は空調用膨張弁34で減圧され、低温低圧の第二冷媒となり、蒸発器として機能する熱源側熱交換器11の空調用伝熱管31aに流入する。熱源側熱交換器11の空調用伝熱管31aを通流する低温低圧の第二冷媒は、空調用ファン35により送られてくる空気(室外空気)と熱交換することにより、前記空気から熱を汲み上げる(吸熱する)。そして、吸熱した第二冷媒は、熱源側熱交換器11の空調用伝熱管31aから四方弁32を介して空調用圧縮機31へと送られ、空調用冷媒回路30を循環する。 Then, the medium-temperature high-pressure second refrigerant is decompressed by the air conditioning expansion valve 34, becomes a low-temperature low-pressure second refrigerant, and flows into the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 functioning as an evaporator. The low-temperature low-pressure second refrigerant flowing through the air-conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the air-conditioning fan 35, thereby converting heat from the air Pump up (heat absorption). Then, the second refrigerant that has absorbed heat is sent from the heat transfer pipe 31 a for air conditioning of the heat source side heat exchanger 11 to the air conditioning compressor 31 via the four-way valve 32, and circulates through the air conditioning refrigerant circuit 30.
 次に、空調用熱搬送媒体循環回路50について説明する。制御装置4は、第二ポンプ51及び室内ファン53の回転速度を制御する。
 第二ポンプ51を駆動させることにより、熱搬送媒体は空調利用側熱交換器33の二次側伝熱管33bに流入する。空調利用側熱交換器33の二次側伝熱管33bを通流する熱搬送媒体は、一次側伝熱管33aを通流する第二冷媒と熱交換することにより吸熱して、高温の熱搬送媒体となる。
Next, the heat transfer medium circulation circuit 50 for air conditioning will be described. The control device 4 controls the rotational speed of the second pump 51 and the indoor fan 53.
By driving the second pump 51, the heat transfer medium flows into the secondary heat transfer pipe 33 b of the air conditioning utilization side heat exchanger 33. The heat transfer medium flowing through the secondary side heat transfer pipe 33b of the air conditioning utilization side heat exchanger 33 absorbs heat by exchanging heat with the second refrigerant flowing through the primary side heat transfer pipe 33a, and a high temperature heat transfer medium It becomes.
 そして、高温の熱搬送媒体は、室内ユニット200の室内熱交換器52に流入する。室内熱交換器52を通流する熱搬送媒体は、室内ファン53により送られてくる空気(室内空気)と熱交換することにより放熱する。そして、放熱した熱搬送媒体は、室内熱交換器52から第一ポンプ51へと送られ、空調用熱搬送媒体循環回路50を循環する。
 このように、室内ユニット2の室内熱交換器52で熱搬送媒体が放熱することにより、室内空気が加熱され、室内(被空調空間)が暖房される。
Then, the high-temperature heat transfer medium flows into the indoor heat exchanger 52 of the indoor unit 200. The heat transfer medium flowing through the indoor heat exchanger 52 dissipates heat by heat exchange with the air (indoor air) sent by the indoor fan 53. Then, the heat transfer medium that has dissipated heat is sent from the indoor heat exchanger 52 to the first pump 51 and circulates through the heat transfer medium circulation circuit 50 for air conditioning.
Thus, the heat transfer medium releases heat by the indoor heat exchanger 52 of the indoor unit 2 to heat the indoor air and heat the indoor space (air conditioned space).
(3-1.除霜運転について)
 冬期などにおいて室外空気が低温高湿の場合には、低温の第二冷媒が熱源側熱交換器11を通過することにより、空調用伝熱管31aが設置されている部分の板状フィン11fが着霜する。この場合、制御装置60は、給湯用冷媒回路20を用いて熱源側熱交換器11の給湯用伝熱管21aに高温の第一冷媒を送る。
(3-1. Defrosting operation)
When the outdoor air is at a low temperature and high humidity in winter, etc., the low temperature second refrigerant passes through the heat source side heat exchanger 11, whereby the plate-like fins 11f of the portion where the air conditioning heat transfer pipe 31a is installed is attached. To frost. In this case, the control device 60 sends the high temperature first refrigerant to the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11 using the hot water supply refrigerant circuit 20.
 具体的には、制御装置60は、給湯用膨張弁23を全開にした状態で給湯用圧縮機21を起動させ、高温の第一冷媒を給湯用伝熱管21aに送る。このとき、給湯回路40では第一ポンプ41を停止させているため、被加熱液体を冷却することはない。ちなみに、除霜運転を行っている間も給湯空調装置S1は暖房運転を継続している。 Specifically, the control device 60 starts the hot water supply compressor 21 with the hot water supply expansion valve 23 fully opened, and sends the high temperature first refrigerant to the hot water supply heat transfer pipe 21 a. At this time, since the first pump 41 is stopped in the hot water supply circuit 40, the liquid to be heated is not cooled. Incidentally, the hot water supply air-conditioning apparatus S1 continues the heating operation while the defrosting operation is being performed.
 また、熱源側熱交換器11において、給湯用伝熱管21aが設置されている部分の板状フィン11fと、空調用伝熱管31aが設置されている部分の板状フィン11fとは連続している。したがって、給湯用伝熱管21aを通流する高温の第一冷媒の温熱が板状フィン11fを伝わり、結果として空調用伝熱管31aが設置されている部分の霜を溶かすことができる。
 なお、前記除霜運転を行っている間、給湯用冷媒回路20の給湯用ファン24は停止している。これは、給湯用ファン24を回転させた場合、給湯用伝熱管21aを通流する第一冷媒が、低温の室外空気との熱交換によって放熱してしまうからである。
Further, in the heat source side heat exchanger 11, the plate-like fins 11f of the portion where the heat transfer tube 21a for hot water supply is installed and the plate-like fins 11f of the portion where the heat transfer tube 31a for air conditioning are installed are continuous. . Therefore, the heat of the high temperature first refrigerant flowing through the heat transfer pipe 21a is transmitted to the plate-like fins 11f, and as a result, it is possible to melt the frost in the portion where the air conditioning heat transfer pipe 31a is installed.
While the defrosting operation is being performed, the hot water supply fan 24 of the hot water supply refrigerant circuit 20 is stopped. This is because when the hot water supply fan 24 is rotated, the first refrigerant flowing through the hot water supply heat transfer pipe 21 a dissipates heat by heat exchange with low temperature outdoor air.
(4.給湯冷房運転モード)
 給湯冷房運転モードは、給湯運転及び冷房運転を行う運転モードである。
 なお、給湯冷房運転モードの給湯用冷媒回路20及び給湯回路40における動作は、前記した給湯運転モードの場合と同様であり、空調用冷媒回路30及び空調用熱搬送媒体循環回路50での動作は、前記した冷房運転モードの場合と同様であるから、説明を省略する。
 以下、熱源側熱交換器11における熱交換について詳細に説明する。
(4. Hot water supply and cooling operation mode)
The hot water supply and cooling operation mode is an operation mode in which a hot water supply operation and a cooling operation are performed.
The operations in the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 in the hot water supply and cooling operation mode are the same as those in the hot water supply operation mode described above, and the operations in the air conditioning refrigerant circuit 30 and the air conditioning heat transfer medium circulation circuit 50 are Since this is the same as the case of the cooling operation mode described above, the description will be omitted.
Hereinafter, heat exchange in the heat source side heat exchanger 11 will be described in detail.
 給湯冷房運転モードでは、熱源側熱交換器11のうち、給湯用伝熱管21aが設置されている部分が第一冷媒の蒸発器として機能し、空調用伝熱管31aが設置されている部分が第二冷媒の凝縮器として機能する。
 給湯用膨張弁23によって減圧されて低温低圧となった第一冷媒は、熱源側熱交換器11の給湯用伝熱管21aに流入する。ここで、熱源側熱交換器11の空調用伝熱管31aには、空調用圧縮機31から吐出された高温の第二冷媒が通流している。
In the hot water supply and cooling operation mode, the portion of the heat source side heat exchanger 11 where the heat transfer pipe 21a is installed functions as an evaporator of the first refrigerant, and the portion where the air conditioning heat transfer pipe 31a is installed is It functions as a two-refrigerant condenser.
The first refrigerant reduced in pressure by the hot water supply expansion valve 23 to a low temperature and low pressure flows into the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11. Here, the high temperature second refrigerant discharged from the air conditioning compressor 31 flows through the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11.
 したがって、熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒の温熱が、板状フィン11fを介して、給湯用伝熱管21aを通流する第一冷媒に伝熱される。
 また、空調用伝熱管31aを通流する第二冷媒と熱交換することによって加熱された空気が上昇するため、上方に設置されている給湯用ファン24の周囲温度が高くなる。
 これによって、給湯用ファン24から給湯用伝熱管21aに高温の空気が送り込まれることとなる。
Therefore, the heat of the second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 is transferred to the first refrigerant flowing through the hot water supply heat transfer pipe 21a via the plate-like fins 11f.
Further, since the air heated by heat exchange with the second refrigerant flowing through the air conditioning heat transfer pipe 31a rises, the ambient temperature of the hot water supply fan 24 installed above becomes high.
As a result, high temperature air is fed from the hot water supply fan 24 to the hot water supply heat transfer pipe 21a.
 熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒は、空調用伝熱管31aを通流する高温の第二冷媒と板状フィン11fを介して熱交換するとともに、給湯用ファン24から送り込まれる高温の空気とも熱交換する。
 したがって、給湯用伝熱管21aにおける伝熱性能が向上し、給湯用圧縮機21及び給湯用ファン24の回転速度を低減できるため、システム全体としての効率を向上させることができる。
The first refrigerant flowing through the heat transfer pipe 21a of the heat source side heat exchanger 11 exchanges heat with the high temperature second refrigerant flowing through the heat transfer pipe 31a for air conditioning via the plate-like fins 11f, and It also exchanges heat with the high temperature air fed from the fan 24.
Therefore, the heat transfer performance of the heat transfer pipe 21a for hot water supply is improved, and the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24 can be reduced, so that the efficiency of the entire system can be improved.
 また、空調用圧縮機によって圧縮された高温高圧の第二冷媒は、熱源側熱交換器11の空調用伝熱管31aに流入する。ここで、熱源側熱交換器11の給湯用伝熱管21aには、給湯用膨張弁23によって減圧された低温の第一冷媒が通流している。
 したがって、熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒の冷熱が、板状フィン11fを介して、空調用伝熱管31aを通流する第二冷媒に伝熱される。
Further, the high temperature and high pressure second refrigerant compressed by the air conditioning compressor flows into the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11. Here, the low temperature first refrigerant pressure-reduced by the hot water supply expansion valve 23 flows through the hot water supply heat transfer pipe 21 a of the heat source side heat exchanger 11.
Therefore, the cold heat of the first refrigerant flowing through the heat transfer pipe 21a of the heat source side heat exchanger 11 is transferred to the second refrigerant flowing through the air conditioning heat transfer pipe 31a via the plate-like fins 11f.
 また、給湯用伝熱管21aを通流する低温の第一冷媒と熱交換することによって冷却された空気が下降するため、下方に設置された空調用ファン35の周囲温度が低くなる。これによって、空調用ファン35から空調用伝熱管31aに低温の空気が送り込まれることとなる。 In addition, since the air cooled by heat exchange with the low temperature first refrigerant flowing through the heat transfer pipe 21a is lowered, the ambient temperature of the air conditioning fan 35 installed below is lowered. As a result, low temperature air is fed from the air conditioning fan 35 to the air conditioning heat transfer pipe 31a.
 熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒は、給湯用伝熱管21aを通流する低温の第一冷媒と、板状フィン11fを介して熱交換するとともに、空調用ファン35から送り込まれる低温の空気とも熱交換する。
 したがって、空調用伝熱管31aにおける伝熱性能も向上し、空調用圧縮機31及び空調用ファン35の回転速度を低減できるため、システム全体としての効率を向上させることができる。
The second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 exchanges heat with the low temperature first refrigerant flowing through the hot water supply heat transfer pipe 21a via the plate-like fins 11f, and the air conditioning It also exchanges heat with the low temperature air fed from the fan 35.
Therefore, the heat transfer performance of the air conditioning heat transfer pipe 31a is also improved, and the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35 can be reduced, so that the efficiency of the entire system can be improved.
(4-1.ドレン水による冷却について)
 夏期などにおいて室外空気が高温高湿の場合、給湯冷媒回路20において、低温の第一冷媒が熱源側熱交換器11の給湯用伝熱管21aを通流する際、給湯用伝熱管21aが設置された部分が結露して、ドレン水が生じる。
 前記ドレン水は、重力により板状フィン11を伝って下降し、空調用伝熱管31aが設置された部分に到達する。そして、ドレン水は、空調用伝熱管31aが設置された部分において高温の第二冷媒により加熱され、蒸発する。
 一方、高温の第二冷媒は、ドレン水が蒸発する際の潜熱によって冷却される。
(4-1. Cooling by drain water)
When outdoor air is at high temperature and high humidity in summer, etc., when the low temperature first refrigerant flows through the hot water heat transfer pipe 21a of the heat source side heat exchanger 11 in the hot water supply refrigerant circuit 20, the hot water heat transfer pipe 21a is installed. Condensation occurs in the other parts, resulting in drain water.
The drain water descends along the plate-like fins 11 by gravity and reaches the portion where the air conditioning heat transfer pipe 31a is installed. Then, the drain water is heated by the high temperature second refrigerant at a portion where the air conditioning heat transfer pipe 31a is installed, and evaporates.
On the other hand, the high temperature second refrigerant is cooled by the latent heat when the drain water evaporates.
 このように、熱源側熱交換器11の空調用伝熱管31aを通流する高温の第二冷媒が、給湯用伝熱管31aを通流する低温の第一冷媒と、より低温になった室外空気と、前記ドレン水による蒸発潜熱により冷却される。したがって、空調用伝熱管31aにおける伝熱性能が向上し、空調用圧縮機31及び空調用ファン35の回転速度をさらに低減できるため、システム全体としての効率を向上させることができる。 As described above, the high temperature second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 is the low temperature first refrigerant flowing through the hot water supply heat transfer pipe 31a, and the outdoor air whose temperature has become lower. And the latent heat of vaporization by the drain water. Therefore, the heat transfer performance of the air conditioning heat transfer pipe 31a is improved, and the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35 can be further reduced, so that the efficiency of the entire system can be improved.
 また、図1に示すように、熱源側熱交換器11には板状フィン11fの下にドレンパン12が設けられている。したがって、板状フィン11fの最下点まで到達したドレン水は、ドレンパン12から地上に放出される。このように、熱源側熱交換器11は給湯用熱源側の熱交換器と、空調用熱源の側熱交換器とが一体化されているため、それぞれの冷媒回路ごとにドレンパンを設ける必要がなく、構成部品の簡素化が可能となる。 Further, as shown in FIG. 1, the heat source side heat exchanger 11 is provided with a drain pan 12 below the plate-like fins 11f. Therefore, the drain water reached to the lowest point of the plate-like fins 11 f is discharged from the drain pan 12 to the ground. As described above, since the heat source side heat exchanger 11 integrates the heat exchanger on the heat source side for hot water supply and the side heat exchanger for the air conditioning heat source, there is no need to provide a drain pan for each refrigerant circuit. And simplification of the component parts.
(5.給湯暖房運転モード)
 給湯暖房運転モードは、給湯運転及び暖房運転を行う運転モードである。
 なお、給湯暖房運転モードの給湯用冷媒回路20及び給湯回路40における動作は、前記した給湯運転モードの場合と同様であり、空調用冷媒回路30及び空調用熱搬送媒体循環回路50での動作は、前記した暖房運転モードの場合と同様であるから説明を省略する。
 以下、熱源側熱交換器11における熱交換について詳細に説明する。
(5. Hot water supply heating operation mode)
The hot water supply heating operation mode is an operation mode in which the hot water supply operation and the heating operation are performed.
The operations in the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 in the hot water supply heating operation mode are the same as those in the hot water supply operation mode described above, and the operations in the air conditioning refrigerant circuit 30 and the air conditioning heat transfer medium circulation circuit 50 are Since this is the same as the case of the heating operation mode described above, the description is omitted.
Hereinafter, heat exchange in the heat source side heat exchanger 11 will be described in detail.
 給湯暖房運転モードでは、熱源側熱交換器11のうち、給湯用伝熱管21aが設置されている部分が第一冷媒の蒸発器として機能し、空調用伝熱管31aが設置されている部分が第二冷媒の蒸発器として機能する。すなわち、給湯暖房運転モードでは、熱源側熱交換器11が第一冷媒及び第二冷媒の蒸発器として機能し、室外空気から熱を汲み上げる。 In the hot water supply heating operation mode, the portion of the heat source side heat exchanger 11 where the heat transfer pipe 21a is installed functions as an evaporator of the first refrigerant, and the portion where the air conditioning heat transfer pipe 31a is installed is It functions as an evaporator for two refrigerants. That is, in the hot water supply heating operation mode, the heat source side heat exchanger 11 functions as an evaporator of the first refrigerant and the second refrigerant, and draws heat from the outdoor air.
 給湯用膨張弁23によって減圧されて低温低圧となった第一冷媒は、熱源側熱交換器11の給湯用伝熱管21aに流入する。そして、熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒は、給湯用ファン24から送り込まれる室外空気と熱交換することによって吸熱し、蒸発する。そして、熱源側熱交換器11の給湯用伝熱管21aから流出した第一冷媒は、給湯用圧縮機21に流入することとなる。 The first refrigerant reduced in pressure by the hot water supply expansion valve 23 to a low temperature and low pressure flows into the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11. Then, the first refrigerant flowing through the heat transfer pipe 21a of the heat source side heat exchanger 11 exchanges heat with the outdoor air fed from the hot water supply fan 24 to absorb heat and evaporate. Then, the first refrigerant flowing out of the heat transfer pipe 21 a of the heat source side heat exchanger 11 flows into the hot water supply compressor 21.
 また、空調用膨張弁34によって減圧された低温低圧の第二冷媒は、熱源側熱交換器11の空調用伝熱管31aに流入する。そして、熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒は、空調用ファン35から送り込まれる室外空気と熱交換することによって吸熱し、蒸発する。そして、熱源側熱交換器11の空調用伝熱管31aから流出した第二冷媒は、空調用圧縮機31に流入することとなる。 Further, the low temperature and low pressure second refrigerant, which has been decompressed by the air conditioning expansion valve 34, flows into the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11. Then, the second refrigerant flowing through the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11 exchanges heat with the outdoor air fed from the air conditioning fan 35 to absorb heat and evaporate. Then, the second refrigerant flowing out of the heat transfer pipe 31 a for air conditioning of the heat source side heat exchanger 11 flows into the air conditioning compressor 31.
(5-1.除霜運転について)
 次に、冬期などにおいて室外空気が低温高湿の場合に、給湯用伝熱管21aが設置されている部分の板状フィン11f、及び、空調用伝熱管31aが設置されている部分の板状フィン11fのうち、少なくとも一方が着霜した場合について説明する。
 熱源側熱交換器11のうち、給湯用伝熱管21aが設置されている部分の板状フィン11fが着霜した場合、制御装置60は、熱源側熱交換器11の給湯用伝熱管21aに高温高圧の第一冷媒を流入させるよう制御する。また、制御装置60は、第一ポンプ41を停止させる。
 これによって、暖房運転を継続させつつ、板状フィン11fに付着した霜を溶かすことができる。ちなみに、前記除霜運転の間は第一ポンプ41を停止しているので、被加熱液体を冷却することはない。
(5-1. Defrosting operation)
Next, when the outdoor air has a low temperature and high humidity in winter, etc., the plate-like fins 11f of the portion where the heat transfer tube 21a is installed and the plate-like fins of the portion where the air conditioning heat transfer tube 31a is installed A case where at least one of the 11f is frosted will be described.
When the plate-like fins 11 f of the portion where the heat transfer pipe 21 a is installed in the heat source side heat exchanger 11 frosts, the control device 60 sets the heat transfer pipe 21 a of the heat source side heat exchanger 11 to a high temperature Control is made to flow a high pressure first refrigerant. Further, the control device 60 stops the first pump 41.
Thereby, it is possible to melt the frost attached to the plate-like fins 11 f while continuing the heating operation. Incidentally, since the first pump 41 is stopped during the defrosting operation, the liquid to be heated is not cooled.
 また、熱源側熱交換器11のうち、空調用伝熱管31aが設置されている部分の板状フィン11fが着霜した場合、制御装置60は、給湯回路40の第一ポンプ41の駆動を停止させ、給湯用冷媒回路20の給湯用膨張弁23を全開にした状態で給湯用圧縮機21を起動させ、高温高圧の第一冷媒を給湯用伝熱管21aへ送る。
 前記除霜運転については、暖房運転モードにおける除霜運転と同様であるから、説明を省略する。
Further, when the plate-like fins 11 f of the portion where the heat transfer pipe 31 a for air conditioning is installed in the heat source side heat exchanger 11 frosts, the control device 60 stops the driving of the first pump 41 of the hot water supply circuit 40. With the hot water supply expansion valve 23 of the hot water supply refrigerant circuit 20 fully opened, the hot water supply compressor 21 is activated to send the high temperature and high pressure first refrigerant to the hot water supply heat transfer pipe 21a.
The defrosting operation is the same as the defrosting operation in the heating operation mode, and thus the description thereof is omitted.
 また、給湯用伝熱管21aが設置されている部分の板状フィン11fと、空調用伝熱管31aが設置されている部分の板状フィン11fの両方が着霜した場合、制御装置60は、給湯用伝熱管21aに高温高圧の第一冷媒を送ることを優先させる。これは、暖房運転を中断しないようにすることによって、被空調空間内の快適性を保つためである。
 この場合の制御装置60の処理については、暖房運転モードにおいて、熱源側熱交換器11のうち空調用伝熱管31aが設置されている部分の板状フィン11fが着霜した場合と同様であるから、説明を省略する。
When both plate-like fins 11f of the portion where heat transfer tube 21a for hot water supply is installed and plate-like fins 11f of the portion where heat transfer tube 31a for air conditioning are installed, control device 60 It is prioritized to send the high temperature and high pressure first refrigerant to the heat transfer tube 21a. This is to maintain the comfort in the conditioned space by not interrupting the heating operation.
The processing of the control device 60 in this case is the same as the case where the plate-like fins 11 f of the portion of the heat source side heat exchanger 11 where the heat transfer pipe 31 a for air conditioning is installed in the heating operation mode. , I omit the explanation.
 なお、給湯用伝熱管21aが設置されている部分の板状フィン11fと、空調用伝熱管31aが設置されている部分の板状フィン11fの両方が着霜した場合であって、給湯用伝熱管21aに高温の第一冷媒を通流させることのみでは除霜が不十分である場合、制御装置60は、給湯用伝熱管21aに高温の第一冷媒を通流させることと併せて、空調用伝熱管31aに高温の第二冷媒を通流させる。
 これによって、板状フィン11fに付着した霜を全て溶かすことができる。
In this case, both the plate-like fins 11f in the portion where the heat transfer tubes 21a are installed and the plate-like fins 11f in the portions where the heat transfer tubes 31a for air conditioning are installed are frosted. When defrosting is insufficient only by passing the high temperature first refrigerant through the heat pipe 21a, the control device 60 performs air conditioning in combination with causing the hot water heat transfer pipe 21a to flow the high temperature first refrigerant. The high temperature second refrigerant is caused to flow through the heat transfer pipe 31a.
By this, it is possible to melt all the frost adhering to the plate-like fins 11 f.
 この場合、給湯用冷媒回路20を用いた除霜運転時間と、空調用冷媒回路30を用いた除霜運転時間とを同じとする必要はない。空調冷媒回路30を用いて除霜運転を行う場合には暖房運転が停止されるため、空調冷媒回路30を用いた除霜運転時間は短いほうが好ましい。 In this case, the defrosting operation time using the hot water supply refrigerant circuit 20 and the defrosting operation time using the air conditioning refrigerant circuit 30 do not have to be the same. When the defrosting operation is performed using the air conditioning refrigerant circuit 30, the heating operation is stopped, so it is preferable that the defrosting operation time using the air conditioning refrigerant circuit 30 be shorter.
<効果1>
 本実施形態に係る給湯空調装置S1によれば、使用者の要求に応じて給湯運転、冷房運転、暖房運転、給湯冷房運転、及び給湯暖房運転を実行することができる。
 また、給湯運転を実行する際には、空調用伝熱管31aが設置された部分の板状フィン11fも室外空気との伝熱に使用することができる。つまり、室外空気と熱交換を行う際の伝熱面積を大きくすることができ、伝熱性能を向上させることができる。したがって、給湯用圧縮機21及び給湯用ファン24の回転速度を低減させることが可能となり、システム全体の効率を向上させることができる。
<Effect 1>
According to the hot water supply air-conditioning system S1 according to the present embodiment, it is possible to execute the hot water supply operation, the cooling operation, the heating operation, the hot water supply cooling operation, and the hot water supply heating operation according to the user's request.
In addition, when the hot water supply operation is performed, the plate-like fins 11f of the portion where the heat transfer pipe 31a for air conditioning is installed can also be used for heat transfer with the outdoor air. That is, the heat transfer area at the time of heat exchange with the outdoor air can be increased, and the heat transfer performance can be improved. Therefore, the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24 can be reduced, and the efficiency of the entire system can be improved.
 同様に、冷房運転又は暖房運転を実行する際には、給湯用伝熱管21aが設置された部分の板状フィン11fも室外空気との伝熱に使用することができる。したがって、室外空気と熱交換を行う際の伝熱面積を大きくすることができ、空調用圧縮機31及び空調用ファン35の回転速度を低減させることが可能となり、システム全体の効率を向上させることができる。 Similarly, when the cooling operation or the heating operation is performed, the plate-like fins 11f of the portion where the heat transfer pipe 21a is installed can also be used for heat transfer with outdoor air. Therefore, it is possible to increase the heat transfer area when exchanging heat with outdoor air, to reduce the rotational speed of the air conditioning compressor 31 and the air conditioning fan 35, and to improve the efficiency of the entire system. Can.
 また、熱源側熱交換器11は、給湯用の熱源側熱交換器と、空調用の熱源側熱交換器が一体化された構成となっている。したがって、板状フィン11fを介して給湯用冷媒回路20を循環する第一冷媒と、空調用冷媒回路30を循環する第二冷媒との熱交換を行うことができる。すなわち、熱源側熱交換器11は、第一冷媒と第二冷媒との熱交換を行う中間熱交換器としての機能も果たしている。
 したがって、熱源側熱交換器11が、給湯用の熱源側熱交換器、空調用の熱源側熱交換器、及び中間熱交換器としての機能を兼ねることになるため、給湯空調装置S1を簡単な構成とすることができ、製造コストを削減することができる。
Further, the heat source side heat exchanger 11 has a configuration in which the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning are integrated. Therefore, heat exchange can be performed between the first refrigerant circulating through the plate-like fins 11 f and the second refrigerant circulating through the air conditioning refrigerant circuit 30. That is, the heat source side heat exchanger 11 also functions as an intermediate heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant.
Therefore, since the heat source side heat exchanger 11 also functions as a heat source side heat exchanger for hot water supply, a heat source side heat exchanger for air conditioning, and an intermediate heat exchanger, the hot water supply air conditioner S1 can be simplified. The construction can be made and the manufacturing cost can be reduced.
 また、空調冷房運転を行う際には、空調用冷媒回路30を循環する第二冷媒からの排熱を、板状フィン11fを介して給湯用冷媒回路20を循環する第一冷媒に供給することができる。したがって、システム全体の効率を向上させることができる。 Further, when performing the air conditioning and cooling operation, exhaust heat from the second refrigerant circulating in the air conditioning refrigerant circuit 30 is supplied to the first refrigerant circulating in the hot water supply refrigerant circuit 20 through the plate-like fins 11 f. Can. Therefore, the efficiency of the entire system can be improved.
 また、除霜運転を行う際には、着霜していないほうの回路(給湯用冷媒回路20又は空調用冷媒回路30)を用いて高温の冷媒を送ることにより除霜することができる。したがって、例えば、暖房運転を行っている際に空調用伝熱管31aが設置されている部分の板状フィン11fが着霜したとしても、暖房運転を継続しながら除霜運転を行うことができるため、室内(被空調空間内)での快適性を向上させることができる。 Further, when performing the defrosting operation, defrosting can be performed by sending a high temperature refrigerant using the circuit (the hot water supply refrigerant circuit 20 or the air conditioning refrigerant circuit 30) that is not frosted. Therefore, for example, even when the plate-like fins 11f of the portion where the heat transfer pipe 31a for air conditioning is installed is frosted while performing the heating operation, the defrosting operation can be performed while continuing the heating operation. The comfort in the room (in the air conditioned space) can be improved.
 また、熱源側熱交換器11において、給湯用伝熱管21aは空調用伝熱管31aよりも上方に設置されている。したがって、給湯冷房運転を行っている際に、給湯用伝熱管21aが設置されている部分の板状フィン11fが結露してドレン水が生じると、当該ドレン水が重力により板状フィン11fをつたって下降する。そして、当該ドレン水は空調用伝熱管31aで蒸発するため、蒸発潜熱により空調用伝熱管31aを通流する第二冷媒から吸熱することができる。これによって、熱源側熱交換器11の第二冷媒の凝縮機能が増すため、システム全体としての効率を向上させることができる。 Further, in the heat source side heat exchanger 11, the heat transfer pipe 21a for hot water supply is installed above the heat transfer pipe 31a for air conditioning. Therefore, when the plate-like fins 11f of the portion where the heat transfer pipe 21a is installed condenses and drain water is generated while performing the hot-water supply cooling operation, the drain water causes the plate-like fins 11f by gravity. It descends. And since the said drain water is evaporated by the heat transfer pipe 31a for an air conditioning, it can absorb heat from the 2nd refrigerant | coolant which flows through the heat transfer pipe 31a for an air conditioning by latent heat of evaporation. Since the condensation function of the 2nd refrigerant of heat source side heat exchanger 11 increases by this, the efficiency as the whole system can be raised.
 すなわち、本実施形態に係る給湯空調装置S1によれば、給湯と空調の熱を互いに有効利用することができ、システム全体としての効率を向上させることができる。また、システムの構成が簡単であるため、製造コストを抑えることが可能である。 That is, according to the hot water supply air-conditioning apparatus S1 according to the present embodiment, the heat of the hot water supply and the air conditioning can be effectively used each other, and the efficiency of the entire system can be improved. In addition, since the system configuration is simple, the manufacturing cost can be reduced.
≪第2実施形態≫
 第2実施形態に係る給湯空調装置は、第1実施形態に係る給湯空調装置S1と比較して、熱源側熱交換器11Bの構成が異なる。その他の点については、第1実施形態に係る給湯空調装置S1と同様であるから説明を省略する。
 図4は、第2実施形態に係る給湯空調装置の熱源側熱交換器の概略構成図である。なお、図4において、給湯用伝熱管21aを網掛けで示した。
Second Embodiment
The hot water supply air conditioner according to the second embodiment differs from the hot water supply air conditioner S1 according to the first embodiment in the configuration of the heat source side heat exchanger 11B. About the other point, since it is the same as that of hot-water-supply air conditioner S1 which concerns on 1st Embodiment, description is abbreviate | omitted.
FIG. 4 is a schematic configuration diagram of a heat source side heat exchanger of the hot water supply air conditioner according to the second embodiment. In FIG. 4, the heat transfer pipe 21a for hot water supply is shown by hatching.
 図4に示すように、直線状第一伝熱管21s及び直線状第二伝熱管31sが、複数の板状フィン11fを、伝熱面に対して垂直に貫通している。
 そして、給湯用伝熱管21aに流入した第一冷媒が、図4の矢印で示すように分流した後、合流するように、直線状第一伝熱管21sが接続用伝熱管に接続されている。
 また、空調用伝熱管31aに流入した第二冷媒が、図4の矢印で示すように空調用伝熱管31aを通流するように、直線状第二伝熱管31sが接続用伝熱管に接続されている。
As shown in FIG. 4, the linear first heat transfer pipe 21 s and the linear second heat transfer pipe 31 s penetrate the plurality of plate-like fins 11 f perpendicularly to the heat transfer surface.
Then, the linear first heat transfer pipe 21s is connected to the heat transfer pipe for connection so that the first refrigerant flowing into the heat transfer pipe 21a for hot water supply splits as shown by the arrow in FIG. 4 and then merges.
Further, the linear second heat transfer pipe 31s is connected to the heat transfer pipe for connection so that the second refrigerant flowing into the heat transfer pipe 31a for air conditioning flows through the heat transfer pipe 31a for air conditioning as shown by the arrow in FIG. ing.
 また、図4に示すように、直線状第一伝熱管21s,21s,・・・,21sが、直線状第二伝熱管31s,31s,・・・,31sよりも上方に位置するように設置されている。また、直線状第一伝熱管21sk+1、21sk+2が、直線状第二伝熱管31s,31s,・・・,31sよりも下方に位置するように設置されている。
 さらに、直線状の給湯用伝熱管21sのうち、直線状の空調用伝熱管31sよりも上方に位置するものの本数(図4では、10本)が、直線状の空調用伝熱管よりも下方に位置するものの本数(図4では、2本)よりも多くなっている。
Further, as shown in FIG. 4, a linear first heat exchanger tube 21s 1, 21s 2, ···, 21s k is a linear second heat exchanger tube 31s 1, 31s 2, · · ·, than 31s m above It is installed to be located in Further, the linear first heat transfer tubes 21s k + 1 and 21s k + 2 are disposed below the linear second heat transfer tubes 31s 1 , 31s 2 ,..., 31s m .
Furthermore, the number (10 in FIG. 4) of straight heat transfer tubes 21s located above the straight heat transfer tubes 31s among the straight heat transfer tubes 21s is lower than the straight heat transfer tubes. This number is larger than the number of located ones (two in FIG. 4).
<効果2>
 このように、直線状第一伝熱管21sによって、直線状第二伝熱管31sを上下で挟み込む構成とすることで、給湯用伝熱管21aを通流する第一冷媒と、空調用伝熱管31aを通流する第二冷媒との伝熱がより促進される。したがって、システム全体としての効率を向上させることができる。
 また、給湯用伝熱管21aに高温の第一冷媒を通流させることによって除霜運転を行う場合には、空調伝熱管21aの上下から第一冷媒の温熱が伝わるため、平板フィン11の除霜を促進させ、除霜運転を短時間で終わらせることができる。
<Effect 2>
As described above, the linear second heat transfer pipe 31s is sandwiched between the linear first heat transfer pipe 21s at the upper and lower sides, whereby the first refrigerant flowing through the hot water supply heat transfer pipe 21a and the air conditioning heat transfer pipe 31a are Heat transfer with the flowing second refrigerant is further promoted. Therefore, the efficiency of the entire system can be improved.
Further, when performing the defrosting operation by letting the high temperature first refrigerant flow through the heat transfer pipe 21a for hot water supply, the heat of the first refrigerant is transmitted from the upper and lower sides of the air conditioning heat transfer pipe 21a. The defrosting operation can be completed in a short time.
 また、直線状の空調伝熱管31sの上部に設置される給湯用伝熱管21sが、下部に設置される給湯用伝熱管21sよりも多いことにより、給湯冷房運転モードにおいて、給湯用伝熱管21aで生じたドレン水の蒸発潜熱を利用した第二冷媒の冷却を促進することができる。 Further, since the heat transfer pipe 21s for hot water supply installed above the linear air conditioning heat transfer pipe 31s is larger than the heat transfer pipe 21s for hot water supply installed at the lower part, in the hot water supply cooling operation mode, the heat transfer pipe 21a for hot water supply Cooling of the second refrigerant using the latent heat of vaporization of the generated drain water can be promoted.
≪第3実施形態≫
 図5は、第3実施形態に係る給湯空調装置の熱源側熱交換器の概略構成図である。なお、図5において、給湯用伝熱管21aを網掛けで示した。
 第3実施形態に係る給湯空調装置は、第1実施形態に係る給湯空調装置S1と比較して、熱源側熱交換器11の構成が異なる。その他の点については、第1実施形態に係る給湯空調装置S1と同様であるから、説明を省略する。
Third Embodiment
FIG. 5: is a schematic block diagram of the heat-source side heat exchanger of the hot-water supply air conditioning apparatus which concerns on 3rd Embodiment. In FIG. 5, the heat transfer pipe 21a for hot water supply is shown by hatching.
The hot water supply air conditioner according to the third embodiment differs from the hot water supply air conditioner S1 according to the first embodiment in the configuration of the heat source side heat exchanger 11. The other points are the same as those of the hot water supply air-conditioning system S1 according to the first embodiment, so the description will be omitted.
 図5に示すように、直線状第一伝熱管21s及び直線状第二伝熱管31sが、複数の板状フィン11fを伝熱面に対して垂直に貫通している。
 そして、給湯用伝熱管21aに流入した第一冷媒が、図5に示すように分流した後、合流するように、直線状第一伝熱管21sが接続用伝熱管21cに接続されている。また、空調用伝熱管31aに流入した第二冷媒が、図5に示すように分流した後、合流するように、直線状第二伝熱管31sが接続用伝熱管31cに接続されている。
As shown in FIG. 5, the linear first heat transfer pipe 21s and the linear second heat transfer pipe 31s penetrate the plurality of plate-like fins 11f perpendicularly to the heat transfer surface.
Then, the linear first heat transfer pipe 21s is connected to the heat transfer pipe 21c for connection so that the first refrigerant flowing into the heat transfer pipe 21a for hot water supply splits as shown in FIG. 5 and then merges. Further, as the second refrigerant flowing into the air conditioning heat transfer pipe 31a is branched as shown in FIG. 5, the straight second heat transfer pipe 31s is connected to the connection heat transfer pipe 31c so as to merge.
 また、直線状第一伝熱管21s,21s,・・・,21sが、直線状第二伝熱管31s,31s,・・・,31sと上下交互に設置されている。なお、ここで「上下交互に設置」とは、一本ずつ上下交互に設置する場合の他、上下に連続する2本以上の直線状第一伝熱管21sと、上下に連続する2本以上の直線状第二伝熱管31sとが交互に設置されている場合も含むものとする。また、「上下交互に設置」とは、連続する直線状第一伝熱管21sの本数と、連続する直線状第二伝熱管31sの本数とが等しい場合に限定されない。 Also, the linear first heat exchanger tube 21s 1, 21s 2, ···, 21s k is a linear second heat exchanger tube 31s 1, 31s 2, · · ·, are installed vertically alternately 31s m. In addition, in this case, “installed alternately in the upper and lower directions” means two or more linear first heat transfer tubes 21s continuous in the upper and lower direction and two or more continuous in the upper and lower directions, in addition to the case of installing the upper and lower sides alternately one by one. It also includes the case where the linear second heat transfer pipes 31s are alternately installed. Further, “installed alternately in the vertical direction” is not limited to the case where the number of continuous linear first heat transfer tubes 21s is equal to the number of continuous linear second heat transfer tubes 31s.
 ちなみに、図5では、上下に連続する2本の直線状第一伝熱管21sと、上下に連続する2本の直線状第二伝熱管31sとが交互に設置されている場合を示している。
 また、熱源側熱交換器11に設置された伝熱管のうち最上端のものは、直線状第一伝熱管21sであることが好ましい。これは、給湯冷房運転モードにおいて、板状フィン11fをつたって重力により下降するドレン水によって、空調用伝熱管31aを通流する第二冷媒の冷却を促進させるためである。
Incidentally, FIG. 5 shows a case where two straight first heat transfer tubes 21s continuous in the upper and lower direction and two straight second heat transfer tubes continuous in the upper and lower direction are alternately installed.
Moreover, it is preferable that the thing of the uppermost end among the heat transfer tubes installed in the heat source side heat exchanger 11 is the linear 1st heat transfer tube 21s. This is to promote the cooling of the second refrigerant flowing through the heat transfer pipe 31a for air conditioning by the drain water falling down by gravity through the plate-like fins 11f in the hot water supply and cooling operation mode.
<効果3>
 本実施形態に係る給湯空調装置によれば、給湯用伝熱管21aと空調用伝熱管31aとが、板状フィン11fにそれぞれ分散して設置されている。したがって、板状フィン11f全体を熱交換の際の伝熱面積とすることができ、伝熱性能を向上させることができる。
 また、給湯運転、冷房運転、暖房運転では、前記のように伝熱性能が向上することで、圧縮機やファンの回転数を低減させることが可能となり、システム全体としての効率を向上させることができる。また、伝熱性能の向上により、着霜を抑制する効果も高まり、快適性と省エネ性を向上させることができる。
<Effect 3>
According to the hot water supply air conditioner according to the present embodiment, the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning are respectively dispersed and installed in the plate-like fins 11f. Therefore, the whole plate-like fin 11f can be made into the heat transfer area in the case of heat exchange, and heat transfer performance can be improved.
In addition, in the hot water supply operation, the cooling operation, and the heating operation, by improving the heat transfer performance as described above, it is possible to reduce the number of rotations of the compressor and the fan, and to improve the efficiency of the entire system. it can. Moreover, the effect of suppressing frost formation is also enhanced by the improvement of the heat transfer performance, and the comfort and the energy saving performance can be improved.
 また、直線状第一伝熱管21sと直線状第二伝熱管31sとの距離が近く、上下交互に配置されているために、各伝熱管が一か所にまとまって配置される場合と比較して、板状フィン11f介した熱交換の効率が上がる。そのため、給湯冷房運転を行う場合に、排熱回収のための機器を新たに設けなくても、互いの冷媒回路の熱を有効に利用することが可能となり、システム全体の効率をより向上させることができる。 Moreover, since the distance between the linear first heat transfer pipe 21s and the linear second heat transfer pipe 31s is short and alternately arranged up and down, compared to the case where the respective heat transfer pipes are arranged in one place. Thus, the efficiency of heat exchange via the plate-like fins 11f is increased. Therefore, when performing the hot water supply and cooling operation, it is possible to effectively use the heat of the refrigerant circuits of each other without newly providing equipment for exhaust heat recovery, and the efficiency of the entire system is further improved. Can.
≪第4実施形態≫
<空調給湯装置の構成>
 図6は、第4実施形態に係る給湯空調装置の構成図である。第4実施形態に係る給湯空調装置S2は、第1実施形態に係る給湯空調装置S1と比較して、給湯熱源側熱交換器(熱源側熱交換器11のうち、給湯用伝熱管21aが設置されている部分)及び空調熱源側熱交換器(熱源側熱交換器11のうち、空調用伝熱管31aが設置されている部分)と並列に接続され、第二冷媒からの排熱を第一冷媒に回収させるための排熱回収用熱交換器70を備える点が異なる。その他の点については、第1実施形態に係る給湯空調装置S1と同様であるから、説明を省略する。
Fourth Embodiment
<Configuration of air conditioning and hot water supply device>
FIG. 6 is a block diagram of the hot water supply air conditioner according to the fourth embodiment. The hot water supply air-conditioning system S2 according to the fourth embodiment has a hot water supply heat source side heat exchanger (in the heat source side heat exchanger 11, the heat transfer pipe 21a for hot water supply is installed, compared to the hot water supply air conditioner S1 according to the first embodiment. Connected in parallel with the air conditioning heat source side heat exchanger (the part of the heat source side heat exchanger 11 where the air conditioning heat transfer pipe 31a is installed), and the exhaust heat from the second refrigerant is The difference is that the exhaust heat recovery heat exchanger 70 for recovering the refrigerant is provided. The other points are the same as those of the hot water supply air-conditioning system S1 according to the first embodiment, so the description will be omitted.
 図6に示すように、給湯用冷媒回路20には、第一冷媒と第二冷媒との熱交換を行う排熱回収用熱交換器70と、開閉により第一冷媒を通流又は遮断する二方弁25,26,27,28とが設置されている。
 排熱回収用熱交換器70の一次側伝熱管70aの一端は、二方弁25を介して配管23aに接続され、他端は二方弁26を介して配管28aに接続されている。
 また、二方弁27の一端は配管23aを介して給湯用膨張弁23に接続され、他端は熱源側熱交換器11の給湯用伝熱管21aに接続されている。また、二方弁28の一端は配管28aを介して給湯用圧縮機21に接続され、他端は熱源側熱交換器11の給湯用伝熱管21aに接続されている。
As shown in FIG. 6, in the hot water supply refrigerant circuit 20, an exhaust heat recovery heat exchanger 70 that exchanges heat between the first refrigerant and the second refrigerant, and two that flow or block the first refrigerant by opening and closing. The directional valves 25, 26, 27, 28 are installed.
One end of the primary side heat transfer pipe 70 a of the exhaust heat recovery heat exchanger 70 is connected to the pipe 23 a via the two-way valve 25, and the other end is connected to the pipe 28 a via the two-way valve 26.
Further, one end of the two-way valve 27 is connected to the hot water supply expansion valve 23 through a pipe 23 a, and the other end is connected to the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11. Further, one end of the two-way valve 28 is connected to the hot water supply compressor 21 through a pipe 28 a, and the other end is connected to the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11.
 また、図6に示すように、空調用冷媒回路30には、開閉により第二冷媒を通流又は遮断する二方弁36,37,38,39が設置されている。
 排熱回収用熱交換器70の二次側伝熱管70bの一端は、二方弁36を介して配管32aに接続され、他端は二方弁37を介して配管34aに接続されている。
 また、二方弁38の一端は配管32aを介して四方弁32に接続され、他端は熱源側熱交換器11の空調用伝熱管31aに接続されている。また、二方弁39の一端は配管34aを介して空調用膨張弁34に接続され、他端は熱源側熱交換器11の空調用伝熱管31aに接続されている。
Further, as shown in FIG. 6, in the air conditioning refrigerant circuit 30, two- way valves 36, 37, 38, 39 are provided which flow or shut off the second refrigerant by opening and closing.
One end of the secondary side heat transfer pipe 70 b of the exhaust heat recovery heat exchanger 70 is connected to the pipe 32 a via the two-way valve 36, and the other end is connected to the pipe 34 a via the two-way valve 37.
Further, one end of the two-way valve 38 is connected to the four-way valve 32 via the pipe 32 a, and the other end is connected to the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11. Further, one end of the two-way valve 39 is connected to the air conditioning expansion valve 34 via the pipe 34 a, and the other end is connected to the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11.
 本実施形態に係る給湯空調装置S2は、第1実施形態に係る給湯空調装置S1と同様に、各種運転モードに対応した運転を行う。
 なお、排熱回収用熱交換器70は給湯冷房運転を行う際に使用し、その他の場合には使用しない。つまり、給湯運転、冷房運転、暖房運転、又は暖房給湯運転を行う場合、制御装置60は、二方弁25,26,36,37を閉止させ、二方弁27,28,38,39を開放する。
 排熱回収用熱交換器70を使用しない場合の給湯用冷媒回路20、空調用冷媒回路30、給湯回路40、空調用熱搬送媒体循環回路50での動作はそれぞれ、第1実施形態の場合と同様であるから説明を省略する。
The hot water supply air-conditioning system S2 according to the present embodiment performs operations corresponding to various operation modes, similarly to the hot water supply air-conditioning apparatus S1 according to the first embodiment.
The exhaust heat recovery heat exchanger 70 is used when performing the hot-water supply cooling operation, and is not used otherwise. That is, when performing the hot water supply operation, the cooling operation, the heating operation, or the heating hot water supply operation, the control device 60 closes the two- way valves 25, 26, 36, 37 and opens the two- way valves 27, 28, 38, 39 Do.
The operations in the hot water supply refrigerant circuit 20, the air conditioning refrigerant circuit 30, the hot water supply circuit 40, and the air conditioning heat transfer medium circulation circuit 50 when the exhaust heat recovery heat exchanger 70 is not used are the same as in the first embodiment. The description is omitted because it is similar.
<給湯冷房運転におけるモード判定処理>
 次に、給湯冷房運転を行う際の制御装置60の処理について説明する。図7は、給湯冷房運転におけるモード判定処理の流れを示すフローチャートである。
 ステップS101において、制御装置60は、給湯吸熱量Qec_ex及び空調排熱量Qac_exを推定する。ここで、給湯吸熱量Qec_exとは、給湯用冷媒回路20及び空調用冷媒回路30を独立して運転した際の、給湯運転に要する熱源からの吸熱量である。また、空調排熱量Qac_exとは、給湯用冷媒回路20及び空調用冷媒回路30を独立して運転した際の冷房運転に要する熱源への排熱量である。
<Mode determination processing in hot water supply and cooling operation>
Next, the processing of the control device 60 when performing the hot water supply and cooling operation will be described. FIG. 7 is a flowchart showing the flow of the mode determination process in the hot water supply and cooling operation.
In step S101, the control device 60 estimates the hot-water heat absorption amount Qec_ex and the air-conditioning exhaust heat amount Qac_ex. Here, the hot water supply heat absorption amount Qec_ex is the heat absorption amount from the heat source required for the hot water supply operation when the hot water supply refrigerant circuit 20 and the air conditioning refrigerant circuit 30 are operated independently. Further, the air conditioning exhaust heat quantity Qac_ex is an exhaust heat quantity to the heat source required for the cooling operation when the hot water supply refrigerant circuit 20 and the air conditioning refrigerant circuit 30 are operated independently.
 ステップS102において、制御装置60は、給湯吸熱量Qec_exが空調排熱量Qac_exより大きいか否かを判定する。
 給湯吸熱量Qec_exが空調排熱量Qac_exより大きい場合(S102→Yes)、制御装置60の処理はステップS103に進む。給湯吸熱量Qec_exが空調排熱量Qac_ex以下である場合(S102→No)、制御装置60の処理はステップS104に進む。
In step S102, the control device 60 determines whether the hot water supply endothermic heat amount Qec_ex is larger than the air conditioning exhaust heat amount Qac_ex.
When the hot water supply endothermic heat amount Qec_ex is larger than the air conditioning exhaust heat amount Qac_ex (S102 → Yes), the process of the control device 60 proceeds to step S103. When the hot water supply heat absorption amount Qec_ex is equal to or less than the air conditioning exhaust heat amount Qac_ex (S102 → No), the process of the control device 60 proceeds to step S104.
 ステップS103において、制御装置60は、給湯空調装置S2の運転モードを「冷房給湯運転(排熱回収A)モード」に決定する。当該運転モードにおける給湯空調装置S2の動作については、図8を用いて後記する。
 ステップS104において、制御装置60は、給湯吸熱量Qec_exが空調排熱量Qac_exと等しいか否かを判定する。
 給湯吸熱量Qec_exが空調排熱量Qac_exと等しい場合(S104→Yes)、制御装置60の処理はステップS105に進む。給湯吸熱量Qec_exが空調排熱量Qac_exと等しくない場合(S104→No)、制御装置60の処理はステップS106に進む。
In step S103, the control device 60 determines the operation mode of the hot water supply air conditioning device S2 as the "cooling and hot water supply operation (exhaust heat recovery A) mode". The operation of the hot water supply air conditioning system S2 in the operation mode will be described later with reference to FIG.
In step S104, the control device 60 determines whether the hot water supply heat absorption amount Qec_ex is equal to the air conditioning exhaust heat amount Qac_ex.
When the hot water supply heat absorption amount Qec_ex is equal to the air conditioning exhaust heat amount Qac_ex (S104 → Yes), the process of the control device 60 proceeds to step S105. When the hot water supply endothermic heat amount Qec_ex is not equal to the air conditioning waste heat amount Qac_ex (S104 → No), the process of the control device 60 proceeds to step S106.
 ステップS105において、制御装置60は、給湯空調装置S2の運転モードを「冷房給湯運転(排熱回収B)モード」に決定する。当該運転モードにおける給湯空調装置S2の動作については、図9を用いて後記する。
 ステップS106において、制御装置60は、給湯空調装置S2の運転モードを「冷房給湯運転(排熱回収C)モード」に決定する。当該運転モードにおける給湯空調装置S2の動作については、図10を用いて後記する。
In step S105, the control device 60 determines the operation mode of the hot water supply air conditioning device S2 as the "cooling and hot water supply operation (exhaust heat recovery B) mode". The operation of the hot water supply air conditioning system S2 in the operation mode will be described later with reference to FIG.
In step S106, the control device 60 determines the operation mode of the hot water supply air conditioning device S2 as the "cooling and hot water supply operation (exhaust heat recovery C) mode". The operation of the hot water supply air conditioner S2 in the operation mode will be described later with reference to FIG.
<給湯冷房運転における制御>
(給湯冷房運転(排熱回収A)モード)
 図8は、給湯冷房運転(排熱回収A)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。
 ここで、排熱回収Aは「給湯吸熱>空調排熱」の場合であり、排熱回収用熱交換器70を介して空調用冷媒回路30の排熱を給湯用冷媒回路20で回収し、給湯に必要な熱の不足分を室外空気から吸熱している。
 当該運転モードにおける給湯回路40の動作は、第1実施形態の給湯運転モードの場合と同様であり、空調用熱搬送媒体循環回路50の動作は、第1実施形態の冷房運転モードにおける動作と同様であるため、説明を省略する。
<Control in hot water supply and cooling operation>
(Hot water supply cooling operation (exhaust heat recovery A) mode)
FIG. 8 is a configuration diagram showing the flows of the refrigerant, the heat transfer medium, and the liquid to be heated of the hot water supply air conditioning system in the hot water supply cooling operation (exhaust heat recovery A) mode.
Here, exhaust heat recovery A is in the case of “hot water supply heat absorption> air conditioning exhaust heat”, and the exhaust heat of the air conditioning refrigerant circuit 30 is recovered by the hot water supply refrigerant circuit 20 through the exhaust heat recovery heat exchanger 70, The heat deficiency necessary for hot water supply is absorbed from the outdoor air.
The operation of the hot water supply circuit 40 in the operation mode is the same as that of the hot water supply operation mode of the first embodiment, and the operation of the heat transfer medium circulation circuit 50 for air conditioning is the same as the operation in the cooling operation mode of the first embodiment. Therefore, the description is omitted.
 給湯用冷媒回路20について説明する。制御装置60は、熱源側熱交換器11及び排熱回収用熱交換器70に第一冷媒が通流するように二方弁25,26,27,28を開放する。また、制御装置60は、給湯用膨張弁23の開度(絞り)を制御し、給湯用圧縮機21及び給湯用ファン24の回転速度を制御する。 The hot water supply refrigerant circuit 20 will be described. The controller 60 opens the two- way valves 25, 26, 27, 28 so that the first refrigerant flows through the heat source side heat exchanger 11 and the exhaust heat recovery heat exchanger 70. Further, the control device 60 controls the opening degree (throttle) of the hot water supply expansion valve 23 and controls the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24.
 給湯用圧縮機21から吐出された高温高圧の第一冷媒は、凝縮器として機能する給湯利用側熱交換器22の一次側伝熱管22aに流入する。給湯利用側熱交換器22の一次側伝熱管22aを通流する第一冷媒は、給湯利用側熱交換器22の二次側伝熱管22bを通流する被加熱液体と熱交換することにより放熱(排熱)して、中温高圧の第一冷媒となる。給湯利用側熱交換器22の一次側伝熱管22aから流出した中温高圧の第一冷媒は、給湯用膨張弁23で減圧され、低温低圧の第一冷媒となる。 The high-temperature and high-pressure first refrigerant discharged from the hot water supply compressor 21 flows into the primary-side heat transfer pipe 22 a of the hot water use side heat exchanger 22 functioning as a condenser. The first refrigerant flowing through the primary side heat transfer pipe 22a of the hot water use side heat exchanger 22 dissipates heat by heat exchange with the liquid to be heated flowing through the secondary side heat transfer pipe 22b of the hot water use side heat exchanger 22. (Exhaust heat) to become a medium temperature high pressure first refrigerant. The medium-temperature and high-pressure first refrigerant flowing out of the primary-side heat transfer pipe 22a of the hot-water supply utilization side heat exchanger 22 is decompressed by the hot-water supply expansion valve 23, and becomes a low-temperature and low-pressure first refrigerant.
 そして、低温低圧の第一冷媒は、二方弁27を介して熱源側熱交換器11の給湯用伝熱管21aに流入する流れと、二方弁25を介して排熱回収用熱交換器70の一次側電熱管に流入する流れと、に分流する。
 熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒は、給湯用ファン24により送られてくる空気(室外空気)と熱交換することにより、前記空気から熱を汲み上げる(吸熱する)。そして、給湯用伝熱管21aから流出した第一冷媒は、二方弁28を介して給湯用圧縮機21に流入する。
Then, the low temperature and low pressure first refrigerant flows into the hot water heat transfer pipe 21 a of the heat source side heat exchanger 11 via the two-way valve 27, and the exhaust heat recovery heat exchanger 70 via the two-way valve 25. It divides into the flow which flows in into the primary side electric heat pipe.
The first refrigerant flowing through the heat transfer pipe 21a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the hot water supply fan 24, thereby drawing heat from the air (heat absorption (heat absorption) To do). Then, the first refrigerant flowing out of the heat transfer pipe 21 a flows into the hot water supply compressor 21 through the two-way valve 28.
 一方、排熱回収用熱交換器70の一次側伝熱管70aを通流する第一冷媒は、二次側伝熱管70bを通流する高温の第二冷媒と熱交換することにより、第二冷媒から熱を汲み上げる(吸熱する)。そして、排熱回収用熱交換器70の一次側伝熱管70aから流出した第一冷媒は、二方弁26を介して給湯用圧縮機21に流入する。
 このようにして、第一冷媒は給湯用冷媒回路20を循環する。
On the other hand, the first refrigerant flowing through the primary heat transfer pipe 70a of the exhaust heat recovery heat exchanger 70 exchanges heat with the high temperature second refrigerant flowing through the secondary heat transfer pipe 70b, thereby generating a second refrigerant. Pump up heat from (endothermic). Then, the first refrigerant flowing out from the primary heat transfer pipe 70 a of the exhaust heat recovery heat exchanger 70 flows into the hot water supply compressor 21 through the two-way valve 26.
Thus, the first refrigerant circulates through the hot water supply refrigerant circuit 20.
 空調用冷媒回路30について説明する。制御装置60は、第一冷媒が排熱回収用熱交換器70を通流し、かつ、熱源側熱交換器11を通流しないようにするため、二方弁36,37を開放し、二方弁38,39を閉止する。また、制御装置60は、空調用膨張弁34の開度(絞り)を制御し、空調用ファン35を停止させ、空調用圧縮機31の回転速度を制御する。 The air conditioning refrigerant circuit 30 will be described. The control device 60 opens the two- way valves 36 and 37 so that the first refrigerant does not flow through the heat exchanger 70 for exhaust heat recovery and the heat source side heat exchanger 11, The valves 38, 39 are closed. Further, the control device 60 controls the opening degree (throttle) of the air conditioning expansion valve 34, stops the air conditioning fan 35, and controls the rotational speed of the air conditioning compressor 31.
 空調用圧縮機31から吐出された高温高圧の第二冷媒は、四方弁32及び二方弁36を介して排熱回収用熱交換器70の二次側伝熱管70bに流入する。排熱回収用熱交換器70の二次側伝熱管70bを通流する第二冷媒は、一次側伝熱管70aを通流する低温の第一冷媒と熱交換することによって放熱(排熱)し、中温高圧の第二冷媒となる。 The high-temperature and high-pressure second refrigerant discharged from the air conditioning compressor 31 flows into the secondary heat transfer pipe 70b of the exhaust heat recovery heat exchanger 70 via the four-way valve 32 and the two-way valve 36. The second refrigerant flowing through the secondary side heat transfer pipe 70b of the exhaust heat recovery heat exchanger 70 dissipates heat (exhaust heat) by heat exchange with the low temperature first refrigerant flowing through the primary side heat transfer pipe 70a. It becomes a medium temperature high pressure second refrigerant.
 排熱回収用熱交換器70の二次側伝熱管70bから流出した中温高圧の第二冷媒は、二方弁37を介して空調用膨張弁34に流入する。そして、中温高圧の第二冷媒は空調用膨張弁34で減圧され、低温低圧の第一冷媒となり、空調利用側熱交換器33の一次側伝熱管33aに流入する。
 空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒は、二次側伝熱管33bを通流する熱搬送媒体と熱交換することにより吸熱し、四方弁32を介して空調用圧縮機31に流入する。
 このようにして、第二冷媒は空調用冷媒回路30を循環する。
The medium-temperature high-pressure second refrigerant flowing out of the secondary heat transfer pipe 70 b of the exhaust heat recovery heat exchanger 70 flows into the air conditioning expansion valve 34 via the two-way valve 37. Then, the medium-temperature high-pressure second refrigerant is decompressed by the air conditioning expansion valve 34, becomes a low-temperature low-pressure first refrigerant, and flows into the primary heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33.
The second refrigerant flowing through the primary side heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33 absorbs heat by exchanging heat with the heat transfer medium flowing through the secondary side heat transfer pipe 33 b, and via the four-way valve 32 It flows into the air conditioning compressor 31.
Thus, the second refrigerant circulates through the air conditioning refrigerant circuit 30.
(給湯冷房運転(排熱回収B)モード)
 図9は、給湯冷房運転(排熱回収B)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。
 ここで、排熱回収Bは、「給湯吸熱=空調排熱」の場合であり、排熱回収用熱交換器70を介して空調用冷媒回路30の排熱を給湯用冷媒回路20で回収している。
 当該運転モードにおける給湯回路40の動作は、第1実施形態の給湯運転モードの場合と同様であり、空調用熱搬送媒体循環回路50の動作は第1実施形態の冷房運転モードにおける動作と同様であるため、説明を省略する。
 また、当該運転モードにおける空調用冷媒回路40の動作は、冷房給湯運転(排熱回収A)モード(図8参照)の動作と同様であるため、説明を省略する。
(Hot-water supply and cooling operation (exhaust heat recovery B) mode)
FIG. 9 is a configuration diagram showing the flows of the refrigerant, the heat transfer medium, and the liquid to be heated of the hot water supply air conditioning system in the hot water supply cooling operation (exhaust heat recovery B) mode.
Here, the exhaust heat recovery B is the case of “hot water supply heat absorption = air conditioning exhaust heat”, and the exhaust heat of the air conditioning refrigerant circuit 30 is recovered by the hot water supply refrigerant circuit 20 via the exhaust heat recovery heat exchanger 70. ing.
The operation of the hot water supply circuit 40 in the operation mode is the same as that of the hot water supply operation mode of the first embodiment, and the operation of the heat transfer medium circulation circuit 50 for air conditioning is the same as the operation in the cooling operation mode of the first embodiment. Description is omitted because there is.
Moreover, since the operation of the air conditioning refrigerant circuit 40 in the operation mode is the same as the operation of the cooling and hot water supply operation (exhaust heat recovery A) mode (see FIG. 8), the description will be omitted.
 給湯用冷媒回路20について説明する。冷房給湯運転(排熱回収A)モード(図8参照)における給湯用冷媒回路20と、冷房給湯運転(排熱回収B)モード(図9参照)における給湯用冷媒回路20との差異点は、冷房給湯運転(排熱回収A)モードでは制御装置60が二方弁27,28を開放するのに対し、冷房給湯運転(排熱回収B)モードでは二方弁27,28を閉止する点である。
 その他の制御については、冷房給湯運転(排熱回収A)モードにおける給湯用冷媒回路20と同様であるから説明を省略する。
The hot water supply refrigerant circuit 20 will be described. The difference between the hot water supply refrigerant circuit 20 in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 8) and the hot water supply refrigerant circuit 20 in the cooling hot water supply operation (exhaust heat recovery B) mode (see FIG. 9) While the control device 60 opens the two- way valves 27 and 28 in the cooling and hot-water supply operation (exhaust heat recovery A) mode, the two- way valves 27 and 28 are closed in the cooling and hot-water supply operation (exhaust heat recovery B) mode. is there.
The other control is the same as the hot water supply refrigerant circuit 20 in the cooling and hot water supply operation (exhaust heat recovery A) mode, and therefore the description thereof is omitted.
 給湯用圧縮機21から吐出された高温高圧の第一冷媒は、凝縮器として機能する給湯利用側熱交換器22の一次側伝熱管22aに流入する。給湯利用側熱交換器22の一次側伝熱管22aを通流する第一冷媒は、給湯利用側熱交換器22の二次側伝熱管22bを通流する被加熱液体と熱交換することにより放熱(排熱)して、中温高圧の第一冷媒となる。給湯利用側熱交換器22の一次側伝熱管22aから流出した中温高圧の第一冷媒は、給湯用膨張弁23で減圧され、低温低圧の第一冷媒となる。 The high-temperature and high-pressure first refrigerant discharged from the hot water supply compressor 21 flows into the primary-side heat transfer pipe 22 a of the hot water use side heat exchanger 22 functioning as a condenser. The first refrigerant flowing through the primary side heat transfer pipe 22a of the hot water use side heat exchanger 22 dissipates heat by heat exchange with the liquid to be heated flowing through the secondary side heat transfer pipe 22b of the hot water use side heat exchanger 22. (Exhaust heat) to become a medium temperature high pressure first refrigerant. The medium-temperature and high-pressure first refrigerant flowing out of the primary-side heat transfer pipe 22a of the hot-water supply utilization side heat exchanger 22 is decompressed by the hot-water supply expansion valve 23, and becomes a low-temperature and low-pressure first refrigerant.
 そして、低温低圧の第一冷媒は、二方弁25を介して排熱回収用熱交換器70の一次側伝熱管70aに流入する。排熱回収用熱交換器70の一次側伝熱管70aを通流する第一冷媒は、二次側伝熱管70bを通流する高温の第二冷媒と熱交換することによって、第二冷媒から熱を汲み上げる(吸熱する)。排熱回収用熱交換器70の一次側伝熱管70aから流出した第一冷媒は、二方弁26を介して給湯用圧縮機21に流入する。
 このようにして、第一冷媒は給湯用冷媒回路20を循環する。
Then, the low temperature and low pressure first refrigerant flows into the primary heat transfer pipe 70 a of the exhaust heat recovery heat exchanger 70 via the two-way valve 25. The first refrigerant flowing through the primary heat transfer tube 70a of the exhaust heat recovery heat exchanger 70 exchanges heat with the high temperature second refrigerant flowing through the secondary heat transfer tube 70b, thereby generating heat from the second refrigerant Pump up (heat absorption). The first refrigerant flowing out of the primary heat transfer tube 70 a of the exhaust heat recovery heat exchanger 70 flows into the hot water supply compressor 21 through the two-way valve 26.
Thus, the first refrigerant circulates through the hot water supply refrigerant circuit 20.
 (給湯冷房運転(排熱回収C)モード)
 図10は、給湯冷房運転(排熱回収C)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。
 ここで、排熱回収Cは「給湯吸熱<空調排熱」の場合であり、排熱回収用熱交換器70を介して空調用冷媒回路10の排熱を給湯用冷媒回路30で回収し、余分な空調排熱を室外空気に排熱している。
 当該運転モードにおける給湯回路40の動作は、第1実施形態の給湯運転モードの場合と同様であり、空調用熱搬送媒体循環回路50の動作は第1実施形態の冷房運転モードにおける動作と同様であるため、説明を省略する。
 また、当該運転モードにおける給湯用冷媒回路20の動作は、冷房給湯運転(排熱回収B)モード(図10参照)の動作と同様であるため、説明を省略する。
(Hot water supply and cooling operation (exhaust heat recovery C) mode)
FIG. 10 is a configuration diagram showing the flows of the refrigerant, the heat transfer medium, and the liquid to be heated of the hot water supply air conditioning system in the hot water supply cooling operation (exhaust heat recovery C) mode.
Here, the exhaust heat recovery C is in the case of "hot water supply heat absorption <air conditioning exhaust heat", and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30 via the exhaust heat recovery heat exchanger 70, Excess air conditioning exhaust heat is exhausted to outdoor air.
The operation of the hot water supply circuit 40 in the operation mode is the same as that of the hot water supply operation mode of the first embodiment, and the operation of the heat transfer medium circulation circuit 50 for air conditioning is the same as the operation in the cooling operation mode of the first embodiment. Description is omitted because there is.
Moreover, since the operation of the hot water supply refrigerant circuit 20 in the operation mode is the same as the operation of the cooling / hot water supply operation (exhaust heat recovery B) mode (see FIG. 10), the description will be omitted.
 空調用冷媒回路30について説明する。冷房給湯運転(排熱回収A)モード(図8参照)における空調用冷媒回路30と、冷房給湯運転(排熱回収C)モード(図10参照)における空調用冷媒回路30との差異点は、冷房給湯運転(排熱回収A)モードでは制御装置60が二方弁38,39を閉止するのに対し、冷房給湯運転(排熱回収C)モードでは二方弁38,39を開放する点である。
 その他の制御については、冷房給湯運転(排熱回収A)モードにおける空調用冷媒回路30と同様であるから説明を省略する。
The air conditioning refrigerant circuit 30 will be described. The difference between the air conditioning refrigerant circuit 30 in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 8) and the air conditioning refrigerant circuit 30 in the cooling hot water supply operation (exhaust heat recovery C) mode (see FIG. 10) While the controller 60 closes the two- way valves 38 and 39 in the cooling / hot-water supply operation (exhaust heat recovery A) mode, the two- way valves 38 and 39 are opened in the cooling / hot-water supply operation (exhaust heat recovery C) mode. is there.
The other control is the same as that of the air conditioning refrigerant circuit 30 in the cooling / hot water supply operation (exhaust heat recovery A) mode, and therefore the description thereof is omitted.
 空調用圧縮機31から吐出された高温高圧の第二冷媒は、二方弁38を介して熱源側熱交換器11の空調用伝熱管31aに流入する流れと、二方弁36を介して排熱回収用熱交換器70の二次側伝熱管70bに流入する流れと、に分流する。
 熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒は、空調用ファン35により送られてくる空気(室外空気)と熱交換することにより、前記空気に放熱(排熱)して、中温高圧の第二冷媒となる。そして、熱源側熱交換器11の空調用伝熱管31aから流出した第二冷媒は、二方弁39を介して空調用膨張弁34に流入する。
The high temperature and high pressure second refrigerant discharged from the air conditioning compressor 31 flows into the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11 through the two-way valve 38, and is discharged through the two-way valve 36. It divides into the flow which flows in into the secondary side heat exchanger tube 70b of the heat exchanger 70 for heat recovery.
The second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the air conditioning fan 35 to release heat (exhaust heat) to the air. It becomes a medium temperature high pressure second refrigerant. Then, the second refrigerant flowing out of the heat transfer pipe 31 a for air conditioning of the heat source side heat exchanger 11 flows into the expansion valve 34 for air conditioning via the two-way valve 39.
 一方、排熱回収用熱交換器70の二次側伝熱管70bを通流する第二冷媒は、一次側伝熱管70aを通流する低温の第一冷媒と熱交換することにより、第一冷媒に放熱(排熱)する。そして、排熱回収用熱交換器70の二次側伝熱管70bから流出した第二冷媒は、二方弁37を介して空調用膨張弁34に流入する。
 さらに、第二冷媒は空調用膨張弁34で減圧され、低温低圧の第二冷媒となって空調利用側熱交換器33の一次側伝熱管33aに流入する。
On the other hand, the second refrigerant flowing through the secondary side heat transfer pipe 70b of the exhaust heat recovery heat exchanger 70 exchanges heat with the low temperature first refrigerant flowing through the primary side heat transfer pipe 70a. Heat dissipation (exhaust heat). Then, the second refrigerant that has flowed out from the secondary side heat transfer pipe 70 b of the exhaust heat recovery heat exchanger 70 flows into the air conditioning expansion valve 34 via the two-way valve 37.
Further, the second refrigerant is decompressed by the air conditioning expansion valve 34, and becomes a low temperature and low pressure second refrigerant, and flows into the primary heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33.
 空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒は、二次側伝熱管33bを通流する空調用熱搬送媒体と熱交換することにより吸熱し、四方弁32を介して空調用圧縮機31に流入する。
 このようにして、第二冷媒は空調用冷媒回路30を循環する。
The second refrigerant flowing through the primary side heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33 absorbs heat by exchanging heat with the air conditioning heat transfer medium flowing through the secondary side heat transfer pipe 33b, and the four-way valve 32 The air flows into the air conditioning compressor 31 via the air conditioner.
Thus, the second refrigerant circulates through the air conditioning refrigerant circuit 30.
<効果4>
 本実施形態に係る給湯空調装置S2は、給湯冷房運転時に排熱回収用熱交換器70において空調用冷媒回路30を循環する第二冷媒の温排熱を、給湯用冷媒回路20を循環する第一冷媒に供給することで、これまで外気に放出していた排熱を有効利用することが可能となり、システム全体の効率を向上させることができる。
 また、給湯冷媒回路20における第一冷媒の吸熱量と、空調冷媒回路30における第二冷媒の排熱量とが一致しない場合であっても、各二方弁を適宜開閉することで、不足分の吸熱又は排熱を、熱源側熱交換器11における室外空気との熱交換によって補うことができる。
<Effect 4>
The hot water supply air conditioning apparatus S2 according to the present embodiment circulates the heat exhaust heat of the second refrigerant circulating in the air conditioning refrigerant circuit 30 in the exhaust heat recovery heat exchanger 70 during the hot water supply cooling operation, and circulates the hot water supply refrigerant circuit 20 By supplying one coolant, it is possible to effectively use the exhaust heat that has been released to the outside air so far, and it is possible to improve the efficiency of the entire system.
In addition, even when the heat absorption amount of the first refrigerant in the hot water supply refrigerant circuit 20 and the exhaust heat amount of the second refrigerant in the air conditioning refrigerant circuit 30 do not match, by appropriately opening and closing each two-way valve The heat absorption or exhaust heat can be compensated by heat exchange with the outdoor air in the heat source side heat exchanger 11.
 また、本実施形態に係る給湯空調装置S2は、給湯冷房運転モードを実行する際に熱源側熱交換器11を、給湯冷媒回路20を循環する第一冷媒と室外空気との熱交換のみに使用するか(図8参照)、又は、空調用冷媒回路30を循環する第二冷媒と室外空気との熱交換のみに使用する(図10参照)。
 すなわち、第一冷媒と室外空気との熱交換、又は第二冷媒と室外空気との熱交換を行う際に、熱源側熱交換器11の板状フィン11f全体を熱交換に使用することによって、伝熱性能を向上させることができる。これにより、圧縮機やファンの回転数を低減させることができ、システム全体の効率を向上させることができる。
Further, the hot water supply air conditioner S2 according to the present embodiment uses the heat source side heat exchanger 11 only for heat exchange between the first refrigerant circulating in the hot water supply refrigerant circuit 20 and the outdoor air when executing the hot water supply cooling operation mode. Or, it is used only for heat exchange between the second refrigerant circulating in the air conditioning refrigerant circuit 30 and the outdoor air (see FIG. 10).
That is, when heat exchange between the first refrigerant and the outdoor air or heat exchange between the second refrigerant and the outdoor air is performed, the entire plate-like fins 11f of the heat source side heat exchanger 11 are used for heat exchange, Heat transfer performance can be improved. As a result, the number of rotations of the compressor or fan can be reduced, and the efficiency of the entire system can be improved.
≪第5実施形態≫
 図11は第5実施形態に係る給湯空調装置の構成図である。
 第5実施形態に係る給湯空調装置S3は、第1実施形態に係る給湯空調装置S1と比較して、太陽熱集熱ユニット300を備える点が異なる。その他の点については第1実施形態に係る給湯空調装置S1と同様であるから、説明を省略する。
Fifth Embodiment
FIG. 11 is a block diagram of the hot water supply air conditioner according to the fifth embodiment.
The hot water supply air-conditioning apparatus S3 according to the fifth embodiment differs from the hot water supply air-conditioning apparatus S1 according to the first embodiment in that a solar heat collecting unit 300 is included. The other points are the same as those of the hot water supply air-conditioning system S1 according to the first embodiment, so the description will be omitted.
 図11に示すように、太陽熱集熱ユニット300は、太陽熱集熱用回路80と、蓄熱タンク82と、三方弁85,86とを備える。
 太陽熱集熱回路80は、太陽熱集熱器84と、循環ポンプ81と、タンク内熱交換器83と、を環状に配管で接続して構成されている。
As shown in FIG. 11, the solar heat collecting unit 300 includes a solar heat collecting circuit 80, a heat storage tank 82, and three- way valves 85 and 86.
The solar heat collecting circuit 80 is configured by annularly connecting a solar heat collector 84, a circulation pump 81, and an in-tank heat exchanger 83 with a pipe.
 太陽熱集熱器84は、太陽熱を集熱して第三冷媒を加熱するものであり、平板型集熱器や真空管型集熱器などを用いることができる。
 循環ポンプ81は、太陽熱集熱回路80内の第三冷媒を圧送するものである。循環ポンプ81を駆動させることによって、太陽熱集熱器80によって加熱された第三冷媒をタンク内熱交換器83に圧送することができる。
 タンク内熱交換器83は、第三冷媒と、蓄熱タンク82内に貯留された被加熱液体との熱交換を行うものである。また、タンク内熱交換器83は蓄熱タンク83内に設置され、その両端に接続された配管はそれぞれ蓄熱タンク82を貫通し、一方は循環ポンプ81の吐出口に接続され、他方は太陽熱集熱器84に接続されている。
 なお、第三冷媒として、例えばブライン(不凍液)を用いることができる。
The solar heat collector 84 is for collecting solar heat to heat the third refrigerant, and may be a flat plate collector, a vacuum tube collector, or the like.
The circulation pump 81 pumps the third refrigerant in the solar heat collecting circuit 80. By driving the circulation pump 81, the third refrigerant heated by the solar heat collector 80 can be pressure-fed to the in-tank heat exchanger 83.
The in-tank heat exchanger 83 performs heat exchange between the third refrigerant and the liquid to be heated stored in the heat storage tank 82. The in-tank heat exchanger 83 is installed in the heat storage tank 83, and the pipes connected to both ends thereof respectively penetrate the heat storage tank 82, one is connected to the discharge port of the circulation pump 81, and the other is the solar heat collecting It is connected to the vessel 84.
As the third refrigerant, for example, brine (antifreeze) can be used.
 蓄熱タンク82の内部には、被加熱液体が貯留されており、蓄熱タンク82内でタンク内熱交換器83を通流する第三冷媒と被加熱液体とが熱交換可能となっている。
 三方弁85,86は、通流する被加熱液体の流量比率を調整可能に構成された三方弁である。三方弁85の各ポートはそれぞれ三方弁44、蓄熱タンク82、及び給湯金具102に接続されている。また、三方弁86の各ポートはそれぞれ三方弁46、蓄熱タンク82、及び給水金具101に接続されている。
The liquid to be heated is stored inside the heat storage tank 82, and the heat exchange between the third refrigerant flowing through the in-tank heat exchanger 83 and the liquid to be heated is possible in the heat storage tank 82.
The three- way valves 85 and 86 are three-way valves configured to be capable of adjusting the flow rate ratio of the heated liquid flowing therethrough. Each port of the three-way valve 85 is connected to the three-way valve 44, the heat storage tank 82, and the water heater 102, respectively. Each port of the three-way valve 86 is connected to the three-way valve 46, the heat storage tank 82, and the water supply fitting 101, respectively.
 太陽熱集熱用回路80では、循環ポンプ81によりタンク内熱交換器83から太陽熱集熱器84に圧送された低温の第三冷媒が太陽熱により加熱されて温度上昇し、中温の第三冷媒となる。さらに、中温の第三冷媒は循環ポンプ81によりタンク内熱交換器83に送られ、蓄熱タンク82内の被加熱液体と熱交換することにより冷却され、低温の第三冷媒となる。
 また、蓄熱タンク82内の被加熱液体は、タンク内熱交換器83を通流する中温の第三冷媒との熱交換により昇温し、中温の被加熱液体となる。
In the solar heat collecting circuit 80, the low temperature third refrigerant pressure-fed from the in-tank heat exchanger 83 to the solar heat collector 84 by the circulation pump 81 is heated by the solar heat to rise in temperature, and becomes an intermediate temperature third refrigerant. . Furthermore, the medium-temperature third refrigerant is sent to the in-tank heat exchanger 83 by the circulation pump 81, and is cooled by heat exchange with the liquid to be heated in the heat storage tank 82 to become a low-temperature third refrigerant.
Further, the liquid to be heated in the heat storage tank 82 is heated by heat exchange with the intermediate temperature third refrigerant flowing through the in-tank heat exchanger 83, and becomes an intermediate temperature heated liquid.
 ユーザからの出湯要求があった場合、蓄熱タンク82内の中温の被加熱液体は、貯湯タンク42内の被加熱液体と同様に所望の温度になるよう調整された後、給湯金具102を介して供給される。なお、ユーザからの出湯要求に対して、貯湯タンク42内の被加熱液体又は蓄熱タンク82内の被加熱液体のどちらを使用するかについては、その時点での貯湯タンク42内の被加熱液体の温度、蓄熱タンク72内の被加熱液体の温度、及び、ユーザの要求する温度などにより決定される。
 なお、太陽熱集熱ユニット300は、給湯運転、冷房運転、暖房運転、給湯冷房運転、給湯暖房運転のいずれの運転とも併用できるため、年間を通して使用可能である。
When there is a request for hot water from the user, the medium-temperature liquid to be heated in the heat storage tank 82 is adjusted to a desired temperature similarly to the liquid to be heated in the hot water storage tank 42, and then the hot water supply 102 is used. Supplied. With regard to whether to use the liquid to be heated in the hot water storage tank 42 or the liquid to be heated in the thermal storage tank 82 in response to the hot water request from the user, the liquid to be heated in the hot water storage tank 42 at that time is used. It is determined by the temperature, the temperature of the liquid to be heated in the heat storage tank 72, the temperature required by the user, and the like.
The solar heat collecting unit 300 can be used throughout the year because it can be used together with any of the hot water supply operation, the cooling operation, the heating operation, the hot water supply cooling operation, and the hot water supply heating operation.
<効果5>
 本実施形態に係る給湯空調装置S3によれば、給湯の熱源として太陽熱集熱器84で得られた温熱を利用することができるため、システム全体の効率を大幅に向上させることが可能となる。ちなみに、約6mの太陽熱集熱器84を用いた場合について計算で見積もると、年間で消費電力量を約4割削減できるという結果が出た。
<Effect 5>
According to the hot water supply air-conditioning apparatus S3 according to the present embodiment, the thermal energy obtained by the solar heat collector 84 can be used as a heat source for hot water supply, so that the efficiency of the entire system can be significantly improved. By the way, when it is estimated by calculation about the case of using the solar heat collector 84 of about 6 m 2 , it is found that the power consumption can be reduced by about 40% in a year.
 また、本実施形態に係る給湯空調装置S3によれば、太陽熱によって被加熱液体を加熱することができるので、冷房給湯運転や暖房給湯運転を行う際に、熱源側熱交換器11の給湯用伝熱管21aを使用する頻度が少なくなる。すなわち、空調用伝熱管31aを通流する第二冷媒と室外空気との熱交換を行う際に、板状フィン11fの全体を使用する頻度が多くなる。これによって、圧縮機やファンの回転速度を低減させることができ、システム全体の効率をより向上させることができる。 Further, according to the hot water supply air-conditioning system S3 according to the present embodiment, since the liquid to be heated can be heated by the solar heat, when performing the cooling and hot water supply operation, the heat transfer of the heat source side heat exchanger 11 is performed. The frequency of using the heat pipe 21a is reduced. That is, when heat exchange is performed between the second refrigerant flowing through the air conditioning heat transfer pipe 31a and the outdoor air, the frequency of using the entire plate-like fins 11f increases. As a result, the rotational speed of the compressor or fan can be reduced, and the efficiency of the entire system can be further improved.
≪変形例≫
 以上、本発明に係る給湯空調装置について各実施形態により説明したが、本発明の実施態様はこれらの記載に限定されるものではなく、種々の変更などを行うことができる。
 例えば、第1実施形態~第3実施形態で示した熱源側熱交換器11(図2~図5参照)の構成は、第4実施形態に係る給湯空調装置S2や第5実施形態に係る給湯空調装置S3にも適用することができる。
«Modification»
As mentioned above, although each embodiment demonstrated the hot-water supply air conditioning apparatus which concerns on this invention, the embodiment of this invention is not limited to these description, A various change etc. can be performed.
For example, the configuration of the heat source side heat exchanger 11 (see FIGS. 2 to 5) shown in the first to third embodiments corresponds to the hot water supply air conditioner S2 according to the fourth embodiment and the hot water supply according to the fifth embodiment. It is applicable also to air conditioner S3.
 また、熱源側熱交換器11の例として、図2~図5を用いて説明したが、熱源側熱交換器11の構成はこれに限らない。例えば、給湯用伝熱管21aと空調用伝熱管31aとが空気の通流方向と平行に重なるように板状フィン11fに設置してもよい。この場合でも、板状フィン11fを介して給湯用の熱源側熱交換器と空調用の熱源側熱交換器とが一体化されていることによって、簡単な構成でシステム全体の効率を向上させることができる。 Further, although the heat source side heat exchanger 11 has been described using FIGS. 2 to 5, the configuration of the heat source side heat exchanger 11 is not limited to this. For example, the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning may be installed on the plate-like fin 11f so as to overlap in parallel with the air flow direction. Even in this case, the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning are integrated through the plate-like fins 11 f, thereby improving the efficiency of the entire system with a simple configuration. Can.
 また、上記実施形態においては、空調利用側熱交換器33で熱搬送媒体を加熱(又は冷却)して室内ユニット200に供給し、室内熱交換器52で加熱(又は冷却)された熱搬送媒体と室内空気とを熱交換することにより室内を暖房(又は冷房)するものとして説明したが、これに限られるものではない。すなわち、空調用熱搬送媒体循環回路50を省略し、空調利用側熱交換器33を室内ユニット2に設置し、空調利用側熱交換器33内を通流する第二冷媒と室内空気との間で熱交換することにより暖房(又は冷房)する構成としてもよい。 In the above embodiment, the heat transfer medium is heated (or cooled) by the air conditioning utilization side heat exchanger 33, supplied to the indoor unit 200, and heated (or cooled) by the indoor heat exchanger 52. Although it has been described that the room is heated (or cooled) by heat exchange with the room air and the room air, the invention is not limited to this. That is, the heat transfer medium circulation circuit 50 for air conditioning is omitted, the air conditioning utilization side heat exchanger 33 is installed in the indoor unit 2, and the second air flowing through the air conditioning utilization side heat exchanger 33 flows between the indoor air and the second refrigerant. It is good also as composition which heats (or air conditioning) by exchanging heat with.
 また、前記各実施形態では、所定の間隔を空けて略平行に積層された複数のフィン11fを、給湯用伝熱管21aと、空調用伝熱管31aとがそれぞれ貫通する構成としていたが、これに限らない。すなわち、給湯熱源側熱交換器と空調熱源側熱交換器がそれぞれ、室外空気と熱交換可能であり、かつ、給湯熱源側熱交換器と空調熱源側熱交換器とが熱的に接触していればよい。
 例えば、給湯熱源側熱交換器が備える複数のフィンと、空調熱源側熱交換器が備える複数のフィンとが一体とされている場合の他、物理的に接触している構成でもよい。この場合でも、給湯熱源側熱交換器の給湯用伝熱管を通流する第一冷媒と、空調熱源側熱交換器の空調用伝熱管を通流する第二冷媒とが互いに熱交換することができる。
In each of the embodiments, the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning are respectively penetrated through the plurality of fins 11f stacked substantially in parallel at predetermined intervals. Not exclusively. That is, the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger can respectively exchange heat with the outdoor air, and the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are in thermal contact. Just do it.
For example, in addition to the case where the plurality of fins provided in the hot water supply heat source side heat exchanger and the plurality of fins provided in the air conditioning heat source side heat exchanger are integrated, the configuration may be in physical contact. Even in this case, the first refrigerant flowing through the heat transfer heat transfer pipe of the hot water supply heat source side heat exchanger and the second refrigerant flowing through the air conditioning heat transfer pipe of the air conditioning heat source side heat exchanger mutually exchange heat with each other. it can.
 S1,S2,S3 空調給湯装置
 11 熱源側熱交換器(給湯熱源側熱交換器、空調熱源側熱交換器)
 20 給湯用冷媒回路
 21a 給湯用伝熱管
 21s 直線状第一伝熱管
 21c 接続用第一伝熱管
 21 給湯用圧縮機
 22 給湯利用側熱交換器
 23 給湯用膨張弁(給湯用減圧装置)
 25,26,27,28 二方弁(給湯用開閉手段)
 30 空調用冷媒回路
 31a 空調用伝熱管
 31s 直線状第二伝熱管
 31c 接続用第二伝熱管
 31 空調用圧縮機
 32 四方弁(流路切替手段)
 33 空調利用側熱交換器
 34 空調用膨張弁(空調用減圧装置)
 36,37,38,39 二方弁(空調用開閉手段)
S1, S2, S3 Air conditioning and hot water supply equipment 11 Heat source side heat exchanger (hot water supply heat source side heat exchanger, air conditioning heat source side heat exchanger)
Reference Signs List 20 refrigerant circuit for hot water supply 21a heat transfer pipe for hot water supply 21s linear first heat transfer pipe 21c first heat transfer pipe for connection 21 hot water supply compressor 22 hot water use side heat exchanger 23 expansion valve for hot water supply (pressure reduction device for hot water supply)
25, 26, 27, 28 Two-way valve (opening and closing means for hot water supply)
30 Air-Conditioning Refrigerant Circuit 31a Air-Conditioning Heat Transfer Tube 31s Straight Second Heat-Transfer Tube 31c Connection Second Heat-Transfer Tube 31 Air-Conditioning Compressor 32 Four-way Valve (Flow Path Switching Means)
33 Air conditioning user side heat exchanger 34 Air conditioning expansion valve (air conditioning pressure reducing device)
36, 37, 38, 39 Two-way valve (switching means for air conditioning)

Claims (11)

  1.  給湯用圧縮機と、給湯利用側熱交換器と、給湯用減圧装置と、給湯熱源側熱交換器とを環状に接続して構成され、第一冷媒が循環する給湯用冷媒回路を備えるとともに、
     空調用圧縮機と、流路切替手段と、空調利用側熱交換器と、空調用減圧装置と、空調熱源側熱交換器とを環状に接続して構成され、第二冷媒が循環する空調用冷媒回路を備える給湯空調装置であって、
     前記給湯熱源側熱交換器及び前記空調熱源側熱交換器はそれぞれ、室外空気と熱交換可能であり、
     前記給湯熱源側熱交換器と前記空調熱源側熱交換器とが熱的に接触していること
     を特徴とする給湯空調装置。
    A hot-water supply refrigerant circuit including a hot-water supply compressor, a hot-water use side heat exchanger, a hot-water supply pressure reduction device, and a hot-water heat source side heat exchanger connected annularly, and having a first refrigerant circulating therein.
    The air conditioning compressor, the flow path switching means, the air conditioning utilization side heat exchanger, the air conditioning pressure reducing device, and the air conditioning heat source side heat exchanger are annularly connected, and for air conditioning in which the second refrigerant circulates A hot water supply air conditioner comprising a refrigerant circuit, comprising:
    The hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger can respectively exchange heat with outdoor air,
    A hot water supply air conditioning system characterized in that the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are in thermal contact with each other.
  2.  前記給湯熱源側熱交換器及び前記空調熱源側熱交換器はそれぞれ、室外空気と熱交換する複数のフィンを備え、前記熱的な接触は、前記給湯熱源側熱交換器の複数のフィンと、前記空調熱源側熱交換器の複数のフィンとが一体とされているか、又は、物理的に接触していることによりなされること
     を特徴とする請求の範囲第1項に記載の給湯空調装置。
    The hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are each provided with a plurality of fins for exchanging heat with outdoor air, and the thermal contact is a plurality of fins of the hot water supply source side heat exchanger, The hot water supply air conditioning system according to claim 1, characterized in that the plurality of fins of the air conditioning heat source side heat exchanger are integrated or in physical contact with each other.
  3.  所定の間隔を空けて略平行に積層された複数のフィンを、前記給湯熱源側熱交換器の給湯用伝熱管と、前記空調熱源側熱交換器の空調用伝熱管と、がそれぞれ貫通することによって、前記給湯熱源側熱交換器と前記空調熱源側熱交換器とが熱的に接触していること
     を特徴とする請求の範囲第2項に記載の給湯空調装置。
    The heat transfer tubes for hot water supply of the hot water supply heat source side heat exchanger and the heat transfer tubes for air conditioning of the air conditioning heat source side heat exchanger respectively penetrate a plurality of fins stacked substantially in parallel at predetermined intervals. The hot water supply air conditioning system according to claim 2, wherein the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are in thermal contact with each other.
  4.  前記給湯用伝熱管は、前記フィンの伝熱面と略垂直な方向に当該フィンを貫通する複数の直線状第一伝熱管と、前記直線状第一伝熱管を接続する複数の接続用第一伝熱管と、を有し、
     前記空調用伝熱管は、前記フィンの伝熱面と略垂直な方向に当該フィンを貫通する複数の直線状第二伝熱管と、前記直線状第二伝熱管を接続する複数の接続用第二伝熱管と、を有し、
     前記直線状第一伝熱管及び前記直線状第二伝熱管は略水平方向に設置され、
     前記複数の直線状第一伝熱管のうち少なくとも一つは、前記複数の直線状第二伝熱管よりも上方に設置されていること
     を特徴とする請求の範囲第3項に記載の給湯空調装置。
    The heat transfer pipe has a plurality of linear first heat transfer pipes penetrating the fins in a direction substantially perpendicular to the heat transfer surface of the fins, and a plurality of connection firsts connecting the linear first heat transfer pipes. A heat transfer tube, and
    The air conditioning heat transfer pipe is configured by connecting a plurality of linear second heat transfer pipes penetrating the fin in a direction substantially perpendicular to the heat transfer surface of the fin and a plurality of second connecting connection connecting the linear second heat transfer pipe. A heat transfer tube, and
    The linear first heat transfer pipe and the linear second heat transfer pipe are installed substantially horizontally.
    The hot water supply air conditioner according to claim 3, wherein at least one of the plurality of linear first heat transfer tubes is installed above the plurality of linear second heat transfer tubes. .
  5.  前記複数の直線状第一伝熱管は、前記複数の直線状第二伝熱管よりも上方に設置されていること
     を特徴とする請求の範囲第4項に記載の給湯空調装置。
    The hot water supply air-conditioning system according to claim 4, wherein the plurality of linear first heat transfer tubes are installed above the plurality of linear second heat transfer tubes.
  6.  前記複数の直線状第一伝熱管のうち、一部の直線状第一伝熱管は、前記複数の直線状第二伝熱管よりも上方に設置され、残りの直線状第一伝熱管は、前記複数の直線状第二伝熱管よりも下方に設置されていること
     を特徴とする請求の範囲第4項に記載の給湯空調装置。
    Among the plurality of linear first heat transfer tubes, a portion of the linear first heat transfer tubes is installed above the plurality of linear second heat transfer tubes, and the remaining linear first heat transfer tubes are The hot water supply air conditioning system according to claim 4, wherein the hot water supply air conditioning system according to claim 4, wherein the hot water supply air conditioning system is installed below the plurality of linear second heat transfer pipes.
  7.  前記複数の直線状第二伝熱管よりも上方に設置された前記一部の直線状第一伝熱管の本数は、前記複数の直線状第二伝熱管よりも下方に設置された前記残りの直線状第一伝熱管の本数よりも多いこと
     を特徴とする請求の範囲第6項に記載の給湯空調装置。
    The number of the partial straight first heat transfer tubes disposed above the plurality of straight second heat transfer tubes is the remaining straight line disposed below the plurality of straight second heat transfer tubes. The hot water supply air conditioner according to claim 6, characterized in that the number of the first heat transfer tubes is greater than the number of the first heat transfer tubes.
  8.  前記直線状第一伝熱管と、前記直線状第二伝熱管とが、上下交互に設置されていること
     を特徴とする請求の範囲第4項に記載の給湯空調装置。
    The hot water supply air-conditioning system according to claim 4, wherein the linear first heat transfer pipe and the linear second heat transfer pipe are installed alternately in the vertical direction.
  9.  前記給湯熱源側熱交換器及び前記空調熱源側熱交換器と並列に接続され、第二冷媒からの排熱を第一冷媒に回収させるための排熱回収用熱交換器をさらに備え、
     前記給湯用冷媒回路には、前記給湯熱源側熱交換器及び/又は前記排熱回収用熱交換器に第一冷媒を通流させるための給湯用開閉手段が設置され、
     前記空調用冷媒回路には、前記空調熱源側熱交換器及び/又は前記排熱回収用熱交換器に第二冷媒を通流させるための空調用開閉手段が設置されていること
     を特徴とする請求の範囲第1項から第8項のいずれか一項に記載の給湯空調装置。
    It further comprises an exhaust heat recovery heat exchanger connected in parallel with the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger, for recovering the exhaust heat from the second refrigerant into the first refrigerant,
    In the hot water supply refrigerant circuit, a hot water supply opening / closing means is provided for causing the first refrigerant to flow through the hot water supply heat source side heat exchanger and / or the exhaust heat recovery heat exchanger.
    The air conditioning refrigerant circuit is provided with an air conditioning opening / closing means for causing the second refrigerant to flow through the air conditioning heat source side heat exchanger and / or the exhaust heat recovery heat exchanger. The hot water supply air-conditioning apparatus according to any one of claims 1 to 8.
  10.  第三冷媒が循環する太陽熱集熱用回路をさらに備え、
     前記太陽熱集熱用回路は、
     前記給湯用冷媒回路を通流する第一冷媒と熱交換可能な給湯回路に接続された蓄熱タンク内に設置され、前記蓄熱タンク内に貯留された被加熱液体と第三冷媒との熱交換を行うタンク内熱交換器と、
     太陽熱を集熱する太陽熱集熱器と、
     前記太陽熱集熱器によって加熱された第三冷媒を前記タンク内熱交換器に圧送する循環ポンプと、を環状に接続して構成されること
     を特徴とする請求の範囲第1項から第8項のいずれか一項に記載の給湯空調装置。
    The system further comprises a solar heat collecting circuit through which the third refrigerant circulates,
    The solar heat collecting circuit is
    The heat exchange between the liquid to be heated and the third refrigerant stored in the heat storage tank is installed in the heat storage tank connected to the hot water supply circuit capable of exchanging heat with the first refrigerant flowing through the refrigerant circuit for hot water supply An in-tank heat exchanger,
    Solar heat collectors, which collect solar heat,
    9. A circulation pump for pressure-feeding the third refrigerant heated by the solar heat collector to the in-tank heat exchanger, which is annularly connected to each other. The hot water supply air conditioner according to any one of the preceding claims.
  11.  第三冷媒が循環する太陽熱集熱用回路をさらに備え、
     前記太陽熱集熱用回路は、
     前記給湯用冷媒回路を通流する第一冷媒と熱交換可能な給湯回路に接続された蓄熱タンク内に設置され、前記蓄熱タンク内に貯留された被加熱液体と第三冷媒との熱交換を行うタンク内熱交換器と、
     太陽熱を集熱する太陽熱集熱器と、
     前記太陽熱集熱器によって加熱された第三冷媒を前記タンク内熱交換器に圧送する循環ポンプと、を環状に接続して構成されること
     を特徴とする請求の範囲第9項に記載の給湯空調装置。
    The system further comprises a solar heat collecting circuit through which the third refrigerant circulates,
    The solar heat collecting circuit is
    The heat exchange between the liquid to be heated and the third refrigerant stored in the heat storage tank is installed in the heat storage tank connected to the hot water supply circuit capable of exchanging heat with the first refrigerant flowing through the refrigerant circuit for hot water supply An in-tank heat exchanger,
    Solar heat collectors, which collect solar heat,
    The hot water supply system according to claim 9, characterized in that a circulating pump for pressure-feeding the third refrigerant heated by the solar heat collector to the in-tank heat exchanger is annularly connected. Air conditioner.
PCT/JP2011/075003 2011-10-28 2011-10-28 Hot-water supply and air-conditioning device WO2013061473A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/075003 WO2013061473A1 (en) 2011-10-28 2011-10-28 Hot-water supply and air-conditioning device
JP2013540604A JP5775596B2 (en) 2011-10-28 2011-10-28 Hot water supply air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075003 WO2013061473A1 (en) 2011-10-28 2011-10-28 Hot-water supply and air-conditioning device

Publications (1)

Publication Number Publication Date
WO2013061473A1 true WO2013061473A1 (en) 2013-05-02

Family

ID=48167336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075003 WO2013061473A1 (en) 2011-10-28 2011-10-28 Hot-water supply and air-conditioning device

Country Status (2)

Country Link
JP (1) JP5775596B2 (en)
WO (1) WO2013061473A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013080297A1 (en) * 2011-11-29 2015-04-27 株式会社日立製作所 Air conditioning and hot water supply system
WO2016036687A1 (en) * 2014-09-02 2016-03-10 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
US9879881B2 (en) 2013-03-13 2018-01-30 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
EP3364126A1 (en) * 2017-02-14 2018-08-22 Heatcraft Refrigeration Products LLC Cooling system
JP2018534521A (en) * 2015-10-15 2018-11-22 フォノニック デバイセズ、インク Hybrid vapor compression / thermoelectric heat transfer system
US10458678B2 (en) 2016-07-06 2019-10-29 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant and phase change material
CN115235145A (en) * 2022-07-21 2022-10-25 北京工业大学 Heat pump system with sleeve pipe fin type heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106712A (en) * 2001-10-02 2003-04-09 Sanyo Electric Co Ltd Air conditioning device
JP2004132647A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Hot-water supplier, air-conditioning hot-water supply system, and hot-water supply system
JP2004218943A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Air conditioning and water heater
JP2007232282A (en) * 2006-03-01 2007-09-13 Sharp Corp Heat pump type water heater
JP2011085331A (en) * 2009-10-16 2011-04-28 Hitachi Ltd Air-conditioning hot water supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332686A (en) * 1994-06-03 1995-12-22 Matsushita Electric Ind Co Ltd Heat exchanging device
JP5509311B2 (en) * 2010-02-26 2014-06-04 株式会社日立製作所 Three-fluid heat exchanger and air-conditioning hot-water supply system using the same
JP5373964B2 (en) * 2010-03-01 2013-12-18 株式会社日立製作所 Air conditioning and hot water supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106712A (en) * 2001-10-02 2003-04-09 Sanyo Electric Co Ltd Air conditioning device
JP2004132647A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Hot-water supplier, air-conditioning hot-water supply system, and hot-water supply system
JP2004218943A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Air conditioning and water heater
JP2007232282A (en) * 2006-03-01 2007-09-13 Sharp Corp Heat pump type water heater
JP2011085331A (en) * 2009-10-16 2011-04-28 Hitachi Ltd Air-conditioning hot water supply system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013080297A1 (en) * 2011-11-29 2015-04-27 株式会社日立製作所 Air conditioning and hot water supply system
US9879881B2 (en) 2013-03-13 2018-01-30 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
US9945582B2 (en) 2013-03-13 2018-04-17 Rheem Manufacturing Company Apparatus and methods for pre-heating water with air conditioning unit or heat pump
US10871307B2 (en) 2013-03-13 2020-12-22 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
WO2016036687A1 (en) * 2014-09-02 2016-03-10 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
US9945587B2 (en) 2014-09-02 2018-04-17 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
US10041702B2 (en) 2014-09-02 2018-08-07 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
JP2018534521A (en) * 2015-10-15 2018-11-22 フォノニック デバイセズ、インク Hybrid vapor compression / thermoelectric heat transfer system
US10718551B2 (en) 2015-10-15 2020-07-21 Phononic, Inc. Hybrid vapor compression/thermoelectric heat transport system
US10458678B2 (en) 2016-07-06 2019-10-29 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant and phase change material
US10422562B2 (en) 2017-02-14 2019-09-24 Heatcraft Refrigeration Products Llc Cooling system with intermediary heat exchange
EP3364126A1 (en) * 2017-02-14 2018-08-22 Heatcraft Refrigeration Products LLC Cooling system
CN115235145A (en) * 2022-07-21 2022-10-25 北京工业大学 Heat pump system with sleeve pipe fin type heat exchanger

Also Published As

Publication number Publication date
JP5775596B2 (en) 2015-09-09
JPWO2013061473A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5868498B2 (en) Heat pump equipment
JP5327308B2 (en) Hot water supply air conditioning system
WO2013061473A1 (en) Hot-water supply and air-conditioning device
JP5380226B2 (en) Air conditioning and hot water supply system and heat pump unit
JP5297968B2 (en) Air conditioner
US20180031285A1 (en) Thermoelectric heat pump system
JP5455521B2 (en) Air conditioning and hot water supply system
US20100038441A1 (en) Energy system with a heat pump
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP6528078B2 (en) Air conditioner
CN113007831B (en) Three-pipe multi-online hot water system and control method thereof
JP2005274134A (en) Heat pump type floor heating air conditioner
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP5629280B2 (en) Waste heat recovery system and operation method thereof
JP4229881B2 (en) Heat pump system
JP2004218943A (en) Air conditioning and water heater
WO2019232943A1 (en) Multiple-unit air conditioner and control method therefor
JP2016142417A (en) Air conditioner
KR100945452B1 (en) Heat pump system
EP1669698B1 (en) Cooling/heating system
WO2018163347A1 (en) Geothermal heat pump device
JP2019128103A (en) Heat pump system
KR101123254B1 (en) Combined regeneration heating and cooling system
JP2007147133A (en) Air conditioner
JP2009281640A (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874601

Country of ref document: EP

Kind code of ref document: A1